forked from OSchip/llvm-project
1473 lines
58 KiB
C++
1473 lines
58 KiB
C++
//===- Attributes.cpp - MLIR Affine Expr Classes --------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/IR/Attributes.h"
|
|
#include "AttributeDetail.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/Diagnostics.h"
|
|
#include "mlir/IR/Dialect.h"
|
|
#include "mlir/IR/Function.h"
|
|
#include "mlir/IR/IntegerSet.h"
|
|
#include "mlir/IR/Types.h"
|
|
#include "llvm/ADT/Sequence.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Support/Endian.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::detail;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AttributeStorage
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
AttributeStorage::AttributeStorage(Type type)
|
|
: type(type.getAsOpaquePointer()) {}
|
|
AttributeStorage::AttributeStorage() : type(nullptr) {}
|
|
|
|
Type AttributeStorage::getType() const {
|
|
return Type::getFromOpaquePointer(type);
|
|
}
|
|
void AttributeStorage::setType(Type newType) {
|
|
type = newType.getAsOpaquePointer();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Attribute
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Return the type of this attribute.
|
|
Type Attribute::getType() const { return impl->getType(); }
|
|
|
|
/// Return the context this attribute belongs to.
|
|
MLIRContext *Attribute::getContext() const { return getType().getContext(); }
|
|
|
|
/// Get the dialect this attribute is registered to.
|
|
Dialect &Attribute::getDialect() const {
|
|
return impl->getAbstractAttribute().getDialect();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AffineMapAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
AffineMapAttr AffineMapAttr::get(AffineMap value) {
|
|
return Base::get(value.getContext(), StandardAttributes::AffineMap, value);
|
|
}
|
|
|
|
AffineMap AffineMapAttr::getValue() const { return getImpl()->value; }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ArrayAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ArrayAttr ArrayAttr::get(ArrayRef<Attribute> value, MLIRContext *context) {
|
|
return Base::get(context, StandardAttributes::Array, value);
|
|
}
|
|
|
|
ArrayRef<Attribute> ArrayAttr::getValue() const { return getImpl()->value; }
|
|
|
|
Attribute ArrayAttr::operator[](unsigned idx) const {
|
|
assert(idx < size() && "index out of bounds");
|
|
return getValue()[idx];
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DictionaryAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Helper function that does either an in place sort or sorts from source array
|
|
/// into destination. If inPlace then storage is both the source and the
|
|
/// destination, else value is the source and storage destination. Returns
|
|
/// whether source was sorted.
|
|
template <bool inPlace>
|
|
static bool dictionaryAttrSort(ArrayRef<NamedAttribute> value,
|
|
SmallVectorImpl<NamedAttribute> &storage) {
|
|
// Specialize for the common case.
|
|
switch (value.size()) {
|
|
case 0:
|
|
// Zero already sorted.
|
|
break;
|
|
case 1:
|
|
// One already sorted but may need to be copied.
|
|
if (!inPlace)
|
|
storage.assign({value[0]});
|
|
break;
|
|
case 2: {
|
|
assert(value[0].first != value[1].first &&
|
|
"DictionaryAttr element names must be unique");
|
|
bool isSorted = value[0] < value[1];
|
|
if (inPlace) {
|
|
if (!isSorted)
|
|
std::swap(storage[0], storage[1]);
|
|
} else if (isSorted) {
|
|
storage.assign({value[0], value[1]});
|
|
} else {
|
|
storage.assign({value[1], value[0]});
|
|
}
|
|
return !isSorted;
|
|
}
|
|
default:
|
|
if (!inPlace)
|
|
storage.assign(value.begin(), value.end());
|
|
// Check to see they are sorted already.
|
|
bool isSorted = llvm::is_sorted(value);
|
|
if (!isSorted) {
|
|
// If not, do a general sort.
|
|
llvm::array_pod_sort(storage.begin(), storage.end());
|
|
value = storage;
|
|
}
|
|
|
|
// Ensure that the attribute elements are unique.
|
|
assert(std::adjacent_find(value.begin(), value.end(),
|
|
[](NamedAttribute l, NamedAttribute r) {
|
|
return l.first == r.first;
|
|
}) == value.end() &&
|
|
"DictionaryAttr element names must be unique");
|
|
return !isSorted;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool DictionaryAttr::sort(ArrayRef<NamedAttribute> value,
|
|
SmallVectorImpl<NamedAttribute> &storage) {
|
|
return dictionaryAttrSort</*inPlace=*/false>(value, storage);
|
|
}
|
|
|
|
bool DictionaryAttr::sortInPlace(SmallVectorImpl<NamedAttribute> &array) {
|
|
return dictionaryAttrSort</*inPlace=*/true>(array, array);
|
|
}
|
|
|
|
DictionaryAttr DictionaryAttr::get(ArrayRef<NamedAttribute> value,
|
|
MLIRContext *context) {
|
|
if (value.empty())
|
|
return DictionaryAttr::getEmpty(context);
|
|
assert(llvm::all_of(value,
|
|
[](const NamedAttribute &attr) { return attr.second; }) &&
|
|
"value cannot have null entries");
|
|
|
|
// We need to sort the element list to canonicalize it.
|
|
SmallVector<NamedAttribute, 8> storage;
|
|
if (dictionaryAttrSort</*inPlace=*/false>(value, storage))
|
|
value = storage;
|
|
|
|
return Base::get(context, StandardAttributes::Dictionary, value);
|
|
}
|
|
/// Construct a dictionary with an array of values that is known to already be
|
|
/// sorted by name and uniqued.
|
|
DictionaryAttr DictionaryAttr::getWithSorted(ArrayRef<NamedAttribute> value,
|
|
MLIRContext *context) {
|
|
if (value.empty())
|
|
return DictionaryAttr::getEmpty(context);
|
|
// Ensure that the attribute elements are unique and sorted.
|
|
assert(llvm::is_sorted(value,
|
|
[](NamedAttribute l, NamedAttribute r) {
|
|
return l.first.strref() < r.first.strref();
|
|
}) &&
|
|
"expected attribute values to be sorted");
|
|
assert(std::adjacent_find(value.begin(), value.end(),
|
|
[](NamedAttribute l, NamedAttribute r) {
|
|
return l.first == r.first;
|
|
}) == value.end() &&
|
|
"DictionaryAttr element names must be unique");
|
|
return Base::get(context, StandardAttributes::Dictionary, value);
|
|
}
|
|
|
|
ArrayRef<NamedAttribute> DictionaryAttr::getValue() const {
|
|
return getImpl()->getElements();
|
|
}
|
|
|
|
/// Return the specified attribute if present, null otherwise.
|
|
Attribute DictionaryAttr::get(StringRef name) const {
|
|
Optional<NamedAttribute> attr = getNamed(name);
|
|
return attr ? attr->second : nullptr;
|
|
}
|
|
Attribute DictionaryAttr::get(Identifier name) const {
|
|
Optional<NamedAttribute> attr = getNamed(name);
|
|
return attr ? attr->second : nullptr;
|
|
}
|
|
|
|
/// Return the specified named attribute if present, None otherwise.
