forked from OSchip/llvm-project
1456 lines
60 KiB
C++
1456 lines
60 KiB
C++
//===- Schedule.cpp - Calculate an optimized schedule ---------------------===//
|
||
//
|
||
// The LLVM Compiler Infrastructure
|
||
//
|
||
// This file is distributed under the University of Illinois Open Source
|
||
// License. See LICENSE.TXT for details.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// This pass generates an entirely new schedule tree from the data dependences
|
||
// and iteration domains. The new schedule tree is computed in two steps:
|
||
//
|
||
// 1) The isl scheduling optimizer is run
|
||
//
|
||
// The isl scheduling optimizer creates a new schedule tree that maximizes
|
||
// parallelism and tileability and minimizes data-dependence distances. The
|
||
// algorithm used is a modified version of the ``Pluto'' algorithm:
|
||
//
|
||
// U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
|
||
// A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.
|
||
// In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language
|
||
// Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008.
|
||
//
|
||
// 2) A set of post-scheduling transformations is applied on the schedule tree.
|
||
//
|
||
// These optimizations include:
|
||
//
|
||
// - Tiling of the innermost tilable bands
|
||
// - Prevectorization - The coice of a possible outer loop that is strip-mined
|
||
// to the innermost level to enable inner-loop
|
||
// vectorization.
|
||
// - Some optimizations for spatial locality are also planned.
|
||
//
|
||
// For a detailed description of the schedule tree itself please see section 6
|
||
// of:
|
||
//
|
||
// Polyhedral AST generation is more than scanning polyhedra
|
||
// Tobias Grosser, Sven Verdoolaege, Albert Cohen
|
||
// ACM Transations on Programming Languages and Systems (TOPLAS),
|
||
// 37(4), July 2015
|
||
// http://www.grosser.es/#pub-polyhedral-AST-generation
|
||
//
|
||
// This publication also contains a detailed discussion of the different options
|
||
// for polyhedral loop unrolling, full/partial tile separation and other uses
|
||
// of the schedule tree.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "polly/ScheduleOptimizer.h"
|
||
#include "polly/CodeGen/CodeGeneration.h"
|
||
#include "polly/DependenceInfo.h"
|
||
#include "polly/LinkAllPasses.h"
|
||
#include "polly/Options.h"
|
||
#include "polly/ScopInfo.h"
|
||
#include "polly/Support/GICHelper.h"
|
||
#include "llvm/Analysis/TargetTransformInfo.h"
|
||
#include "llvm/Support/Debug.h"
|
||
#include "isl/aff.h"
|
||
#include "isl/band.h"
|
||
#include "isl/constraint.h"
|
||
#include "isl/map.h"
|
||
#include "isl/options.h"
|
||
#include "isl/printer.h"
|
||
#include "isl/schedule.h"
|
||
#include "isl/schedule_node.h"
|
||
#include "isl/space.h"
|
||
#include "isl/union_map.h"
|
||
#include "isl/union_set.h"
|
||
|
||
using namespace llvm;
|
||
using namespace polly;
|
||
|
||
#define DEBUG_TYPE "polly-opt-isl"
|
||
|
||
static cl::opt<std::string>
|
||
OptimizeDeps("polly-opt-optimize-only",
|
||
cl::desc("Only a certain kind of dependences (all/raw)"),
|
||
cl::Hidden, cl::init("all"), cl::ZeroOrMore,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<std::string>
|
||
SimplifyDeps("polly-opt-simplify-deps",
|
||
cl::desc("Dependences should be simplified (yes/no)"),
|
||
cl::Hidden, cl::init("yes"), cl::ZeroOrMore,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> MaxConstantTerm(
|
||
"polly-opt-max-constant-term",
|
||
cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden,
|
||
cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> MaxCoefficient(
|
||
"polly-opt-max-coefficient",
|
||
cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden,
|
||
cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<std::string> FusionStrategy(
|
||
"polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"),
|
||
cl::Hidden, cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<std::string>
|
||
MaximizeBandDepth("polly-opt-maximize-bands",
|
||
cl::desc("Maximize the band depth (yes/no)"), cl::Hidden,
|
||
cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<std::string> OuterCoincidence(
|
||
"polly-opt-outer-coincidence",
|
||
cl::desc("Try to construct schedules where the outer member of each band "
|
||
"satisfies the coincidence constraints (yes/no)"),
|
||
cl::Hidden, cl::init("no"), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> PrevectorWidth(
|
||
"polly-prevect-width",
|
||
cl::desc(
|
||
"The number of loop iterations to strip-mine for pre-vectorization"),
|
||
cl::Hidden, cl::init(4), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<bool> FirstLevelTiling("polly-tiling",
|
||
cl::desc("Enable loop tiling"),
|
||
cl::init(true), cl::ZeroOrMore,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> LatencyVectorFma(
|
||
"polly-target-latency-vector-fma",
|
||
cl::desc("The minimal number of cycles between issuing two "
|
||
"dependent consecutive vector fused multiply-add "
|
||
"instructions."),
|
||
cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> ThroughputVectorFma(
|
||
"polly-target-throughput-vector-fma",
|
||
cl::desc("A throughput of the processor floating-point arithmetic units "
|
||
"expressed in the number of vector fused multiply-add "
|
||
"instructions per clock cycle."),
|
||
cl::Hidden, cl::init(1), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
// This option, along with --polly-target-2nd-cache-level-associativity,
|
||
// --polly-target-1st-cache-level-size, and --polly-target-2st-cache-level-size
|
||
// represent the parameters of the target cache, which do not have typical
|
||
// values that can be used by default. However, to apply the pattern matching
|
||
// optimizations, we use the values of the parameters of Intel Core i7-3820
|
||
// SandyBridge in case the parameters are not specified. Such an approach helps
|
||
// also to attain the high-performance on IBM POWER System S822 and IBM Power
|
||
// 730 Express server.
|
||
static cl::opt<int> FirstCacheLevelAssociativity(
|
||
"polly-target-1st-cache-level-associativity",
|
||
cl::desc("The associativity of the first cache level."), cl::Hidden,
|
||
cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> SecondCacheLevelAssociativity(
|
||
"polly-target-2nd-cache-level-associativity",
|
||
cl::desc("The associativity of the second cache level."), cl::Hidden,
|
||
cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> FirstCacheLevelSize(
|
||
"polly-target-1st-cache-level-size",
|
||
cl::desc("The size of the first cache level specified in bytes."),
|
||
cl::Hidden, cl::init(32768), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> SecondCacheLevelSize(
|
||
"polly-target-2nd-cache-level-size",
|
||
cl::desc("The size of the second level specified in bytes."), cl::Hidden,
|
||
cl::init(262144), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> VectorRegisterBitwidth(
|
||
"polly-target-vector-register-bitwidth",
|
||
cl::desc("The size in bits of a vector register (if not set, this "
|
||
"information is taken from LLVM's target information."),
|
||
cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> FirstLevelDefaultTileSize(
|
||
"polly-default-tile-size",
|
||
cl::desc("The default tile size (if not enough were provided by"
|
||
" --polly-tile-sizes)"),
|
||
cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::list<int>
|
||
FirstLevelTileSizes("polly-tile-sizes",
|
||
cl::desc("A tile size for each loop dimension, filled "
|
||
"with --polly-default-tile-size"),
|
||
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<bool>
|
||
SecondLevelTiling("polly-2nd-level-tiling",
|
||
cl::desc("Enable a 2nd level loop of loop tiling"),
|
||
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> SecondLevelDefaultTileSize(
|
||
"polly-2nd-level-default-tile-size",
|
||
cl::desc("The default 2nd-level tile size (if not enough were provided by"
|
||
" --polly-2nd-level-tile-sizes)"),
|
||
cl::Hidden, cl::init(16), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::list<int>
|
||
SecondLevelTileSizes("polly-2nd-level-tile-sizes",
|
||
cl::desc("A tile size for each loop dimension, filled "
|
||
"with --polly-default-tile-size"),
|
||
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<bool> RegisterTiling("polly-register-tiling",
|
||
cl::desc("Enable register tiling"),
|
||
cl::init(false), cl::ZeroOrMore,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> RegisterDefaultTileSize(
|
||
"polly-register-tiling-default-tile-size",
|
||
cl::desc("The default register tile size (if not enough were provided by"
|
||
" --polly-register-tile-sizes)"),
|
||
cl::Hidden, cl::init(2), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> PollyPatternMatchingNcQuotient(
|
||
"polly-pattern-matching-nc-quotient",
|
||
cl::desc("Quotient that is obtained by dividing Nc, the parameter of the"
|
||
"macro-kernel, by Nr, the parameter of the micro-kernel"),
|
||
cl::Hidden, cl::init(256), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::list<int>
|
||
RegisterTileSizes("polly-register-tile-sizes",
|
||
cl::desc("A tile size for each loop dimension, filled "
|
||
"with --polly-register-tile-size"),
|
||
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<bool>
|
||
PMBasedOpts("polly-pattern-matching-based-opts",
|
||
cl::desc("Perform optimizations based on pattern matching"),
|
||
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<bool> OptimizedScops(
|
||
"polly-optimized-scops",
|
||
cl::desc("Polly - Dump polyhedral description of Scops optimized with "
|
||
"the isl scheduling optimizer and the set of post-scheduling "
|
||
"transformations is applied on the schedule tree"),
|
||
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
/// Create an isl_union_set, which describes the isolate option based on
|
||
/// IsoalteDomain.
