forked from OSchip/llvm-project
172 lines
7.1 KiB
C++
172 lines
7.1 KiB
C++
//===-- xray_mips.cc --------------------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of XRay, a dynamic runtime instrumentation system.
|
|
//
|
|
// Implementation of MIPS-specific routines (32-bit).
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "sanitizer_common/sanitizer_common.h"
|
|
#include "xray_defs.h"
|
|
#include "xray_interface_internal.h"
|
|
#include <atomic>
|
|
|
|
namespace __xray {
|
|
|
|
// The machine codes for some instructions used in runtime patching.
|
|
enum PatchOpcodes : uint32_t {
|
|
PO_ADDIU = 0x24000000, // addiu rt, rs, imm
|
|
PO_SW = 0xAC000000, // sw rt, offset(sp)
|
|
PO_LUI = 0x3C000000, // lui rs, %hi(address)
|
|
PO_ORI = 0x34000000, // ori rt, rs, %lo(address)
|
|
PO_JALR = 0x0000F809, // jalr rs
|
|
PO_LW = 0x8C000000, // lw rt, offset(address)
|
|
PO_B44 = 0x1000000b, // b #44
|
|
PO_NOP = 0x0, // nop
|
|
};
|
|
|
|
enum RegNum : uint32_t {
|
|
RN_T0 = 0x8,
|
|
RN_T9 = 0x19,
|
|
RN_RA = 0x1F,
|
|
RN_SP = 0x1D,
|
|
};
|
|
|
|
inline static uint32_t encodeInstruction(uint32_t Opcode, uint32_t Rs,
|
|
uint32_t Rt,
|
|
uint32_t Imm) XRAY_NEVER_INSTRUMENT {
|
|
return (Opcode | Rs << 21 | Rt << 16 | Imm);
|
|
}
|
|
|
|
inline static uint32_t
|
|
encodeSpecialInstruction(uint32_t Opcode, uint32_t Rs, uint32_t Rt, uint32_t Rd,
|
|
uint32_t Imm) XRAY_NEVER_INSTRUMENT {
|
|
return (Rs << 21 | Rt << 16 | Rd << 11 | Imm << 6 | Opcode);
|
|
}
|
|
|
|
inline static bool patchSled(const bool Enable, const uint32_t FuncId,
|
|
const XRaySledEntry &Sled,
|
|
void (*TracingHook)()) XRAY_NEVER_INSTRUMENT {
|
|
// When |Enable| == true,
|
|
// We replace the following compile-time stub (sled):
|
|
//
|
|
// xray_sled_n:
|
|
// B .tmpN
|
|
// 11 NOPs (44 bytes)
|
|
// .tmpN
|
|
// ADDIU T9, T9, 44
|
|
//
|
|
// With the following runtime patch:
|
|
//
|
|
// xray_sled_n (32-bit):
|
|
// addiu sp, sp, -8 ;create stack frame
|
|
// nop
|
|
// sw ra, 4(sp) ;save return address
|
|
// sw t9, 0(sp) ;save register t9
|
|
// lui t9, %hi(__xray_FunctionEntry/Exit)
|
|
// ori t9, t9, %lo(__xray_FunctionEntry/Exit)
|
|
// lui t0, %hi(function_id)
|
|
// jalr t9 ;call Tracing hook
|
|
// ori t0, t0, %lo(function_id) ;pass function id (delay slot)
|
|
// lw t9, 0(sp) ;restore register t9
|
|
// lw ra, 4(sp) ;restore return address
|
|
// addiu sp, sp, 8 ;delete stack frame
|
|
//
|
|
// We add 44 bytes to t9 because we want to adjust the function pointer to
|
|
// the actual start of function i.e. the address just after the noop sled.
|
|
// We do this because gp displacement relocation is emitted at the start of
|
|
// of the function i.e after the nop sled and to correctly calculate the
|
|
// global offset table address, t9 must hold the address of the instruction
|
|
// containing the gp displacement relocation.
|
|
// FIXME: Is this correct for the static relocation model?
|
|
//
|
|
// Replacement of the first 4-byte instruction should be the last and atomic
|
|
// operation, so that the user code which reaches the sled concurrently
|
|
// either jumps over the whole sled, or executes the whole sled when the
|
|
// latter is ready.
