forked from OSchip/llvm-project
610 lines
23 KiB
C++
610 lines
23 KiB
C++
//===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass looks for safe point where the prologue and epilogue can be
|
|
// inserted.
|
|
// The safe point for the prologue (resp. epilogue) is called Save
|
|
// (resp. Restore).
|
|
// A point is safe for prologue (resp. epilogue) if and only if
|
|
// it 1) dominates (resp. post-dominates) all the frame related operations and
|
|
// between 2) two executions of the Save (resp. Restore) point there is an
|
|
// execution of the Restore (resp. Save) point.
|
|
//
|
|
// For instance, the following points are safe:
|
|
// for (int i = 0; i < 10; ++i) {
|
|
// Save
|
|
// ...
|
|
// Restore
|
|
// }
|
|
// Indeed, the execution looks like Save -> Restore -> Save -> Restore ...
|
|
// And the following points are not:
|
|
// for (int i = 0; i < 10; ++i) {
|
|
// Save
|
|
// ...
|
|
// }
|
|
// for (int i = 0; i < 10; ++i) {
|
|
// ...
|
|
// Restore
|
|
// }
|
|
// Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore.
|
|
//
|
|
// This pass also ensures that the safe points are 3) cheaper than the regular
|
|
// entry and exits blocks.
|
|
//
|
|
// Property #1 is ensured via the use of MachineDominatorTree and
|
|
// MachinePostDominatorTree.
|
|
// Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both
|
|
// points must be in the same loop.
|
|
// Property #3 is ensured via the MachineBlockFrequencyInfo.
|
|
//
|
|
// If this pass found points matching all these properties, then
|
|
// MachineFrameInfo is updated with this information.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
|
|
#include "llvm/CodeGen/MachinePostDominators.h"
|
|
#include "llvm/CodeGen/RegisterClassInfo.h"
|
|
#include "llvm/CodeGen/RegisterScavenging.h"
|
|
#include "llvm/CodeGen/TargetFrameLowering.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <memory>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "shrink-wrap"
|
|
|
|
STATISTIC(NumFunc, "Number of functions");
|
|
STATISTIC(NumCandidates, "Number of shrink-wrapping candidates");
|
|
STATISTIC(NumCandidatesDropped,
|
|
"Number of shrink-wrapping candidates dropped because of frequency");
|
|
|
|
static cl::opt<cl::boolOrDefault>
|
|
EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden,
|
|
cl::desc("enable the shrink-wrapping pass"));
|
|
|
|
namespace {
|
|
|
|
/// Class to determine where the safe point to insert the
|
|
/// prologue and epilogue are.
|
|
/// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the
|
|
/// shrink-wrapping term for prologue/epilogue placement, this pass
|
|
/// does not rely on expensive data-flow analysis. Instead we use the
|
|
/// dominance properties and loop information to decide which point
|
|
/// are safe for such insertion.
|
|
class ShrinkWrap : public MachineFunctionPass {
|
|
/// Hold callee-saved information.
|
|
RegisterClassInfo RCI;
|
|
MachineDominatorTree *MDT;
|
|
MachinePostDominatorTree *MPDT;
|
|
|
|
/// Current safe point found for the prologue.
|
|
/// The prologue will be inserted before the first instruction
|
|
/// in this basic block.
|
|
MachineBasicBlock *Save;
|
|
|
|
/// Current safe point found for the epilogue.
|
|
/// The epilogue will be inserted before the first terminator instruction
|
|
/// in this basic block.
|
|
MachineBasicBlock *Restore;
|
|
|
|
/// Hold the information of the basic block frequency.
|
|
/// Use to check the profitability of the new points.
|
|
MachineBlockFrequencyInfo *MBFI;
|
|
|
|
/// Hold the loop information. Used to determine if Save and Restore
|
|
/// are in the same loop.
|
|
MachineLoopInfo *MLI;
|
|
|
|
// Emit remarks.
|
|
MachineOptimizationRemarkEmitter *ORE = nullptr;
|
|
|
|
/// Frequency of the Entry block.
|
|
uint64_t EntryFreq;
|
|
|
|
/// Current opcode for frame setup.
|
|
unsigned FrameSetupOpcode;
|
|
|
|
/// Current opcode for frame destroy.
|
|
unsigned FrameDestroyOpcode;
|
|
|
|
/// Stack pointer register, used by llvm.{savestack,restorestack}
|
|
unsigned SP;
|
|
|
|
/// Entry block.