|
|
Optional<NamedAttribute> DictionaryAttr::getNamed(StringRef name) const {
|
|
ArrayRef<NamedAttribute> values = getValue();
|
|
const auto *it = llvm::lower_bound(values, name);
|
|
return it != values.end() && it->first == name ? *it
|
|
: Optional<NamedAttribute>();
|
|
}
|
|
Optional<NamedAttribute> DictionaryAttr::getNamed(Identifier name) const {
|
|
for (auto elt : getValue())
|
|
if (elt.first == name)
|
|
return elt;
|
|
return llvm::None;
|
|
}
|
|
|
|
DictionaryAttr::iterator DictionaryAttr::begin() const {
|
|
return getValue().begin();
|
|
}
|
|
DictionaryAttr::iterator DictionaryAttr::end() const {
|
|
return getValue().end();
|
|
}
|
|
size_t DictionaryAttr::size() const { return getValue().size(); }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FloatAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
FloatAttr FloatAttr::get(Type type, double value) {
|
|
return Base::get(type.getContext(), StandardAttributes::Float, type, value);
|
|
}
|
|
|
|
FloatAttr FloatAttr::getChecked(Type type, double value, Location loc) {
|
|
return Base::getChecked(loc, StandardAttributes::Float, type, value);
|
|
}
|
|
|
|
FloatAttr FloatAttr::get(Type type, const APFloat &value) {
|
|
return Base::get(type.getContext(), StandardAttributes::Float, type, value);
|
|
}
|
|
|
|
FloatAttr FloatAttr::getChecked(Type type, const APFloat &value, Location loc) {
|
|
return Base::getChecked(loc, StandardAttributes::Float, type, value);
|
|
}
|
|
|
|
APFloat FloatAttr::getValue() const { return getImpl()->getValue(); }
|
|
|
|
double FloatAttr::getValueAsDouble() const {
|
|
return getValueAsDouble(getValue());
|
|
}
|
|
double FloatAttr::getValueAsDouble(APFloat value) {
|
|
if (&value.getSemantics() != &APFloat::IEEEdouble()) {
|
|
bool losesInfo = false;
|
|
value.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
|
|
&losesInfo);
|
|
}
|
|
return value.convertToDouble();
|
|
}
|
|
|
|
/// Verify construction invariants.
|
|
static LogicalResult verifyFloatTypeInvariants(Location loc, Type type) {
|
|
if (!type.isa<FloatType>())
|
|
return emitError(loc, "expected floating point type");
|
|
return success();
|
|
}
|
|
|
|
LogicalResult FloatAttr::verifyConstructionInvariants(Location loc, Type type,
|
|
double value) {
|
|
return verifyFloatTypeInvariants(loc, type);
|
|
}
|
|
|
|
LogicalResult FloatAttr::verifyConstructionInvariants(Location loc, Type type,
|
|
const APFloat &value) {
|
|
// Verify that the type is correct.
|
|
if (failed(verifyFloatTypeInvariants(loc, type)))
|
|
return failure();
|
|
|
|
// Verify that the type semantics match that of the value.
|
|
if (&type.cast<FloatType>().getFloatSemantics() != &value.getSemantics()) {
|
|
return emitError(
|
|
loc, "FloatAttr type doesn't match the type implied by its value");
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SymbolRefAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
FlatSymbolRefAttr SymbolRefAttr::get(StringRef value, MLIRContext *ctx) {
|
|
return Base::get(ctx, StandardAttributes::SymbolRef, value, llvm::None)
|
|
.cast<FlatSymbolRefAttr>();
|
|
}
|
|
|
|
SymbolRefAttr SymbolRefAttr::get(StringRef value,
|
|
ArrayRef<FlatSymbolRefAttr> nestedReferences,
|
|
MLIRContext *ctx) {
|
|
return Base::get(ctx, StandardAttributes::SymbolRef, value, nestedReferences);
|
|
}
|
|
|
|
StringRef SymbolRefAttr::getRootReference() const { return getImpl()->value; }
|
|
|
|
StringRef SymbolRefAttr::getLeafReference() const {
|
|
ArrayRef<FlatSymbolRefAttr> nestedRefs = getNestedReferences();
|
|
return nestedRefs.empty() ? getRootReference() : nestedRefs.back().getValue();
|
|
}
|
|
|
|
ArrayRef<FlatSymbolRefAttr> SymbolRefAttr::getNestedReferences() const {
|
|
return getImpl()->getNestedRefs();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IntegerAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
IntegerAttr IntegerAttr::get(Type type, const APInt &value) {
|
|
if (type.isSignlessInteger(1))
|
|
return BoolAttr::get(value.getBoolValue(), type.getContext());
|
|
return Base::get(type.getContext(), StandardAttributes::Integer, type, value);
|
|
}
|
|
|
|
IntegerAttr IntegerAttr::get(Type type, int64_t value) {
|
|
// This uses 64 bit APInts by default for index type.
|
|
if (type.isIndex())
|
|
return get(type, APInt(IndexType::kInternalStorageBitWidth, value));
|
|
|
|
auto intType = type.cast<IntegerType>();
|
|
return get(type, APInt(intType.getWidth(), value, intType.isSignedInteger()));
|
|
}
|
|
|
|
APInt IntegerAttr::getValue() const { return getImpl()->getValue(); }
|
|
|
|
int64_t IntegerAttr::getInt() const {
|
|
assert((getImpl()->getType().isIndex() ||
|
|
getImpl()->getType().isSignlessInteger()) &&
|
|
"must be signless integer");
|
|
return getValue().getSExtValue();
|
|
}
|
|
|
|
int64_t IntegerAttr::getSInt() const {
|
|
assert(getImpl()->getType().isSignedInteger() && "must be signed integer");
|
|
return getValue().getSExtValue();
|
|
}
|
|
|
|
uint64_t IntegerAttr::getUInt() const {
|
|
assert(getImpl()->getType().isUnsignedInteger() &&
|
|
"must be unsigned integer");
|
|
return getValue().getZExtValue();
|
|
}
|
|
|
|
static LogicalResult verifyIntegerTypeInvariants(Location loc, Type type) {
|
|
if (type.isa<IntegerType, IndexType>())
|
|
return success();
|
|
return emitError(loc, "expected integer or index type");
|
|
}
|
|
|
|
LogicalResult IntegerAttr::verifyConstructionInvariants(Location loc, Type type,
|
|
int64_t value) {
|
|
return verifyIntegerTypeInvariants(loc, type);
|
|
}
|
|
|
|
LogicalResult IntegerAttr::verifyConstructionInvariants(Location loc, Type type,
|
|
const APInt &value) {
|
|
if (failed(verifyIntegerTypeInvariants(loc, type)))
|
|
return failure();
|
|
if (auto integerType = type.dyn_cast<IntegerType>())
|
|
if (integerType.getWidth() != value.getBitWidth())
|
|
return emitError(loc, "integer type bit width (")
|
|
<< integerType.getWidth() << ") doesn't match value bit width ("
|
|
<< value.getBitWidth() << ")";
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BoolAttr
|
|
|
|
bool BoolAttr::getValue() const {
|
|
auto *storage = reinterpret_cast<IntegerAttributeStorage *>(impl);
|
|
return storage->getValue().getBoolValue();
|
|
}
|
|
|
|
bool BoolAttr::classof(Attribute attr) {
|
|
IntegerAttr intAttr = attr.dyn_cast<IntegerAttr>();
|
|
return intAttr && intAttr.getType().isSignlessInteger(1);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IntegerSetAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
IntegerSetAttr IntegerSetAttr::get(IntegerSet value) {
|
|
return Base::get(value.getConstraint(0).getContext(),
|
|
StandardAttributes::IntegerSet, value);
|
|
}
|
|
|
|
IntegerSet IntegerSetAttr::getValue() const { return getImpl()->value; }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OpaqueAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpaqueAttr OpaqueAttr::get(Identifier dialect, StringRef attrData, Type type,
|
|
MLIRContext *context) {
|
|
return Base::get(context, StandardAttributes::Opaque, dialect, attrData,
|
|
type);
|
|
}
|
|
|
|
OpaqueAttr OpaqueAttr::getChecked(Identifier dialect, StringRef attrData,
|
|
Type type, Location location) {
|
|
return Base::getChecked(location, StandardAttributes::Opaque, dialect,
|
|
attrData, type);
|
|
}
|
|
|
|
/// Returns the dialect namespace of the opaque attribute.
|
|
Identifier OpaqueAttr::getDialectNamespace() const {
|
|
return getImpl()->dialectNamespace;
|
|
}
|
|
|
|
/// Returns the raw attribute data of the opaque attribute.
|
|
StringRef OpaqueAttr::getAttrData() const { return getImpl()->attrData; }
|
|
|
|
/// Verify the construction of an opaque attribute.
|
|
LogicalResult OpaqueAttr::verifyConstructionInvariants(Location loc,
|
|
Identifier dialect,
|
|
StringRef attrData,
|
|
Type type) {
|
|
if (!Dialect::isValidNamespace(dialect.strref()))
|
|
return emitError(loc, "invalid dialect namespace '") << dialect << "'";
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// StringAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
StringAttr StringAttr::get(StringRef bytes, MLIRContext *context) {
|
|
return get(bytes, NoneType::get(context));
|
|
}
|
|
|
|
/// Get an instance of a StringAttr with the given string and Type.