|
||
///
|
||
/// @param IsolateDomain An isl_set whose last dimension is the only one that
|
||
/// should belong to the current band node.
|
||
static __isl_give isl_union_set *
|
||
getIsolateOptions(__isl_take isl_set *IsolateDomain) {
|
||
auto Dims = isl_set_dim(IsolateDomain, isl_dim_set);
|
||
auto *IsolateRelation = isl_map_from_domain(IsolateDomain);
|
||
IsolateRelation = isl_map_move_dims(IsolateRelation, isl_dim_out, 0,
|
||
isl_dim_in, Dims - 1, 1);
|
||
auto *IsolateOption = isl_map_wrap(IsolateRelation);
|
||
auto *Id = isl_id_alloc(isl_set_get_ctx(IsolateOption), "isolate", nullptr);
|
||
return isl_union_set_from_set(isl_set_set_tuple_id(IsolateOption, Id));
|
||
}
|
||
|
||
/// Create an isl_union_set, which describes the atomic option for the dimension
|
||
/// of the current node.
|
||
///
|
||
/// It may help to reduce the size of generated code.
|
||
///
|
||
/// @param Ctx An isl_ctx, which is used to create the isl_union_set.
|
||
static __isl_give isl_union_set *getAtomicOptions(__isl_take isl_ctx *Ctx) {
|
||
auto *Space = isl_space_set_alloc(Ctx, 0, 1);
|
||
auto *AtomicOption = isl_set_universe(Space);
|
||
auto *Id = isl_id_alloc(Ctx, "atomic", nullptr);
|
||
return isl_union_set_from_set(isl_set_set_tuple_id(AtomicOption, Id));
|
||
}
|
||
|
||
/// Make the last dimension of Set to take values from 0 to VectorWidth - 1.
|
||
///
|
||
/// @param Set A set, which should be modified.
|
||
/// @param VectorWidth A parameter, which determines the constraint.
|
||
static __isl_give isl_set *addExtentConstraints(__isl_take isl_set *Set,
|
||
int VectorWidth) {
|
||
auto Dims = isl_set_dim(Set, isl_dim_set);
|
||
auto Space = isl_set_get_space(Set);
|
||
auto *LocalSpace = isl_local_space_from_space(Space);
|
||
auto *ExtConstr =
|
||
isl_constraint_alloc_inequality(isl_local_space_copy(LocalSpace));
|
||
ExtConstr = isl_constraint_set_constant_si(ExtConstr, 0);
|
||
ExtConstr =
|
||
isl_constraint_set_coefficient_si(ExtConstr, isl_dim_set, Dims - 1, 1);
|
||
Set = isl_set_add_constraint(Set, ExtConstr);
|
||
ExtConstr = isl_constraint_alloc_inequality(LocalSpace);
|
||
ExtConstr = isl_constraint_set_constant_si(ExtConstr, VectorWidth - 1);
|
||
ExtConstr =
|
||
isl_constraint_set_coefficient_si(ExtConstr, isl_dim_set, Dims - 1, -1);
|
||
return isl_set_add_constraint(Set, ExtConstr);
|
||
}
|
||
|
||
/// Build the desired set of partial tile prefixes.
|
||
///
|
||
/// We build a set of partial tile prefixes, which are prefixes of the vector
|
||
/// loop that have exactly VectorWidth iterations.
|
||
///
|
||
/// 1. Get all prefixes of the vector loop.
|
||
/// 2. Extend it to a set, which has exactly VectorWidth iterations for
|
||
/// any prefix from the set that was built on the previous step.
|
||
/// 3. Subtract loop domain from it, project out the vector loop dimension and
|
||
/// get a set of prefixes, which don't have exactly VectorWidth iterations.
|
||
/// 4. Subtract it from all prefixes of the vector loop and get the desired
|
||
/// set.
|
||
///
|
||
/// @param ScheduleRange A range of a map, which describes a prefix schedule
|
||
/// relation.
|
||
static __isl_give isl_set *
|
||
getPartialTilePrefixes(__isl_take isl_set *ScheduleRange, int VectorWidth) {
|
||
auto Dims = isl_set_dim(ScheduleRange, isl_dim_set);
|
||
auto *LoopPrefixes = isl_set_project_out(isl_set_copy(ScheduleRange),
|
||
isl_dim_set, Dims - 1, 1);
|
||
auto *ExtentPrefixes =
|
||
isl_set_add_dims(isl_set_copy(LoopPrefixes), isl_dim_set, 1);
|
||
ExtentPrefixes = addExtentConstraints(ExtentPrefixes, VectorWidth);
|
||
auto *BadPrefixes = isl_set_subtract(ExtentPrefixes, ScheduleRange);
|
||
BadPrefixes = isl_set_project_out(BadPrefixes, isl_dim_set, Dims - 1, 1);
|
||
return isl_set_subtract(LoopPrefixes, BadPrefixes);
|
||
}
|
||
|
||
__isl_give isl_schedule_node *ScheduleTreeOptimizer::isolateFullPartialTiles(
|
||
__isl_take isl_schedule_node *Node, int VectorWidth) {
|
||
assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band);
|
||
Node = isl_schedule_node_child(Node, 0);
|
||
Node = isl_schedule_node_child(Node, 0);
|
||
auto *SchedRelUMap = isl_schedule_node_get_prefix_schedule_relation(Node);
|
||
auto *ScheduleRelation = isl_map_from_union_map(SchedRelUMap);
|
||
auto *ScheduleRange = isl_map_range(ScheduleRelation);
|
||
auto *IsolateDomain = getPartialTilePrefixes(ScheduleRange, VectorWidth);
|
||
auto *AtomicOption = getAtomicOptions(isl_set_get_ctx(IsolateDomain));
|
||
auto *IsolateOption = getIsolateOptions(IsolateDomain);
|
||
Node = isl_schedule_node_parent(Node);
|
||
Node = isl_schedule_node_parent(Node);
|
||
auto *Options = isl_union_set_union(IsolateOption, AtomicOption);
|
||
Node = isl_schedule_node_band_set_ast_build_options(Node, Options);
|
||
return Node;
|
||
}
|
||
|
||
__isl_give isl_schedule_node *
|
||
ScheduleTreeOptimizer::prevectSchedBand(__isl_take isl_schedule_node *Node,
|
||
unsigned DimToVectorize,
|
||
int VectorWidth) {
|
||
assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band);
|
||
|
||
auto Space = isl_schedule_node_band_get_space(Node);
|
||
auto ScheduleDimensions = isl_space_dim(Space, isl_dim_set);
|
||
isl_space_free(Space);
|
||
assert(DimToVectorize < ScheduleDimensions);
|
||
|
||
if (DimToVectorize > 0) {
|
||
Node = isl_schedule_node_band_split(Node, DimToVectorize);
|
||
Node = isl_schedule_node_child(Node, 0);
|
||
}
|
||
if (DimToVectorize < ScheduleDimensions - 1)
|
||
Node = isl_schedule_node_band_split(Node, 1);
|
||
Space = isl_schedule_node_band_get_space(Node);
|
||
auto Sizes = isl_multi_val_zero(Space);
|
||
auto Ctx = isl_schedule_node_get_ctx(Node);
|
||
Sizes =
|
||
isl_multi_val_set_val(Sizes, 0, isl_val_int_from_si(Ctx, VectorWidth));
|
||
Node = isl_schedule_node_band_tile(Node, Sizes);
|
||
Node = isolateFullPartialTiles(Node, VectorWidth);
|
||
Node = isl_schedule_node_child(Node, 0);
|
||
// Make sure the "trivially vectorizable loop" is not unrolled. Otherwise,
|
||
// we will have troubles to match it in the backend.