|
|
const MachineBasicBlock *Entry;
|
|
|
|
using SetOfRegs = SmallSetVector<unsigned, 16>;
|
|
|
|
/// Registers that need to be saved for the current function.
|
|
mutable SetOfRegs CurrentCSRs;
|
|
|
|
/// Current MachineFunction.
|
|
MachineFunction *MachineFunc;
|
|
|
|
/// Check if \p MI uses or defines a callee-saved register or
|
|
/// a frame index. If this is the case, this means \p MI must happen
|
|
/// after Save and before Restore.
|
|
bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS) const;
|
|
|
|
const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const {
|
|
if (CurrentCSRs.empty()) {
|
|
BitVector SavedRegs;
|
|
const TargetFrameLowering *TFI =
|
|
MachineFunc->getSubtarget().getFrameLowering();
|
|
|
|
TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS);
|
|
|
|
for (int Reg = SavedRegs.find_first(); Reg != -1;
|
|
Reg = SavedRegs.find_next(Reg))
|
|
CurrentCSRs.insert((unsigned)Reg);
|
|
}
|
|
return CurrentCSRs;
|
|
}
|
|
|
|
/// Update the Save and Restore points such that \p MBB is in
|
|
/// the region that is dominated by Save and post-dominated by Restore
|
|
/// and Save and Restore still match the safe point definition.
|
|
/// Such point may not exist and Save and/or Restore may be null after
|
|
/// this call.
|
|
void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS);
|
|
|
|
/// Initialize the pass for \p MF.
|
|
void init(MachineFunction &MF) {
|
|
RCI.runOnMachineFunction(MF);
|
|
MDT = &getAnalysis<MachineDominatorTree>();
|
|
MPDT = &getAnalysis<MachinePostDominatorTree>();
|
|
Save = nullptr;
|
|
Restore = nullptr;
|
|
MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
|
|
MLI = &getAnalysis<MachineLoopInfo>();
|
|
ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
|
|
EntryFreq = MBFI->getEntryFreq();
|
|
const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
|
|
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
|
|
FrameSetupOpcode = TII.getCallFrameSetupOpcode();
|
|
FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
|
|
SP = Subtarget.getTargetLowering()->getStackPointerRegisterToSaveRestore();
|
|
Entry = &MF.front();
|
|
CurrentCSRs.clear();
|
|
MachineFunc = &MF;
|
|
|
|
++NumFunc;
|
|
}
|
|
|
|
/// Check whether or not Save and Restore points are still interesting for
|
|
/// shrink-wrapping.
|
|
bool ArePointsInteresting() const { return Save != Entry && Save && Restore; }
|
|
|
|
/// Check if shrink wrapping is enabled for this target and function.
|
|
static bool isShrinkWrapEnabled(const MachineFunction &MF);
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
ShrinkWrap() : MachineFunctionPass(ID) {
|
|
initializeShrinkWrapPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<MachineBlockFrequencyInfo>();
|
|
AU.addRequired<MachineDominatorTree>();
|
|
AU.addRequired<MachinePostDominatorTree>();
|
|
AU.addRequired<MachineLoopInfo>();
|
|
AU.addRequired<MachineOptimizationRemarkEmitterPass>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
MachineFunctionProperties getRequiredProperties() const override {
|
|
return MachineFunctionProperties().set(
|
|
MachineFunctionProperties::Property::NoVRegs);
|
|
}
|
|
|
|
StringRef getPassName() const override { return "Shrink Wrapping analysis"; }
|
|
|
|
/// Perform the shrink-wrapping analysis and update
|
|
/// the MachineFrameInfo attached to \p MF with the results.
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char ShrinkWrap::ID = 0;
|
|
|
|
char &llvm::ShrinkWrapID = ShrinkWrap::ID;
|
|
|
|
INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
|
|
INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
|
|
INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
|
|
|
|
bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI,
|
|
RegScavenger *RS) const {
|
|
if (MI.getOpcode() == FrameSetupOpcode ||
|
|
MI.getOpcode() == FrameDestroyOpcode) {
|
|
LLVM_DEBUG(dbgs() << "Frame instruction: " << MI << '\n');
|
|
return true;
|
|
}
|
|
for (const MachineOperand &MO : MI.operands()) {
|
|
bool UseOrDefCSR = false;
|
|
if (MO.isReg()) {
|
|
// Ignore instructions like DBG_VALUE which don't read/def the register.