|
|
StringAttr StringAttr::get(StringRef bytes, Type type) {
|
|
return Base::get(type.getContext(), StandardAttributes::String, bytes, type);
|
|
}
|
|
|
|
StringRef StringAttr::getValue() const { return getImpl()->value; }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TypeAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
TypeAttr TypeAttr::get(Type value) {
|
|
return Base::get(value.getContext(), StandardAttributes::Type, value);
|
|
}
|
|
|
|
Type TypeAttr::getValue() const { return getImpl()->value; }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ElementsAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ShapedType ElementsAttr::getType() const {
|
|
return Attribute::getType().cast<ShapedType>();
|
|
}
|
|
|
|
/// Returns the number of elements held by this attribute.
|
|
int64_t ElementsAttr::getNumElements() const {
|
|
return getType().getNumElements();
|
|
}
|
|
|
|
/// Return the value at the given index. If index does not refer to a valid
|
|
/// element, then a null attribute is returned.
|
|
Attribute ElementsAttr::getValue(ArrayRef<uint64_t> index) const {
|
|
switch (getKind()) {
|
|
case StandardAttributes::DenseIntOrFPElements:
|
|
return cast<DenseElementsAttr>().getValue(index);
|
|
case StandardAttributes::OpaqueElements:
|
|
return cast<OpaqueElementsAttr>().getValue(index);
|
|
case StandardAttributes::SparseElements:
|
|
return cast<SparseElementsAttr>().getValue(index);
|
|
default:
|
|
llvm_unreachable("unknown ElementsAttr kind");
|
|
}
|
|
}
|
|
|
|
/// Return if the given 'index' refers to a valid element in this attribute.
|
|
bool ElementsAttr::isValidIndex(ArrayRef<uint64_t> index) const {
|
|
auto type = getType();
|
|
|
|
// Verify that the rank of the indices matches the held type.
|
|
auto rank = type.getRank();
|
|
if (rank != static_cast<int64_t>(index.size()))
|
|
return false;
|
|
|
|
// Verify that all of the indices are within the shape dimensions.
|
|
auto shape = type.getShape();
|
|
return llvm::all_of(llvm::seq<int>(0, rank), [&](int i) {
|
|
return static_cast<int64_t>(index[i]) < shape[i];
|
|
});
|
|
}
|
|
|
|
ElementsAttr
|
|
ElementsAttr::mapValues(Type newElementType,
|
|
function_ref<APInt(const APInt &)> mapping) const {
|
|
switch (getKind()) {
|
|
case StandardAttributes::DenseIntOrFPElements:
|
|
return cast<DenseElementsAttr>().mapValues(newElementType, mapping);
|
|
default:
|
|
llvm_unreachable("unsupported ElementsAttr subtype");
|
|
}
|
|
}
|
|
|
|
ElementsAttr
|
|
ElementsAttr::mapValues(Type newElementType,
|
|
function_ref<APInt(const APFloat &)> mapping) const {
|
|
switch (getKind()) {
|
|
case StandardAttributes::DenseIntOrFPElements:
|
|
return cast<DenseElementsAttr>().mapValues(newElementType, mapping);
|
|
default:
|
|
llvm_unreachable("unsupported ElementsAttr subtype");
|
|
}
|
|
}
|
|
|
|
/// Returns the 1 dimensional flattened row-major index from the given
|
|
/// multi-dimensional index.
|
|
uint64_t ElementsAttr::getFlattenedIndex(ArrayRef<uint64_t> index) const {
|
|
assert(isValidIndex(index) && "expected valid multi-dimensional index");
|
|
auto type = getType();
|
|
|
|
// Reduce the provided multidimensional index into a flattended 1D row-major
|
|
// index.
|
|
auto rank = type.getRank();
|
|
auto shape = type.getShape();
|
|
uint64_t valueIndex = 0;
|
|
uint64_t dimMultiplier = 1;
|
|
for (int i = rank - 1; i >= 0; --i) {
|
|
valueIndex += index[i] * dimMultiplier;
|
|
dimMultiplier *= shape[i];
|
|
}
|
|
return valueIndex;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DenseElementAttr Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Get the bitwidth of a dense element type within the buffer.
|
|
/// DenseElementsAttr requires bitwidths greater than 1 to be aligned by 8.
|
|
static size_t getDenseElementStorageWidth(size_t origWidth) {
|
|
return origWidth == 1 ? origWidth : llvm::alignTo<8>(origWidth);
|
|
}
|
|
static size_t getDenseElementStorageWidth(Type elementType) {
|
|
return getDenseElementStorageWidth(getDenseElementBitWidth(elementType));
|
|
}
|
|
|
|
/// Set a bit to a specific value.
|
|
static void setBit(char *rawData, size_t bitPos, bool value) {
|
|
if (value)
|
|
rawData[bitPos / CHAR_BIT] |= (1 << (bitPos % CHAR_BIT));
|
|
else
|
|
rawData[bitPos / CHAR_BIT] &= ~(1 << (bitPos % CHAR_BIT));
|
|
}
|
|
|
|
/// Return the value of the specified bit.
|
|
static bool getBit(const char *rawData, size_t bitPos) {
|
|
return (rawData[bitPos / CHAR_BIT] & (1 << (bitPos % CHAR_BIT))) != 0;
|
|
}
|
|
|
|
/// Get start position of actual data in `value`. Actual data is
|
|
/// stored in last `bitWidth`/CHAR_BIT bytes in big endian.
|
|
static char *getAPIntDataPos(APInt &value, size_t bitWidth) {
|
|
char *dataPos =
|
|
const_cast<char *>(reinterpret_cast<const char *>(value.getRawData()));
|
|
if (llvm::support::endian::system_endianness() ==
|
|
llvm::support::endianness::big)
|
|
dataPos = dataPos + 8 - llvm::divideCeil(bitWidth, CHAR_BIT);
|
|
return dataPos;
|
|
}
|
|
|
|
/// Read APInt `value` from appropriate position.
|
|
static void readAPInt(APInt &value, size_t bitWidth, char *outData) {
|
|
char *dataPos = getAPIntDataPos(value, bitWidth);
|
|
std::copy_n(dataPos, llvm::divideCeil(bitWidth, CHAR_BIT), outData);
|
|
}
|
|
|
|
/// Write `inData` to appropriate position of APInt `value`.
|
|
static void writeAPInt(const char *inData, size_t bitWidth, APInt &value) {
|
|
char *dataPos = getAPIntDataPos(value, bitWidth);
|
|
std::copy_n(inData, llvm::divideCeil(bitWidth, CHAR_BIT), dataPos);
|
|
}
|
|
|
|
/// Writes value to the bit position `bitPos` in array `rawData`.
|
|
static void writeBits(char *rawData, size_t bitPos, APInt value) {
|
|
size_t bitWidth = value.getBitWidth();
|
|
|
|
// If the bitwidth is 1 we just toggle the specific bit.
|
|
if (bitWidth == 1)
|
|
return setBit(rawData, bitPos, value.isOneValue());
|
|
|
|
// Otherwise, the bit position is guaranteed to be byte aligned.
|
|
assert((bitPos % CHAR_BIT) == 0 && "expected bitPos to be 8-bit aligned");
|
|
readAPInt(value, bitWidth, rawData + (bitPos / CHAR_BIT));
|
|
}
|
|
|
|
/// Reads the next `bitWidth` bits from the bit position `bitPos` in array
|
|
/// `rawData`.
|
|
static APInt readBits(const char *rawData, size_t bitPos, size_t bitWidth) {
|
|
// Handle a boolean bit position.
|
|
if (bitWidth == 1)
|
|
return APInt(1, getBit(rawData, bitPos) ? 1 : 0);
|
|
|
|
// Otherwise, the bit position must be 8-bit aligned.
|
|
assert((bitPos % CHAR_BIT) == 0 && "expected bitPos to be 8-bit aligned");
|
|
APInt result(bitWidth, 0);
|
|
writeAPInt(rawData + (bitPos / CHAR_BIT), bitWidth, result);
|
|
return result;
|
|
}
|
|
|
|
/// Returns if 'values' corresponds to a splat, i.e. one element, or has the
|
|
/// same element count as 'type'.