|
||
Node = isl_schedule_node_band_set_ast_build_options(
|
||
Node, isl_union_set_read_from_str(Ctx, "{ unroll[x]: 1 = 0 }"));
|
||
Node = isl_schedule_node_band_sink(Node);
|
||
Node = isl_schedule_node_child(Node, 0);
|
||
if (isl_schedule_node_get_type(Node) == isl_schedule_node_leaf)
|
||
Node = isl_schedule_node_parent(Node);
|
||
isl_id *LoopMarker = isl_id_alloc(Ctx, "SIMD", nullptr);
|
||
Node = isl_schedule_node_insert_mark(Node, LoopMarker);
|
||
return Node;
|
||
}
|
||
|
||
__isl_give isl_schedule_node *
|
||
ScheduleTreeOptimizer::tileNode(__isl_take isl_schedule_node *Node,
|
||
const char *Identifier, ArrayRef<int> TileSizes,
|
||
int DefaultTileSize) {
|
||
auto Ctx = isl_schedule_node_get_ctx(Node);
|
||
auto Space = isl_schedule_node_band_get_space(Node);
|
||
auto Dims = isl_space_dim(Space, isl_dim_set);
|
||
auto Sizes = isl_multi_val_zero(Space);
|
||
std::string IdentifierString(Identifier);
|
||
for (unsigned i = 0; i < Dims; i++) {
|
||
auto tileSize = i < TileSizes.size() ? TileSizes[i] : DefaultTileSize;
|
||
Sizes = isl_multi_val_set_val(Sizes, i, isl_val_int_from_si(Ctx, tileSize));
|
||
}
|
||
auto TileLoopMarkerStr = IdentifierString + " - Tiles";
|
||
isl_id *TileLoopMarker =
|
||
isl_id_alloc(Ctx, TileLoopMarkerStr.c_str(), nullptr);
|
||
Node = isl_schedule_node_insert_mark(Node, TileLoopMarker);
|
||
Node = isl_schedule_node_child(Node, 0);
|
||
Node = isl_schedule_node_band_tile(Node, Sizes);
|
||
Node = isl_schedule_node_child(Node, 0);
|
||
auto PointLoopMarkerStr = IdentifierString + " - Points";
|
||
isl_id *PointLoopMarker =
|
||
isl_id_alloc(Ctx, PointLoopMarkerStr.c_str(), nullptr);
|
||
Node = isl_schedule_node_insert_mark(Node, PointLoopMarker);
|
||
Node = isl_schedule_node_child(Node, 0);
|
||
return Node;
|
||
}
|
||
|
||
__isl_give isl_schedule_node *
|
||
ScheduleTreeOptimizer::applyRegisterTiling(__isl_take isl_schedule_node *Node,
|
||
llvm::ArrayRef<int> TileSizes,
|
||
int DefaultTileSize) {
|
||
auto *Ctx = isl_schedule_node_get_ctx(Node);
|
||
Node = tileNode(Node, "Register tiling", TileSizes, DefaultTileSize);
|
||
Node = isl_schedule_node_band_set_ast_build_options(
|
||
Node, isl_union_set_read_from_str(Ctx, "{unroll[x]}"));
|
||
return Node;
|
||
}
|
||
|
||
bool ScheduleTreeOptimizer::isTileableBandNode(
|
||
__isl_keep isl_schedule_node *Node) {
|
||
if (isl_schedule_node_get_type(Node) != isl_schedule_node_band)
|
||
return false;
|
||
|
||
if (isl_schedule_node_n_children(Node) != 1)
|
||
return false;
|
||
|
||
if (!isl_schedule_node_band_get_permutable(Node))
|
||
return false;
|
||
|
||
auto Space = isl_schedule_node_band_get_space(Node);
|
||
auto Dims = isl_space_dim(Space, isl_dim_set);
|
||
isl_space_free(Space);
|
||
|
||
if (Dims <= 1)
|
||
return false;
|
||
|
||
auto Child = isl_schedule_node_get_child(Node, 0);
|
||
auto Type = isl_schedule_node_get_type(Child);
|
||
isl_schedule_node_free(Child);
|
||
|
||
if (Type != isl_schedule_node_leaf)
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
__isl_give isl_schedule_node *
|
||
ScheduleTreeOptimizer::standardBandOpts(__isl_take isl_schedule_node *Node,
|
||
void *User) {
|
||
if (FirstLevelTiling)
|
||
Node = tileNode(Node, "1st level tiling", FirstLevelTileSizes,
|
||
FirstLevelDefaultTileSize);
|
||
|
||
if (SecondLevelTiling)
|
||
Node = tileNode(Node, "2nd level tiling", SecondLevelTileSizes,
|
||
SecondLevelDefaultTileSize);
|
||
|
||
if (RegisterTiling)
|
||
Node =
|
||
applyRegisterTiling(Node, RegisterTileSizes, RegisterDefaultTileSize);
|
||
|
||
if (PollyVectorizerChoice == VECTORIZER_NONE)
|
||
return Node;
|
||
|
||
auto Space = isl_schedule_node_band_get_space(Node);
|
||
auto Dims = isl_space_dim(Space, isl_dim_set);
|
||
isl_space_free(Space);
|
||
|
||
for (int i = Dims - 1; i >= 0; i--)
|
||
if (isl_schedule_node_band_member_get_coincident(Node, i)) {
|
||
Node = prevectSchedBand(Node, i, PrevectorWidth);
|
||
break;
|
||
}
|
||
|
||
return Node;
|
||
}
|
||
|
||
/// Get the position of a dimension with a non-zero coefficient.
|
||
///
|
||
/// Check that isl constraint @p Constraint has only one non-zero
|
||
/// coefficient for dimensions that have type @p DimType. If this is true,
|
||
/// return the position of the dimension corresponding to the non-zero
|
||
/// coefficient and negative value, otherwise.
|
||
///
|
||
/// @param Constraint The isl constraint to be checked.
|
||
/// @param DimType The type of the dimensions.
|
||
/// @return The position of the dimension in case the isl
|
||
/// constraint satisfies the requirements, a negative
|
||
/// value, otherwise.
|
||
static int getMatMulConstraintDim(__isl_keep isl_constraint *Constraint,
|
||
enum isl_dim_type DimType) {
|
||
int DimPos = -1;
|
||
auto *LocalSpace = isl_constraint_get_local_space(Constraint);
|
||
int LocalSpaceDimNum = isl_local_space_dim(LocalSpace, DimType);
|
||
for (int i = 0; i < LocalSpaceDimNum; i++) {
|
||
auto *Val = isl_constraint_get_coefficient_val(Constraint, DimType, i);
|
||
if (isl_val_is_zero(Val)) {
|
||
isl_val_free(Val);
|
||
continue;
|
||
}
|
||
if (DimPos >= 0 || (DimType == isl_dim_out && !isl_val_is_one(Val)) ||
|
||
(DimType == isl_dim_in && !isl_val_is_negone(Val))) {
|
||
isl_val_free(Val);
|
||
isl_local_space_free(LocalSpace);
|
||
return -1;
|
||
}
|
||
DimPos = i;
|
||
isl_val_free(Val);
|
||
}
|
||
isl_local_space_free(LocalSpace);
|
||
return DimPos;
|
||
}
|
||
|
||
/// Check the form of the isl constraint.
|
||
///
|
||
/// Check that the @p DimInPos input dimension of the isl constraint
|
||
/// @p Constraint has a coefficient that is equal to negative one, the @p
|
||
/// DimOutPos has a coefficient that is equal to one and others
|
||
/// have coefficients equal to zero.
|
||
///
|
||
/// @param Constraint The isl constraint to be checked.
|
||
/// @param DimInPos The input dimension of the isl constraint.
|
||
/// @param DimOutPos The output dimension of the isl constraint.
|
||
/// @return isl_stat_ok in case the isl constraint satisfies
|
||
/// the requirements, isl_stat_error otherwise.
|
||
static isl_stat isMatMulOperandConstraint(__isl_keep isl_constraint *Constraint,
|
||
int &DimInPos, int &DimOutPos) {
|
||
auto *Val = isl_constraint_get_constant_val(Constraint);
|
||
if (!isl_constraint_is_equality(Constraint) || !isl_val_is_zero(Val)) {
|
||
isl_val_free(Val);
|
||
return isl_stat_error;
|
||
}
|
||
isl_val_free(Val);
|
||
DimInPos = getMatMulConstraintDim(Constraint, isl_dim_in);
|
||
if (DimInPos < 0)
|
||
return isl_stat_error;
|
||
DimOutPos = getMatMulConstraintDim(Constraint, isl_dim_out);
|
||
if (DimOutPos < 0)
|
||
return isl_stat_error;
|
||
return isl_stat_ok;
|
||
}
|
||
|
||
/// Check that the access relation corresponds to a non-constant operand
|
||
/// of the matrix multiplication.
|
||
///
|
||
/// Access relations that correspond to non-constant operands of the matrix
|
||
/// multiplication depend only on two input dimensions and have two output
|
||
/// dimensions. The function checks that the isl basic map @p bmap satisfies
|
||
/// the requirements. The two input dimensions can be specified via @p user
|
||
/// array.
|
||
///
|
||
/// @param bmap The isl basic map to be checked.
|
||
/// @param user The input dimensions of @p bmap.
|
||
/// @return isl_stat_ok in case isl basic map satisfies the requirements,
|
||
/// isl_stat_error otherwise.
|
||
static isl_stat isMatMulOperandBasicMap(__isl_take isl_basic_map *bmap,
|
||
void *user) {
|
||
auto *Constraints = isl_basic_map_get_constraint_list(bmap);
|
||
isl_basic_map_free(bmap);
|
||
if (isl_constraint_list_n_constraint(Constraints) != 2) {
|
||
isl_constraint_list_free(Constraints);
|
||
return isl_stat_error;
|
||
}
|
||
int InPosPair[] = {-1, -1};
|
||
auto DimInPos = user ? static_cast<int *>(user) : InPosPair;
|
||
for (int i = 0; i < 2; i++) {
|
||
auto *Constraint = isl_constraint_list_get_constraint(Constraints, i);
|
||
int InPos, OutPos;
|
||
if (isMatMulOperandConstraint(Constraint, InPos, OutPos) ==
|
||
isl_stat_error ||
|
||
OutPos > 1 || (DimInPos[OutPos] >= 0 && DimInPos[OutPos] != InPos)) {
|
||
isl_constraint_free(Constraint);
|
||
isl_constraint_list_free(Constraints);
|
||
return isl_stat_error;
|
||
}
|
||
DimInPos[OutPos] = InPos;
|
||
isl_constraint_free(Constraint);
|
||
}
|
||
isl_constraint_list_free(Constraints);
|
||
return isl_stat_ok;
|
||
}
|
||
|
||
/// Permute the two dimensions of the isl map.
|
||
///
|
||
/// Permute @p DstPos and @p SrcPos dimensions of the isl map @p Map that
|
||
/// have type @p DimType.
|
||
///
|
||
/// @param Map The isl map to be modified.
|
||
/// @param DimType The type of the dimensions.
|
||
/// @param DstPos The first dimension.
|
||
/// @param SrcPos The second dimension.
|
||
/// @return The modified map.
