llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp

714 lines
26 KiB
C++

//===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the lowering of LLVM calls to machine code calls for
/// GlobalISel.
///
//===----------------------------------------------------------------------===//
#include "AMDGPUCallLowering.h"
#include "AMDGPU.h"
#include "AMDGPUISelLowering.h"
#include "AMDGPUSubtarget.h"
#include "SIISelLowering.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Support/LowLevelTypeImpl.h"
using namespace llvm;
namespace {
struct OutgoingValueHandler : public CallLowering::ValueHandler {
OutgoingValueHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
MachineInstrBuilder MIB, CCAssignFn *AssignFn)
: ValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {}
MachineInstrBuilder MIB;
Register getStackAddress(uint64_t Size, int64_t Offset,
MachinePointerInfo &MPO) override {
llvm_unreachable("not implemented");
}
void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
MachinePointerInfo &MPO, CCValAssign &VA) override {
llvm_unreachable("not implemented");
}
void assignValueToReg(Register ValVReg, Register PhysReg,
CCValAssign &VA) override {
Register ExtReg;
if (VA.getLocVT().getSizeInBits() < 32) {
// 16-bit types are reported as legal for 32-bit registers. We need to
// extend and do a 32-bit copy to avoid the verifier complaining about it.
ExtReg = MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
} else
ExtReg = extendRegister(ValVReg, VA);
MIRBuilder.buildCopy(PhysReg, ExtReg);
MIB.addUse(PhysReg, RegState::Implicit);
}
bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo,
const CallLowering::ArgInfo &Info,
CCState &State) override {
return AssignFn(ValNo, ValVT, LocVT, LocInfo, Info.Flags, State);
}
};
struct IncomingArgHandler : public CallLowering::ValueHandler {
uint64_t StackUsed = 0;
IncomingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
CCAssignFn *AssignFn)
: ValueHandler(MIRBuilder, MRI, AssignFn) {}
Register getStackAddress(uint64_t Size, int64_t Offset,
MachinePointerInfo &MPO) override {
auto &MFI = MIRBuilder.getMF().getFrameInfo();
int FI = MFI.CreateFixedObject(Size, Offset, true);
MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
Register AddrReg = MRI.createGenericVirtualRegister(
LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32));
MIRBuilder.buildFrameIndex(AddrReg, FI);
StackUsed = std::max(StackUsed, Size + Offset);
return AddrReg;
}
void assignValueToReg(Register ValVReg, Register PhysReg,
CCValAssign &VA) override {
markPhysRegUsed(PhysReg);
if (VA.getLocVT().getSizeInBits() < 32) {
// 16-bit types are reported as legal for 32-bit registers. We need to do
// a 32-bit copy, and truncate to avoid the verifier complaining about it.
auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
MIRBuilder.buildTrunc(ValVReg, Copy);
return;
}
switch (VA.getLocInfo()) {
case CCValAssign::LocInfo::SExt:
case CCValAssign::LocInfo::ZExt:
case CCValAssign::LocInfo::AExt: {
auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
MIRBuilder.buildTrunc(ValVReg, Copy);
break;
}
default:
MIRBuilder.buildCopy(ValVReg, PhysReg);
break;
}
}
void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
MachinePointerInfo &MPO, CCValAssign &VA) override {
// FIXME: Get alignment
auto MMO = MIRBuilder.getMF().getMachineMemOperand(
MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, Size, 1);
MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
}
/// How the physical register gets marked varies between formal
/// parameters (it's a basic-block live-in), and a call instruction
/// (it's an implicit-def of the BL).
virtual void markPhysRegUsed(unsigned PhysReg) = 0;
// FIXME: What is the point of this being a callback?