|
|
template <typename Values>
|
|
static bool hasSameElementsOrSplat(ShapedType type, const Values &values) {
|
|
return (values.size() == 1) ||
|
|
(type.getNumElements() == static_cast<int64_t>(values.size()));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DenseElementAttr Iterators
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AttributeElementIterator
|
|
|
|
DenseElementsAttr::AttributeElementIterator::AttributeElementIterator(
|
|
DenseElementsAttr attr, size_t index)
|
|
: llvm::indexed_accessor_iterator<AttributeElementIterator, const void *,
|
|
Attribute, Attribute, Attribute>(
|
|
attr.getAsOpaquePointer(), index) {}
|
|
|
|
Attribute DenseElementsAttr::AttributeElementIterator::operator*() const {
|
|
auto owner = getFromOpaquePointer(base).cast<DenseElementsAttr>();
|
|
Type eltTy = owner.getType().getElementType();
|
|
if (auto intEltTy = eltTy.dyn_cast<IntegerType>())
|
|
return IntegerAttr::get(eltTy, *IntElementIterator(owner, index));
|
|
if (eltTy.isa<IndexType>())
|
|
return IntegerAttr::get(eltTy, *IntElementIterator(owner, index));
|
|
if (auto floatEltTy = eltTy.dyn_cast<FloatType>()) {
|
|
IntElementIterator intIt(owner, index);
|
|
FloatElementIterator floatIt(floatEltTy.getFloatSemantics(), intIt);
|
|
return FloatAttr::get(eltTy, *floatIt);
|
|
}
|
|
if (owner.isa<DenseStringElementsAttr>()) {
|
|
ArrayRef<StringRef> vals = owner.getRawStringData();
|
|
return StringAttr::get(owner.isSplat() ? vals.front() : vals[index], eltTy);
|
|
}
|
|
llvm_unreachable("unexpected element type");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BoolElementIterator
|
|
|
|
DenseElementsAttr::BoolElementIterator::BoolElementIterator(
|
|
DenseElementsAttr attr, size_t dataIndex)
|
|
: DenseElementIndexedIteratorImpl<BoolElementIterator, bool, bool, bool>(
|
|
attr.getRawData().data(), attr.isSplat(), dataIndex) {}
|
|
|
|
bool DenseElementsAttr::BoolElementIterator::operator*() const {
|
|
return getBit(getData(), getDataIndex());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IntElementIterator
|
|
|
|
DenseElementsAttr::IntElementIterator::IntElementIterator(
|
|
DenseElementsAttr attr, size_t dataIndex)
|
|
: DenseElementIndexedIteratorImpl<IntElementIterator, APInt, APInt, APInt>(
|
|
attr.getRawData().data(), attr.isSplat(), dataIndex),
|
|
bitWidth(getDenseElementBitWidth(attr.getType().getElementType())) {}
|
|
|
|
APInt DenseElementsAttr::IntElementIterator::operator*() const {
|
|
return readBits(getData(),
|
|
getDataIndex() * getDenseElementStorageWidth(bitWidth),
|
|
bitWidth);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ComplexIntElementIterator
|
|
|
|
DenseElementsAttr::ComplexIntElementIterator::ComplexIntElementIterator(
|
|
DenseElementsAttr attr, size_t dataIndex)
|
|
: DenseElementIndexedIteratorImpl<ComplexIntElementIterator,
|
|
std::complex<APInt>, std::complex<APInt>,
|
|
std::complex<APInt>>(
|
|
attr.getRawData().data(), attr.isSplat(), dataIndex) {
|
|
auto complexType = attr.getType().getElementType().cast<ComplexType>();
|
|
bitWidth = getDenseElementBitWidth(complexType.getElementType());
|
|
}
|
|
|
|
std::complex<APInt>
|
|
DenseElementsAttr::ComplexIntElementIterator::operator*() const {
|
|
size_t storageWidth = getDenseElementStorageWidth(bitWidth);
|
|
size_t offset = getDataIndex() * storageWidth * 2;
|
|
return {readBits(getData(), offset, bitWidth),
|
|
readBits(getData(), offset + storageWidth, bitWidth)};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FloatElementIterator
|
|
|
|
DenseElementsAttr::FloatElementIterator::FloatElementIterator(
|
|
const llvm::fltSemantics &smt, IntElementIterator it)
|
|
: llvm::mapped_iterator<IntElementIterator,
|
|
std::function<APFloat(const APInt &)>>(
|
|
it, [&](const APInt &val) { return APFloat(smt, val); }) {}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ComplexFloatElementIterator
|
|
|
|
DenseElementsAttr::ComplexFloatElementIterator::ComplexFloatElementIterator(
|
|
const llvm::fltSemantics &smt, ComplexIntElementIterator it)
|
|
: llvm::mapped_iterator<
|
|
ComplexIntElementIterator,
|
|
std::function<std::complex<APFloat>(const std::complex<APInt> &)>>(
|
|
it, [&](const std::complex<APInt> &val) -> std::complex<APFloat> {
|
|
return {APFloat(smt, val.real()), APFloat(smt, val.imag())};
|
|
}) {}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DenseElementsAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
|
|
ArrayRef<Attribute> values) {
|
|
assert(hasSameElementsOrSplat(type, values));
|
|
|
|
// If the element type is not based on int/float/index, assume it is a string
|
|
// type.
|
|
auto eltType = type.getElementType();
|
|
if (!type.getElementType().isIntOrIndexOrFloat()) {
|
|
SmallVector<StringRef, 8> stringValues;
|
|
stringValues.reserve(values.size());
|
|
for (Attribute attr : values) {
|
|
assert(attr.isa<StringAttr>() &&
|
|
"expected string value for non integer/index/float element");
|
|
stringValues.push_back(attr.cast<StringAttr>().getValue());
|
|
}
|
|
return get(type, stringValues);
|
|
}
|
|
|
|
// Otherwise, get the raw storage width to use for the allocation.
|
|
size_t bitWidth = getDenseElementBitWidth(eltType);
|
|
size_t storageBitWidth = getDenseElementStorageWidth(bitWidth);
|
|
|
|
// Compress the attribute values into a character buffer.
|
|
SmallVector<char, 8> data(llvm::divideCeil(storageBitWidth, CHAR_BIT) *
|
|
values.size());
|
|
APInt intVal;
|
|
for (unsigned i = 0, e = values.size(); i < e; ++i) {
|
|
assert(eltType == values[i].getType() &&
|
|
"expected attribute value to have element type");
|
|
|
|
switch (eltType.getKind()) {
|
|
case StandardTypes::BF16:
|
|
case StandardTypes::F16:
|
|
case StandardTypes::F32:
|
|
case StandardTypes::F64:
|
|
intVal = values[i].cast<FloatAttr>().getValue().bitcastToAPInt();
|
|
break;
|
|
case StandardTypes::Integer:
|
|
case StandardTypes::Index:
|
|
intVal = values[i].cast<IntegerAttr>().getValue();
|
|
break;
|
|
default:
|
|
llvm_unreachable("unexpected element type");
|
|
}
|
|
assert(intVal.getBitWidth() == bitWidth &&
|
|
"expected value to have same bitwidth as element type");
|
|
writeBits(data.data(), i * storageBitWidth, intVal);
|
|
}
|
|
return DenseIntOrFPElementsAttr::getRaw(type, data,
|
|
/*isSplat=*/(values.size() == 1));
|
|
}
|
|
|
|
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
|
|
ArrayRef<bool> values) {
|
|
assert(hasSameElementsOrSplat(type, values));
|
|
assert(type.getElementType().isInteger(1));
|
|
|
|
std::vector<char> buff(llvm::divideCeil(values.size(), CHAR_BIT));
|
|
for (int i = 0, e = values.size(); i != e; ++i)
|
|
setBit(buff.data(), i, values[i]);
|
|
return DenseIntOrFPElementsAttr::getRaw(type, buff,
|
|
/*isSplat=*/(values.size() == 1));
|
|
}
|
|
|
|
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
|
|
ArrayRef<StringRef> values) {
|
|
assert(!type.getElementType().isIntOrFloat());
|
|
return DenseStringElementsAttr::get(type, values);
|
|
}
|
|
|
|
/// Constructs a dense integer elements attribute from an array of APInt
|
|
/// values. Each APInt value is expected to have the same bitwidth as the
|
|
/// element type of 'type'.
