llvm-project/mlir/lib/IR/Block.cpp

301 lines
10 KiB
C++

//===- Block.cpp - MLIR Block Class ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/Block.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Operation.h"
using namespace mlir;
//===----------------------------------------------------------------------===//
// BlockArgument
//===----------------------------------------------------------------------===//
/// Returns the number of this argument.
unsigned BlockArgument::getArgNumber() const {
// Arguments are not stored in place, so we have to find it within the list.
auto argList = getOwner()->getArguments();
return std::distance(argList.begin(), llvm::find(argList, *this));
}
//===----------------------------------------------------------------------===//
// Block
//===----------------------------------------------------------------------===//
Block::~Block() {
assert(!verifyOpOrder() && "Expected valid operation ordering.");
clear();
for (BlockArgument arg : arguments)
arg.destroy();
}
Region *Block::getParent() const { return parentValidOpOrderPair.getPointer(); }
/// Returns the closest surrounding operation that contains this block or
/// nullptr if this block is unlinked.
Operation *Block::getParentOp() {
return getParent() ? getParent()->getParentOp() : nullptr;
}
/// Return if this block is the entry block in the parent region.
bool Block::isEntryBlock() { return this == &getParent()->front(); }
/// Insert this block (which must not already be in a region) right before the
/// specified block.
void Block::insertBefore(Block *block) {
assert(!getParent() && "already inserted into a block!");
assert(block->getParent() && "cannot insert before a block without a parent");
block->getParent()->getBlocks().insert(block->getIterator(), this);
}
/// Unlink this block from its current region and insert it right before the
/// specific block.
void Block::moveBefore(Block *block) {
assert(block->getParent() && "cannot insert before a block without a parent");
block->getParent()->getBlocks().splice(
block->getIterator(), getParent()->getBlocks(), getIterator());
}
/// Unlink this Block from its parent Region and delete it.
void Block::erase() {
assert(getParent() && "Block has no parent");
getParent()->getBlocks().erase(this);
}
/// Returns 'op' if 'op' lies in this block, or otherwise finds the
/// ancestor operation of 'op' that lies in this block. Returns nullptr if
/// the latter fails.
Operation *Block::findAncestorOpInBlock(Operation &op) {
// Traverse up the operation hierarchy starting from the owner of operand to
// find the ancestor operation that resides in the block of 'forOp'.
auto *currOp = &op;
while (currOp->getBlock() != this) {
currOp = currOp->getParentOp();
if (!currOp)
return nullptr;
}
return currOp;
}
/// This drops all operand uses from operations within this block, which is
/// an essential step in breaking cyclic dependences between references when
/// they are to be deleted.
void Block::dropAllReferences() {
for (Operation &i : *this)
i.dropAllReferences();
}
void Block::dropAllDefinedValueUses() {
for (auto arg : getArguments())
arg.dropAllUses();
for (auto &op : *this)
op.dropAllDefinedValueUses();
dropAllUses();
}
/// Returns true if the ordering of the child operations is valid, false
/// otherwise.
bool Block::isOpOrderValid() { return parentValidOpOrderPair.getInt(); }
/// Invalidates the current ordering of operations.
void Block::invalidateOpOrder() {
// Validate the current ordering.
assert(!verifyOpOrder());
parentValidOpOrderPair.setInt(false);
}
/// Verifies the current ordering of child operations. Returns false if the
/// order is valid, true otherwise.
bool Block::verifyOpOrder() {
// The order is already known to be invalid.
if (!isOpOrderValid())
return false;
// The order is valid if there are less than 2 operations.
if (operations.empty() || std::next(operations.begin()) == operations.end())
return false;
Operation *prev = nullptr;
for (auto &i : *this) {
// The previous operation must have a smaller order index than the next as
// it appears earlier in the list.
if (prev && prev->orderIndex != Operation::kInvalidOrderIdx &&
prev->orderIndex >= i.orderIndex)
return true;
prev = &i;
}
return false;
}
/// Recomputes the ordering of child operations within the block.
void Block::recomputeOpOrder() {
parentValidOpOrderPair.setInt(true);
unsigned orderIndex = 0;
for (auto &op : *this)
op.orderIndex = (orderIndex += Operation::kOrderStride);
}
//===----------------------------------------------------------------------===//
// Argument list management.