bool isIncomingArgumentHandler() const override { return true; }
};
struct FormalArgHandler : public IncomingArgHandler {
FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
CCAssignFn *AssignFn)
: IncomingArgHandler(MIRBuilder, MRI, AssignFn) {}
void markPhysRegUsed(unsigned PhysReg) override {
MIRBuilder.getMBB().addLiveIn(PhysReg);
}
};
}
AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
: CallLowering(&TLI) {
}
void AMDGPUCallLowering::splitToValueTypes(
const ArgInfo &OrigArg, SmallVectorImpl<ArgInfo> &SplitArgs,
const DataLayout &DL, MachineRegisterInfo &MRI, CallingConv::ID CallConv,
SplitArgTy PerformArgSplit) const {
const SITargetLowering &TLI = *getTLI<SITargetLowering>();
LLVMContext &Ctx = OrigArg.Ty->getContext();
if (OrigArg.Ty->isVoidTy())
return;
SmallVector<EVT, 4> SplitVTs;
ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs);
assert(OrigArg.Regs.size() == SplitVTs.size());
int SplitIdx = 0;
for (EVT VT : SplitVTs) {
unsigned NumParts = TLI.getNumRegistersForCallingConv(Ctx, CallConv, VT);
Type *Ty = VT.getTypeForEVT(Ctx);
if (NumParts == 1) {
// No splitting to do, but we want to replace the original type (e.g. [1 x
// double] -> double).
SplitArgs.emplace_back(OrigArg.Regs[SplitIdx], Ty,
OrigArg.Flags, OrigArg.IsFixed);
++SplitIdx;
continue;
}
LLT LLTy = getLLTForType(*Ty, DL);
SmallVector<Register, 8> SplitRegs;
EVT PartVT = TLI.getRegisterTypeForCallingConv(Ctx, CallConv, VT);
Type *PartTy = PartVT.getTypeForEVT(Ctx);
LLT PartLLT = getLLTForType(*PartTy, DL);
// FIXME: Should we be reporting all of the part registers for a single
// argument, and let handleAssignments take care of the repacking?
for (unsigned i = 0; i < NumParts; ++i) {
Register PartReg = MRI.createGenericVirtualRegister(PartLLT);
SplitRegs.push_back(PartReg);
SplitArgs.emplace_back(ArrayRef<Register>(PartReg), PartTy, OrigArg.Flags);
}
PerformArgSplit(SplitRegs, LLTy, PartLLT, SplitIdx);
++SplitIdx;
}
}
// Get the appropriate type to make \p OrigTy \p Factor times bigger.
static LLT getMultipleType(LLT OrigTy, int Factor) {
if (OrigTy.isVector()) {
return LLT::vector(OrigTy.getNumElements() * Factor,
OrigTy.getElementType());
}
return LLT::scalar(OrigTy.getSizeInBits() * Factor);
}
// TODO: Move to generic code
static void unpackRegsToOrigType(MachineIRBuilder &MIRBuilder,
ArrayRef<Register> DstRegs,
Register SrcReg,
LLT SrcTy,
LLT PartTy) {
assert(DstRegs.size() > 1 && "Nothing to unpack");
MachineFunction &MF = MIRBuilder.getMF();
MachineRegisterInfo &MRI = MF.getRegInfo();
const unsigned SrcSize = SrcTy.getSizeInBits();
const unsigned PartSize = PartTy.getSizeInBits();
if (SrcTy.isVector() && !PartTy.isVector() &&
PartSize > SrcTy.getElementType().getSizeInBits()) {
// Vector was scalarized, and the elements extended.
auto UnmergeToEltTy = MIRBuilder.buildUnmerge(SrcTy.getElementType(),
SrcReg);
for (int i = 0, e = DstRegs.size(); i != e; ++i)
MIRBuilder.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
return;
}
if (SrcSize % PartSize == 0) {
MIRBuilder.buildUnmerge(DstRegs, SrcReg);
return;
}
const int NumRoundedParts = (SrcSize + PartSize - 1) / PartSize;
LLT BigTy = getMultipleType(PartTy, NumRoundedParts);
auto ImpDef = MIRBuilder.buildUndef(BigTy);
Register BigReg = MRI.createGenericVirtualRegister(BigTy);
MIRBuilder.buildInsert(BigReg, ImpDef.getReg(0), SrcReg, 0).getReg(0);
int64_t Offset = 0;
for (unsigned i = 0, e = DstRegs.size(); i != e; ++i, Offset += PartSize)
MIRBuilder.buildExtract(DstRegs[i], BigReg, Offset);
}
/// Lower the return value for the already existing \p Ret. This assumes that
/// \p MIRBuilder's insertion point is correct.
bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &MIRBuilder,
const Value *Val, ArrayRef<Register> VRegs,
MachineInstrBuilder &Ret) const {
if (!Val)
return true;
auto &MF = MIRBuilder.getMF();
const auto &F = MF.getFunction();
const DataLayout &DL = MF.getDataLayout();
CallingConv::ID CC = F.getCallingConv();
const SITargetLowering &TLI = *getTLI<SITargetLowering>();
MachineRegisterInfo &MRI = MF.getRegInfo();
ArgInfo OrigRetInfo(VRegs, Val->getType());
setArgFlags(OrigRetInfo, AttributeList::ReturnIndex, DL, F);
SmallVector<ArgInfo, 4> SplitRetInfos;
splitToValueTypes(
OrigRetInfo, SplitRetInfos, DL, MRI, CC,
[&](ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, int VTSplitIdx) {
unpackRegsToOrigType(MIRBuilder, Regs, VRegs[VTSplitIdx], LLTy, PartLLT);
});
CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
OutgoingValueHandler RetHandler(MIRBuilder, MF.getRegInfo(), Ret, AssignFn);
return handleAssignments(MIRBuilder, SplitRetInfos, RetHandler);
}
bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &MIRBuilder,
const Value *Val,
ArrayRef<Register> VRegs) const {
MachineFunction &MF = MIRBuilder.getMF();
MachineRegisterInfo &MRI = MF.getRegInfo();
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
MFI->setIfReturnsVoid(!Val);
assert(!Val == VRegs.empty() && "Return value without a vreg");
CallingConv::ID CC = MIRBuilder.getMF().getFunction().getCallingConv();
const bool IsShader = AMDGPU::isShader(CC);
const bool IsWaveEnd = (IsShader && MFI->returnsVoid()) ||
AMDGPU::isKernel(CC);
if (IsWaveEnd) {
MIRBuilder.buildInstr(AMDGPU::S_ENDPGM)
.addImm(0);
return true;
}
auto const &ST = MIRBuilder.getMF().getSubtarget<GCNSubtarget>();
unsigned ReturnOpc =
IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return;
auto Ret = MIRBuilder.buildInstrNoInsert(ReturnOpc);
Register ReturnAddrVReg;
if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass);
Ret.addUse(ReturnAddrVReg);
}
if (!lowerReturnVal(MIRBuilder, Val, VRegs, Ret))
return false;
if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
const SIRegisterInfo *TRI = ST.getRegisterInfo();
Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF),
&AMDGPU::SGPR_64RegClass);
MIRBuilder.buildCopy(ReturnAddrVReg, LiveInReturn);
}
// TODO: Handle CalleeSavedRegsViaCopy.
