forked from OSchip/llvm-project
1264 lines
43 KiB
C++
1264 lines
43 KiB
C++
//===-- asan_allocator.cpp ------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of AddressSanitizer, an address sanity checker.
|
|
//
|
|
// Implementation of ASan's memory allocator, 2-nd version.
|
|
// This variant uses the allocator from sanitizer_common, i.e. the one shared
|
|
// with ThreadSanitizer and MemorySanitizer.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "asan_allocator.h"
|
|
|
|
#include "asan_mapping.h"
|
|
#include "asan_poisoning.h"
|
|
#include "asan_report.h"
|
|
#include "asan_stack.h"
|
|
#include "asan_thread.h"
|
|
#include "lsan/lsan_common.h"
|
|
#include "sanitizer_common/sanitizer_allocator_checks.h"
|
|
#include "sanitizer_common/sanitizer_allocator_interface.h"
|
|
#include "sanitizer_common/sanitizer_errno.h"
|
|
#include "sanitizer_common/sanitizer_flags.h"
|
|
#include "sanitizer_common/sanitizer_internal_defs.h"
|
|
#include "sanitizer_common/sanitizer_list.h"
|
|
#include "sanitizer_common/sanitizer_quarantine.h"
|
|
#include "sanitizer_common/sanitizer_stackdepot.h"
|
|
|
|
namespace __asan {
|
|
|
|
// Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits.
|
|
// We use adaptive redzones: for larger allocation larger redzones are used.
|
|
static u32 RZLog2Size(u32 rz_log) {
|
|
CHECK_LT(rz_log, 8);
|
|
return 16 << rz_log;
|
|
}
|
|
|
|
static u32 RZSize2Log(u32 rz_size) {
|
|
CHECK_GE(rz_size, 16);
|
|
CHECK_LE(rz_size, 2048);
|
|
CHECK(IsPowerOfTwo(rz_size));
|
|
u32 res = Log2(rz_size) - 4;
|
|
CHECK_EQ(rz_size, RZLog2Size(res));
|
|
return res;
|
|
}
|
|
|
|
static AsanAllocator &get_allocator();
|
|
|
|
static void AtomicContextStore(volatile atomic_uint64_t *atomic_context,
|
|
u32 tid, u32 stack) {
|
|
u64 context = tid;
|
|
context <<= 32;
|
|
context += stack;
|
|
atomic_store(atomic_context, context, memory_order_relaxed);
|
|
}
|
|
|
|
static void AtomicContextLoad(const volatile atomic_uint64_t *atomic_context,
|
|
u32 &tid, u32 &stack) {
|
|
u64 context = atomic_load(atomic_context, memory_order_relaxed);
|
|
stack = context;
|
|
context >>= 32;
|
|
tid = context;
|
|
}
|
|
|
|
// The memory chunk allocated from the underlying allocator looks like this:
|
|
// L L L L L L H H U U U U U U R R
|
|
// L -- left redzone words (0 or more bytes)
|
|
// H -- ChunkHeader (16 bytes), which is also a part of the left redzone.
|
|
// U -- user memory.
|
|
// R -- right redzone (0 or more bytes)
|
|
// ChunkBase consists of ChunkHeader and other bytes that overlap with user
|
|
// memory.
|
|
|
|
// If the left redzone is greater than the ChunkHeader size we store a magic
|
|
// value in the first uptr word of the memory block and store the address of
|
|
// ChunkBase in the next uptr.
|
|
// M B L L L L L L L L L H H U U U U U U
|
|
// | ^
|
|
// ---------------------|
|
|
// M -- magic value kAllocBegMagic
|
|
// B -- address of ChunkHeader pointing to the first 'H'
|
|
|
|
class ChunkHeader {
|
|
public:
|
|
atomic_uint8_t chunk_state;
|
|
u8 alloc_type : 2;
|
|
u8 lsan_tag : 2;
|
|
|
|
// align < 8 -> 0
|
|
// else -> log2(min(align, 512)) - 2
|
|
u8 user_requested_alignment_log : 3;
|
|
|
|
private:
|
|
u16 user_requested_size_hi;
|
|
u32 user_requested_size_lo;
|
|
atomic_uint64_t alloc_context_id;
|
|
|
|
public:
|
|
uptr UsedSize() const {
|
|
uptr R = user_requested_size_lo;
|
|
if (sizeof(uptr) > sizeof(user_requested_size_lo))
|
|
R += (uptr)user_requested_size_hi << (8 * sizeof(user_requested_size_lo));
|
|
return R;
|
|
}
|
|
|
|
void SetUsedSize(uptr size) {
|
|
user_requested_size_lo = size;
|
|
if (sizeof(uptr) > sizeof(user_requested_size_lo)) {
|
|
size >>= (8 * sizeof(user_requested_size_lo));
|
|
user_requested_size_hi = size;
|
|
CHECK_EQ(user_requested_size_hi, size);
|
|
}
|
|
}
|
|
|
|
void SetAllocContext(u32 tid, u32 stack) {
|
|
AtomicContextStore(&alloc_context_id, tid, stack);
|
|
}
|
|
|
|
void GetAllocContext(u32 &tid, u32 &stack) const {
|
|
AtomicContextLoad(&alloc_context_id, tid, stack);
|
|
}
|
|
};
|
|
|
|
class ChunkBase : public ChunkHeader {
|
|
atomic_uint64_t free_context_id;
|
|
|
|
public:
|
|
void SetFreeContext(u32 tid, u32 stack) {
|
|
AtomicContextStore(&free_context_id, tid, stack);
|
|
}
|
|
|
|
void GetFreeContext(u32 &tid, u32 &stack) const {
|
|
AtomicContextLoad(&free_context_id, tid, stack);
|
|
}
|
|
};
|
|
|
|
static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
|
|
static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize;
|
|
COMPILER_CHECK(kChunkHeaderSize == 16);
|
|
COMPILER_CHECK(kChunkHeader2Size <= 16);
|
|
|
|
enum {
|
|
// Either just allocated by underlying allocator, but AsanChunk is not yet
|
|
// ready, or almost returned to undelying allocator and AsanChunk is already
|
|
// meaningless.
|
|
CHUNK_INVALID = 0,
|
|
// The chunk is allocated and not yet freed.
|
|
CHUNK_ALLOCATED = 2,
|
|
// The chunk was freed and put into quarantine zone.
