llvm-project/lldb/source/Plugins/OperatingSystem/Python/OperatingSystemPython.cpp

427 lines
16 KiB
C++

//===-- OperatingSystemPython.cpp --------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLDB_DISABLE_PYTHON
#include "OperatingSystemPython.h"
// C Includes
// C++ Includes
// Other libraries and framework includes
#include "lldb/Core/ArchSpec.h"
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/RegisterValue.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Core/StructuredData.h"
#include "lldb/Core/ValueObjectVariable.h"
#include "lldb/Interpreter/CommandInterpreter.h"
#include "lldb/Interpreter/ScriptInterpreter.h"
#include "lldb/Symbol/ClangNamespaceDecl.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/VariableList.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/StopInfo.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/ThreadList.h"
#include "lldb/Target/Thread.h"
#include "Plugins/Process/Utility/DynamicRegisterInfo.h"
#include "Plugins/Process/Utility/RegisterContextDummy.h"
#include "Plugins/Process/Utility/RegisterContextMemory.h"
#include "Plugins/Process/Utility/ThreadMemory.h"
using namespace lldb;
using namespace lldb_private;
void
OperatingSystemPython::Initialize()
{
PluginManager::RegisterPlugin (GetPluginNameStatic(),
GetPluginDescriptionStatic(),
CreateInstance);
}
void
OperatingSystemPython::Terminate()
{
PluginManager::UnregisterPlugin (CreateInstance);
}
OperatingSystem *
OperatingSystemPython::CreateInstance (Process *process, bool force)
{
// Python OperatingSystem plug-ins must be requested by name, so force must be true
FileSpec python_os_plugin_spec (process->GetPythonOSPluginPath());
if (python_os_plugin_spec && python_os_plugin_spec.Exists())
{
std::unique_ptr<OperatingSystemPython> os_ap (new OperatingSystemPython (process, python_os_plugin_spec));
if (os_ap.get() && os_ap->IsValid())
return os_ap.release();
}
return NULL;
}
ConstString
OperatingSystemPython::GetPluginNameStatic()
{
static ConstString g_name("python");
return g_name;
}
const char *
OperatingSystemPython::GetPluginDescriptionStatic()
{
return "Operating system plug-in that gathers OS information from a python class that implements the necessary OperatingSystem functionality.";
}
OperatingSystemPython::OperatingSystemPython (lldb_private::Process *process, const FileSpec &python_module_path) :
OperatingSystem (process),
m_thread_list_valobj_sp (),
m_register_info_ap (),
m_interpreter (NULL),
m_python_object_sp ()
{
if (!process)
return;
TargetSP target_sp = process->CalculateTarget();
if (!target_sp)
return;
m_interpreter = target_sp->GetDebugger().GetCommandInterpreter().GetScriptInterpreter();
if (m_interpreter)
{
std::string os_plugin_class_name (python_module_path.GetFilename().AsCString(""));
if (!os_plugin_class_name.empty())
{
const bool init_session = false;
const bool allow_reload = true;
char python_module_path_cstr[PATH_MAX];
python_module_path.GetPath(python_module_path_cstr, sizeof(python_module_path_cstr));
Error error;
if (m_interpreter->LoadScriptingModule (python_module_path_cstr, allow_reload, init_session, error))
{
// Strip the ".py" extension if there is one
size_t py_extension_pos = os_plugin_class_name.rfind(".py");
if (py_extension_pos != std::string::npos)
os_plugin_class_name.erase (py_extension_pos);
// Add ".OperatingSystemPlugIn" to the module name to get a string like "modulename.OperatingSystemPlugIn"
os_plugin_class_name += ".OperatingSystemPlugIn";
StructuredData::ObjectSP object_sp =
m_interpreter->OSPlugin_CreatePluginObject(os_plugin_class_name.c_str(), process->CalculateProcess());
if (object_sp && object_sp->IsValid())
m_python_object_sp = object_sp;
}
}
}
}
OperatingSystemPython::~OperatingSystemPython ()
{
}
DynamicRegisterInfo *
OperatingSystemPython::GetDynamicRegisterInfo ()
{
if (m_register_info_ap.get() == NULL)
{
if (!m_interpreter || !m_python_object_sp)
return NULL;
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_OS));
if (log)
log->Printf ("OperatingSystemPython::GetDynamicRegisterInfo() fetching thread register definitions from python for pid %" PRIu64, m_process->GetID());
StructuredData::DictionarySP dictionary = m_interpreter->OSPlugin_RegisterInfo(m_python_object_sp);
if (!dictionary)
return NULL;
m_register_info_ap.reset(new DynamicRegisterInfo(*dictionary, m_process->GetTarget().GetArchitecture()));
assert (m_register_info_ap->GetNumRegisters() > 0);
assert (m_register_info_ap->GetNumRegisterSets() > 0);
}
return m_register_info_ap.get();
}
//------------------------------------------------------------------
// PluginInterface protocol
//------------------------------------------------------------------
ConstString
OperatingSystemPython::GetPluginName()
{
return GetPluginNameStatic();
}
uint32_t
OperatingSystemPython::GetPluginVersion()
{
return 1;
}
bool
OperatingSystemPython::UpdateThreadList (ThreadList &old_thread_list,
ThreadList &core_thread_list,
ThreadList &new_thread_list)
{
if (!m_interpreter || !m_python_object_sp)
return false;
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_OS));
// First thing we have to do is to try to get the API lock, and the run lock.
