forked from OSchip/llvm-project
445 lines
16 KiB
C++
445 lines
16 KiB
C++
// SValBuilder.cpp - Basic class for all SValBuilder implementations -*- C++ -*-
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines SValBuilder, the base class for all (complete) SValBuilder
|
|
// implementations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
|
|
|
|
using namespace clang;
|
|
using namespace ento;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Basic SVal creation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void SValBuilder::anchor() { }
|
|
|
|
DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) {
|
|
if (Loc::isLocType(type))
|
|
return makeNull();
|
|
|
|
if (type->isIntegralOrEnumerationType())
|
|
return makeIntVal(0, type);
|
|
|
|
// FIXME: Handle floats.
|
|
// FIXME: Handle structs.
|
|
return UnknownVal();
|
|
}
|
|
|
|
NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
|
|
const llvm::APSInt& rhs, QualType type) {
|
|
// The Environment ensures we always get a persistent APSInt in
|
|
// BasicValueFactory, so we don't need to get the APSInt from
|
|
// BasicValueFactory again.
|
|
assert(lhs);
|
|
assert(!Loc::isLocType(type));
|
|
return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type));
|
|
}
|
|
|
|
NonLoc SValBuilder::makeNonLoc(const llvm::APSInt& lhs,
|
|
BinaryOperator::Opcode op, const SymExpr *rhs,
|
|
QualType type) {
|
|
assert(rhs);
|
|
assert(!Loc::isLocType(type));
|
|
return nonloc::SymbolVal(SymMgr.getIntSymExpr(lhs, op, rhs, type));
|
|
}
|
|
|
|
NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
|
|
const SymExpr *rhs, QualType type) {
|
|
assert(lhs && rhs);
|
|
assert(!Loc::isLocType(type));
|
|
return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type));
|
|
}
|
|
|
|
NonLoc SValBuilder::makeNonLoc(const SymExpr *operand,
|
|
QualType fromTy, QualType toTy) {
|
|
assert(operand);
|
|
assert(!Loc::isLocType(toTy));
|
|
return nonloc::SymbolVal(SymMgr.getCastSymbol(operand, fromTy, toTy));
|
|
}
|
|
|
|
SVal SValBuilder::convertToArrayIndex(SVal val) {
|
|
if (val.isUnknownOrUndef())
|
|
return val;
|
|
|
|
// Common case: we have an appropriately sized integer.
|
|
if (Optional<nonloc::ConcreteInt> CI = val.getAs<nonloc::ConcreteInt>()) {
|
|
const llvm::APSInt& I = CI->getValue();
|
|
if (I.getBitWidth() == ArrayIndexWidth && I.isSigned())
|
|
return val;
|
|
}
|
|
|
|
return evalCastFromNonLoc(val.castAs<NonLoc>(), ArrayIndexTy);
|
|
}
|
|
|
|
nonloc::ConcreteInt SValBuilder::makeBoolVal(const CXXBoolLiteralExpr *boolean){
|
|
return makeTruthVal(boolean->getValue());
|
|
}
|
|
|
|
DefinedOrUnknownSVal
|
|
SValBuilder::getRegionValueSymbolVal(const TypedValueRegion* region) {
|
|
QualType T = region->getValueType();
|
|
|
|
if (!SymbolManager::canSymbolicate(T))
|
|
return UnknownVal();
|
|
|
|
SymbolRef sym = SymMgr.getRegionValueSymbol(region);
|
|
|
|
if (Loc::isLocType(T))
|
|
return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
|
|
|
|
return nonloc::SymbolVal(sym);
|
|
}
|
|
|
|
DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *SymbolTag,
|
|
const Expr *Ex,
|
|
const LocationContext *LCtx,
|
|
unsigned Count) {
|
|
QualType T = Ex->getType();
|
|
|
|
// Compute the type of the result. If the expression is not an R-value, the
|
|
// result should be a location.