|
|
CHUNK_QUARANTINE = 3,
|
|
};
|
|
|
|
class AsanChunk : public ChunkBase {
|
|
public:
|
|
uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
|
|
bool AddrIsInside(uptr addr) {
|
|
return (addr >= Beg()) && (addr < Beg() + UsedSize());
|
|
}
|
|
};
|
|
|
|
class LargeChunkHeader {
|
|
static constexpr uptr kAllocBegMagic =
|
|
FIRST_32_SECOND_64(0xCC6E96B9, 0xCC6E96B9CC6E96B9ULL);
|
|
atomic_uintptr_t magic;
|
|
AsanChunk *chunk_header;
|
|
|
|
public:
|
|
AsanChunk *Get() const {
|
|
return atomic_load(&magic, memory_order_acquire) == kAllocBegMagic
|
|
? chunk_header
|
|
: nullptr;
|
|
}
|
|
|
|
void Set(AsanChunk *p) {
|
|
if (p) {
|
|
chunk_header = p;
|
|
atomic_store(&magic, kAllocBegMagic, memory_order_release);
|
|
return;
|
|
}
|
|
|
|
uptr old = kAllocBegMagic;
|
|
if (!atomic_compare_exchange_strong(&magic, &old, 0,
|
|
memory_order_release)) {
|
|
CHECK_EQ(old, kAllocBegMagic);
|
|
}
|
|
}
|
|
};
|
|
|
|
struct QuarantineCallback {
|
|
QuarantineCallback(AllocatorCache *cache, BufferedStackTrace *stack)
|
|
: cache_(cache),
|
|
stack_(stack) {
|
|
}
|
|
|
|
void Recycle(AsanChunk *m) {
|
|
void *p = get_allocator().GetBlockBegin(m);
|
|
if (p != m) {
|
|
// Clear the magic value, as allocator internals may overwrite the
|
|
// contents of deallocated chunk, confusing GetAsanChunk lookup.
|
|
reinterpret_cast<LargeChunkHeader *>(p)->Set(nullptr);
|
|
}
|
|
|
|
u8 old_chunk_state = CHUNK_QUARANTINE;
|
|
if (!atomic_compare_exchange_strong(&m->chunk_state, &old_chunk_state,
|
|
CHUNK_INVALID, memory_order_acquire)) {
|
|
CHECK_EQ(old_chunk_state, CHUNK_QUARANTINE);
|
|
}
|
|
|
|
PoisonShadow(m->Beg(),
|
|
RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
|
|
kAsanHeapLeftRedzoneMagic);
|
|
|
|
// Statistics.
|
|
AsanStats &thread_stats = GetCurrentThreadStats();
|
|
thread_stats.real_frees++;
|
|
thread_stats.really_freed += m->UsedSize();
|
|
|
|
get_allocator().Deallocate(cache_, p);
|
|
}
|
|
|
|
void *Allocate(uptr size) {
|
|
void *res = get_allocator().Allocate(cache_, size, 1);
|
|
// TODO(alekseys): Consider making quarantine OOM-friendly.
|
|
if (UNLIKELY(!res))
|
|
ReportOutOfMemory(size, stack_);
|
|
return res;
|
|
}
|
|
|
|
void Deallocate(void *p) {
|
|
get_allocator().Deallocate(cache_, p);
|
|
}
|
|
|
|
private:
|
|
AllocatorCache* const cache_;
|
|
BufferedStackTrace* const stack_;
|
|
};
|
|
|
|
typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine;
|
|
typedef AsanQuarantine::Cache QuarantineCache;
|
|
|
|
void AsanMapUnmapCallback::OnMap(uptr p, uptr size) const {
|
|
PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
|
|
// Statistics.
|
|
AsanStats &thread_stats = GetCurrentThreadStats();
|
|
thread_stats.mmaps++;
|
|
thread_stats.mmaped += size;
|
|
}
|
|
void AsanMapUnmapCallback::OnUnmap(uptr p, uptr size) const {
|
|
PoisonShadow(p, size, 0);
|
|
// We are about to unmap a chunk of user memory.
|
|
// Mark the corresponding shadow memory as not needed.
|
|
FlushUnneededASanShadowMemory(p, size);
|
|
// Statistics.
|
|
AsanStats &thread_stats = GetCurrentThreadStats();
|
|
thread_stats.munmaps++;
|
|
thread_stats.munmaped += size;
|
|
}
|
|
|
|
// We can not use THREADLOCAL because it is not supported on some of the
|
|
// platforms we care about (OSX 10.6, Android).
|
|
// static THREADLOCAL AllocatorCache cache;
|
|
AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
|
|
CHECK(ms);
|
|
return &ms->allocator_cache;
|
|
}
|
|
|
|
QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) {
|
|
CHECK(ms);
|
|
CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache));
|
|
return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache);
|
|
}
|
|
|
|
void AllocatorOptions::SetFrom(const Flags *f, const CommonFlags *cf) {
|
|
quarantine_size_mb = f->quarantine_size_mb;
|
|
thread_local_quarantine_size_kb = f->thread_local_quarantine_size_kb;
|
|
min_redzone = f->redzone;
|
|
max_redzone = f->max_redzone;
|
|
may_return_null = cf->allocator_may_return_null;
|
|
alloc_dealloc_mismatch = f->alloc_dealloc_mismatch;
|
|
release_to_os_interval_ms = cf->allocator_release_to_os_interval_ms;
|
|
}
|
|
|
|
void AllocatorOptions::CopyTo(Flags *f, CommonFlags *cf) {
|
|
f->quarantine_size_mb = quarantine_size_mb;
|
|
f->thread_local_quarantine_size_kb = thread_local_quarantine_size_kb;
|
|
f->redzone = min_redzone;
|
|
f->max_redzone = max_redzone;
|
|
cf->allocator_may_return_null = may_return_null;
|
|
f->alloc_dealloc_mismatch = alloc_dealloc_mismatch;
|
|
cf->allocator_release_to_os_interval_ms = release_to_os_interval_ms;
|
|
}
|
|
|
|
struct Allocator {
|
|
static const uptr kMaxAllowedMallocSize =
|
|
FIRST_32_SECOND_64(3UL << 30, 1ULL << 40);
|
|
|
|
AsanAllocator allocator;
|
|
AsanQuarantine quarantine;
|
|
StaticSpinMutex fallback_mutex;
|
|
AllocatorCache fallback_allocator_cache;
|
|
QuarantineCache fallback_quarantine_cache;
|
|
|
|
uptr max_user_defined_malloc_size;
|
|
atomic_uint8_t rss_limit_exceeded;
|
|
|
|
// ------------------- Options --------------------------
|
|
atomic_uint16_t min_redzone;
|
|
atomic_uint16_t max_redzone;
|
|
atomic_uint8_t alloc_dealloc_mismatch;
|
|
|
|
// ------------------- Initialization ------------------------
|
|
explicit Allocator(LinkerInitialized)
|
|
: quarantine(LINKER_INITIALIZED),
|
|
fallback_quarantine_cache(LINKER_INITIALIZED) {}
|
|
|
|
void CheckOptions(const AllocatorOptions &options) const {
|
|
CHECK_GE(options.min_redzone, 16);
|
|
CHECK_GE(options.max_redzone, options.min_redzone);
|
|
CHECK_LE(options.max_redzone, 2048);
|
|
CHECK(IsPowerOfTwo(options.min_redzone));
|
|
CHECK(IsPowerOfTwo(options.max_redzone));
|
|
}
|
|
|
|
void SharedInitCode(const AllocatorOptions &options) {
|
|
CheckOptions(options);
|
|
quarantine.Init((uptr)options.quarantine_size_mb << 20,
|
|
(uptr)options.thread_local_quarantine_size_kb << 10);
|
|
atomic_store(&alloc_dealloc_mismatch, options.alloc_dealloc_mismatch,
|
|
memory_order_release);
|
|
atomic_store(&min_redzone, options.min_redzone, memory_order_release);
|
|
atomic_store(&max_redzone, options.max_redzone, memory_order_release);
|
|
}
|
|
|
|
void InitLinkerInitialized(const AllocatorOptions &options) {
|
|
SetAllocatorMayReturnNull(options.may_return_null);
|
|
allocator.InitLinkerInitialized(options.release_to_os_interval_ms);
|
|
SharedInitCode(options);
|
|
max_user_defined_malloc_size = common_flags()->max_allocation_size_mb
|
|
? common_flags()->max_allocation_size_mb
|
|
<< 20
|
|
: kMaxAllowedMallocSize;
|
|
}
|
|
|
|
bool RssLimitExceeded() {
|
|
return atomic_load(&rss_limit_exceeded, memory_order_relaxed);
|
|
}
|
|
|
|
void SetRssLimitExceeded(bool limit_exceeded) {
|
|
atomic_store(&rss_limit_exceeded, limit_exceeded, memory_order_relaxed);
|
|
}
|
|
|
|
void RePoisonChunk(uptr chunk) {
|
|
// This could be a user-facing chunk (with redzones), or some internal
|
|
// housekeeping chunk, like TransferBatch. Start by assuming the former.