|
|
if (!MO.isDef() && !MO.readsReg())
|
|
continue;
|
|
unsigned PhysReg = MO.getReg();
|
|
if (!PhysReg)
|
|
continue;
|
|
assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
|
|
"Unallocated register?!");
|
|
// The stack pointer is not normally described as a callee-saved register
|
|
// in calling convention definitions, so we need to watch for it
|
|
// separately. An SP mentioned by a call instruction, we can ignore,
|
|
// though, as it's harmless and we do not want to effectively disable tail
|
|
// calls by forcing the restore point to post-dominate them.
|
|
UseOrDefCSR = (!MI.isCall() && PhysReg == SP) ||
|
|
RCI.getLastCalleeSavedAlias(PhysReg);
|
|
} else if (MO.isRegMask()) {
|
|
// Check if this regmask clobbers any of the CSRs.
|
|
for (unsigned Reg : getCurrentCSRs(RS)) {
|
|
if (MO.clobbersPhysReg(Reg)) {
|
|
UseOrDefCSR = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// Skip FrameIndex operands in DBG_VALUE instructions.
|
|
if (UseOrDefCSR || (MO.isFI() && !MI.isDebugValue())) {
|
|
LLVM_DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI("
|
|
<< MO.isFI() << "): " << MI << '\n');
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Helper function to find the immediate (post) dominator.
|
|
template <typename ListOfBBs, typename DominanceAnalysis>
|
|
static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs,
|
|
DominanceAnalysis &Dom) {
|
|
MachineBasicBlock *IDom = &Block;
|
|
for (MachineBasicBlock *BB : BBs) {
|
|
IDom = Dom.findNearestCommonDominator(IDom, BB);
|
|
if (!IDom)
|
|
break;
|
|
}
|
|
if (IDom == &Block)
|
|
return nullptr;
|
|
return IDom;
|
|
}
|
|
|
|
void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB,
|
|
RegScavenger *RS) {
|
|
// Get rid of the easy cases first.
|
|
if (!Save)
|
|
Save = &MBB;
|
|
else
|
|
Save = MDT->findNearestCommonDominator(Save, &MBB);
|
|
|
|
if (!Save) {
|
|
LLVM_DEBUG(dbgs() << "Found a block that is not reachable from Entry\n");
|
|
return;
|
|
}
|
|
|
|
if (!Restore)
|
|
Restore = &MBB;
|
|
else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it
|
|
// means the block never returns. If that's the
|
|
// case, we don't want to call
|
|
// `findNearestCommonDominator`, which will
|
|
// return `Restore`.
|
|
Restore = MPDT->findNearestCommonDominator(Restore, &MBB);
|
|
else
|
|
Restore = nullptr; // Abort, we can't find a restore point in this case.
|
|
|
|
// Make sure we would be able to insert the restore code before the
|
|
// terminator.
|
|
if (Restore == &MBB) {
|
|
for (const MachineInstr &Terminator : MBB.terminators()) {
|
|
if (!useOrDefCSROrFI(Terminator, RS))
|
|
continue;
|
|
// One of the terminator needs to happen before the restore point.
|
|
if (MBB.succ_empty()) {
|
|
Restore = nullptr; // Abort, we can't find a restore point in this case.
|
|
break;
|
|
}
|
|
// Look for a restore point that post-dominates all the successors.
|
|
// The immediate post-dominator is what we are looking for.
|
|
Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!Restore) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "Restore point needs to be spanned on several blocks\n");
|
|
return;
|
|
}
|
|
|
|
// Make sure Save and Restore are suitable for shrink-wrapping:
|
|
// 1. all path from Save needs to lead to Restore before exiting.
|
|
// 2. all path to Restore needs to go through Save from Entry.
|
|
// We achieve that by making sure that:
|
|
// A. Save dominates Restore.
|
|
// B. Restore post-dominates Save.
|
|
// C. Save and Restore are in the same loop.
|
|
bool SaveDominatesRestore = false;
|
|
bool RestorePostDominatesSave = false;
|
|
while (Save && Restore &&
|
|
(!(SaveDominatesRestore = MDT->dominates(Save, Restore)) ||
|
|
!(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) ||
|
|
// Post-dominance is not enough in loops to ensure that all uses/defs
|
|
// are after the prologue and before the epilogue at runtime.
|
|
// E.g.,
|
|
// while(1) {
|
|
// Save
|
|
// Restore
|
|
// if (...)