MIRBuilder.insertInstr(Ret);
return true;
}
Register AMDGPUCallLowering::lowerParameterPtr(MachineIRBuilder &MIRBuilder,
Type *ParamTy,
uint64_t Offset) const {
MachineFunction &MF = MIRBuilder.getMF();
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
MachineRegisterInfo &MRI = MF.getRegInfo();
const Function &F = MF.getFunction();
const DataLayout &DL = F.getParent()->getDataLayout();
PointerType *PtrTy = PointerType::get(ParamTy, AMDGPUAS::CONSTANT_ADDRESS);
LLT PtrType = getLLTForType(*PtrTy, DL);
Register DstReg = MRI.createGenericVirtualRegister(PtrType);
Register KernArgSegmentPtr =
MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
Register OffsetReg = MRI.createGenericVirtualRegister(LLT::scalar(64));
MIRBuilder.buildConstant(OffsetReg, Offset);
MIRBuilder.buildGEP(DstReg, KernArgSegmentVReg, OffsetReg);
return DstReg;
}
void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &MIRBuilder,
Type *ParamTy, uint64_t Offset,
unsigned Align,
Register DstReg) const {
MachineFunction &MF = MIRBuilder.getMF();
const Function &F = MF.getFunction();
const DataLayout &DL = F.getParent()->getDataLayout();
PointerType *PtrTy = PointerType::get(ParamTy, AMDGPUAS::CONSTANT_ADDRESS);
MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
unsigned TypeSize = DL.getTypeStoreSize(ParamTy);
Register PtrReg = lowerParameterPtr(MIRBuilder, ParamTy, Offset);
MachineMemOperand *MMO =
MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad |
MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant,
TypeSize, Align);
MIRBuilder.buildLoad(DstReg, PtrReg, *MMO);
}
// Allocate special inputs passed in user SGPRs.
static void allocateHSAUserSGPRs(CCState &CCInfo,
MachineIRBuilder &MIRBuilder,
MachineFunction &MF,
const SIRegisterInfo &TRI,
SIMachineFunctionInfo &Info) {
// FIXME: How should these inputs interact with inreg / custom SGPR inputs?
if (Info.hasPrivateSegmentBuffer()) {
unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
CCInfo.AllocateReg(PrivateSegmentBufferReg);
}
if (Info.hasDispatchPtr()) {
unsigned DispatchPtrReg = Info.addDispatchPtr(TRI);
MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(DispatchPtrReg);
}
if (Info.hasQueuePtr()) {
unsigned QueuePtrReg = Info.addQueuePtr(TRI);
MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(QueuePtrReg);
}
if (Info.hasKernargSegmentPtr()) {
MachineRegisterInfo &MRI = MF.getRegInfo();
Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
Register VReg = MRI.createGenericVirtualRegister(P4);
MRI.addLiveIn(InputPtrReg, VReg);
MIRBuilder.getMBB().addLiveIn(InputPtrReg);
MIRBuilder.buildCopy(VReg, InputPtrReg);
CCInfo.AllocateReg(InputPtrReg);
}
if (Info.hasDispatchID()) {
unsigned DispatchIDReg = Info.addDispatchID(TRI);
MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(DispatchIDReg);
}
if (Info.hasFlatScratchInit()) {
unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI);
MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(FlatScratchInitReg);
}
// TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
// these from the dispatch pointer.
}
bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
MachineIRBuilder &MIRBuilder, const Function &F,
ArrayRef<ArrayRef<Register>> VRegs) const {
MachineFunction &MF = MIRBuilder.getMF();
const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
MachineRegisterInfo &MRI = MF.getRegInfo();
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
const SITargetLowering &TLI = *getTLI<SITargetLowering>();
const DataLayout &DL = F.getParent()->getDataLayout();
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
allocateHSAUserSGPRs(CCInfo, MIRBuilder, MF, *TRI, *Info);
unsigned i = 0;
const unsigned KernArgBaseAlign = 16;
const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
uint64_t ExplicitArgOffset = 0;
// TODO: Align down to dword alignment and extract bits for extending loads.