// We're going to change the thread content of the process, and we're going
// to use python, which requires the API lock to do it.
//
// If someone already has the API lock, that is ok, we just want to avoid
// external code from making new API calls while this call is happening.
//
// This is a recursive lock so we can grant it to any Python code called on
// the stack below us.
Target &target = m_process->GetTarget();
Mutex::Locker api_locker;
api_locker.TryLock(target.GetAPIMutex());
if (log)
log->Printf ("OperatingSystemPython::UpdateThreadList() fetching thread data from python for pid %" PRIu64, m_process->GetID());
// The threads that are in "new_thread_list" upon entry are the threads from the
// lldb_private::Process subclass, no memory threads will be in this list.
auto lock = m_interpreter->AcquireInterpreterLock(); // to make sure threads_list stays alive
StructuredData::ArraySP threads_list = m_interpreter->OSPlugin_ThreadsInfo(m_python_object_sp);
const uint32_t num_cores = core_thread_list.GetSize(false);
// Make a map so we can keep track of which cores were used from the
// core_thread list. Any real threads/cores that weren't used should
// later be put back into the "new_thread_list".
std::vector<bool> core_used_map(num_cores, false);
if (threads_list)
{
if (log)
{
StreamString strm;
threads_list->Dump(strm);
log->Printf("threads_list = %s", strm.GetString().c_str());
}
const uint32_t num_threads = threads_list->GetSize();
for (uint32_t i = 0; i < num_threads; ++i)
{
StructuredData::ObjectSP thread_dict_obj = threads_list->GetItemAtIndex(i);
if (auto thread_dict = thread_dict_obj->GetAsDictionary())
{
ThreadSP thread_sp(CreateThreadFromThreadInfo(*thread_dict, core_thread_list, old_thread_list, core_used_map, NULL));
if (thread_sp)
new_thread_list.AddThread(thread_sp);
}
}
}
// Any real core threads that didn't end up backing a memory thread should
// still be in the main thread list, and they should be inserted at the beginning
// of the list
uint32_t insert_idx = 0;
for (uint32_t core_idx = 0; core_idx < num_cores; ++core_idx)
{
if (core_used_map[core_idx] == false)
{
new_thread_list.InsertThread (core_thread_list.GetThreadAtIndex(core_idx, false), insert_idx);
++insert_idx;
}
}
return new_thread_list.GetSize(false) > 0;
}
ThreadSP
OperatingSystemPython::CreateThreadFromThreadInfo(StructuredData::Dictionary &thread_dict, ThreadList &core_thread_list,
ThreadList &old_thread_list, std::vector<bool> &core_used_map, bool *did_create_ptr)
{
ThreadSP thread_sp;
tid_t tid = LLDB_INVALID_THREAD_ID;
if (!thread_dict.GetValueForKeyAsInteger("tid", tid))
return ThreadSP();
uint32_t core_number;
addr_t reg_data_addr;
std::string name;
std::string queue;
thread_dict.GetValueForKeyAsInteger("core", core_number, UINT32_MAX);
thread_dict.GetValueForKeyAsInteger("register_data_addr", reg_data_addr, LLDB_INVALID_ADDRESS);
thread_dict.GetValueForKeyAsString("name", name);
thread_dict.GetValueForKeyAsString("queue", queue);
// See if a thread already exists for "tid"
thread_sp = old_thread_list.FindThreadByID(tid, false);
if (thread_sp)
{
// A thread already does exist for "tid", make sure it was an operating system
// plug-in generated thread.
if (!IsOperatingSystemPluginThread(thread_sp))
{
// We have thread ID overlap between the protocol threads and the
// operating system threads, clear the thread so we create an
// operating system thread for this.
thread_sp.reset();
}
}
if (!thread_sp)
{
if (did_create_ptr)
*did_create_ptr = true;
thread_sp.reset(new ThreadMemory(*m_process, tid, name.c_str(), queue.c_str(), reg_data_addr));
}
if (core_number < core_thread_list.GetSize(false))
{
ThreadSP core_thread_sp(core_thread_list.GetThreadAtIndex(core_number, false));
if (core_thread_sp)
{
// Keep track of which cores were set as the backing thread for memory threads...
if (core_number < core_used_map.size())
core_used_map[core_number] = true;
ThreadSP backing_core_thread_sp(core_thread_sp->GetBackingThread());
if (backing_core_thread_sp)
{
thread_sp->SetBackingThread(backing_core_thread_sp);
}
else
{
thread_sp->SetBackingThread(core_thread_sp);
}
}
}
return thread_sp;
}
void
OperatingSystemPython::ThreadWasSelected (Thread *thread)
{
}
RegisterContextSP
OperatingSystemPython::CreateRegisterContextForThread (Thread *thread, addr_t reg_data_addr)
{
RegisterContextSP reg_ctx_sp;
if (!m_interpreter || !m_python_object_sp || !thread)
return reg_ctx_sp;
if (!IsOperatingSystemPluginThread(thread->shared_from_this()))
return reg_ctx_sp;
// First thing we have to do is get the API lock, and the run lock. We're going to change the thread
// content of the process, and we're going to use python, which requires the API lock to do it.