|
|
// break;
|
|
// use/def CSRs
|
|
// }
|
|
// All the uses/defs of CSRs are dominated by Save and post-dominated
|
|
// by Restore. However, the CSRs uses are still reachable after
|
|
// Restore and before Save are executed.
|
|
//
|
|
// For now, just push the restore/save points outside of loops.
|
|
// FIXME: Refine the criteria to still find interesting cases
|
|
// for loops.
|
|
MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
|
|
// Fix (A).
|
|
if (!SaveDominatesRestore) {
|
|
Save = MDT->findNearestCommonDominator(Save, Restore);
|
|
continue;
|
|
}
|
|
// Fix (B).
|
|
if (!RestorePostDominatesSave)
|
|
Restore = MPDT->findNearestCommonDominator(Restore, Save);
|
|
|
|
// Fix (C).
|
|
if (Save && Restore &&
|
|
(MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
|
|
if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) {
|
|
// Push Save outside of this loop if immediate dominator is different
|
|
// from save block. If immediate dominator is not different, bail out.
|
|
Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
|
|
if (!Save)
|
|
break;
|
|
} else {
|
|
// If the loop does not exit, there is no point in looking
|
|
// for a post-dominator outside the loop.
|
|
SmallVector<MachineBasicBlock*, 4> ExitBlocks;
|
|
MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks);
|
|
// Push Restore outside of this loop.
|
|
// Look for the immediate post-dominator of the loop exits.
|
|
MachineBasicBlock *IPdom = Restore;
|
|
for (MachineBasicBlock *LoopExitBB: ExitBlocks) {
|
|
IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT);
|
|
if (!IPdom)
|
|
break;
|
|
}
|
|
// If the immediate post-dominator is not in a less nested loop,
|
|
// then we are stuck in a program with an infinite loop.
|
|
// In that case, we will not find a safe point, hence, bail out.
|
|
if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore))
|
|
Restore = IPdom;
|
|
else {
|
|
Restore = nullptr;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool giveUpWithRemarks(MachineOptimizationRemarkEmitter *ORE,
|
|
StringRef RemarkName, StringRef RemarkMessage,
|
|
const DiagnosticLocation &Loc,
|
|
const MachineBasicBlock *MBB) {
|
|
ORE->emit([&]() {
|
|
return MachineOptimizationRemarkMissed(DEBUG_TYPE, RemarkName, Loc, MBB)
|
|
<< RemarkMessage;
|
|
});
|
|
|
|
LLVM_DEBUG(dbgs() << RemarkMessage << '\n');
|
|
return false;
|
|
}
|
|
|
|
bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) {
|
|
if (skipFunction(MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF))
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n');
|
|
|
|
init(MF);
|
|
|
|
ReversePostOrderTraversal<MachineBasicBlock *> RPOT(&*MF.begin());
|
|
if (containsIrreducibleCFG<MachineBasicBlock *>(RPOT, *MLI)) {
|
|
// If MF is irreducible, a block may be in a loop without
|
|
// MachineLoopInfo reporting it. I.e., we may use the
|
|
// post-dominance property in loops, which lead to incorrect
|
|
// results. Moreover, we may miss that the prologue and
|
|
// epilogue are not in the same loop, leading to unbalanced
|
|
// construction/deconstruction of the stack frame.
|
|
return giveUpWithRemarks(ORE, "UnsupportedIrreducibleCFG",
|
|
"Irreducible CFGs are not supported yet.",
|
|
MF.getFunction().getSubprogram(), &MF.front());
|
|
}
|
|
|
|
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
|
|
std::unique_ptr<RegScavenger> RS(
|
|
TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr);
|
|
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
LLVM_DEBUG(dbgs() << "Look into: " << MBB.getNumber() << ' '
|
|
<< MBB.getName() << '\n');
|
|
|
|
if (MBB.isEHFuncletEntry())
|
|
return giveUpWithRemarks(ORE, "UnsupportedEHFunclets",
|
|
"EH Funclets are not supported yet.",
|
|
MBB.front().getDebugLoc(), &MBB);
|
|
|
|
if (MBB.isEHPad()) {
|
|
// Push the prologue and epilogue outside of
|
|
// the region that may throw by making sure
|
|
// that all the landing pads are at least at the
|
|
// boundary of the save and restore points.
|
|
// The problem with exceptions is that the throw
|
|
// is not properly modeled and in particular, a
|
|
// basic block can jump out from the middle.