|
|
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
|
|
ArrayRef<APInt> values) {
|
|
assert(type.getElementType().isIntOrIndex());
|
|
assert(hasSameElementsOrSplat(type, values));
|
|
size_t storageBitWidth = getDenseElementStorageWidth(type.getElementType());
|
|
return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, values,
|
|
/*isSplat=*/(values.size() == 1));
|
|
}
|
|
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
|
|
ArrayRef<std::complex<APInt>> values) {
|
|
ComplexType complex = type.getElementType().cast<ComplexType>();
|
|
assert(complex.getElementType().isa<IntegerType>());
|
|
assert(hasSameElementsOrSplat(type, values));
|
|
size_t storageBitWidth = getDenseElementStorageWidth(complex) / 2;
|
|
ArrayRef<APInt> intVals(reinterpret_cast<const APInt *>(values.data()),
|
|
values.size() * 2);
|
|
return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, intVals,
|
|
/*isSplat=*/(values.size() == 1));
|
|
}
|
|
|
|
// Constructs a dense float elements attribute from an array of APFloat
|
|
// values. Each APFloat value is expected to have the same bitwidth as the
|
|
// element type of 'type'.
|
|
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
|
|
ArrayRef<APFloat> values) {
|
|
assert(type.getElementType().isa<FloatType>());
|
|
assert(hasSameElementsOrSplat(type, values));
|
|
size_t storageBitWidth = getDenseElementStorageWidth(type.getElementType());
|
|
return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, values,
|
|
/*isSplat=*/(values.size() == 1));
|
|
}
|
|
DenseElementsAttr
|
|
DenseElementsAttr::get(ShapedType type,
|
|
ArrayRef<std::complex<APFloat>> values) {
|
|
ComplexType complex = type.getElementType().cast<ComplexType>();
|
|
assert(complex.getElementType().isa<FloatType>());
|
|
assert(hasSameElementsOrSplat(type, values));
|
|
ArrayRef<APFloat> apVals(reinterpret_cast<const APFloat *>(values.data()),
|
|
values.size() * 2);
|
|
size_t storageBitWidth = getDenseElementStorageWidth(complex) / 2;
|
|
return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, apVals,
|
|
/*isSplat=*/(values.size() == 1));
|
|
}
|
|
|
|
/// Construct a dense elements attribute from a raw buffer representing the
|
|
/// data for this attribute. Users should generally not use this methods as
|
|
/// the expected buffer format may not be a form the user expects.
|
|
DenseElementsAttr DenseElementsAttr::getFromRawBuffer(ShapedType type,
|
|
ArrayRef<char> rawBuffer,
|
|
bool isSplatBuffer) {
|
|
return DenseIntOrFPElementsAttr::getRaw(type, rawBuffer, isSplatBuffer);
|
|
}
|
|
|
|
/// Returns true if the given buffer is a valid raw buffer for the given type.
|
|
bool DenseElementsAttr::isValidRawBuffer(ShapedType type,
|
|
ArrayRef<char> rawBuffer,
|
|
bool &detectedSplat) {
|
|
size_t storageWidth = getDenseElementStorageWidth(type.getElementType());
|
|
size_t rawBufferWidth = rawBuffer.size() * CHAR_BIT;
|
|
|
|
// Storage width of 1 is special as it is packed by the bit.
|
|
if (storageWidth == 1) {
|
|
// Check for a splat, or a buffer equal to the number of elements.
|
|
if ((detectedSplat = rawBuffer.size() == 1))
|
|
return true;
|
|
return rawBufferWidth == llvm::alignTo<8>(type.getNumElements());
|
|
}
|
|
// All other types are 8-bit aligned.
|
|
if ((detectedSplat = rawBufferWidth == storageWidth))
|
|
return true;
|
|
return rawBufferWidth == (storageWidth * type.getNumElements());
|
|
}
|
|
|
|
/// Check the information for a C++ data type, check if this type is valid for
|
|
/// the current attribute. This method is used to verify specific type
|
|
/// invariants that the templatized 'getValues' method cannot.
|
|
static bool isValidIntOrFloat(Type type, int64_t dataEltSize, bool isInt,
|
|
bool isSigned) {
|
|
// Make sure that the data element size is the same as the type element width.
|
|
if (getDenseElementBitWidth(type) !=
|
|
static_cast<size_t>(dataEltSize * CHAR_BIT))
|
|
return false;
|
|
|
|
// Check that the element type is either float or integer or index.
|
|
if (!isInt)
|
|
return type.isa<FloatType>();
|
|
if (type.isIndex())
|
|
return true;
|
|
|
|
auto intType = type.dyn_cast<IntegerType>();
|
|
if (!intType)
|
|
return false;
|
|
|
|
// Make sure signedness semantics is consistent.
|
|
if (intType.isSignless())
|
|
return true;
|
|
return intType.isSigned() ? isSigned : !isSigned;
|
|
}
|
|
|
|
/// Defaults down the subclass implementation.
|
|
DenseElementsAttr DenseElementsAttr::getRawComplex(ShapedType type,
|
|
ArrayRef<char> data,
|
|
int64_t dataEltSize,
|
|
bool isInt, bool isSigned) {
|
|
return DenseIntOrFPElementsAttr::getRawComplex(type, data, dataEltSize, isInt,
|
|
isSigned);
|
|
}
|
|
DenseElementsAttr DenseElementsAttr::getRawIntOrFloat(ShapedType type,
|
|
ArrayRef<char> data,
|
|
int64_t dataEltSize,
|
|
bool isInt,
|
|
bool isSigned) {
|
|
return DenseIntOrFPElementsAttr::getRawIntOrFloat(type, data, dataEltSize,
|
|
isInt, isSigned);
|
|
}
|
|
|
|
/// A method used to verify specific type invariants that the templatized 'get'
|
|
/// method cannot.
|
|
bool DenseElementsAttr::isValidIntOrFloat(int64_t dataEltSize, bool isInt,
|
|
bool isSigned) const {
|
|
return ::isValidIntOrFloat(getType().getElementType(), dataEltSize, isInt,
|
|
isSigned);
|
|
}
|
|
|
|
/// Check the information for a C++ data type, check if this type is valid for
|
|
/// the current attribute.
|
|
bool DenseElementsAttr::isValidComplex(int64_t dataEltSize, bool isInt,
|
|
bool isSigned) const {
|
|
return ::isValidIntOrFloat(
|
|
getType().getElementType().cast<ComplexType>().getElementType(),
|
|
dataEltSize / 2, isInt, isSigned);
|
|
}
|
|
|
|
/// Returns if this attribute corresponds to a splat, i.e. if all element
|
|
/// values are the same.
|
|
bool DenseElementsAttr::isSplat() const {
|
|
return static_cast<DenseElementsAttributeStorage *>(impl)->isSplat;
|
|
}
|
|
|
|
/// Return the held element values as a range of Attributes.
|
|
auto DenseElementsAttr::getAttributeValues() const
|
|
-> llvm::iterator_range<AttributeElementIterator> {
|
|
return {attr_value_begin(), attr_value_end()};
|
|
}
|
|
auto DenseElementsAttr::attr_value_begin() const -> AttributeElementIterator {
|
|
return AttributeElementIterator(*this, 0);
|
|
}
|
|
auto DenseElementsAttr::attr_value_end() const -> AttributeElementIterator {
|
|
return AttributeElementIterator(*this, getNumElements());
|
|
}
|
|
|
|
/// Return the held element values as a range of bool. The element type of
|
|
/// this attribute must be of integer type of bitwidth 1.
|
|
auto DenseElementsAttr::getBoolValues() const
|
|
-> llvm::iterator_range<BoolElementIterator> {
|
|
auto eltType = getType().getElementType().dyn_cast<IntegerType>();
|
|
assert(eltType && eltType.getWidth() == 1 && "expected i1 integer type");
|
|
(void)eltType;
|
|
return {BoolElementIterator(*this, 0),
|
|
BoolElementIterator(*this, getNumElements())};
|
|
}
|
|
|
|
/// Return the held element values as a range of APInts. The element type of
|
|
/// this attribute must be of integer type.