for (auto &Arg : F.args()) {
Type *ArgTy = Arg.getType();
unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
if (AllocSize == 0)
continue;
unsigned ABIAlign = DL.getABITypeAlignment(ArgTy);
uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
ArrayRef<Register> OrigArgRegs = VRegs[i];
Register ArgReg =
OrigArgRegs.size() == 1
? OrigArgRegs[0]
: MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL));
unsigned Align = MinAlign(KernArgBaseAlign, ArgOffset);
ArgOffset = alignTo(ArgOffset, DL.getABITypeAlignment(ArgTy));
lowerParameter(MIRBuilder, ArgTy, ArgOffset, Align, ArgReg);
if (OrigArgRegs.size() > 1)
unpackRegs(OrigArgRegs, ArgReg, ArgTy, MIRBuilder);
++i;
}
TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
return true;
}
// TODO: Move this to generic code
static void packSplitRegsToOrigType(MachineIRBuilder &MIRBuilder,
ArrayRef<Register> OrigRegs,
ArrayRef<Register> Regs,
LLT LLTy,
LLT PartLLT) {
if (!LLTy.isVector() && !PartLLT.isVector()) {
MIRBuilder.buildMerge(OrigRegs[0], Regs);
return;
}
if (LLTy.isVector() && PartLLT.isVector()) {
assert(LLTy.getElementType() == PartLLT.getElementType());
int DstElts = LLTy.getNumElements();
int PartElts = PartLLT.getNumElements();
if (DstElts % PartElts == 0)
MIRBuilder.buildConcatVectors(OrigRegs[0], Regs);
else {
// Deal with v3s16 split into v2s16
assert(PartElts == 2 && DstElts % 2 != 0);
int RoundedElts = PartElts * ((DstElts + PartElts - 1) / PartElts);
LLT RoundedDestTy = LLT::vector(RoundedElts, PartLLT.getElementType());
auto RoundedConcat = MIRBuilder.buildConcatVectors(RoundedDestTy, Regs);
MIRBuilder.buildExtract(OrigRegs[0], RoundedConcat, 0);
}
return;
}
assert(LLTy.isVector() && !PartLLT.isVector());
LLT DstEltTy = LLTy.getElementType();
if (DstEltTy == PartLLT) {
// Vector was trivially scalarized.
MIRBuilder.buildBuildVector(OrigRegs[0], Regs);
} else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
// Deal with vector with 64-bit elements decomposed to 32-bit
// registers. Need to create intermediate 64-bit elements.
SmallVector<Register, 8> EltMerges;
int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
auto Merge = MIRBuilder.buildMerge(DstEltTy,
Regs.take_front(PartsPerElt));
EltMerges.push_back(Merge.getReg(0));
Regs = Regs.drop_front(PartsPerElt);
}
MIRBuilder.buildBuildVector(OrigRegs[0], EltMerges);
} else {
// Vector was split, and elements promoted to a wider type.
LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT);
auto BV = MIRBuilder.buildBuildVector(BVType, Regs);
MIRBuilder.buildTrunc(OrigRegs[0], BV);
}
}
bool AMDGPUCallLowering::lowerFormalArguments(
MachineIRBuilder &MIRBuilder, const Function &F,
ArrayRef<ArrayRef<Register>> VRegs) const {
CallingConv::ID CC = F.getCallingConv();
// The infrastructure for normal calling convention lowering is essentially
// useless for kernels. We want to avoid any kind of legalization or argument
// splitting.
if (CC == CallingConv::AMDGPU_KERNEL)
return lowerFormalArgumentsKernel(MIRBuilder, F, VRegs);
const bool IsShader = AMDGPU::isShader(CC);
const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
MachineFunction &MF = MIRBuilder.getMF();
MachineBasicBlock &MBB = MIRBuilder.getMBB();
MachineRegisterInfo &MRI = MF.getRegInfo();
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
const DataLayout &DL = F.getParent()->getDataLayout();
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
if (!IsEntryFunc) {
Register ReturnAddrReg = TRI->getReturnAddressReg(MF);
Register LiveInReturn = MF.addLiveIn(ReturnAddrReg,
&AMDGPU::SGPR_64RegClass);
MBB.addLiveIn(ReturnAddrReg);
MIRBuilder.buildCopy(LiveInReturn, ReturnAddrReg);
}
if (Info->hasImplicitBufferPtr()) {
Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
CCInfo.AllocateReg(ImplicitBufferPtrReg);
}
SmallVector<ArgInfo, 32> SplitArgs;
unsigned Idx = 0;
unsigned PSInputNum = 0;
for (auto &Arg : F.args()) {
if (DL.getTypeStoreSize(Arg.getType()) == 0)
continue;
const bool InReg = Arg.hasAttribute(Attribute::InReg);
// SGPR arguments to functions not implemented.