|
|
updateSaveRestorePoints(MBB, RS.get());
|
|
if (!ArePointsInteresting()) {
|
|
LLVM_DEBUG(dbgs() << "EHPad prevents shrink-wrapping\n");
|
|
return false;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
for (const MachineInstr &MI : MBB) {
|
|
if (!useOrDefCSROrFI(MI, RS.get()))
|
|
continue;
|
|
// Save (resp. restore) point must dominate (resp. post dominate)
|
|
// MI. Look for the proper basic block for those.
|
|
updateSaveRestorePoints(MBB, RS.get());
|
|
// If we are at a point where we cannot improve the placement of
|
|
// save/restore instructions, just give up.
|
|
if (!ArePointsInteresting()) {
|
|
LLVM_DEBUG(dbgs() << "No Shrink wrap candidate found\n");
|
|
return false;
|
|
}
|
|
// No need to look for other instructions, this basic block
|
|
// will already be part of the handled region.
|
|
break;
|
|
}
|
|
}
|
|
if (!ArePointsInteresting()) {
|
|
// If the points are not interesting at this point, then they must be null
|
|
// because it means we did not encounter any frame/CSR related code.
|
|
// Otherwise, we would have returned from the previous loop.
|
|
assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!");
|
|
LLVM_DEBUG(dbgs() << "Nothing to shrink-wrap\n");
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq
|
|
<< '\n');
|
|
|
|
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
|
|
do {
|
|
LLVM_DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: "
|
|
<< Save->getNumber() << ' ' << Save->getName() << ' '
|
|
<< MBFI->getBlockFreq(Save).getFrequency()
|
|
<< "\nRestore: " << Restore->getNumber() << ' '
|
|
<< Restore->getName() << ' '
|
|
<< MBFI->getBlockFreq(Restore).getFrequency() << '\n');
|
|
|
|
bool IsSaveCheap, TargetCanUseSaveAsPrologue = false;
|
|
if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save).getFrequency()) &&
|
|
EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) &&
|
|
((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) &&
|
|
TFI->canUseAsEpilogue(*Restore)))
|
|
break;
|
|
LLVM_DEBUG(
|
|
dbgs() << "New points are too expensive or invalid for the target\n");
|
|
MachineBasicBlock *NewBB;
|
|
if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) {
|
|
Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
|
|
if (!Save)
|
|
break;
|
|
NewBB = Save;
|
|
} else {
|
|
// Restore is expensive.
|
|
Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
|
|
if (!Restore)
|
|
break;
|
|
NewBB = Restore;
|
|
}
|
|
updateSaveRestorePoints(*NewBB, RS.get());
|
|
} while (Save && Restore);
|
|
|
|
if (!ArePointsInteresting()) {
|
|
++NumCandidatesDropped;
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: "
|
|
<< Save->getNumber() << ' ' << Save->getName()
|
|
<< "\nRestore: " << Restore->getNumber() << ' '
|
|
<< Restore->getName() << '\n');
|
|
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
MFI.setSavePoint(Save);
|
|
MFI.setRestorePoint(Restore);
|
|
++NumCandidates;
|
|
return false;
|
|
}
|
|
|
|
bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) {
|
|
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
|
|
|
|
switch (EnableShrinkWrapOpt) {
|
|
case cl::BOU_UNSET:
|
|
return TFI->enableShrinkWrapping(MF) &&
|
|
// Windows with CFI has some limitations that make it impossible
|
|
// to use shrink-wrapping.
|
|
!MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
|
|
// Sanitizers look at the value of the stack at the location
|
|
// of the crash. Since a crash can happen anywhere, the
|
|
// frame must be lowered before anything else happen for the
|
|
// sanitizers to be able to get a correct stack frame.
|
|
!(MF.getFunction().hasFnAttribute(Attribute::SanitizeAddress) ||
|
|
MF.getFunction().hasFnAttribute(Attribute::SanitizeThread) ||
|
|
MF.getFunction().hasFnAttribute(Attribute::SanitizeMemory) ||
|
|
MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress));
|
|
// If EnableShrinkWrap is set, it takes precedence on whatever the
|
|
// target sets. The rational is that we assume we want to test
|
|
// something related to shrink-wrapping.
|
|
case cl::BOU_TRUE:
|
|
return true;
|
|
case cl::BOU_FALSE:
|
|
return false;
|
|
}
|
|
llvm_unreachable("Invalid shrink-wrapping state");
|
|
}
|