|
|
AsanChunk *ac = GetAsanChunk((void *)chunk);
|
|
uptr allocated_size = allocator.GetActuallyAllocatedSize((void *)chunk);
|
|
if (ac && atomic_load(&ac->chunk_state, memory_order_acquire) ==
|
|
CHUNK_ALLOCATED) {
|
|
uptr beg = ac->Beg();
|
|
uptr end = ac->Beg() + ac->UsedSize();
|
|
uptr chunk_end = chunk + allocated_size;
|
|
if (chunk < beg && beg < end && end <= chunk_end) {
|
|
// Looks like a valid AsanChunk in use, poison redzones only.
|
|
PoisonShadow(chunk, beg - chunk, kAsanHeapLeftRedzoneMagic);
|
|
uptr end_aligned_down = RoundDownTo(end, SHADOW_GRANULARITY);
|
|
FastPoisonShadowPartialRightRedzone(
|
|
end_aligned_down, end - end_aligned_down,
|
|
chunk_end - end_aligned_down, kAsanHeapLeftRedzoneMagic);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// This is either not an AsanChunk or freed or quarantined AsanChunk.
|
|
// In either case, poison everything.
|
|
PoisonShadow(chunk, allocated_size, kAsanHeapLeftRedzoneMagic);
|
|
}
|
|
|
|
void ReInitialize(const AllocatorOptions &options) {
|
|
SetAllocatorMayReturnNull(options.may_return_null);
|
|
allocator.SetReleaseToOSIntervalMs(options.release_to_os_interval_ms);
|
|
SharedInitCode(options);
|
|
|
|
// Poison all existing allocation's redzones.
|
|
if (CanPoisonMemory()) {
|
|
allocator.ForceLock();
|
|
allocator.ForEachChunk(
|
|
[](uptr chunk, void *alloc) {
|
|
((Allocator *)alloc)->RePoisonChunk(chunk);
|
|
},
|
|
this);
|
|
allocator.ForceUnlock();
|
|
}
|
|
}
|
|
|
|
void GetOptions(AllocatorOptions *options) const {
|
|
options->quarantine_size_mb = quarantine.GetSize() >> 20;
|
|
options->thread_local_quarantine_size_kb = quarantine.GetCacheSize() >> 10;
|
|
options->min_redzone = atomic_load(&min_redzone, memory_order_acquire);
|
|
options->max_redzone = atomic_load(&max_redzone, memory_order_acquire);
|
|
options->may_return_null = AllocatorMayReturnNull();
|
|
options->alloc_dealloc_mismatch =
|
|
atomic_load(&alloc_dealloc_mismatch, memory_order_acquire);
|
|
options->release_to_os_interval_ms = allocator.ReleaseToOSIntervalMs();
|
|
}
|
|
|
|
// -------------------- Helper methods. -------------------------
|
|
uptr ComputeRZLog(uptr user_requested_size) {
|
|
u32 rz_log = user_requested_size <= 64 - 16 ? 0
|
|
: user_requested_size <= 128 - 32 ? 1
|
|
: user_requested_size <= 512 - 64 ? 2
|
|
: user_requested_size <= 4096 - 128 ? 3
|
|
: user_requested_size <= (1 << 14) - 256 ? 4
|
|
: user_requested_size <= (1 << 15) - 512 ? 5
|
|
: user_requested_size <= (1 << 16) - 1024 ? 6
|
|
: 7;
|
|
u32 hdr_log = RZSize2Log(RoundUpToPowerOfTwo(sizeof(ChunkHeader)));
|
|
u32 min_log = RZSize2Log(atomic_load(&min_redzone, memory_order_acquire));
|
|
u32 max_log = RZSize2Log(atomic_load(&max_redzone, memory_order_acquire));
|
|
return Min(Max(rz_log, Max(min_log, hdr_log)), Max(max_log, hdr_log));
|
|
}
|
|
|
|
static uptr ComputeUserRequestedAlignmentLog(uptr user_requested_alignment) {
|
|
if (user_requested_alignment < 8)
|
|
return 0;
|
|
if (user_requested_alignment > 512)
|
|
user_requested_alignment = 512;
|
|
return Log2(user_requested_alignment) - 2;
|
|
}
|
|
|
|
static uptr ComputeUserAlignment(uptr user_requested_alignment_log) {
|
|
if (user_requested_alignment_log == 0)
|
|
return 0;
|
|
return 1LL << (user_requested_alignment_log + 2);
|
|
}
|
|
|
|
// We have an address between two chunks, and we want to report just one.
|
|
AsanChunk *ChooseChunk(uptr addr, AsanChunk *left_chunk,
|
|
AsanChunk *right_chunk) {
|
|
if (!left_chunk)
|
|
return right_chunk;
|
|
if (!right_chunk)
|
|
return left_chunk;
|
|
// Prefer an allocated chunk over freed chunk and freed chunk
|
|
// over available chunk.
|
|
u8 left_state = atomic_load(&left_chunk->chunk_state, memory_order_relaxed);
|
|
u8 right_state =
|
|
atomic_load(&right_chunk->chunk_state, memory_order_relaxed);
|
|
if (left_state != right_state) {
|
|
if (left_state == CHUNK_ALLOCATED)
|
|
return left_chunk;
|
|
if (right_state == CHUNK_ALLOCATED)
|
|
return right_chunk;
|
|
if (left_state == CHUNK_QUARANTINE)
|
|
return left_chunk;
|
|
if (right_state == CHUNK_QUARANTINE)
|
|
return right_chunk;
|
|
}
|
|
// Same chunk_state: choose based on offset.