|
|
auto DenseElementsAttr::getIntValues() const
|
|
-> llvm::iterator_range<IntElementIterator> {
|
|
assert(getType().getElementType().isIntOrIndex() && "expected integral type");
|
|
return {raw_int_begin(), raw_int_end()};
|
|
}
|
|
auto DenseElementsAttr::int_value_begin() const -> IntElementIterator {
|
|
assert(getType().getElementType().isIntOrIndex() && "expected integral type");
|
|
return raw_int_begin();
|
|
}
|
|
auto DenseElementsAttr::int_value_end() const -> IntElementIterator {
|
|
assert(getType().getElementType().isIntOrIndex() && "expected integral type");
|
|
return raw_int_end();
|
|
}
|
|
auto DenseElementsAttr::getComplexIntValues() const
|
|
-> llvm::iterator_range<ComplexIntElementIterator> {
|
|
Type eltTy = getType().getElementType().cast<ComplexType>().getElementType();
|
|
(void)eltTy;
|
|
assert(eltTy.isa<IntegerType>() && "expected complex integral type");
|
|
return {ComplexIntElementIterator(*this, 0),
|
|
ComplexIntElementIterator(*this, getNumElements())};
|
|
}
|
|
|
|
/// Return the held element values as a range of APFloat. The element type of
|
|
/// this attribute must be of float type.
|
|
auto DenseElementsAttr::getFloatValues() const
|
|
-> llvm::iterator_range<FloatElementIterator> {
|
|
auto elementType = getType().getElementType().cast<FloatType>();
|
|
const auto &elementSemantics = elementType.getFloatSemantics();
|
|
return {FloatElementIterator(elementSemantics, raw_int_begin()),
|
|
FloatElementIterator(elementSemantics, raw_int_end())};
|
|
}
|
|
auto DenseElementsAttr::float_value_begin() const -> FloatElementIterator {
|
|
return getFloatValues().begin();
|
|
}
|
|
auto DenseElementsAttr::float_value_end() const -> FloatElementIterator {
|
|
return getFloatValues().end();
|
|
}
|
|
auto DenseElementsAttr::getComplexFloatValues() const
|
|
-> llvm::iterator_range<ComplexFloatElementIterator> {
|
|
Type eltTy = getType().getElementType().cast<ComplexType>().getElementType();
|
|
assert(eltTy.isa<FloatType>() && "expected complex float type");
|
|
const auto &semantics = eltTy.cast<FloatType>().getFloatSemantics();
|
|
return {{semantics, {*this, 0}},
|
|
{semantics, {*this, static_cast<size_t>(getNumElements())}}};
|
|
}
|
|
|
|
/// Return the raw storage data held by this attribute.
|
|
ArrayRef<char> DenseElementsAttr::getRawData() const {
|
|
return static_cast<DenseIntOrFPElementsAttributeStorage *>(impl)->data;
|
|
}
|
|
|
|
ArrayRef<StringRef> DenseElementsAttr::getRawStringData() const {
|
|
return static_cast<DenseStringElementsAttributeStorage *>(impl)->data;
|
|
}
|
|
|
|
/// Return a new DenseElementsAttr that has the same data as the current
|
|
/// attribute, but has been reshaped to 'newType'. The new type must have the
|
|
/// same total number of elements as well as element type.
|
|
DenseElementsAttr DenseElementsAttr::reshape(ShapedType newType) {
|
|
ShapedType curType = getType();
|
|
if (curType == newType)
|
|
return *this;
|
|
|
|
(void)curType;
|
|
assert(newType.getElementType() == curType.getElementType() &&
|
|
"expected the same element type");
|
|
assert(newType.getNumElements() == curType.getNumElements() &&
|
|
"expected the same number of elements");
|
|
return DenseIntOrFPElementsAttr::getRaw(newType, getRawData(), isSplat());
|
|
}
|
|
|
|
DenseElementsAttr
|
|
DenseElementsAttr::mapValues(Type newElementType,
|
|
function_ref<APInt(const APInt &)> mapping) const {
|
|
return cast<DenseIntElementsAttr>().mapValues(newElementType, mapping);
|
|
}
|
|
|
|
DenseElementsAttr DenseElementsAttr::mapValues(
|
|
Type newElementType, function_ref<APInt(const APFloat &)> mapping) const {
|
|
return cast<DenseFPElementsAttr>().mapValues(newElementType, mapping);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DenseStringElementsAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
DenseStringElementsAttr
|
|
DenseStringElementsAttr::get(ShapedType type, ArrayRef<StringRef> values) {
|
|
return Base::get(type.getContext(), StandardAttributes::DenseStringElements,
|
|
type, values, (values.size() == 1));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DenseIntOrFPElementsAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Utility method to write a range of APInt values to a buffer.
|
|
template <typename APRangeT>
|
|
static void writeAPIntsToBuffer(size_t storageWidth, std::vector<char> &data,
|
|
APRangeT &&values) {
|
|
data.resize(llvm::divideCeil(storageWidth, CHAR_BIT) * llvm::size(values));
|
|
size_t offset = 0;
|
|
for (auto it = values.begin(), e = values.end(); it != e;
|
|
++it, offset += storageWidth) {
|
|
assert((*it).getBitWidth() <= storageWidth);
|
|
writeBits(data.data(), offset, *it);
|
|
}
|
|
}
|
|
|
|
/// Constructs a dense elements attribute from an array of raw APFloat values.
|
|
/// Each APFloat value is expected to have the same bitwidth as the element
|
|
/// type of 'type'. 'type' must be a vector or tensor with static shape.
|
|
DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type,
|
|
size_t storageWidth,
|
|
ArrayRef<APFloat> values,
|
|
bool isSplat) {
|
|
std::vector<char> data;
|
|
auto unwrapFloat = [](const APFloat &val) { return val.bitcastToAPInt(); };
|
|
writeAPIntsToBuffer(storageWidth, data, llvm::map_range(values, unwrapFloat));
|
|
return DenseIntOrFPElementsAttr::getRaw(type, data, isSplat);
|
|
}
|
|
|
|
/// Constructs a dense elements attribute from an array of raw APInt values.
|
|
/// Each APInt value is expected to have the same bitwidth as the element type
|
|
/// of 'type'.
|
|
DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type,
|
|
size_t storageWidth,
|
|
ArrayRef<APInt> values,
|
|
bool isSplat) {
|
|
std::vector<char> data;
|
|
writeAPIntsToBuffer(storageWidth, data, values);
|
|
return DenseIntOrFPElementsAttr::getRaw(type, data, isSplat);
|
|
}
|
|
|
|
DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type,
|
|
ArrayRef<char> data,
|
|
bool isSplat) {
|
|
assert((type.isa<RankedTensorType, VectorType>()) &&
|
|
"type must be ranked tensor or vector");
|
|
assert(type.hasStaticShape() && "type must have static shape");
|
|
return Base::get(type.getContext(), StandardAttributes::DenseIntOrFPElements,
|
|
type, data, isSplat);
|
|
}
|
|
|
|
/// Overload of the raw 'get' method that asserts that the given type is of
|
|
/// complex type. This method is used to verify type invariants that the
|
|
/// templatized 'get' method cannot.
|
|
DenseElementsAttr DenseIntOrFPElementsAttr::getRawComplex(ShapedType type,
|
|
ArrayRef<char> data,
|
|
int64_t dataEltSize,
|
|
bool isInt,
|
|
bool isSigned) {
|
|
assert(::isValidIntOrFloat(
|
|
type.getElementType().cast<ComplexType>().getElementType(),
|
|
dataEltSize / 2, isInt, isSigned));
|
|
|
|
int64_t numElements = data.size() / dataEltSize;
|
|
assert(numElements == 1 || numElements == type.getNumElements());
|
|
return getRaw(type, data, /*isSplat=*/numElements == 1);
|
|
}
|
|
|
|
/// Overload of the 'getRaw' method that asserts that the given type is of
|
|
/// integer type. This method is used to verify type invariants that the
|
|
/// templatized 'get' method cannot.