|
|
QualType ExType = Ex->getType();
|
|
if (Ex->isGLValue())
|
|
T = LCtx->getAnalysisDeclContext()->getASTContext().getPointerType(ExType);
|
|
|
|
return conjureSymbolVal(SymbolTag, Ex, LCtx, T, Count);
|
|
}
|
|
|
|
DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *symbolTag,
|
|
const Expr *expr,
|
|
const LocationContext *LCtx,
|
|
QualType type,
|
|
unsigned count) {
|
|
if (!SymbolManager::canSymbolicate(type))
|
|
return UnknownVal();
|
|
|
|
SymbolRef sym = SymMgr.conjureSymbol(expr, LCtx, type, count, symbolTag);
|
|
|
|
if (Loc::isLocType(type))
|
|
return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
|
|
|
|
return nonloc::SymbolVal(sym);
|
|
}
|
|
|
|
|
|
DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const Stmt *stmt,
|
|
const LocationContext *LCtx,
|
|
QualType type,
|
|
unsigned visitCount) {
|
|
if (!SymbolManager::canSymbolicate(type))
|
|
return UnknownVal();
|
|
|
|
SymbolRef sym = SymMgr.conjureSymbol(stmt, LCtx, type, visitCount);
|
|
|
|
if (Loc::isLocType(type))
|
|
return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
|
|
|
|
return nonloc::SymbolVal(sym);
|
|
}
|
|
|
|
DefinedOrUnknownSVal
|
|
SValBuilder::getConjuredHeapSymbolVal(const Expr *E,
|
|
const LocationContext *LCtx,
|
|
unsigned VisitCount) {
|
|
QualType T = E->getType();
|
|
assert(Loc::isLocType(T));
|
|
assert(SymbolManager::canSymbolicate(T));
|
|
|
|
SymbolRef sym = SymMgr.conjureSymbol(E, LCtx, T, VisitCount);
|
|
return loc::MemRegionVal(MemMgr.getSymbolicHeapRegion(sym));
|
|
}
|
|
|
|
DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag,
|
|
const MemRegion *region,
|
|
const Expr *expr, QualType type,
|
|
unsigned count) {
|
|
assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type");
|
|
|
|
SymbolRef sym =
|
|
SymMgr.getMetadataSymbol(region, expr, type, count, symbolTag);
|
|
|
|
if (Loc::isLocType(type))
|
|
return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
|
|
|
|
return nonloc::SymbolVal(sym);
|
|
}
|
|
|
|
DefinedOrUnknownSVal
|
|
SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,
|
|
const TypedValueRegion *region) {
|
|
QualType T = region->getValueType();
|
|
|
|
if (!SymbolManager::canSymbolicate(T))
|
|
return UnknownVal();
|
|
|
|
SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region);
|
|
|
|
if (Loc::isLocType(T))
|
|
return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
|
|
|
|
return nonloc::SymbolVal(sym);
|
|
}
|
|
|
|
DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl *func) {
|
|
return loc::MemRegionVal(MemMgr.getFunctionTextRegion(func));
|
|
}
|
|
|
|
DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block,
|
|
CanQualType locTy,
|
|
const LocationContext *locContext) {
|
|
const BlockTextRegion *BC =
|
|
MemMgr.getBlockTextRegion(block, locTy, locContext->getAnalysisDeclContext());
|
|
const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext);
|
|
return loc::MemRegionVal(BD);
|
|
}
|
|
|
|
/// Return a memory region for the 'this' object reference.
|
|
loc::MemRegionVal SValBuilder::getCXXThis(const CXXMethodDecl *D,
|
|
const StackFrameContext *SFC) {
|
|
return loc::MemRegionVal(getRegionManager().
|
|
getCXXThisRegion(D->getThisType(getContext()), SFC));
|
|
}
|
|
|
|
/// Return a memory region for the 'this' object reference.
|
|
loc::MemRegionVal SValBuilder::getCXXThis(const CXXRecordDecl *D,
|
|
const StackFrameContext *SFC) {
|
|
const Type *T = D->getTypeForDecl();
|
|
QualType PT = getContext().getPointerType(QualType(T, 0));
|
|
return loc::MemRegionVal(getRegionManager().getCXXThisRegion(PT, SFC));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SVal SValBuilder::makeSymExprValNN(ProgramStateRef State,
|
|
BinaryOperator::Opcode Op,
|
|
NonLoc LHS, NonLoc RHS,
|
|
QualType ResultTy) {
|
|
if (!State->isTainted(RHS) && !State->isTainted(LHS))
|
|
return UnknownVal();
|
|
|
|
const SymExpr *symLHS = LHS.getAsSymExpr();
|
|
const SymExpr *symRHS = RHS.getAsSymExpr();
|
|
// TODO: When the Max Complexity is reached, we should conjure a symbol
|
|
// instead of generating an Unknown value and propagate the taint info to it.