|
|
sptr l_offset = 0, r_offset = 0;
|
|
CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
|
|
CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
|
|
if (l_offset < r_offset)
|
|
return left_chunk;
|
|
return right_chunk;
|
|
}
|
|
|
|
bool UpdateAllocationStack(uptr addr, BufferedStackTrace *stack) {
|
|
AsanChunk *m = GetAsanChunkByAddr(addr);
|
|
if (!m) return false;
|
|
if (atomic_load(&m->chunk_state, memory_order_acquire) != CHUNK_ALLOCATED)
|
|
return false;
|
|
if (m->Beg() != addr) return false;
|
|
AsanThread *t = GetCurrentThread();
|
|
m->SetAllocContext(t ? t->tid() : kMainTid, StackDepotPut(*stack));
|
|
return true;
|
|
}
|
|
|
|
// -------------------- Allocation/Deallocation routines ---------------
|
|
void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack,
|
|
AllocType alloc_type, bool can_fill) {
|
|
if (UNLIKELY(!asan_inited))
|
|
AsanInitFromRtl();
|
|
if (RssLimitExceeded()) {
|
|
if (AllocatorMayReturnNull())
|
|
return nullptr;
|
|
ReportRssLimitExceeded(stack);
|
|
}
|
|
Flags &fl = *flags();
|
|
CHECK(stack);
|
|
const uptr min_alignment = SHADOW_GRANULARITY;
|
|
const uptr user_requested_alignment_log =
|
|
ComputeUserRequestedAlignmentLog(alignment);
|
|
if (alignment < min_alignment)
|
|
alignment = min_alignment;
|
|
if (size == 0) {
|
|
// We'd be happy to avoid allocating memory for zero-size requests, but
|
|
// some programs/tests depend on this behavior and assume that malloc
|
|
// would not return NULL even for zero-size allocations. Moreover, it
|
|
// looks like operator new should never return NULL, and results of
|
|
// consecutive "new" calls must be different even if the allocated size
|
|
// is zero.
|
|
size = 1;
|
|
}
|
|
CHECK(IsPowerOfTwo(alignment));
|
|
uptr rz_log = ComputeRZLog(size);
|
|
uptr rz_size = RZLog2Size(rz_log);
|
|
uptr rounded_size = RoundUpTo(Max(size, kChunkHeader2Size), alignment);
|
|
uptr needed_size = rounded_size + rz_size;
|
|
if (alignment > min_alignment)
|
|
needed_size += alignment;
|
|
// If we are allocating from the secondary allocator, there will be no
|
|
// automatic right redzone, so add the right redzone manually.
|
|
if (!PrimaryAllocator::CanAllocate(needed_size, alignment))
|
|
needed_size += rz_size;
|
|
CHECK(IsAligned(needed_size, min_alignment));
|
|
if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize ||
|
|
size > max_user_defined_malloc_size) {
|
|
if (AllocatorMayReturnNull()) {
|
|
Report("WARNING: AddressSanitizer failed to allocate 0x%zx bytes\n",
|
|
(void*)size);
|
|
return nullptr;
|
|
}
|
|
uptr malloc_limit =
|
|
Min(kMaxAllowedMallocSize, max_user_defined_malloc_size);
|
|
ReportAllocationSizeTooBig(size, needed_size, malloc_limit, stack);
|
|
}
|
|
|
|
AsanThread *t = GetCurrentThread();
|
|
void *allocated;
|
|
if (t) {
|
|
AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
|
|
allocated = allocator.Allocate(cache, needed_size, 8);
|
|
} else {
|
|
SpinMutexLock l(&fallback_mutex);
|
|
AllocatorCache *cache = &fallback_allocator_cache;
|
|
allocated = allocator.Allocate(cache, needed_size, 8);
|
|
}
|
|
if (UNLIKELY(!allocated)) {
|
|
SetAllocatorOutOfMemory();
|
|
if (AllocatorMayReturnNull())
|
|
return nullptr;
|
|
ReportOutOfMemory(size, stack);
|
|
}
|
|
|
|
if (*(u8 *)MEM_TO_SHADOW((uptr)allocated) == 0 && CanPoisonMemory()) {
|
|
// Heap poisoning is enabled, but the allocator provides an unpoisoned
|
|
// chunk. This is possible if CanPoisonMemory() was false for some
|
|
// time, for example, due to flags()->start_disabled.
|
|
// Anyway, poison the block before using it for anything else.
|
|
uptr allocated_size = allocator.GetActuallyAllocatedSize(allocated);
|
|
PoisonShadow((uptr)allocated, allocated_size, kAsanHeapLeftRedzoneMagic);
|
|
}
|
|
|
|
uptr alloc_beg = reinterpret_cast<uptr>(allocated);
|
|
uptr alloc_end = alloc_beg + needed_size;
|
|
uptr user_beg = alloc_beg + rz_size;
|
|
if (!IsAligned(user_beg, alignment))
|
|
user_beg = RoundUpTo(user_beg, alignment);
|
|
uptr user_end = user_beg + size;
|
|
CHECK_LE(user_end, alloc_end);
|
|
uptr chunk_beg = user_beg - kChunkHeaderSize;
|
|
AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
|
|
m->alloc_type = alloc_type;
|
|
CHECK(size);
|
|
m->SetUsedSize(size);
|
|
m->user_requested_alignment_log = user_requested_alignment_log;
|
|
|
|
m->SetAllocContext(t ? t->tid() : kMainTid, StackDepotPut(*stack));
|
|
|
|
uptr size_rounded_down_to_granularity =
|
|
RoundDownTo(size, SHADOW_GRANULARITY);
|
|
// Unpoison the bulk of the memory region.
|
|
if (size_rounded_down_to_granularity)
|
|
PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
|
|
// Deal with the end of the region if size is not aligned to granularity.
|
|
if (size != size_rounded_down_to_granularity && CanPoisonMemory()) {
|
|
u8 *shadow =
|
|
(u8 *)MemToShadow(user_beg + size_rounded_down_to_granularity);
|
|
*shadow = fl.poison_partial ? (size & (SHADOW_GRANULARITY - 1)) : 0;
|
|
}
|
|
|
|
AsanStats &thread_stats = GetCurrentThreadStats();
|
|
thread_stats.mallocs++;
|
|
thread_stats.malloced += size;
|
|
thread_stats.malloced_redzones += needed_size - size;
|
|
if (needed_size > SizeClassMap::kMaxSize)
|
|
thread_stats.malloc_large++;
|
|
else
|
|
thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++;
|
|
|
|
void *res = reinterpret_cast<void *>(user_beg);
|
|
if (can_fill && fl.max_malloc_fill_size) {
|
|
uptr fill_size = Min(size, (uptr)fl.max_malloc_fill_size);
|
|
REAL(memset)(res, fl.malloc_fill_byte, fill_size);
|
|
}
|
|
#if CAN_SANITIZE_LEAKS
|
|
m->lsan_tag = __lsan::DisabledInThisThread() ? __lsan::kIgnored
|
|
: __lsan::kDirectlyLeaked;
|
|
#endif
|
|
// Must be the last mutation of metadata in this function.