|
||
__isl_give isl_map *permuteDimensions(__isl_take isl_map *Map,
|
||
enum isl_dim_type DimType,
|
||
unsigned DstPos, unsigned SrcPos) {
|
||
assert(DstPos < isl_map_dim(Map, DimType) &&
|
||
SrcPos < isl_map_dim(Map, DimType));
|
||
if (DstPos == SrcPos)
|
||
return Map;
|
||
isl_id *DimId = nullptr;
|
||
if (isl_map_has_tuple_id(Map, DimType))
|
||
DimId = isl_map_get_tuple_id(Map, DimType);
|
||
auto FreeDim = DimType == isl_dim_in ? isl_dim_out : isl_dim_in;
|
||
isl_id *FreeDimId = nullptr;
|
||
if (isl_map_has_tuple_id(Map, FreeDim))
|
||
FreeDimId = isl_map_get_tuple_id(Map, FreeDim);
|
||
auto MaxDim = std::max(DstPos, SrcPos);
|
||
auto MinDim = std::min(DstPos, SrcPos);
|
||
Map = isl_map_move_dims(Map, FreeDim, 0, DimType, MaxDim, 1);
|
||
Map = isl_map_move_dims(Map, FreeDim, 0, DimType, MinDim, 1);
|
||
Map = isl_map_move_dims(Map, DimType, MinDim, FreeDim, 1, 1);
|
||
Map = isl_map_move_dims(Map, DimType, MaxDim, FreeDim, 0, 1);
|
||
if (DimId)
|
||
Map = isl_map_set_tuple_id(Map, DimType, DimId);
|
||
if (FreeDimId)
|
||
Map = isl_map_set_tuple_id(Map, FreeDim, FreeDimId);
|
||
return Map;
|
||
}
|
||
|
||
/// Check the form of the access relation.
|
||
///
|
||
/// Check that the access relation @p AccMap has the form M[i][j], where i
|
||
/// is a @p FirstPos and j is a @p SecondPos.
|
||
///
|
||
/// @param AccMap The access relation to be checked.
|
||
/// @param FirstPos The index of the input dimension that is mapped to
|
||
/// the first output dimension.
|
||
/// @param SecondPos The index of the input dimension that is mapped to the
|
||
/// second output dimension.
|
||
/// @return True in case @p AccMap has the expected form and false,
|
||
/// otherwise.
|
||
static bool isMatMulOperandAcc(__isl_keep isl_map *AccMap, int &FirstPos,
|
||
int &SecondPos) {
|
||
int DimInPos[] = {FirstPos, SecondPos};
|
||
if (isl_map_foreach_basic_map(AccMap, isMatMulOperandBasicMap,
|
||
static_cast<void *>(DimInPos)) != isl_stat_ok ||
|
||
DimInPos[0] < 0 || DimInPos[1] < 0)
|
||
return false;
|
||
FirstPos = DimInPos[0];
|
||
SecondPos = DimInPos[1];
|
||
return true;
|
||
}
|
||
|
||
/// Does the memory access represent a non-scalar operand of the matrix
|
||
/// multiplication.
|
||
///
|
||
/// Check that the memory access @p MemAccess is the read access to a non-scalar
|
||
/// operand of the matrix multiplication or its result.
|
||
///
|
||
/// @param MemAccess The memory access to be checked.
|
||
/// @param MMI Parameters of the matrix multiplication operands.
|
||
/// @return True in case the memory access represents the read access
|
||
/// to a non-scalar operand of the matrix multiplication and
|
||
/// false, otherwise.
|
||
static bool isMatMulNonScalarReadAccess(MemoryAccess *MemAccess,
|
||
MatMulInfoTy &MMI) {
|
||
if (!MemAccess->isArrayKind() || !MemAccess->isRead())
|
||
return false;
|
||
isl_map *AccMap = MemAccess->getAccessRelation();
|
||
if (isMatMulOperandAcc(AccMap, MMI.i, MMI.j) && !MMI.ReadFromC &&
|
||
isl_map_n_basic_map(AccMap) == 1) {
|
||
MMI.ReadFromC = MemAccess;
|
||
isl_map_free(AccMap);
|
||
return true;
|
||
}
|
||
if (isMatMulOperandAcc(AccMap, MMI.i, MMI.k) && !MMI.A &&
|
||
isl_map_n_basic_map(AccMap) == 1) {
|
||
MMI.A = MemAccess;
|
||
isl_map_free(AccMap);
|
||
return true;
|
||
}
|
||
if (isMatMulOperandAcc(AccMap, MMI.k, MMI.j) && !MMI.B &&
|
||
isl_map_n_basic_map(AccMap) == 1) {
|
||
MMI.B = MemAccess;
|
||
isl_map_free(AccMap);
|
||
return true;
|
||
}
|
||
isl_map_free(AccMap);
|
||
return false;
|
||
}
|
||
|
||
/// Check accesses to operands of the matrix multiplication.
|
||
///
|
||
/// Check that accesses of the SCoP statement, which corresponds to
|
||
/// the partial schedule @p PartialSchedule, are scalar in terms of loops
|
||
/// containing the matrix multiplication, in case they do not represent
|
||
/// accesses to the non-scalar operands of the matrix multiplication or
|
||
/// its result.
|
||
///
|
||
/// @param PartialSchedule The partial schedule of the SCoP statement.
|
||
/// @param MMI Parameters of the matrix multiplication operands.
|
||
/// @return True in case the corresponding SCoP statement
|
||
/// represents matrix multiplication and false,
|
||
/// otherwise.
|
||
static bool containsOnlyMatrMultAcc(__isl_keep isl_map *PartialSchedule,
|
||
MatMulInfoTy &MMI) {
|
||
auto *InputDimId = isl_map_get_tuple_id(PartialSchedule, isl_dim_in);
|
||
auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(InputDimId));
|
||
isl_id_free(InputDimId);
|
||
unsigned OutDimNum = isl_map_dim(PartialSchedule, isl_dim_out);
|
||
assert(OutDimNum > 2 && "In case of the matrix multiplication the loop nest "
|
||
"and, consequently, the corresponding scheduling "
|
||
"functions have at least three dimensions.");
|
||
auto *MapI = permuteDimensions(isl_map_copy(PartialSchedule), isl_dim_out,
|
||
MMI.i, OutDimNum - 1);
|
||
auto *MapJ = permuteDimensions(isl_map_copy(PartialSchedule), isl_dim_out,
|
||
MMI.j, OutDimNum - 1);
|
||
auto *MapK = permuteDimensions(isl_map_copy(PartialSchedule), isl_dim_out,
|
||
MMI.k, OutDimNum - 1);
|
||
for (auto *MemA = Stmt->begin(); MemA != Stmt->end() - 1; MemA++) {
|
||
auto *MemAccessPtr = *MemA;
|
||
if (MemAccessPtr->isArrayKind() && MemAccessPtr != MMI.WriteToC &&
|
||
!isMatMulNonScalarReadAccess(MemAccessPtr, MMI) &&
|
||
!(MemAccessPtr->isStrideZero(isl_map_copy(MapI)) &&
|
||
MemAccessPtr->isStrideZero(isl_map_copy(MapJ)) &&
|
||
MemAccessPtr->isStrideZero(isl_map_copy(MapK)))) {
|
||
isl_map_free(MapI);
|
||
isl_map_free(MapJ);
|
||
isl_map_free(MapK);
|
||
return false;
|
||
}
|
||
}
|
||
isl_map_free(MapI);
|
||
isl_map_free(MapJ);
|
||
isl_map_free(MapK);
|
||
return true;
|
||
}
|
||
|
||
/// Check for dependencies corresponding to the matrix multiplication.
|
||
///
|
||
/// Check that there is only true dependence of the form
|
||
/// S(..., k, ...) -> S(..., k + 1, …), where S is the SCoP statement
|
||
/// represented by @p Schedule and k is @p Pos. Such a dependence corresponds
|
||
/// to the dependency produced by the matrix multiplication.
|
||
///
|
||
/// @param Schedule The schedule of the SCoP statement.
|
||
/// @param D The SCoP dependencies.
|
||
/// @param Pos The parameter to desribe an acceptable true dependence.
|
||
/// In case it has a negative value, try to determine its
|
||
/// acceptable value.
|
||
/// @return True in case dependencies correspond to the matrix multiplication
|
||
/// and false, otherwise.
|
||
static bool containsOnlyMatMulDep(__isl_keep isl_map *Schedule,
|
||
const Dependences *D, int &Pos) {
|
||
auto *WAR = D->getDependences(Dependences::TYPE_WAR);
|
||
if (!isl_union_map_is_empty(WAR)) {
|
||
isl_union_map_free(WAR);
|
||
return false;
|
||
}
|
||
isl_union_map_free(WAR);
|
||
auto *RAW = D->getDependences(Dependences::TYPE_RAW);
|
||
auto *Domain = isl_map_domain(isl_map_copy(Schedule));
|
||
auto *Space = isl_space_map_from_domain_and_range(isl_set_get_space(Domain),
|
||
isl_set_get_space(Domain));
|
||
isl_set_free(Domain);
|
||
auto *Deltas = isl_map_deltas(isl_union_map_extract_map(RAW, Space));
|
||
int DeltasDimNum = isl_set_dim(Deltas, isl_dim_set);
|
||
for (int i = 0; i < DeltasDimNum; i++) {
|
||
auto *Val = isl_set_plain_get_val_if_fixed(Deltas, isl_dim_set, i);
|
||
if (Pos < 0 && isl_val_is_one(Val))
|
||
Pos = i;
|
||
if (isl_val_is_nan(Val) ||
|
||
!(isl_val_is_zero(Val) || (i == Pos && isl_val_is_one(Val)))) {
|
||
isl_val_free(Val);
|
||
isl_union_map_free(RAW);
|
||
isl_set_free(Deltas);
|
||
return false;
|
||
}
|
||
isl_val_free(Val);
|
||
}
|
||
isl_union_map_free(RAW);
|
||
isl_set_free(Deltas);
|
||
return true;
|
||
}
|
||
|
||
/// Check if the SCoP statement could probably be optimized with analytical
|
||
/// modeling.