//===----------------------------------------------------------------------===//
/// Return a range containing the types of the arguments for this block.
auto Block::getArgumentTypes() -> ValueTypeRange<BlockArgListType> {
return ValueTypeRange<BlockArgListType>(getArguments());
}
BlockArgument Block::addArgument(Type type) {
BlockArgument arg = BlockArgument::create(type, this);
arguments.push_back(arg);
return arg;
}
/// Add one argument to the argument list for each type specified in the list.
auto Block::addArguments(TypeRange types) -> iterator_range<args_iterator> {
size_t initialSize = arguments.size();
arguments.reserve(initialSize + types.size());
for (auto type : types)
addArgument(type);
return {arguments.data() + initialSize, arguments.data() + arguments.size()};
}
BlockArgument Block::insertArgument(unsigned index, Type type) {
auto arg = BlockArgument::create(type, this);
assert(index <= arguments.size());
arguments.insert(arguments.begin() + index, arg);
return arg;
}
void Block::eraseArgument(unsigned index) {
assert(index < arguments.size());
arguments[index].destroy();
arguments.erase(arguments.begin() + index);
}
/// Insert one value to the given position of the argument list. The existing
/// arguments are shifted. The block is expected not to have predecessors.
BlockArgument Block::insertArgument(args_iterator it, Type type) {
assert(llvm::empty(getPredecessors()) &&
"cannot insert arguments to blocks with predecessors");
// Use the args_iterator (on the BlockArgListType) to compute the insertion
// iterator in the underlying argument storage.
size_t distance = std::distance(args_begin(), it);
auto arg = BlockArgument::create(type, this);
arguments.insert(std::next(arguments.begin(), distance), arg);
return arg;
}
//===----------------------------------------------------------------------===//
// Terminator management
//===----------------------------------------------------------------------===//
/// Get the terminator operation of this block. This function asserts that
/// the block has a valid terminator operation.
Operation *Block::getTerminator() {
assert(!empty() && !back().isKnownNonTerminator());
return &back();
}
/// Return true if this block has no predecessors.
bool Block::hasNoPredecessors() { return pred_begin() == pred_end(); }
// Indexed successor access.
unsigned Block::getNumSuccessors() {
return empty() ? 0 : back().getNumSuccessors();
}
Block *Block::getSuccessor(unsigned i) {
assert(i < getNumSuccessors());
return getTerminator()->getSuccessor(i);
}
/// If this block has exactly one predecessor, return it. Otherwise, return
/// null.
///
/// Note that multiple edges from a single block (e.g. if you have a cond
/// branch with the same block as the true/false destinations) is not
/// considered to be a single predecessor.
Block *Block::getSinglePredecessor() {
auto it = pred_begin();
if (it == pred_end())
return nullptr;
auto *firstPred = *it;
++it;
return it == pred_end() ? firstPred : nullptr;
}
/// If this block has a unique predecessor, i.e., all incoming edges originate
/// from one block, return it. Otherwise, return null.
Block *Block::getUniquePredecessor() {
auto it = pred_begin(), e = pred_end();
if (it == e)
return nullptr;
// Check for any conflicting predecessors.
auto *firstPred = *it;
for (++it; it != e; ++it)
if (*it != firstPred)
return nullptr;
return firstPred;
}
//===----------------------------------------------------------------------===//
// Other
//===----------------------------------------------------------------------===//
/// Split the block into two blocks before the specified operation or
/// iterator.
///
/// Note that all operations BEFORE the specified iterator stay as part of
/// the original basic block, and the rest of the operations in the original
/// block are moved to the new block, including the old terminator. The
/// original block is left without a terminator.
///
/// The newly formed Block is returned, and the specified iterator is
/// invalidated.
Block *Block::splitBlock(iterator splitBefore) {
// Start by creating a new basic block, and insert it immediate after this
// one in the containing region.
auto newBB = new Block();
getParent()->getBlocks().insert(std::next(Region::iterator(this)), newBB);
// Move all of the operations from the split point to the end of the region
// into the new block.
newBB->getOperations().splice(newBB->end(), getOperations(), splitBefore,
end());
return newBB;
}
//===----------------------------------------------------------------------===//
// Predecessors
//===----------------------------------------------------------------------===//
Block *PredecessorIterator::unwrap(BlockOperand &value) {
return value.getOwner()->getBlock();
}
/// Get the successor number in the predecessor terminator.
unsigned PredecessorIterator::getSuccessorIndex() const {
return I->getOperandNumber();
}
//===----------------------------------------------------------------------===//
// Successors
//===----------------------------------------------------------------------===//
SuccessorRange::SuccessorRange(Block *block) : SuccessorRange(nullptr, 0) {
if (Operation *term = block->getTerminator())
if ((count = term->getNumSuccessors()))
base = term->getBlockOperands().data();
}
SuccessorRange::SuccessorRange(Operation *term) : SuccessorRange(nullptr, 0) {
if ((count = term->getNumSuccessors()))
base = term->getBlockOperands().data();
}