if (!IsShader && InReg)
return false;
if (Arg.hasAttribute(Attribute::SwiftSelf) ||
Arg.hasAttribute(Attribute::SwiftError) ||
Arg.hasAttribute(Attribute::Nest))
return false;
if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
const bool ArgUsed = !Arg.use_empty();
bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
if (!SkipArg) {
Info->markPSInputAllocated(PSInputNum);
if (ArgUsed)
Info->markPSInputEnabled(PSInputNum);
}
++PSInputNum;
if (SkipArg) {
for (int I = 0, E = VRegs[Idx].size(); I != E; ++I)
MIRBuilder.buildUndef(VRegs[Idx][I]);
++Idx;
continue;
}
}
ArgInfo OrigArg(VRegs[Idx], Arg.getType());
setArgFlags(OrigArg, Idx + AttributeList::FirstArgIndex, DL, F);
splitToValueTypes(
OrigArg, SplitArgs, DL, MRI, CC,
// FIXME: We should probably be passing multiple registers to
// handleAssignments to do this
[&](ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, int VTSplitIdx) {
packSplitRegsToOrigType(MIRBuilder, VRegs[Idx][VTSplitIdx], Regs,
LLTy, PartLLT);
});
++Idx;
}
// At least one interpolation mode must be enabled or else the GPU will
// hang.
//
// Check PSInputAddr instead of PSInputEnable. The idea is that if the user
// set PSInputAddr, the user wants to enable some bits after the compilation
// based on run-time states. Since we can't know what the final PSInputEna
// will look like, so we shouldn't do anything here and the user should take
// responsibility for the correct programming.
//
// Otherwise, the following restrictions apply:
// - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
// - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
// enabled too.
if (CC == CallingConv::AMDGPU_PS) {
if ((Info->getPSInputAddr() & 0x7F) == 0 ||
((Info->getPSInputAddr() & 0xF) == 0 &&
Info->isPSInputAllocated(11))) {
CCInfo.AllocateReg(AMDGPU::VGPR0);
CCInfo.AllocateReg(AMDGPU::VGPR1);
Info->markPSInputAllocated(0);
Info->markPSInputEnabled(0);
}
if (Subtarget.isAmdPalOS()) {
// For isAmdPalOS, the user does not enable some bits after compilation
// based on run-time states; the register values being generated here are
// the final ones set in hardware. Therefore we need to apply the
// workaround to PSInputAddr and PSInputEnable together. (The case where
// a bit is set in PSInputAddr but not PSInputEnable is where the frontend
// set up an input arg for a particular interpolation mode, but nothing
// uses that input arg. Really we should have an earlier pass that removes
// such an arg.)
unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
if ((PsInputBits & 0x7F) == 0 ||
((PsInputBits & 0xF) == 0 &&
(PsInputBits >> 11 & 1)))
Info->markPSInputEnabled(
countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
}
}
const SITargetLowering &TLI = *getTLI<SITargetLowering>();
CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
if (!MBB.empty())
MIRBuilder.setInstr(*MBB.begin());
FormalArgHandler Handler(MIRBuilder, MRI, AssignFn);
if (!handleAssignments(CCInfo, ArgLocs, MIRBuilder, SplitArgs, Handler))
return false;
if (!IsEntryFunc) {
// Special inputs come after user arguments.
TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
}
// Start adding system SGPRs.
if (IsEntryFunc) {
TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsShader);
} else {
CCInfo.AllocateReg(Info->getScratchRSrcReg());
CCInfo.AllocateReg(Info->getScratchWaveOffsetReg());
CCInfo.AllocateReg(Info->getFrameOffsetReg());
TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
}
// Move back to the end of the basic block.
MIRBuilder.setMBB(MBB);
return true;
}