// So get & hold that. This is a recursive lock so we can grant it to any Python code called on the stack below us.
Target &target = m_process->GetTarget();
Mutex::Locker api_locker (target.GetAPIMutex());
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
auto lock = m_interpreter->AcquireInterpreterLock(); // to make sure python objects stays alive
if (reg_data_addr != LLDB_INVALID_ADDRESS)
{
// The registers data is in contiguous memory, just create the register
// context using the address provided
if (log)
log->Printf ("OperatingSystemPython::CreateRegisterContextForThread (tid = 0x%" PRIx64 ", 0x%" PRIx64 ", reg_data_addr = 0x%" PRIx64 ") creating memory register context",
thread->GetID(),
thread->GetProtocolID(),
reg_data_addr);
reg_ctx_sp.reset (new RegisterContextMemory (*thread, 0, *GetDynamicRegisterInfo (), reg_data_addr));
}
else
{
// No register data address is provided, query the python plug-in to let
// it make up the data as it sees fit
if (log)
log->Printf ("OperatingSystemPython::CreateRegisterContextForThread (tid = 0x%" PRIx64 ", 0x%" PRIx64 ") fetching register data from python",
thread->GetID(),
thread->GetProtocolID());
StructuredData::StringSP reg_context_data = m_interpreter->OSPlugin_RegisterContextData(m_python_object_sp, thread->GetID());
if (reg_context_data)
{
std::string value = reg_context_data->GetValue();
DataBufferSP data_sp(new DataBufferHeap(value.c_str(), value.length()));
if (data_sp->GetByteSize())
{
RegisterContextMemory *reg_ctx_memory = new RegisterContextMemory (*thread, 0, *GetDynamicRegisterInfo (), LLDB_INVALID_ADDRESS);
if (reg_ctx_memory)
{
reg_ctx_sp.reset(reg_ctx_memory);
reg_ctx_memory->SetAllRegisterData (data_sp);
}
}
}
}
// if we still have no register data, fallback on a dummy context to avoid crashing
if (!reg_ctx_sp)
{
if (log)
log->Printf ("OperatingSystemPython::CreateRegisterContextForThread (tid = 0x%" PRIx64 ") forcing a dummy register context", thread->GetID());
reg_ctx_sp.reset(new RegisterContextDummy(*thread,0,target.GetArchitecture().GetAddressByteSize()));
}
return reg_ctx_sp;
}
StopInfoSP
OperatingSystemPython::CreateThreadStopReason (lldb_private::Thread *thread)
{
// We should have gotten the thread stop info from the dictionary of data for
// the thread in the initial call to get_thread_info(), this should have been
// cached so we can return it here
StopInfoSP stop_info_sp; //(StopInfo::CreateStopReasonWithSignal (*thread, SIGSTOP));
return stop_info_sp;
}
lldb::ThreadSP
OperatingSystemPython::CreateThread (lldb::tid_t tid, addr_t context)
{
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
if (log)
log->Printf ("OperatingSystemPython::CreateThread (tid = 0x%" PRIx64 ", context = 0x%" PRIx64 ") fetching register data from python", tid, context);
if (m_interpreter && m_python_object_sp)
{
// First thing we have to do is get the API lock, and the run lock. We're going to change the thread
// content of the process, and we're going to use python, which requires the API lock to do it.
// So get & hold that. This is a recursive lock so we can grant it to any Python code called on the stack below us.
Target &target = m_process->GetTarget();
Mutex::Locker api_locker (target.GetAPIMutex());
auto lock = m_interpreter->AcquireInterpreterLock(); // to make sure thread_info_dict stays alive
StructuredData::DictionarySP thread_info_dict = m_interpreter->OSPlugin_CreateThread(m_python_object_sp, tid, context);
std::vector<bool> core_used_map;
if (thread_info_dict)
{
ThreadList core_threads(m_process);
ThreadList &thread_list = m_process->GetThreadList();
bool did_create = false;
ThreadSP thread_sp(CreateThreadFromThreadInfo(*thread_info_dict, core_threads, thread_list, core_used_map, &did_create));
if (did_create)
thread_list.AddThread(thread_sp);
return thread_sp;
}
}
return ThreadSP();
}
#endif // #ifndef LLDB_DISABLE_PYTHON