|
|
atomic_store(&m->chunk_state, CHUNK_ALLOCATED, memory_order_release);
|
|
if (alloc_beg != chunk_beg) {
|
|
CHECK_LE(alloc_beg + sizeof(LargeChunkHeader), chunk_beg);
|
|
reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(m);
|
|
}
|
|
ASAN_MALLOC_HOOK(res, size);
|
|
return res;
|
|
}
|
|
|
|
// Set quarantine flag if chunk is allocated, issue ASan error report on
|
|
// available and quarantined chunks. Return true on success, false otherwise.
|
|
bool AtomicallySetQuarantineFlagIfAllocated(AsanChunk *m, void *ptr,
|
|
BufferedStackTrace *stack) {
|
|
u8 old_chunk_state = CHUNK_ALLOCATED;
|
|
// Flip the chunk_state atomically to avoid race on double-free.
|
|
if (!atomic_compare_exchange_strong(&m->chunk_state, &old_chunk_state,
|
|
CHUNK_QUARANTINE,
|
|
memory_order_acquire)) {
|
|
ReportInvalidFree(ptr, old_chunk_state, stack);
|
|
// It's not safe to push a chunk in quarantine on invalid free.
|
|
return false;
|
|
}
|
|
CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state);
|
|
// It was a user data.
|
|
m->SetFreeContext(kInvalidTid, 0);
|
|
return true;
|
|
}
|
|
|
|
// Expects the chunk to already be marked as quarantined by using
|
|
// AtomicallySetQuarantineFlagIfAllocated.
|
|
void QuarantineChunk(AsanChunk *m, void *ptr, BufferedStackTrace *stack) {
|
|
CHECK_EQ(atomic_load(&m->chunk_state, memory_order_relaxed),
|
|
CHUNK_QUARANTINE);
|
|
AsanThread *t = GetCurrentThread();
|
|
m->SetFreeContext(t ? t->tid() : 0, StackDepotPut(*stack));
|
|
|
|
Flags &fl = *flags();
|
|
if (fl.max_free_fill_size > 0) {
|
|
// We have to skip the chunk header, it contains free_context_id.
|
|
uptr scribble_start = (uptr)m + kChunkHeaderSize + kChunkHeader2Size;
|
|
if (m->UsedSize() >= kChunkHeader2Size) { // Skip Header2 in user area.
|
|
uptr size_to_fill = m->UsedSize() - kChunkHeader2Size;
|
|
size_to_fill = Min(size_to_fill, (uptr)fl.max_free_fill_size);
|
|
REAL(memset)((void *)scribble_start, fl.free_fill_byte, size_to_fill);
|
|
}
|
|
}
|
|
|
|
// Poison the region.
|
|
PoisonShadow(m->Beg(),
|
|
RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
|
|
kAsanHeapFreeMagic);
|
|
|
|
AsanStats &thread_stats = GetCurrentThreadStats();
|
|
thread_stats.frees++;
|
|
thread_stats.freed += m->UsedSize();
|
|
|
|
// Push into quarantine.
|
|
if (t) {
|
|
AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
|
|
AllocatorCache *ac = GetAllocatorCache(ms);
|
|
quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac, stack), m,
|
|
m->UsedSize());
|
|
} else {
|
|
SpinMutexLock l(&fallback_mutex);
|
|
AllocatorCache *ac = &fallback_allocator_cache;
|
|
quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac, stack),
|
|
m, m->UsedSize());
|
|
}
|
|
}
|
|
|
|
void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment,
|
|
BufferedStackTrace *stack, AllocType alloc_type) {
|
|
uptr p = reinterpret_cast<uptr>(ptr);
|
|
if (p == 0) return;
|
|
|
|
uptr chunk_beg = p - kChunkHeaderSize;
|
|
AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
|
|
|
|
// On Windows, uninstrumented DLLs may allocate memory before ASan hooks
|
|
// malloc. Don't report an invalid free in this case.
|
|
if (SANITIZER_WINDOWS &&
|
|
!get_allocator().PointerIsMine(ptr)) {
|
|
if (!IsSystemHeapAddress(p))
|
|
ReportFreeNotMalloced(p, stack);
|
|
return;
|
|
}
|
|
|
|
ASAN_FREE_HOOK(ptr);
|
|
|
|
// Must mark the chunk as quarantined before any changes to its metadata.
|
|
// Do not quarantine given chunk if we failed to set CHUNK_QUARANTINE flag.
|
|
if (!AtomicallySetQuarantineFlagIfAllocated(m, ptr, stack)) return;
|
|
|
|
if (m->alloc_type != alloc_type) {
|
|
if (atomic_load(&alloc_dealloc_mismatch, memory_order_acquire)) {
|
|
ReportAllocTypeMismatch((uptr)ptr, stack, (AllocType)m->alloc_type,
|
|
(AllocType)alloc_type);
|
|
}
|
|
} else {
|
|
if (flags()->new_delete_type_mismatch &&
|
|
(alloc_type == FROM_NEW || alloc_type == FROM_NEW_BR) &&
|
|
((delete_size && delete_size != m->UsedSize()) ||
|
|
ComputeUserRequestedAlignmentLog(delete_alignment) !=
|
|
m->user_requested_alignment_log)) {
|
|
ReportNewDeleteTypeMismatch(p, delete_size, delete_alignment, stack);
|
|
}
|
|
}
|
|
|
|
QuarantineChunk(m, ptr, stack);
|
|
}
|
|
|
|
void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) {
|
|
CHECK(old_ptr && new_size);
|
|
uptr p = reinterpret_cast<uptr>(old_ptr);
|
|
uptr chunk_beg = p - kChunkHeaderSize;
|
|
AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
|
|
|
|
AsanStats &thread_stats = GetCurrentThreadStats();
|
|
thread_stats.reallocs++;
|
|
thread_stats.realloced += new_size;
|
|
|
|
void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC, true);
|
|
if (new_ptr) {
|
|
u8 chunk_state = atomic_load(&m->chunk_state, memory_order_acquire);
|
|
if (chunk_state != CHUNK_ALLOCATED)
|
|
ReportInvalidFree(old_ptr, chunk_state, stack);
|
|
CHECK_NE(REAL(memcpy), nullptr);
|
|
uptr memcpy_size = Min(new_size, m->UsedSize());
|
|
// If realloc() races with free(), we may start copying freed memory.
|
|
// However, we will report racy double-free later anyway.
|
|
REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
|
|
Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC);
|
|
}
|
|
return new_ptr;
|
|
}
|
|
|
|
void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
|
|
if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
|
|
if (AllocatorMayReturnNull())
|
|
return nullptr;
|
|
ReportCallocOverflow(nmemb, size, stack);
|
|
}
|
|
void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC, false);
|
|
// If the memory comes from the secondary allocator no need to clear it
|
|
// as it comes directly from mmap.