|
|
DenseElementsAttr
|
|
DenseIntOrFPElementsAttr::getRawIntOrFloat(ShapedType type, ArrayRef<char> data,
|
|
int64_t dataEltSize, bool isInt,
|
|
bool isSigned) {
|
|
assert(
|
|
::isValidIntOrFloat(type.getElementType(), dataEltSize, isInt, isSigned));
|
|
|
|
int64_t numElements = data.size() / dataEltSize;
|
|
assert(numElements == 1 || numElements == type.getNumElements());
|
|
return getRaw(type, data, /*isSplat=*/numElements == 1);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DenseFPElementsAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename Fn, typename Attr>
|
|
static ShapedType mappingHelper(Fn mapping, Attr &attr, ShapedType inType,
|
|
Type newElementType,
|
|
llvm::SmallVectorImpl<char> &data) {
|
|
size_t bitWidth = getDenseElementBitWidth(newElementType);
|
|
size_t storageBitWidth = getDenseElementStorageWidth(bitWidth);
|
|
|
|
ShapedType newArrayType;
|
|
if (inType.isa<RankedTensorType>())
|
|
newArrayType = RankedTensorType::get(inType.getShape(), newElementType);
|
|
else if (inType.isa<UnrankedTensorType>())
|
|
newArrayType = RankedTensorType::get(inType.getShape(), newElementType);
|
|
else if (inType.isa<VectorType>())
|
|
newArrayType = VectorType::get(inType.getShape(), newElementType);
|
|
else
|
|
assert(newArrayType && "Unhandled tensor type");
|
|
|
|
size_t numRawElements = attr.isSplat() ? 1 : newArrayType.getNumElements();
|
|
data.resize(llvm::divideCeil(storageBitWidth, CHAR_BIT) * numRawElements);
|
|
|
|
// Functor used to process a single element value of the attribute.
|
|
auto processElt = [&](decltype(*attr.begin()) value, size_t index) {
|
|
auto newInt = mapping(value);
|
|
assert(newInt.getBitWidth() == bitWidth);
|
|
writeBits(data.data(), index * storageBitWidth, newInt);
|
|
};
|
|
|
|
// Check for the splat case.
|
|
if (attr.isSplat()) {
|
|
processElt(*attr.begin(), /*index=*/0);
|
|
return newArrayType;
|
|
}
|
|
|
|
// Otherwise, process all of the element values.
|
|
uint64_t elementIdx = 0;
|
|
for (auto value : attr)
|
|
processElt(value, elementIdx++);
|
|
return newArrayType;
|
|
}
|
|
|
|
DenseElementsAttr DenseFPElementsAttr::mapValues(
|
|
Type newElementType, function_ref<APInt(const APFloat &)> mapping) const {
|
|
llvm::SmallVector<char, 8> elementData;
|
|
auto newArrayType =
|
|
mappingHelper(mapping, *this, getType(), newElementType, elementData);
|
|
|
|
return getRaw(newArrayType, elementData, isSplat());
|
|
}
|
|
|
|
/// Method for supporting type inquiry through isa, cast and dyn_cast.
|
|
bool DenseFPElementsAttr::classof(Attribute attr) {
|
|
return attr.isa<DenseElementsAttr>() &&
|
|
attr.getType().cast<ShapedType>().getElementType().isa<FloatType>();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DenseIntElementsAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
DenseElementsAttr DenseIntElementsAttr::mapValues(
|
|
Type newElementType, function_ref<APInt(const APInt &)> mapping) const {
|
|
llvm::SmallVector<char, 8> elementData;
|
|
auto newArrayType =
|
|
mappingHelper(mapping, *this, getType(), newElementType, elementData);
|
|
|
|
return getRaw(newArrayType, elementData, isSplat());
|
|
}
|
|
|
|
/// Method for supporting type inquiry through isa, cast and dyn_cast.
|
|
bool DenseIntElementsAttr::classof(Attribute attr) {
|
|
return attr.isa<DenseElementsAttr>() &&
|
|
attr.getType().cast<ShapedType>().getElementType().isIntOrIndex();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OpaqueElementsAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpaqueElementsAttr OpaqueElementsAttr::get(Dialect *dialect, ShapedType type,
|
|
StringRef bytes) {
|
|
assert(TensorType::isValidElementType(type.getElementType()) &&
|
|
"Input element type should be a valid tensor element type");
|
|
return Base::get(type.getContext(), StandardAttributes::OpaqueElements, type,
|
|
dialect, bytes);
|
|
}
|
|
|
|
StringRef OpaqueElementsAttr::getValue() const { return getImpl()->bytes; }
|
|
|
|
/// Return the value at the given index. If index does not refer to a valid
|
|
/// element, then a null attribute is returned.
|
|
Attribute OpaqueElementsAttr::getValue(ArrayRef<uint64_t> index) const {
|
|
assert(isValidIndex(index) && "expected valid multi-dimensional index");
|
|
if (Dialect *dialect = getDialect())
|
|
return dialect->extractElementHook(*this, index);
|
|
return Attribute();
|
|
}
|
|
|
|
Dialect *OpaqueElementsAttr::getDialect() const { return getImpl()->dialect; }
|
|
|
|
bool OpaqueElementsAttr::decode(ElementsAttr &result) {
|
|
if (auto *d = getDialect())
|
|
return d->decodeHook(*this, result);
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SparseElementsAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SparseElementsAttr SparseElementsAttr::get(ShapedType type,
|
|
DenseElementsAttr indices,
|
|
DenseElementsAttr values) {
|
|
assert(indices.getType().getElementType().isInteger(64) &&
|
|
"expected sparse indices to be 64-bit integer values");
|
|
assert((type.isa<RankedTensorType, VectorType>()) &&
|
|
"type must be ranked tensor or vector");
|
|
assert(type.hasStaticShape() && "type must have static shape");
|
|
return Base::get(type.getContext(), StandardAttributes::SparseElements, type,
|
|
indices.cast<DenseIntElementsAttr>(), values);
|
|
}
|
|
|
|
DenseIntElementsAttr SparseElementsAttr::getIndices() const {
|
|
return getImpl()->indices;
|
|
}
|
|
|
|
DenseElementsAttr SparseElementsAttr::getValues() const {
|
|
return getImpl()->values;
|
|
}
|
|
|
|
/// Return the value of the element at the given index.
|
|
Attribute SparseElementsAttr::getValue(ArrayRef<uint64_t> index) const {
|
|
assert(isValidIndex(index) && "expected valid multi-dimensional index");
|
|
auto type = getType();
|
|
|
|
// The sparse indices are 64-bit integers, so we can reinterpret the raw data
|
|
// as a 1-D index array.
|
|
auto sparseIndices = getIndices();
|
|
auto sparseIndexValues = sparseIndices.getValues<uint64_t>();
|
|
|
|
// Check to see if the indices are a splat.
|
|
if (sparseIndices.isSplat()) {
|
|
// If the index is also not a splat of the index value, we know that the
|
|
// value is zero.
|
|
auto splatIndex = *sparseIndexValues.begin();
|
|
if (llvm::any_of(index, [=](uint64_t i) { return i != splatIndex; }))
|
|
return getZeroAttr();
|
|
|
|
// If the indices are a splat, we also expect the values to be a splat.
|
|
assert(getValues().isSplat() && "expected splat values");
|
|
return getValues().getSplatValue();
|
|
}
|
|
|
|
// Build a mapping between known indices and the offset of the stored element.
|
|
llvm::SmallDenseMap<llvm::ArrayRef<uint64_t>, size_t> mappedIndices;
|
|
auto numSparseIndices = sparseIndices.getType().getDimSize(0);
|
|
size_t rank = type.getRank();
|
|
for (size_t i = 0, e = numSparseIndices; i != e; ++i)
|
|
mappedIndices.try_emplace(
|
|
{&*std::next(sparseIndexValues.begin(), i * rank), rank}, i);
|
|
|
|
// Look for the provided index key within the mapped indices. If the provided
|
|
// index is not found, then return a zero attribute.