|
|
//
|
|
// When |Enable|==false, we set back the first instruction in the sled to be
|
|
// B #44
|
|
|
|
if (Enable) {
|
|
uint32_t LoTracingHookAddr =
|
|
reinterpret_cast<int32_t>(TracingHook) & 0xffff;
|
|
uint32_t HiTracingHookAddr =
|
|
(reinterpret_cast<int32_t>(TracingHook) >> 16) & 0xffff;
|
|
uint32_t LoFunctionID = FuncId & 0xffff;
|
|
uint32_t HiFunctionID = (FuncId >> 16) & 0xffff;
|
|
*reinterpret_cast<uint32_t *>(Sled.Address + 8) = encodeInstruction(
|
|
PatchOpcodes::PO_SW, RegNum::RN_SP, RegNum::RN_RA, 0x4);
|
|
*reinterpret_cast<uint32_t *>(Sled.Address + 12) = encodeInstruction(
|
|
PatchOpcodes::PO_SW, RegNum::RN_SP, RegNum::RN_T9, 0x0);
|
|
*reinterpret_cast<uint32_t *>(Sled.Address + 16) = encodeInstruction(
|
|
PatchOpcodes::PO_LUI, 0x0, RegNum::RN_T9, HiTracingHookAddr);
|
|
*reinterpret_cast<uint32_t *>(Sled.Address + 20) = encodeInstruction(
|
|
PatchOpcodes::PO_ORI, RegNum::RN_T9, RegNum::RN_T9, LoTracingHookAddr);
|
|
*reinterpret_cast<uint32_t *>(Sled.Address + 24) = encodeInstruction(
|
|
PatchOpcodes::PO_LUI, 0x0, RegNum::RN_T0, HiFunctionID);
|
|
*reinterpret_cast<uint32_t *>(Sled.Address + 28) = encodeSpecialInstruction(
|
|
PatchOpcodes::PO_JALR, RegNum::RN_T9, 0x0, RegNum::RN_RA, 0X0);
|
|
*reinterpret_cast<uint32_t *>(Sled.Address + 32) = encodeInstruction(
|
|
PatchOpcodes::PO_ORI, RegNum::RN_T0, RegNum::RN_T0, LoFunctionID);
|
|
*reinterpret_cast<uint32_t *>(Sled.Address + 36) = encodeInstruction(
|
|
PatchOpcodes::PO_LW, RegNum::RN_SP, RegNum::RN_T9, 0x0);
|
|
*reinterpret_cast<uint32_t *>(Sled.Address + 40) = encodeInstruction(
|
|
PatchOpcodes::PO_LW, RegNum::RN_SP, RegNum::RN_RA, 0x4);
|
|
*reinterpret_cast<uint32_t *>(Sled.Address + 44) = encodeInstruction(
|
|
PatchOpcodes::PO_ADDIU, RegNum::RN_SP, RegNum::RN_SP, 0x8);
|
|
uint32_t CreateStackSpaceInstr = encodeInstruction(
|
|
PatchOpcodes::PO_ADDIU, RegNum::RN_SP, RegNum::RN_SP, 0xFFF8);
|
|
std::atomic_store_explicit(
|
|
reinterpret_cast<std::atomic<uint32_t> *>(Sled.Address),
|
|
uint32_t(CreateStackSpaceInstr), std::memory_order_release);
|
|
} else {
|
|
std::atomic_store_explicit(
|
|
reinterpret_cast<std::atomic<uint32_t> *>(Sled.Address),
|
|
uint32_t(PatchOpcodes::PO_B44), std::memory_order_release);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool patchFunctionEntry(const bool Enable, const uint32_t FuncId,
|
|
const XRaySledEntry &Sled,
|
|
void (*Trampoline)()) XRAY_NEVER_INSTRUMENT {
|
|
return patchSled(Enable, FuncId, Sled, Trampoline);
|
|
}
|
|
|
|
bool patchFunctionExit(const bool Enable, const uint32_t FuncId,
|
|
const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT {
|
|
return patchSled(Enable, FuncId, Sled, __xray_FunctionExit);
|
|
}
|
|
|
|
bool patchFunctionTailExit(const bool Enable, const uint32_t FuncId,
|
|
const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT {
|
|
// FIXME: In the future we'd need to distinguish between non-tail exits and
|
|
// tail exits for better information preservation.
|
|
return patchSled(Enable, FuncId, Sled, __xray_FunctionExit);
|
|
}
|
|
|
|
bool patchCustomEvent(const bool Enable, const uint32_t FuncId,
|
|
const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT {
|
|
// FIXME: Implement in mips?
|
|
return false;
|
|
}
|
|
|
|
bool patchTypedEvent(const bool Enable, const uint32_t FuncId,
|
|
const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT {
|
|
// FIXME: Implement in mips?
|
|
return false;
|
|
}
|
|
|
|
} // namespace __xray
|
|
|
|
extern "C" void __xray_ArgLoggerEntry() XRAY_NEVER_INSTRUMENT {
|
|
// FIXME: this will have to be implemented in the trampoline assembly file
|
|
}
|