|
||
///
|
||
/// containsMatrMult tries to determine whether the following conditions
|
||
/// are true:
|
||
/// 1. The last memory access modeling an array, MA1, represents writing to
|
||
/// memory and has the form S(..., i1, ..., i2, ...) -> M(i1, i2) or
|
||
/// S(..., i2, ..., i1, ...) -> M(i1, i2), where S is the SCoP statement
|
||
/// under consideration.
|
||
/// 2. There is only one loop-carried true dependency, and it has the
|
||
/// form S(..., i3, ...) -> S(..., i3 + 1, ...), and there are no
|
||
/// loop-carried or anti dependencies.
|
||
/// 3. SCoP contains three access relations, MA2, MA3, and MA4 that represent
|
||
/// reading from memory and have the form S(..., i3, ...) -> M(i1, i3),
|
||
/// S(..., i3, ...) -> M(i3, i2), S(...) -> M(i1, i2), respectively,
|
||
/// and all memory accesses of the SCoP that are different from MA1, MA2,
|
||
/// MA3, and MA4 have stride 0, if the innermost loop is exchanged with any
|
||
/// of loops i1, i2 and i3.
|
||
///
|
||
/// @param PartialSchedule The PartialSchedule that contains a SCoP statement
|
||
/// to check.
|
||
/// @D The SCoP dependencies.
|
||
/// @MMI Parameters of the matrix multiplication operands.
|
||
static bool containsMatrMult(__isl_keep isl_map *PartialSchedule,
|
||
const Dependences *D, MatMulInfoTy &MMI) {
|
||
auto *InputDimsId = isl_map_get_tuple_id(PartialSchedule, isl_dim_in);
|
||
auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(InputDimsId));
|
||
isl_id_free(InputDimsId);
|
||
if (Stmt->size() <= 1)
|
||
return false;
|
||
for (auto *MemA = Stmt->end() - 1; MemA != Stmt->begin(); MemA--) {
|
||
auto *MemAccessPtr = *MemA;
|
||
if (!MemAccessPtr->isArrayKind())
|
||
continue;
|
||
if (!MemAccessPtr->isWrite())
|
||
return false;
|
||
auto *AccMap = MemAccessPtr->getAccessRelation();
|
||
if (isl_map_n_basic_map(AccMap) != 1 ||
|
||
!isMatMulOperandAcc(AccMap, MMI.i, MMI.j)) {
|
||
isl_map_free(AccMap);
|
||
return false;
|
||
}
|
||
isl_map_free(AccMap);
|
||
MMI.WriteToC = MemAccessPtr;
|
||
break;
|
||
}
|
||
|
||
if (!containsOnlyMatMulDep(PartialSchedule, D, MMI.k))
|
||
return false;
|
||
|
||
if (!MMI.WriteToC || !containsOnlyMatrMultAcc(PartialSchedule, MMI))
|
||
return false;
|
||
|
||
if (!MMI.A || !MMI.B || !MMI.ReadFromC)
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
/// Permute two dimensions of the band node.
|
||
///
|
||
/// Permute FirstDim and SecondDim dimensions of the Node.
|
||
///
|
||
/// @param Node The band node to be modified.
|
||
/// @param FirstDim The first dimension to be permuted.
|
||
/// @param SecondDim The second dimension to be permuted.
|
||
static __isl_give isl_schedule_node *
|
||
permuteBandNodeDimensions(__isl_take isl_schedule_node *Node, unsigned FirstDim,
|
||
unsigned SecondDim) {
|
||
assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band &&
|
||
isl_schedule_node_band_n_member(Node) > std::max(FirstDim, SecondDim));
|
||
auto PartialSchedule = isl_schedule_node_band_get_partial_schedule(Node);
|
||
auto PartialScheduleFirstDim =
|
||
isl_multi_union_pw_aff_get_union_pw_aff(PartialSchedule, FirstDim);
|
||
auto PartialScheduleSecondDim =
|
||
isl_multi_union_pw_aff_get_union_pw_aff(PartialSchedule, SecondDim);
|
||
PartialSchedule = isl_multi_union_pw_aff_set_union_pw_aff(
|
||
PartialSchedule, SecondDim, PartialScheduleFirstDim);
|
||
PartialSchedule = isl_multi_union_pw_aff_set_union_pw_aff(
|
||
PartialSchedule, FirstDim, PartialScheduleSecondDim);
|
||
Node = isl_schedule_node_delete(Node);
|
||
Node = isl_schedule_node_insert_partial_schedule(Node, PartialSchedule);
|
||
return Node;
|
||
}
|
||
|
||
__isl_give isl_schedule_node *ScheduleTreeOptimizer::createMicroKernel(
|
||
__isl_take isl_schedule_node *Node, MicroKernelParamsTy MicroKernelParams) {
|
||
applyRegisterTiling(Node, {MicroKernelParams.Mr, MicroKernelParams.Nr}, 1);
|
||
Node = isl_schedule_node_parent(isl_schedule_node_parent(Node));
|
||
Node = permuteBandNodeDimensions(Node, 0, 1);
|
||
return isl_schedule_node_child(isl_schedule_node_child(Node, 0), 0);
|
||
}
|
||
|
||
__isl_give isl_schedule_node *ScheduleTreeOptimizer::createMacroKernel(
|
||
__isl_take isl_schedule_node *Node, MacroKernelParamsTy MacroKernelParams) {
|
||
assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band);
|
||
if (MacroKernelParams.Mc == 1 && MacroKernelParams.Nc == 1 &&
|
||
MacroKernelParams.Kc == 1)
|
||
return Node;
|
||
int DimOutNum = isl_schedule_node_band_n_member(Node);
|
||
std::vector<int> TileSizes(DimOutNum, 1);
|
||
TileSizes[DimOutNum - 3] = MacroKernelParams.Mc;
|
||
TileSizes[DimOutNum - 2] = MacroKernelParams.Nc;
|
||
TileSizes[DimOutNum - 1] = MacroKernelParams.Kc;
|
||
Node = tileNode(Node, "1st level tiling", TileSizes, 1);
|
||
Node = isl_schedule_node_parent(isl_schedule_node_parent(Node));
|
||
Node = permuteBandNodeDimensions(Node, DimOutNum - 2, DimOutNum - 1);
|
||
Node = permuteBandNodeDimensions(Node, DimOutNum - 3, DimOutNum - 1);
|
||
return isl_schedule_node_child(isl_schedule_node_child(Node, 0), 0);
|
||
}
|
||
|
||
/// Get parameters of the BLIS micro kernel.
|
||
///
|
||
/// We choose the Mr and Nr parameters of the micro kernel to be large enough
|
||
/// such that no stalls caused by the combination of latencies and dependencies
|
||
/// are introduced during the updates of the resulting matrix of the matrix
|
||
/// multiplication. However, they should also be as small as possible to
|
||
/// release more registers for entries of multiplied matrices.
|
||
///
|
||
/// @param TTI Target Transform Info.
|
||
/// @return The structure of type MicroKernelParamsTy.
|
||
/// @see MicroKernelParamsTy
|
||
static struct MicroKernelParamsTy
|
||
getMicroKernelParams(const llvm::TargetTransformInfo *TTI) {
|
||
assert(TTI && "The target transform info should be provided.");
|
||
|
||
// Nvec - Number of double-precision floating-point numbers that can be hold
|
||
// by a vector register. Use 2 by default.
|
||
long RegisterBitwidth = VectorRegisterBitwidth;
|
||
|
||
if (RegisterBitwidth == -1)
|
||
RegisterBitwidth = TTI->getRegisterBitWidth(true);
|
||
auto Nvec = RegisterBitwidth / 64;
|
||
if (Nvec == 0)
|
||
Nvec = 2;
|
||
int Nr =
|
||
ceil(sqrt(Nvec * LatencyVectorFma * ThroughputVectorFma) / Nvec) * Nvec;
|
||
int Mr = ceil(Nvec * LatencyVectorFma * ThroughputVectorFma / Nr);
|
||
return {Mr, Nr};
|
||
}
|
||
|
||
/// Get parameters of the BLIS macro kernel.
|
||
///
|
||
/// During the computation of matrix multiplication, blocks of partitioned
|
||
/// matrices are mapped to different layers of the memory hierarchy.
|
||
/// To optimize data reuse, blocks should be ideally kept in cache between
|
||
/// iterations. Since parameters of the macro kernel determine sizes of these
|
||
/// blocks, there are upper and lower bounds on these parameters.
|
||
///
|
||
/// @param MicroKernelParams Parameters of the micro-kernel
|
||
/// to be taken into account.
|
||
/// @return The structure of type MacroKernelParamsTy.
|
||
/// @see MacroKernelParamsTy
|
||
/// @see MicroKernelParamsTy
|
||
static struct MacroKernelParamsTy
|
||
getMacroKernelParams(const MicroKernelParamsTy &MicroKernelParams) {
|
||
// According to www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf,
|
||
// it requires information about the first two levels of a cache to determine
|
||
// all the parameters of a macro-kernel. It also checks that an associativity
|
||
// degree of a cache level is greater than two. Otherwise, another algorithm
|
||
// for determination of the parameters should be used.