|
|
const unsigned MaxComp = 10000; // 100000 28X
|
|
|
|
if (symLHS && symRHS &&
|
|
(symLHS->computeComplexity() + symRHS->computeComplexity()) < MaxComp)
|
|
return makeNonLoc(symLHS, Op, symRHS, ResultTy);
|
|
|
|
if (symLHS && symLHS->computeComplexity() < MaxComp)
|
|
if (Optional<nonloc::ConcreteInt> rInt = RHS.getAs<nonloc::ConcreteInt>())
|
|
return makeNonLoc(symLHS, Op, rInt->getValue(), ResultTy);
|
|
|
|
if (symRHS && symRHS->computeComplexity() < MaxComp)
|
|
if (Optional<nonloc::ConcreteInt> lInt = LHS.getAs<nonloc::ConcreteInt>())
|
|
return makeNonLoc(lInt->getValue(), Op, symRHS, ResultTy);
|
|
|
|
return UnknownVal();
|
|
}
|
|
|
|
|
|
SVal SValBuilder::evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
|
|
SVal lhs, SVal rhs, QualType type) {
|
|
|
|
if (lhs.isUndef() || rhs.isUndef())
|
|
return UndefinedVal();
|
|
|
|
if (lhs.isUnknown() || rhs.isUnknown())
|
|
return UnknownVal();
|
|
|
|
if (Optional<Loc> LV = lhs.getAs<Loc>()) {
|
|
if (Optional<Loc> RV = rhs.getAs<Loc>())
|
|
return evalBinOpLL(state, op, *LV, *RV, type);
|
|
|
|
return evalBinOpLN(state, op, *LV, rhs.castAs<NonLoc>(), type);
|
|
}
|
|
|
|
if (Optional<Loc> RV = rhs.getAs<Loc>()) {
|
|
// Support pointer arithmetic where the addend is on the left
|
|
// and the pointer on the right.
|
|
assert(op == BO_Add);
|
|
|
|
// Commute the operands.
|
|
return evalBinOpLN(state, op, *RV, lhs.castAs<NonLoc>(), type);
|
|
}
|
|
|
|
return evalBinOpNN(state, op, lhs.castAs<NonLoc>(), rhs.castAs<NonLoc>(),
|
|
type);
|
|
}
|
|
|
|
DefinedOrUnknownSVal SValBuilder::evalEQ(ProgramStateRef state,
|
|
DefinedOrUnknownSVal lhs,
|
|
DefinedOrUnknownSVal rhs) {
|
|
return evalBinOp(state, BO_EQ, lhs, rhs, Context.IntTy)
|
|
.castAs<DefinedOrUnknownSVal>();
|
|
}
|
|
|
|
/// Recursively check if the pointer types are equal modulo const, volatile,
|
|
/// and restrict qualifiers. Also, assume that all types are similar to 'void'.
|
|
/// Assumes the input types are canonical.
|
|
static bool shouldBeModeledWithNoOp(ASTContext &Context, QualType ToTy,
|
|
QualType FromTy) {
|
|
while (Context.UnwrapSimilarPointerTypes(ToTy, FromTy)) {
|
|
Qualifiers Quals1, Quals2;
|
|
ToTy = Context.getUnqualifiedArrayType(ToTy, Quals1);
|
|
FromTy = Context.getUnqualifiedArrayType(FromTy, Quals2);
|
|
|
|
// Make sure that non cvr-qualifiers the other qualifiers (e.g., address
|
|
// spaces) are identical.
|
|
Quals1.removeCVRQualifiers();
|
|
Quals2.removeCVRQualifiers();
|
|
if (Quals1 != Quals2)
|
|
return false;
|
|
}
|
|
|
|
// If we are casting to void, the 'From' value can be used to represent the
|
|
// 'To' value.
|
|
if (ToTy->isVoidType())
|
|
return true;
|
|
|
|
if (ToTy != FromTy)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// FIXME: should rewrite according to the cast kind.
|
|
SVal SValBuilder::evalCast(SVal val, QualType castTy, QualType originalTy) {
|
|
castTy = Context.getCanonicalType(castTy);
|
|
originalTy = Context.getCanonicalType(originalTy);
|
|
if (val.isUnknownOrUndef() || castTy == originalTy)
|
|
return val;
|
|
|
|
if (castTy->isBooleanType()) {
|
|
if (val.isUnknownOrUndef())
|
|
return val;
|
|
if (val.isConstant())
|
|
return makeTruthVal(!val.isZeroConstant(), castTy);
|
|
if (SymbolRef Sym = val.getAsSymbol()) {
|
|
BasicValueFactory &BVF = getBasicValueFactory();
|
|
// FIXME: If we had a state here, we could see if the symbol is known to
|
|
// be zero, but we don't.
|
|
return makeNonLoc(Sym, BO_NE, BVF.getValue(0, Sym->getType()), castTy);
|
|
}
|
|
|
|
assert(val.getAs<Loc>());
|
|
return makeTruthVal(true, castTy);
|
|
}
|
|
|
|
// For const casts, casts to void, just propagate the value.