|
|
auto it = mappedIndices.find(index);
|
|
if (it == mappedIndices.end())
|
|
return getZeroAttr();
|
|
|
|
// Otherwise, return the held sparse value element.
|
|
return getValues().getValue(it->second);
|
|
}
|
|
|
|
/// Get a zero APFloat for the given sparse attribute.
|
|
APFloat SparseElementsAttr::getZeroAPFloat() const {
|
|
auto eltType = getType().getElementType().cast<FloatType>();
|
|
return APFloat(eltType.getFloatSemantics());
|
|
}
|
|
|
|
/// Get a zero APInt for the given sparse attribute.
|
|
APInt SparseElementsAttr::getZeroAPInt() const {
|
|
auto eltType = getType().getElementType().cast<IntegerType>();
|
|
return APInt::getNullValue(eltType.getWidth());
|
|
}
|
|
|
|
/// Get a zero attribute for the given attribute type.
|
|
Attribute SparseElementsAttr::getZeroAttr() const {
|
|
auto eltType = getType().getElementType();
|
|
|
|
// Handle floating point elements.
|
|
if (eltType.isa<FloatType>())
|
|
return FloatAttr::get(eltType, 0);
|
|
|
|
// Otherwise, this is an integer.
|
|
// TODO: Handle StringAttr here.
|
|
return IntegerAttr::get(eltType, 0);
|
|
}
|
|
|
|
/// Flatten, and return, all of the sparse indices in this attribute in
|
|
/// row-major order.
|
|
std::vector<ptrdiff_t> SparseElementsAttr::getFlattenedSparseIndices() const {
|
|
std::vector<ptrdiff_t> flatSparseIndices;
|
|
|
|
// The sparse indices are 64-bit integers, so we can reinterpret the raw data
|
|
// as a 1-D index array.
|
|
auto sparseIndices = getIndices();
|
|
auto sparseIndexValues = sparseIndices.getValues<uint64_t>();
|
|
if (sparseIndices.isSplat()) {
|
|
SmallVector<uint64_t, 8> indices(getType().getRank(),
|
|
*sparseIndexValues.begin());
|
|
flatSparseIndices.push_back(getFlattenedIndex(indices));
|
|
return flatSparseIndices;
|
|
}
|
|
|
|
// Otherwise, reinterpret each index as an ArrayRef when flattening.
|
|
auto numSparseIndices = sparseIndices.getType().getDimSize(0);
|
|
size_t rank = getType().getRank();
|
|
for (size_t i = 0, e = numSparseIndices; i != e; ++i)
|
|
flatSparseIndices.push_back(getFlattenedIndex(
|
|
{&*std::next(sparseIndexValues.begin(), i * rank), rank}));
|
|
return flatSparseIndices;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MutableDictionaryAttr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
MutableDictionaryAttr::MutableDictionaryAttr(
|
|
ArrayRef<NamedAttribute> attributes) {
|
|
setAttrs(attributes);
|
|
}
|
|
|
|
/// Return the underlying dictionary attribute.
|
|
DictionaryAttr
|
|
MutableDictionaryAttr::getDictionary(MLIRContext *context) const {
|
|
// Construct empty DictionaryAttr if needed.
|
|
if (!attrs)
|
|
return DictionaryAttr::get({}, context);
|
|
return attrs;
|
|
}
|
|
|
|
ArrayRef<NamedAttribute> MutableDictionaryAttr::getAttrs() const {
|
|
return attrs ? attrs.getValue() : llvm::None;
|
|
}
|
|
|
|
/// Replace the held attributes with ones provided in 'newAttrs'.
|
|
void MutableDictionaryAttr::setAttrs(ArrayRef<NamedAttribute> attributes) {
|
|
// Don't create an attribute list if there are no attributes.
|
|
if (attributes.empty())
|
|
attrs = nullptr;
|
|
else
|
|
attrs = DictionaryAttr::get(attributes, attributes[0].second.getContext());
|
|
}
|
|
|
|
/// Return the specified attribute if present, null otherwise.
|
|
Attribute MutableDictionaryAttr::get(StringRef name) const {
|
|
return attrs ? attrs.get(name) : nullptr;
|
|
}
|
|
|
|
/// Return the specified attribute if present, null otherwise.
|
|
Attribute MutableDictionaryAttr::get(Identifier name) const {
|
|
return attrs ? attrs.get(name) : nullptr;
|
|
}
|
|
|
|
/// Return the specified named attribute if present, None otherwise.
|
|
Optional<NamedAttribute> MutableDictionaryAttr::getNamed(StringRef name) const {
|
|
return attrs ? attrs.getNamed(name) : Optional<NamedAttribute>();
|
|
}
|
|
Optional<NamedAttribute>
|
|
MutableDictionaryAttr::getNamed(Identifier name) const {
|
|
return attrs ? attrs.getNamed(name) : Optional<NamedAttribute>();
|
|
}
|
|
|
|
/// If the an attribute exists with the specified name, change it to the new
|
|
/// value. Otherwise, add a new attribute with the specified name/value.
|
|
void MutableDictionaryAttr::set(Identifier name, Attribute value) {
|
|
assert(value && "attributes may never be null");
|
|
|
|
// Look for an existing value for the given name, and set it in-place.
|
|
ArrayRef<NamedAttribute> values = getAttrs();
|
|
const auto *it = llvm::find_if(
|
|
values, [name](NamedAttribute attr) { return attr.first == name; });
|
|
if (it != values.end()) {
|
|
// Bail out early if the value is the same as what we already have.
|
|
if (it->second == value)
|
|
return;
|
|
|
|
SmallVector<NamedAttribute, 8> newAttrs(values.begin(), values.end());
|
|
newAttrs[it - values.begin()].second = value;
|
|
attrs = DictionaryAttr::getWithSorted(newAttrs, value.getContext());
|
|
return;
|
|
}
|
|
|
|
// Otherwise, insert the new attribute into its sorted position.
|
|
it = llvm::lower_bound(values, name);
|
|
SmallVector<NamedAttribute, 8> newAttrs;
|
|
newAttrs.reserve(values.size() + 1);
|
|
newAttrs.append(values.begin(), it);
|
|
newAttrs.push_back({name, value});
|
|
newAttrs.append(it, values.end());
|
|
attrs = DictionaryAttr::getWithSorted(newAttrs, value.getContext());
|
|
}
|
|
|
|
/// Remove the attribute with the specified name if it exists. The return
|
|
/// value indicates whether the attribute was present or not.
|
|
auto MutableDictionaryAttr::remove(Identifier name) -> RemoveResult {
|
|
auto origAttrs = getAttrs();
|
|
for (unsigned i = 0, e = origAttrs.size(); i != e; ++i) {
|
|
if (origAttrs[i].first == name) {
|
|
// Handle the simple case of removing the only attribute in the list.
|
|
if (e == 1) {
|
|
attrs = nullptr;
|
|
return RemoveResult::Removed;
|
|
}
|
|
|
|
SmallVector<NamedAttribute, 8> newAttrs;
|
|
newAttrs.reserve(origAttrs.size() - 1);
|
|
newAttrs.append(origAttrs.begin(), origAttrs.begin() + i);
|
|
newAttrs.append(origAttrs.begin() + i + 1, origAttrs.end());
|
|
attrs = DictionaryAttr::getWithSorted(newAttrs,
|
|
newAttrs[0].second.getContext());
|
|
return RemoveResult::Removed;
|
|
}
|
|
}
|
|
return RemoveResult::NotFound;
|
|
}
|
|
|
|
bool mlir::operator<(const NamedAttribute &lhs, const NamedAttribute &rhs) {
|
|
return strcmp(lhs.first.data(), rhs.first.data()) < 0;
|
|
}
|
|
bool mlir::operator<(const NamedAttribute &lhs, StringRef rhs) {
|
|
// This is correct even when attr.first.data()[name.size()] is not a zero
|
|
// string terminator, because we only care about a less than comparison.
|
|
// This can't use memcmp, because it doesn't guarantee that it will stop
|
|
// reading both buffers if one is shorter than the other, even if there is
|
|
// a difference.
|
|
return strncmp(lhs.first.data(), rhs.data(), rhs.size()) < 0;
|
|
}
|