|
|
if (ptr && allocator.FromPrimary(ptr))
|
|
REAL(memset)(ptr, 0, nmemb * size);
|
|
return ptr;
|
|
}
|
|
|
|
void ReportInvalidFree(void *ptr, u8 chunk_state, BufferedStackTrace *stack) {
|
|
if (chunk_state == CHUNK_QUARANTINE)
|
|
ReportDoubleFree((uptr)ptr, stack);
|
|
else
|
|
ReportFreeNotMalloced((uptr)ptr, stack);
|
|
}
|
|
|
|
void CommitBack(AsanThreadLocalMallocStorage *ms, BufferedStackTrace *stack) {
|
|
AllocatorCache *ac = GetAllocatorCache(ms);
|
|
quarantine.Drain(GetQuarantineCache(ms), QuarantineCallback(ac, stack));
|
|
allocator.SwallowCache(ac);
|
|
}
|
|
|
|
// -------------------------- Chunk lookup ----------------------
|
|
|
|
// Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg).
|
|
// Returns nullptr if AsanChunk is not yet initialized just after
|
|
// get_allocator().Allocate(), or is being destroyed just before
|
|
// get_allocator().Deallocate().
|
|
AsanChunk *GetAsanChunk(void *alloc_beg) {
|
|
if (!alloc_beg)
|
|
return nullptr;
|
|
AsanChunk *p = reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Get();
|
|
if (!p) {
|
|
if (!allocator.FromPrimary(alloc_beg))
|
|
return nullptr;
|
|
p = reinterpret_cast<AsanChunk *>(alloc_beg);
|
|
}
|
|
u8 state = atomic_load(&p->chunk_state, memory_order_relaxed);
|
|
// It does not guaranty that Chunk is initialized, but it's
|
|
// definitely not for any other value.
|
|
if (state == CHUNK_ALLOCATED || state == CHUNK_QUARANTINE)
|
|
return p;
|
|
return nullptr;
|
|
}
|
|
|
|
AsanChunk *GetAsanChunkByAddr(uptr p) {
|
|
void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p));
|
|
return GetAsanChunk(alloc_beg);
|
|
}
|
|
|
|
// Allocator must be locked when this function is called.
|
|
AsanChunk *GetAsanChunkByAddrFastLocked(uptr p) {
|
|
void *alloc_beg =
|
|
allocator.GetBlockBeginFastLocked(reinterpret_cast<void *>(p));
|
|
return GetAsanChunk(alloc_beg);
|
|
}
|
|
|
|
uptr AllocationSize(uptr p) {
|
|
AsanChunk *m = GetAsanChunkByAddr(p);
|
|
if (!m) return 0;
|
|
if (atomic_load(&m->chunk_state, memory_order_acquire) != CHUNK_ALLOCATED)
|
|
return 0;
|
|
if (m->Beg() != p) return 0;
|
|
return m->UsedSize();
|
|
}
|
|
|
|
AsanChunkView FindHeapChunkByAddress(uptr addr) {
|
|
AsanChunk *m1 = GetAsanChunkByAddr(addr);
|
|
sptr offset = 0;
|
|
if (!m1 || AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
|
|
// The address is in the chunk's left redzone, so maybe it is actually
|
|
// a right buffer overflow from the other chunk to the left.
|
|
// Search a bit to the left to see if there is another chunk.
|
|
AsanChunk *m2 = nullptr;
|
|
for (uptr l = 1; l < GetPageSizeCached(); l++) {
|
|
m2 = GetAsanChunkByAddr(addr - l);
|
|
if (m2 == m1) continue; // Still the same chunk.
|
|
break;
|
|
}
|
|
if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
|
|
m1 = ChooseChunk(addr, m2, m1);
|
|
}
|
|
return AsanChunkView(m1);
|
|
}
|
|
|
|
void Purge(BufferedStackTrace *stack) {
|
|
AsanThread *t = GetCurrentThread();
|
|
if (t) {
|
|
AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
|
|
quarantine.DrainAndRecycle(GetQuarantineCache(ms),
|
|
QuarantineCallback(GetAllocatorCache(ms),
|
|
stack));
|
|
}
|
|
{
|
|
SpinMutexLock l(&fallback_mutex);
|
|
quarantine.DrainAndRecycle(&fallback_quarantine_cache,
|
|
QuarantineCallback(&fallback_allocator_cache,
|
|
stack));
|
|
}
|
|
|
|
allocator.ForceReleaseToOS();
|
|
}
|
|
|
|
void PrintStats() {
|
|
allocator.PrintStats();
|
|
quarantine.PrintStats();
|
|
}
|
|
|
|
void ForceLock() {
|
|
allocator.ForceLock();
|
|
fallback_mutex.Lock();
|
|
}
|
|
|
|
void ForceUnlock() {
|
|
fallback_mutex.Unlock();
|
|
allocator.ForceUnlock();
|
|
}
|
|
};
|
|
|
|
static Allocator instance(LINKER_INITIALIZED);
|
|
|
|
static AsanAllocator &get_allocator() {
|
|
return instance.allocator;
|
|
}
|
|
|
|
bool AsanChunkView::IsValid() const {
|
|
return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) !=
|
|
CHUNK_INVALID;
|
|
}
|
|
bool AsanChunkView::IsAllocated() const {
|
|
return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) ==
|
|
CHUNK_ALLOCATED;
|
|
}
|
|
bool AsanChunkView::IsQuarantined() const {
|
|
return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) ==
|
|
CHUNK_QUARANTINE;
|
|
}
|
|
uptr AsanChunkView::Beg() const { return chunk_->Beg(); }
|
|
uptr AsanChunkView::End() const { return Beg() + UsedSize(); }
|
|
uptr AsanChunkView::UsedSize() const { return chunk_->UsedSize(); }
|
|
u32 AsanChunkView::UserRequestedAlignment() const {
|
|
return Allocator::ComputeUserAlignment(chunk_->user_requested_alignment_log);
|
|
}
|
|
|
|
uptr AsanChunkView::AllocTid() const {
|
|
u32 tid = 0;
|
|
u32 stack = 0;
|
|
chunk_->GetAllocContext(tid, stack);
|
|
return tid;
|
|
}
|
|
|
|
uptr AsanChunkView::FreeTid() const {
|
|
if (!IsQuarantined())
|
|
return kInvalidTid;
|
|
u32 tid = 0;
|
|
u32 stack = 0;
|
|
chunk_->GetFreeContext(tid, stack);
|
|
return tid;
|
|
}
|
|
|
|