|
|
if (!castTy->isVariableArrayType() && !originalTy->isVariableArrayType())
|
|
if (shouldBeModeledWithNoOp(Context, Context.getPointerType(castTy),
|
|
Context.getPointerType(originalTy)))
|
|
return val;
|
|
|
|
// Check for casts from pointers to integers.
|
|
if (castTy->isIntegralOrEnumerationType() && Loc::isLocType(originalTy))
|
|
return evalCastFromLoc(val.castAs<Loc>(), castTy);
|
|
|
|
// Check for casts from integers to pointers.
|
|
if (Loc::isLocType(castTy) && originalTy->isIntegralOrEnumerationType()) {
|
|
if (Optional<nonloc::LocAsInteger> LV = val.getAs<nonloc::LocAsInteger>()) {
|
|
if (const MemRegion *R = LV->getLoc().getAsRegion()) {
|
|
StoreManager &storeMgr = StateMgr.getStoreManager();
|
|
R = storeMgr.castRegion(R, castTy);
|
|
return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
|
|
}
|
|
return LV->getLoc();
|
|
}
|
|
return dispatchCast(val, castTy);
|
|
}
|
|
|
|
// Just pass through function and block pointers.
|
|
if (originalTy->isBlockPointerType() || originalTy->isFunctionPointerType()) {
|
|
assert(Loc::isLocType(castTy));
|
|
return val;
|
|
}
|
|
|
|
// Check for casts from array type to another type.
|
|
if (originalTy->isArrayType()) {
|
|
// We will always decay to a pointer.
|
|
val = StateMgr.ArrayToPointer(val.castAs<Loc>());
|
|
|
|
// Are we casting from an array to a pointer? If so just pass on
|
|
// the decayed value.
|
|
if (castTy->isPointerType() || castTy->isReferenceType())
|
|
return val;
|
|
|
|
// Are we casting from an array to an integer? If so, cast the decayed
|
|
// pointer value to an integer.
|
|
assert(castTy->isIntegralOrEnumerationType());
|
|
|
|
// FIXME: Keep these here for now in case we decide soon that we
|
|
// need the original decayed type.
|
|
// QualType elemTy = cast<ArrayType>(originalTy)->getElementType();
|
|
// QualType pointerTy = C.getPointerType(elemTy);
|
|
return evalCastFromLoc(val.castAs<Loc>(), castTy);
|
|
}
|
|
|
|
// Check for casts from a region to a specific type.
|
|
if (const MemRegion *R = val.getAsRegion()) {
|
|
// Handle other casts of locations to integers.
|
|
if (castTy->isIntegralOrEnumerationType())
|
|
return evalCastFromLoc(loc::MemRegionVal(R), castTy);
|
|
|
|
// FIXME: We should handle the case where we strip off view layers to get
|
|
// to a desugared type.
|
|
if (!Loc::isLocType(castTy)) {
|
|
// FIXME: There can be gross cases where one casts the result of a function
|
|
// (that returns a pointer) to some other value that happens to fit
|
|
// within that pointer value. We currently have no good way to
|
|
// model such operations. When this happens, the underlying operation
|
|
// is that the caller is reasoning about bits. Conceptually we are
|
|
// layering a "view" of a location on top of those bits. Perhaps
|
|
// we need to be more lazy about mutual possible views, even on an
|
|
// SVal? This may be necessary for bit-level reasoning as well.
|
|
return UnknownVal();
|
|
}
|
|
|
|
// We get a symbolic function pointer for a dereference of a function
|
|
// pointer, but it is of function type. Example:
|
|
|
|
// struct FPRec {
|
|
// void (*my_func)(int * x);
|
|
// };
|
|
//
|
|
// int bar(int x);
|
|
//
|
|
// int f1_a(struct FPRec* foo) {
|
|
// int x;
|
|
// (*foo->my_func)(&x);
|
|
// return bar(x)+1; // no-warning
|
|
// }
|
|
|
|
assert(Loc::isLocType(originalTy) || originalTy->isFunctionType() ||
|
|
originalTy->isBlockPointerType() || castTy->isReferenceType());
|
|
|
|
StoreManager &storeMgr = StateMgr.getStoreManager();
|
|
|
|
// Delegate to store manager to get the result of casting a region to a
|
|
// different type. If the MemRegion* returned is NULL, this expression
|
|
// Evaluates to UnknownVal.
|
|
R = storeMgr.castRegion(R, castTy);
|
|
return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
|
|
}
|
|
|
|
return dispatchCast(val, castTy);
|
|
}
|