|
||
if (!(MicroKernelParams.Mr > 0 && MicroKernelParams.Nr > 0 &&
|
||
FirstCacheLevelSize > 0 && SecondCacheLevelSize > 0 &&
|
||
FirstCacheLevelAssociativity > 2 && SecondCacheLevelAssociativity > 2))
|
||
return {1, 1, 1};
|
||
// The quotient should be greater than zero.
|
||
if (PollyPatternMatchingNcQuotient <= 0)
|
||
return {1, 1, 1};
|
||
int Car = floor(
|
||
(FirstCacheLevelAssociativity - 1) /
|
||
(1 + static_cast<double>(MicroKernelParams.Nr) / MicroKernelParams.Mr));
|
||
int Kc = (Car * FirstCacheLevelSize) /
|
||
(MicroKernelParams.Mr * FirstCacheLevelAssociativity * 8);
|
||
double Cac = static_cast<double>(Kc * 8 * SecondCacheLevelAssociativity) /
|
||
SecondCacheLevelSize;
|
||
int Mc = floor((SecondCacheLevelAssociativity - 2) / Cac);
|
||
int Nc = PollyPatternMatchingNcQuotient * MicroKernelParams.Nr;
|
||
return {Mc, Nc, Kc};
|
||
}
|
||
|
||
/// Create an access relation that is specific to
|
||
/// the matrix multiplication pattern.
|
||
///
|
||
/// Create an access relation of the following form:
|
||
/// [O0, O1, O2, O3, O4, O5, O6, O7, O8] -> [OI, O5, OJ]
|
||
/// where I is @p FirstDim, J is @p SecondDim.
|
||
///
|
||
/// It can be used, for example, to create relations that helps to consequently
|
||
/// access elements of operands of a matrix multiplication after creation of
|
||
/// the BLIS micro and macro kernels.
|
||
///
|
||
/// @see ScheduleTreeOptimizer::createMicroKernel
|
||
/// @see ScheduleTreeOptimizer::createMacroKernel
|
||
///
|
||
/// Subsequently, the described access relation is applied to the range of
|
||
/// @p MapOldIndVar, that is used to map original induction variables to
|
||
/// the ones, which are produced by schedule transformations. It helps to
|
||
/// define relations using a new space and, at the same time, keep them
|
||
/// in the original one.
|
||
///
|
||
/// @param MapOldIndVar The relation, which maps original induction variables
|
||
/// to the ones, which are produced by schedule
|
||
/// transformations.
|
||
/// @param FirstDim, SecondDim The input dimensions that are used to define
|
||
/// the specified access relation.
|
||
/// @return The specified access relation.
|
||
__isl_give isl_map *getMatMulAccRel(__isl_take isl_map *MapOldIndVar,
|
||
unsigned FirstDim, unsigned SecondDim) {
|
||
auto *Ctx = isl_map_get_ctx(MapOldIndVar);
|
||
auto *AccessRelSpace = isl_space_alloc(Ctx, 0, 9, 3);
|
||
auto *AccessRel = isl_map_universe(AccessRelSpace);
|
||
AccessRel = isl_map_equate(AccessRel, isl_dim_in, FirstDim, isl_dim_out, 0);
|
||
AccessRel = isl_map_equate(AccessRel, isl_dim_in, 5, isl_dim_out, 1);
|
||
AccessRel = isl_map_equate(AccessRel, isl_dim_in, SecondDim, isl_dim_out, 2);
|
||
return isl_map_apply_range(MapOldIndVar, AccessRel);
|
||
}
|
||
|
||
__isl_give isl_schedule_node *
|
||
createExtensionNode(__isl_take isl_schedule_node *Node,
|
||
__isl_take isl_map *ExtensionMap) {
|
||
auto *Extension = isl_union_map_from_map(ExtensionMap);
|
||
auto *NewNode = isl_schedule_node_from_extension(Extension);
|
||
return isl_schedule_node_graft_before(Node, NewNode);
|
||
}
|
||
|
||
/// Apply the packing transformation.
|
||
///
|
||
/// The packing transformation can be described as a data-layout
|
||
/// transformation that requires to introduce a new array, copy data
|
||
/// to the array, and change memory access locations to reference the array.
|
||
/// It can be used to ensure that elements of the new array are read in-stride
|
||
/// access, aligned to cache lines boundaries, and preloaded into certain cache
|
||
/// levels.
|
||
///
|
||
/// As an example let us consider the packing of the array A that would help
|
||
/// to read its elements with in-stride access. An access to the array A
|
||
/// is represented by an access relation that has the form
|
||
/// S[i, j, k] -> A[i, k]. The scheduling function of the SCoP statement S has
|
||
/// the form S[i,j, k] -> [floor((j mod Nc) / Nr), floor((i mod Mc) / Mr),
|
||
/// k mod Kc, j mod Nr, i mod Mr].
|
||
///
|
||
/// To ensure that elements of the array A are read in-stride access, we add
|
||
/// a new array Packed_A[Mc/Mr][Kc][Mr] to the SCoP, using
|
||
/// Scop::createScopArrayInfo, change the access relation
|
||
/// S[i, j, k] -> A[i, k] to
|
||
/// S[i, j, k] -> Packed_A[floor((i mod Mc) / Mr), k mod Kc, i mod Mr], using
|
||
/// MemoryAccess::setNewAccessRelation, and copy the data to the array, using
|
||
/// the copy statement created by Scop::addScopStmt.
|
||
///
|
||
/// @param Node The schedule node to be optimized.
|
||
/// @param MapOldIndVar The relation, which maps original induction variables
|
||
/// to the ones, which are produced by schedule
|
||
/// transformations.
|
||
/// @param MicroParams, MacroParams Parameters of the BLIS kernel
|
||
/// to be taken into account.
|
||
/// @param MMI Parameters of the matrix multiplication operands.
|
||
/// @return The optimized schedule node.
|
||
static __isl_give isl_schedule_node *optimizeDataLayoutMatrMulPattern(
|
||
__isl_take isl_schedule_node *Node, __isl_take isl_map *MapOldIndVar,
|
||
MicroKernelParamsTy MicroParams, MacroKernelParamsTy MacroParams,
|
||
MatMulInfoTy &MMI) {
|
||
auto InputDimsId = isl_map_get_tuple_id(MapOldIndVar, isl_dim_in);
|
||
auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(InputDimsId));
|
||
isl_id_free(InputDimsId);
|
||
|
||
// Create a copy statement that corresponds to the memory access to the
|
||
// matrix B, the second operand of the matrix multiplication.
|
||
Node = isl_schedule_node_parent(isl_schedule_node_parent(Node));
|
||
Node = isl_schedule_node_parent(isl_schedule_node_parent(Node));
|
||
Node = isl_schedule_node_parent(Node);
|
||
Node = isl_schedule_node_child(isl_schedule_node_band_split(Node, 2), 0);
|
||
auto *AccRel = getMatMulAccRel(isl_map_copy(MapOldIndVar), 3, 7);
|
||
unsigned FirstDimSize = MacroParams.Nc / MicroParams.Nr;
|
||
unsigned SecondDimSize = MacroParams.Kc;
|
||
unsigned ThirdDimSize = MicroParams.Nr;
|
||
auto *SAI = Stmt->getParent()->createScopArrayInfo(
|
||
MMI.B->getElementType(), "Packed_B",
|
||
{FirstDimSize, SecondDimSize, ThirdDimSize});
|
||
AccRel = isl_map_set_tuple_id(AccRel, isl_dim_out, SAI->getBasePtrId());
|
||
auto *OldAcc = MMI.B->getAccessRelation();
|
||
MMI.B->setNewAccessRelation(AccRel);
|
||
auto *ExtMap =
|
||
isl_map_project_out(isl_map_copy(MapOldIndVar), isl_dim_out, 2,
|
||
isl_map_dim(MapOldIndVar, isl_dim_out) - 2);
|
||
ExtMap = isl_map_reverse(ExtMap);
|
||
ExtMap = isl_map_fix_si(ExtMap, isl_dim_out, MMI.i, 0);
|
||
auto *Domain = Stmt->getDomain();
|
||
|
||
// Restrict the domains of the copy statements to only execute when also its
|
||
// originating statement is executed.
|
||
auto *DomainId = isl_set_get_tuple_id(Domain);
|
||
auto *NewStmt = Stmt->getParent()->addScopStmt(
|
||
OldAcc, MMI.B->getAccessRelation(), isl_set_copy(Domain));
|
||
ExtMap = isl_map_set_tuple_id(ExtMap, isl_dim_out, isl_id_copy(DomainId));
|
||
ExtMap = isl_map_intersect_range(ExtMap, isl_set_copy(Domain));
|
||
ExtMap = isl_map_set_tuple_id(ExtMap, isl_dim_out, NewStmt->getDomainId());
|
||
Node = createExtensionNode(Node, ExtMap);
|
||
|
||
// Create a copy statement that corresponds to the memory access
|
||
// to the matrix A, the first operand of the matrix multiplication.