AllocType AsanChunkView::GetAllocType() const {
|
|
return (AllocType)chunk_->alloc_type;
|
|
}
|
|
|
|
static StackTrace GetStackTraceFromId(u32 id) {
|
|
CHECK(id);
|
|
StackTrace res = StackDepotGet(id);
|
|
CHECK(res.trace);
|
|
return res;
|
|
}
|
|
|
|
u32 AsanChunkView::GetAllocStackId() const {
|
|
u32 tid = 0;
|
|
u32 stack = 0;
|
|
chunk_->GetAllocContext(tid, stack);
|
|
return stack;
|
|
}
|
|
|
|
u32 AsanChunkView::GetFreeStackId() const {
|
|
if (!IsQuarantined())
|
|
return 0;
|
|
u32 tid = 0;
|
|
u32 stack = 0;
|
|
chunk_->GetFreeContext(tid, stack);
|
|
return stack;
|
|
}
|
|
|
|
StackTrace AsanChunkView::GetAllocStack() const {
|
|
return GetStackTraceFromId(GetAllocStackId());
|
|
}
|
|
|
|
StackTrace AsanChunkView::GetFreeStack() const {
|
|
return GetStackTraceFromId(GetFreeStackId());
|
|
}
|
|
|
|
void InitializeAllocator(const AllocatorOptions &options) {
|
|
instance.InitLinkerInitialized(options);
|
|
}
|
|
|
|
void ReInitializeAllocator(const AllocatorOptions &options) {
|
|
instance.ReInitialize(options);
|
|
}
|
|
|
|
void GetAllocatorOptions(AllocatorOptions *options) {
|
|
instance.GetOptions(options);
|
|
}
|
|
|
|
AsanChunkView FindHeapChunkByAddress(uptr addr) {
|
|
return instance.FindHeapChunkByAddress(addr);
|
|
}
|
|
AsanChunkView FindHeapChunkByAllocBeg(uptr addr) {
|
|
return AsanChunkView(instance.GetAsanChunk(reinterpret_cast<void*>(addr)));
|
|
}
|
|
|
|
void AsanThreadLocalMallocStorage::CommitBack() {
|
|
GET_STACK_TRACE_MALLOC;
|
|
instance.CommitBack(this, &stack);
|
|
}
|
|
|
|
void PrintInternalAllocatorStats() {
|
|
instance.PrintStats();
|
|
}
|
|
|
|
void asan_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) {
|
|
instance.Deallocate(ptr, 0, 0, stack, alloc_type);
|
|
}
|
|
|
|
void asan_delete(void *ptr, uptr size, uptr alignment,
|
|
BufferedStackTrace *stack, AllocType alloc_type) {
|
|
instance.Deallocate(ptr, size, alignment, stack, alloc_type);
|
|
}
|
|
|
|
void *asan_malloc(uptr size, BufferedStackTrace *stack) {
|
|
return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true));
|
|
}
|
|
|
|
void *asan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
|
|
return SetErrnoOnNull(instance.Calloc(nmemb, size, stack));
|
|
}
|
|
|
|
void *asan_reallocarray(void *p, uptr nmemb, uptr size,
|
|
BufferedStackTrace *stack) {
|
|
if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
|
|
errno = errno_ENOMEM;
|
|
if (AllocatorMayReturnNull())
|
|
return nullptr;
|
|
ReportReallocArrayOverflow(nmemb, size, stack);
|
|
}
|
|
return asan_realloc(p, nmemb * size, stack);
|
|
}
|
|
|
|
void *asan_realloc(void *p, uptr size, BufferedStackTrace *stack) {
|
|
if (!p)
|
|
return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true));
|
|
if (size == 0) {
|
|
if (flags()->allocator_frees_and_returns_null_on_realloc_zero) {
|
|
instance.Deallocate(p, 0, 0, stack, FROM_MALLOC);
|
|
return nullptr;
|
|
}
|
|
// Allocate a size of 1 if we shouldn't free() on Realloc to 0
|
|
size = 1;
|
|
}
|
|
return SetErrnoOnNull(instance.Reallocate(p, size, stack));
|
|
}
|
|
|
|
void *asan_valloc(uptr size, BufferedStackTrace *stack) {
|
|
return SetErrnoOnNull(
|
|
instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC, true));
|
|
}
|
|
|
|
void *asan_pvalloc(uptr size, BufferedStackTrace *stack) {
|
|
uptr PageSize = GetPageSizeCached();
|
|
if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
|
|
errno = errno_ENOMEM;
|
|
if (AllocatorMayReturnNull())
|
|
return nullptr;
|
|
ReportPvallocOverflow(size, stack);
|
|
}
|
|
// pvalloc(0) should allocate one page.
|
|
size = size ? RoundUpTo(size, PageSize) : PageSize;
|
|
return SetErrnoOnNull(
|
|
instance.Allocate(size, PageSize, stack, FROM_MALLOC, true));
|
|
}
|
|
|
|
void *asan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack,
|
|
AllocType alloc_type) {
|
|
if (UNLIKELY(!IsPowerOfTwo(alignment))) {
|
|
errno = errno_EINVAL;
|
|
if (AllocatorMayReturnNull())
|
|
return nullptr;
|
|
ReportInvalidAllocationAlignment(alignment, stack);
|
|
}
|
|
return SetErrnoOnNull(
|
|
instance.Allocate(size, alignment, stack, alloc_type, true));
|
|
}
|
|
|
|
void *asan_aligned_alloc(uptr alignment, uptr size, BufferedStackTrace *stack) {
|
|
if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
|
|
errno = errno_EINVAL;
|
|
if (AllocatorMayReturnNull())
|
|
return nullptr;
|
|
ReportInvalidAlignedAllocAlignment(size, alignment, stack);
|
|
}
|
|
return SetErrnoOnNull(
|
|
instance.Allocate(size, alignment, stack, FROM_MALLOC, true));
|
|
}
|
|
|
|
int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
|
|
BufferedStackTrace *stack) {
|
|
if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
|
|
if (AllocatorMayReturnNull())
|
|
return errno_EINVAL;
|
|
ReportInvalidPosixMemalignAlignment(alignment, stack);
|
|
}
|
|
void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC, true);
|
|
if (UNLIKELY(!ptr))
|
|
// OOM error is already taken care of by Allocate.
|
|
return errno_ENOMEM;
|
|
CHECK(IsAligned((uptr)ptr, alignment));
|
|
*memptr = ptr;
|
|
return 0;
|
|
}
|
|
|
|
uptr asan_malloc_usable_size(const void *ptr, uptr pc, uptr bp) {
|
|
if (!ptr) return 0;
|
|
uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr));
|
|
if (flags()->check_malloc_usable_size && (usable_size == 0)) {
|
|
GET_STACK_TRACE_FATAL(pc, bp);
|
|
ReportMallocUsableSizeNotOwned((uptr)ptr, &stack);
|
|
}
|
|
return usable_size;
|
|
}
|
|
|
|
uptr asan_mz_size(const void *ptr) {
|
|
return instance.AllocationSize(reinterpret_cast<uptr>(ptr));
|
|
}
|
|
|
|
void asan_mz_force_lock() {
|
|
instance.ForceLock();
|
|
}
|
|
|
|
void asan_mz_force_unlock() {
|
|
instance.ForceUnlock();
|
|
}
|
|
|
|
void AsanSoftRssLimitExceededCallback(bool limit_exceeded) {
|
|
instance.SetRssLimitExceeded(limit_exceeded);
|
|
}
|
|
|
|
} // namespace __asan
|
|
|
|
// --- Implementation of LSan-specific functions --- {{{1
|
|
namespace __lsan {
|
|
void LockAllocator() {
|
|
__asan::get_allocator().ForceLock();
|
|
}
|
|
|
|
void UnlockAllocator() {
|
|
__asan::get_allocator().ForceUnlock();
|
|
}
|
|
|
|
void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
|
|
*begin = (uptr)&__asan::get_allocator();
|
|
*end = *begin + sizeof(__asan::get_allocator());
|
|
}
|
|
|
|
uptr PointsIntoChunk(void *p) {
|
|
uptr addr = reinterpret_cast<uptr>(p);
|
|
__asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(addr);
|
|
if (!m || atomic_load(&m->chunk_state, memory_order_acquire) !=
|
|
__asan::CHUNK_ALLOCATED)
|
|
return 0;
|
|
uptr chunk = m->Beg();
|
|
if (m->AddrIsInside(addr))
|
|
return chunk;
|
|
if (IsSpecialCaseOfOperatorNew0(chunk, m->UsedSize(), addr))
|
|
return chunk;
|
|
return 0;
|
|
}
|
|
|
|
uptr GetUserBegin(uptr chunk) {
|
|
__asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(chunk);
|
|
return m ? m->Beg() : 0;
|
|
}
|
|
|
|
LsanMetadata::LsanMetadata(uptr chunk) {
|
|
metadata_ = chunk ? reinterpret_cast<void *>(chunk - __asan::kChunkHeaderSize)
|
|
: nullptr;
|
|
}
|
|
|
|
bool LsanMetadata::allocated() const {
|
|
if (!metadata_)
|
|
return false;
|
|
__asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
|
|
return atomic_load(&m->chunk_state, memory_order_relaxed) ==
|
|
__asan::CHUNK_ALLOCATED;
|
|
}
|
|
|
|
ChunkTag LsanMetadata::tag() const {
|
|
__asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
|
|
return static_cast<ChunkTag>(m->lsan_tag);
|
|
}
|
|
|
|
void LsanMetadata::set_tag(ChunkTag value) {
|
|
__asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
|
|
m->lsan_tag = value;
|
|
}
|
|
|
|
uptr LsanMetadata::requested_size() const {
|
|
__asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
|
|
return m->UsedSize();
|
|
}
|
|
|
|
u32 LsanMetadata::stack_trace_id() const {
|
|
__asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
|
|
u32 tid = 0;
|
|
u32 stack = 0;
|
|
m->GetAllocContext(tid, stack);
|
|
return stack;
|
|
}
|
|
|
|
void ForEachChunk(ForEachChunkCallback callback, void *arg) {
|
|
__asan::get_allocator().ForEachChunk(callback, arg);
|
|
}
|
|
|
|
IgnoreObjectResult IgnoreObjectLocked(const void *p) {
|
|
uptr addr = reinterpret_cast<uptr>(p);
|
|
__asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddr(addr);
|
|
if (!m ||
|
|
(atomic_load(&m->chunk_state, memory_order_acquire) !=
|
|
__asan::CHUNK_ALLOCATED) ||
|
|
!m->AddrIsInside(addr)) {
|
|
return kIgnoreObjectInvalid;
|
|
}
|
|
if (m->lsan_tag == kIgnored)
|
|
return kIgnoreObjectAlreadyIgnored;
|
|
m->lsan_tag = __lsan::kIgnored;
|
|
return kIgnoreObjectSuccess;
|
|
}
|
|
|
|
void GetAdditionalThreadContextPtrs(ThreadContextBase *tctx, void *ptrs) {
|
|
// Look for the arg pointer of threads that have been created or are running.
|
|
// This is necessary to prevent false positive leaks due to the AsanThread
|
|
// holding the only live reference to a heap object. This can happen because
|
|
// the `pthread_create()` interceptor doesn't wait for the child thread to
|
|
// start before returning and thus loosing the the only live reference to the
|
|
// heap object on the stack.
|
|
|
|
__asan::AsanThreadContext *atctx =
|
|
reinterpret_cast<__asan::AsanThreadContext *>(tctx);
|
|
__asan::AsanThread *asan_thread = atctx->thread;
|
|
|
|
// Note ThreadStatusRunning is required because there is a small window where
|
|
// the thread status switches to `ThreadStatusRunning` but the `arg` pointer
|
|
// still isn't on the stack yet.
|
|
if (atctx->status != ThreadStatusCreated &&
|
|
atctx->status != ThreadStatusRunning)
|
|
return;
|
|
|
|
uptr thread_arg = reinterpret_cast<uptr>(asan_thread->get_arg());
|
|
if (!thread_arg)
|
|
return;
|
|
|
|
auto ptrsVec = reinterpret_cast<InternalMmapVector<uptr> *>(ptrs);
|
|
ptrsVec->push_back(thread_arg);
|
|
}
|
|
|
|
} // namespace __lsan
|
|
|
|
// ---------------------- Interface ---------------- {{{1
|
|
using namespace __asan;
|
|
|
|
// ASan allocator doesn't reserve extra bytes, so normally we would
|
|
// just return "size". We don't want to expose our redzone sizes, etc here.
|
|
uptr __sanitizer_get_estimated_allocated_size(uptr size) {
|
|
return size;
|
|
}
|
|
|
|
int __sanitizer_get_ownership(const void *p) {
|
|
uptr ptr = reinterpret_cast<uptr>(p);
|
|
return instance.AllocationSize(ptr) > 0;
|
|
}
|
|
|
|
uptr __sanitizer_get_allocated_size(const void *p) {
|
|
if (!p) return 0;
|
|
uptr ptr = reinterpret_cast<uptr>(p);
|
|
uptr allocated_size = instance.AllocationSize(ptr);
|
|
// Die if p is not malloced or if it is already freed.
|
|
if (allocated_size == 0) {
|
|
GET_STACK_TRACE_FATAL_HERE;
|
|
ReportSanitizerGetAllocatedSizeNotOwned(ptr, &stack);
|
|
}
|
|
return allocated_size;
|
|
}
|
|
|
|
void __sanitizer_purge_allocator() {
|
|
GET_STACK_TRACE_MALLOC;
|
|
instance.Purge(&stack);
|
|
}
|
|
|
|
int __asan_update_allocation_context(void* addr) {
|
|
GET_STACK_TRACE_MALLOC;
|
|
return instance.UpdateAllocationStack((uptr)addr, &stack);
|
|
}
|
|
|
|
#if !SANITIZER_SUPPORTS_WEAK_HOOKS
|
|
// Provide default (no-op) implementation of malloc hooks.
|
|
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_malloc_hook,
|
|
void *ptr, uptr size) {
|
|
(void)ptr;
|
|
(void)size;
|
|
}
|
|
|
|
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_free_hook, void *ptr) {
|
|
(void)ptr;
|
|
}
|
|
#endif
|