|
||
Node = isl_schedule_node_child(Node, 0);
|
||
AccRel = getMatMulAccRel(isl_map_copy(MapOldIndVar), 4, 6);
|
||
FirstDimSize = MacroParams.Mc / MicroParams.Mr;
|
||
ThirdDimSize = MicroParams.Mr;
|
||
SAI = Stmt->getParent()->createScopArrayInfo(
|
||
MMI.A->getElementType(), "Packed_A",
|
||
{FirstDimSize, SecondDimSize, ThirdDimSize});
|
||
AccRel = isl_map_set_tuple_id(AccRel, isl_dim_out, SAI->getBasePtrId());
|
||
OldAcc = MMI.A->getAccessRelation();
|
||
MMI.A->setNewAccessRelation(AccRel);
|
||
ExtMap = isl_map_project_out(MapOldIndVar, isl_dim_out, 3,
|
||
isl_map_dim(MapOldIndVar, isl_dim_out) - 3);
|
||
ExtMap = isl_map_reverse(ExtMap);
|
||
ExtMap = isl_map_fix_si(ExtMap, isl_dim_out, MMI.j, 0);
|
||
NewStmt = Stmt->getParent()->addScopStmt(OldAcc, MMI.A->getAccessRelation(),
|
||
isl_set_copy(Domain));
|
||
|
||
// Restrict the domains of the copy statements to only execute when also its
|
||
// originating statement is executed.
|
||
ExtMap = isl_map_set_tuple_id(ExtMap, isl_dim_out, DomainId);
|
||
ExtMap = isl_map_intersect_range(ExtMap, Domain);
|
||
ExtMap = isl_map_set_tuple_id(ExtMap, isl_dim_out, NewStmt->getDomainId());
|
||
Node = createExtensionNode(Node, ExtMap);
|
||
Node = isl_schedule_node_child(isl_schedule_node_child(Node, 0), 0);
|
||
return isl_schedule_node_child(isl_schedule_node_child(Node, 0), 0);
|
||
}
|
||
|
||
/// Get a relation mapping induction variables produced by schedule
|
||
/// transformations to the original ones.
|
||
///
|
||
/// @param Node The schedule node produced as the result of creation
|
||
/// of the BLIS kernels.
|
||
/// @param MicroKernelParams, MacroKernelParams Parameters of the BLIS kernel
|
||
/// to be taken into account.
|
||
/// @return The relation mapping original induction variables to the ones
|
||
/// produced by schedule transformation.
|
||
/// @see ScheduleTreeOptimizer::createMicroKernel
|
||
/// @see ScheduleTreeOptimizer::createMacroKernel
|
||
/// @see getMacroKernelParams
|
||
__isl_give isl_map *
|
||
getInductionVariablesSubstitution(__isl_take isl_schedule_node *Node,
|
||
MicroKernelParamsTy MicroKernelParams,
|
||
MacroKernelParamsTy MacroKernelParams) {
|
||
auto *Child = isl_schedule_node_get_child(Node, 0);
|
||
auto *UnMapOldIndVar = isl_schedule_node_get_prefix_schedule_union_map(Child);
|
||
isl_schedule_node_free(Child);
|
||
auto *MapOldIndVar = isl_map_from_union_map(UnMapOldIndVar);
|
||
if (isl_map_dim(MapOldIndVar, isl_dim_out) > 9)
|
||
MapOldIndVar =
|
||
isl_map_project_out(MapOldIndVar, isl_dim_out, 0,
|
||
isl_map_dim(MapOldIndVar, isl_dim_out) - 9);
|
||
return MapOldIndVar;
|
||
}
|
||
|
||
__isl_give isl_schedule_node *ScheduleTreeOptimizer::optimizeMatMulPattern(
|
||
__isl_take isl_schedule_node *Node, const llvm::TargetTransformInfo *TTI,
|
||
MatMulInfoTy &MMI) {
|
||
assert(TTI && "The target transform info should be provided.");
|
||
int DimOutNum = isl_schedule_node_band_n_member(Node);
|
||
assert(DimOutNum > 2 && "In case of the matrix multiplication the loop nest "
|
||
"and, consequently, the corresponding scheduling "
|
||
"functions have at least three dimensions.");
|
||
Node = permuteBandNodeDimensions(Node, MMI.i, DimOutNum - 3);
|
||
int NewJ = MMI.j == DimOutNum - 3 ? MMI.i : MMI.j;
|
||
int NewK = MMI.k == DimOutNum - 3 ? MMI.i : MMI.k;
|
||
Node = permuteBandNodeDimensions(Node, NewJ, DimOutNum - 2);
|
||
NewK = MMI.k == DimOutNum - 2 ? MMI.j : MMI.k;
|
||
Node = permuteBandNodeDimensions(Node, NewK, DimOutNum - 1);
|
||
auto MicroKernelParams = getMicroKernelParams(TTI);
|
||
auto MacroKernelParams = getMacroKernelParams(MicroKernelParams);
|
||
Node = createMacroKernel(Node, MacroKernelParams);
|
||
Node = createMicroKernel(Node, MicroKernelParams);
|
||
if (MacroKernelParams.Mc == 1 || MacroKernelParams.Nc == 1 ||
|
||
MacroKernelParams.Kc == 1)
|
||
return Node;
|
||
auto *MapOldIndVar = getInductionVariablesSubstitution(
|
||
Node, MicroKernelParams, MacroKernelParams);
|
||
if (!MapOldIndVar)
|
||
return Node;
|
||
return optimizeDataLayoutMatrMulPattern(Node, MapOldIndVar, MicroKernelParams,
|
||
MacroKernelParams, MMI);
|
||
}
|
||
|
||
bool ScheduleTreeOptimizer::isMatrMultPattern(
|
||
__isl_keep isl_schedule_node *Node, const Dependences *D,
|
||
MatMulInfoTy &MMI) {
|
||
auto *PartialSchedule =
|
||
isl_schedule_node_band_get_partial_schedule_union_map(Node);
|
||
if (isl_schedule_node_band_n_member(Node) < 3 ||
|
||
isl_union_map_n_map(PartialSchedule) != 1) {
|
||
isl_union_map_free(PartialSchedule);
|
||
return false;
|
||
}
|
||
auto *NewPartialSchedule = isl_map_from_union_map(PartialSchedule);
|
||
if (containsMatrMult(NewPartialSchedule, D, MMI)) {
|
||
isl_map_free(NewPartialSchedule);
|
||
return true;
|
||
}
|
||
isl_map_free(NewPartialSchedule);
|
||
return false;
|
||
}
|
||
|
||
__isl_give isl_schedule_node *
|
||
ScheduleTreeOptimizer::optimizeBand(__isl_take isl_schedule_node *Node,
|
||
void *User) {
|
||
if (!isTileableBandNode(Node))
|
||
return Node;
|
||
|
||
const OptimizerAdditionalInfoTy *OAI =
|
||
static_cast<const OptimizerAdditionalInfoTy *>(User);
|
||
|
||
MatMulInfoTy MMI;
|
||
if (PMBasedOpts && User && isMatrMultPattern(Node, OAI->D, MMI)) {
|
||
DEBUG(dbgs() << "The matrix multiplication pattern was detected\n");
|
||
return optimizeMatMulPattern(Node, OAI->TTI, MMI);
|
||
}
|
||
|
||
return standardBandOpts(Node, User);
|
||
}
|
||
|
||
__isl_give isl_schedule *
|
||
ScheduleTreeOptimizer::optimizeSchedule(__isl_take isl_schedule *Schedule,
|
||
const OptimizerAdditionalInfoTy *OAI) {
|
||
isl_schedule_node *Root = isl_schedule_get_root(Schedule);
|
||
Root = optimizeScheduleNode(Root, OAI);
|
||
isl_schedule_free(Schedule);
|
||
auto S = isl_schedule_node_get_schedule(Root);
|
||
isl_schedule_node_free(Root);
|
||
return S;
|
||
}
|
||
|
||
__isl_give isl_schedule_node *ScheduleTreeOptimizer::optimizeScheduleNode(
|
||
__isl_take isl_schedule_node *Node, const OptimizerAdditionalInfoTy *OAI) {
|
||
Node = isl_schedule_node_map_descendant_bottom_up(
|
||
Node, optimizeBand, const_cast<void *>(static_cast<const void *>(OAI)));
|
||
return Node;
|
||
}
|
||
|
||
bool ScheduleTreeOptimizer::isProfitableSchedule(
|
||
Scop &S, __isl_keep isl_schedule *NewSchedule) {
|
||
// To understand if the schedule has been optimized we check if the schedule
|
||
// has changed at all.
|
||
// TODO: We can improve this by tracking if any necessarily beneficial
|
||
// transformations have been performed. This can e.g. be tiling, loop
|
||
// interchange, or ...) We can track this either at the place where the
|
||
// transformation has been performed or, in case of automatic ILP based
|
||
// optimizations, by comparing (yet to be defined) performance metrics
|
||
// before/after the scheduling optimizer
|
||
// (e.g., #stride-one accesses)
|
||
if (S.containsExtensionNode(NewSchedule))
|
||
return true;
|
||
auto *NewScheduleMap = isl_schedule_get_map(NewSchedule);
|
||
isl_union_map *OldSchedule = S.getSchedule();
|
||
assert(OldSchedule && "Only IslScheduleOptimizer can insert extension nodes "
|
||
"that make Scop::getSchedule() return nullptr.");
|
||
bool changed = !isl_union_map_is_equal(OldSchedule, NewScheduleMap);
|
||
isl_union_map_free(OldSchedule);
|
||
isl_union_map_free(NewScheduleMap);
|
||
return changed;
|
||
}
|
||
|
||
namespace {
|
||
class IslScheduleOptimizer : public ScopPass {
|
||
public:
|
||
static char ID;
|
||
explicit IslScheduleOptimizer() : ScopPass(ID) { LastSchedule = nullptr; }
|
||
|
||
~IslScheduleOptimizer() { isl_schedule_free(LastSchedule); }
|
||
|
||
/// Optimize the schedule of the SCoP @p S.
|
||
bool runOnScop(Scop &S) override;
|
||
|
||
/// Print the new schedule for the SCoP @p S.
|
||
void printScop(raw_ostream &OS, Scop &S) const override;
|
||
|
||
/// Register all analyses and transformation required.
|
||
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
||
|
||
/// Release the internal memory.
|
||
void releaseMemory() override {
|
||
isl_schedule_free(LastSchedule);
|
||
LastSchedule = nullptr;
|
||
}
|
||
|
||
private:
|
||
isl_schedule *LastSchedule;
|
||
};
|
||
} // namespace
|
||
|
||
char IslScheduleOptimizer::ID = 0;
|
||
|
||
bool IslScheduleOptimizer::runOnScop(Scop &S) {
|
||
|
||
// Skip empty SCoPs but still allow code generation as it will delete the
|
||
// loops present but not needed.
|
||
if (S.getSize() == 0) {
|
||
S.markAsOptimized();
|
||
return false;
|
||
}
|
||
|
||
const Dependences &D =
|
||
getAnalysis<DependenceInfo>().getDependences(Dependences::AL_Statement);
|
||
|
||
if (!D.hasValidDependences())
|
||
return false;
|
||
|
||
isl_schedule_free(LastSchedule);
|
||
LastSchedule = nullptr;
|
||
|
||
// Build input data.
|
||
int ValidityKinds =
|
||
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
|
||
int ProximityKinds;
|
||
|
||
if (OptimizeDeps == "all")
|
||
ProximityKinds =
|
||
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
|
||
else if (OptimizeDeps == "raw")
|
||
ProximityKinds = Dependences::TYPE_RAW;
|
||
else {
|
||
errs() << "Do not know how to optimize for '" << OptimizeDeps << "'"
|
||
<< " Falling back to optimizing all dependences.\n";
|
||
ProximityKinds =
|
||
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
|
||
}
|
||
|
||
isl_union_set *Domain = S.getDomains();
|
||
|
||
if (!Domain)
|
||
return false;
|
||
|
||
isl_union_map *Validity = D.getDependences(ValidityKinds);
|
||
isl_union_map *Proximity = D.getDependences(ProximityKinds);
|
||
|
||
// Simplify the dependences by removing the constraints introduced by the
|
||
// domains. This can speed up the scheduling time significantly, as large
|
||
// constant coefficients will be removed from the dependences. The
|
||
// introduction of some additional dependences reduces the possible
|
||
// transformations, but in most cases, such transformation do not seem to be
|
||
// interesting anyway. In some cases this option may stop the scheduler to
|
||
// find any schedule.
|
||
if (SimplifyDeps == "yes") {
|
||
Validity = isl_union_map_gist_domain(Validity, isl_union_set_copy(Domain));
|
||
Validity = isl_union_map_gist_range(Validity, isl_union_set_copy(Domain));
|
||
Proximity =
|
||
isl_union_map_gist_domain(Proximity, isl_union_set_copy(Domain));
|
||
Proximity = isl_union_map_gist_range(Proximity, isl_union_set_copy(Domain));
|
||
} else if (SimplifyDeps != "no") {
|
||
errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' "
|
||
"or 'no'. Falling back to default: 'yes'\n";
|
||
}
|
||
|
||
DEBUG(dbgs() << "\n\nCompute schedule from: ");
|
||
DEBUG(dbgs() << "Domain := " << stringFromIslObj(Domain) << ";\n");
|
||
DEBUG(dbgs() << "Proximity := " << stringFromIslObj(Proximity) << ";\n");
|
||
DEBUG(dbgs() << "Validity := " << stringFromIslObj(Validity) << ";\n");
|
||
|
||
unsigned IslSerializeSCCs;
|
||
|
||
if (FusionStrategy == "max") {
|
||
IslSerializeSCCs = 0;
|
||
} else if (FusionStrategy == "min") {
|
||
IslSerializeSCCs = 1;
|
||
} else {
|
||
errs() << "warning: Unknown fusion strategy. Falling back to maximal "
|
||
"fusion.\n";
|
||
IslSerializeSCCs = 0;
|
||
}
|
||
|
||
int IslMaximizeBands;
|
||
|
||
if (MaximizeBandDepth == "yes") {
|
||
IslMaximizeBands = 1;
|
||
} else if (MaximizeBandDepth == "no") {
|
||
IslMaximizeBands = 0;
|
||
} else {
|
||
errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'"
|
||
" or 'no'. Falling back to default: 'yes'\n";
|
||
IslMaximizeBands = 1;
|
||
}
|
||
|
||
int IslOuterCoincidence;
|
||
|
||
if (OuterCoincidence == "yes") {
|
||
IslOuterCoincidence = 1;
|
||
} else if (OuterCoincidence == "no") {
|
||
IslOuterCoincidence = 0;
|
||
} else {
|
||
errs() << "warning: Option -polly-opt-outer-coincidence should either be "
|
||
"'yes' or 'no'. Falling back to default: 'no'\n";
|
||
IslOuterCoincidence = 0;
|
||
}
|
||
|
||
isl_ctx *Ctx = S.getIslCtx();
|
||
|
||
isl_options_set_schedule_outer_coincidence(Ctx, IslOuterCoincidence);
|
||
isl_options_set_schedule_serialize_sccs(Ctx, IslSerializeSCCs);
|
||
isl_options_set_schedule_maximize_band_depth(Ctx, IslMaximizeBands);
|
||
isl_options_set_schedule_max_constant_term(Ctx, MaxConstantTerm);
|
||
isl_options_set_schedule_max_coefficient(Ctx, MaxCoefficient);
|
||
isl_options_set_tile_scale_tile_loops(Ctx, 0);
|
||
|
||
auto OnErrorStatus = isl_options_get_on_error(Ctx);
|
||
isl_options_set_on_error(Ctx, ISL_ON_ERROR_CONTINUE);
|
||
|
||
isl_schedule_constraints *ScheduleConstraints;
|
||
ScheduleConstraints = isl_schedule_constraints_on_domain(Domain);
|
||
ScheduleConstraints =
|
||
isl_schedule_constraints_set_proximity(ScheduleConstraints, Proximity);
|
||
ScheduleConstraints = isl_schedule_constraints_set_validity(
|
||
ScheduleConstraints, isl_union_map_copy(Validity));
|
||
ScheduleConstraints =
|
||
isl_schedule_constraints_set_coincidence(ScheduleConstraints, Validity);
|
||
isl_schedule *Schedule;
|
||
Schedule = isl_schedule_constraints_compute_schedule(ScheduleConstraints);
|
||
isl_options_set_on_error(Ctx, OnErrorStatus);
|
||
|
||
// In cases the scheduler is not able to optimize the code, we just do not
|
||
// touch the schedule.
|
||
if (!Schedule)
|
||
return false;
|
||
|
||
DEBUG({
|
||
auto *P = isl_printer_to_str(Ctx);
|
||
P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
|
||
P = isl_printer_print_schedule(P, Schedule);
|
||
auto *str = isl_printer_get_str(P);
|
||
dbgs() << "NewScheduleTree: \n" << str << "\n";
|
||
free(str);
|
||
isl_printer_free(P);
|
||
});
|
||
|
||
Function &F = S.getFunction();
|
||
auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
||
const OptimizerAdditionalInfoTy OAI = {TTI, const_cast<Dependences *>(&D)};
|
||
isl_schedule *NewSchedule =
|
||
ScheduleTreeOptimizer::optimizeSchedule(Schedule, &OAI);
|
||
|
||
if (!ScheduleTreeOptimizer::isProfitableSchedule(S, NewSchedule)) {
|
||
isl_schedule_free(NewSchedule);
|
||
return false;
|
||
}
|
||
|
||
S.setScheduleTree(NewSchedule);
|
||
S.markAsOptimized();
|
||
|
||
if (OptimizedScops)
|
||
S.dump();
|
||
|
||
return false;
|
||
}
|
||
|
||
void IslScheduleOptimizer::printScop(raw_ostream &OS, Scop &) const {
|
||
isl_printer *p;
|
||
char *ScheduleStr;
|
||
|
||
OS << "Calculated schedule:\n";
|
||
|
||
if (!LastSchedule) {
|
||
OS << "n/a\n";
|
||
return;
|
||
}
|
||
|
||
p = isl_printer_to_str(isl_schedule_get_ctx(LastSchedule));
|
||
p = isl_printer_print_schedule(p, LastSchedule);
|
||
ScheduleStr = isl_printer_get_str(p);
|
||
isl_printer_free(p);
|
||
|
||
OS << ScheduleStr << "\n";
|
||
}
|
||
|
||
void IslScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const {
|
||
ScopPass::getAnalysisUsage(AU);
|
||
AU.addRequired<DependenceInfo>();
|
||
AU.addRequired<TargetTransformInfoWrapperPass>();
|
||
}
|
||
|
||
Pass *polly::createIslScheduleOptimizerPass() {
|
||
return new IslScheduleOptimizer();
|
||
}
|
||
|
||
INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl",
|
||
"Polly - Optimize schedule of SCoP", false, false);
|
||
INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
|
||
INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass);
|
||
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass);
|
||
INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl",
|
||
"Polly - Optimize schedule of SCoP", false, false)
|