forked from OSchip/llvm-project
866 lines
32 KiB
C++
866 lines
32 KiB
C++
//===- MLIRContext.cpp - MLIR Type Classes --------------------------------===//
|
|
//
|
|
// Copyright 2019 The MLIR Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
// =============================================================================
|
|
|
|
#include "mlir/IR/MLIRContext.h"
|
|
#include "AffineExprDetail.h"
|
|
#include "AffineMapDetail.h"
|
|
#include "AttributeDetail.h"
|
|
#include "IntegerSetDetail.h"
|
|
#include "LocationDetail.h"
|
|
#include "TypeDetail.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/Attributes.h"
|
|
#include "mlir/IR/Diagnostics.h"
|
|
#include "mlir/IR/Dialect.h"
|
|
#include "mlir/IR/Function.h"
|
|
#include "mlir/IR/Identifier.h"
|
|
#include "mlir/IR/IntegerSet.h"
|
|
#include "mlir/IR/Location.h"
|
|
#include "mlir/IR/Types.h"
|
|
#include "mlir/Support/STLExtras.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/RWMutex.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <memory>
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::detail;
|
|
|
|
using llvm::hash_combine;
|
|
using llvm::hash_combine_range;
|
|
|
|
/// A utility function to safely get or create a uniqued instance within the
|
|
/// given set container.
|
|
template <typename ValueT, typename DenseInfoT, typename KeyT,
|
|
typename ConstructorFn>
|
|
static ValueT safeGetOrCreate(DenseSet<ValueT, DenseInfoT> &container,
|
|
KeyT &&key, llvm::sys::SmartRWMutex<true> &mutex,
|
|
ConstructorFn &&constructorFn) {
|
|
{ // Check for an existing instance in read-only mode.
|
|
llvm::sys::SmartScopedReader<true> instanceLock(mutex);
|
|
auto it = container.find_as(key);
|
|
if (it != container.end())
|
|
return *it;
|
|
}
|
|
|
|
// Aquire a writer-lock so that we can safely create the new instance.
|
|
llvm::sys::SmartScopedWriter<true> instanceLock(mutex);
|
|
|
|
// Check for an existing instance again here, because another writer thread
|
|
// may have already created one.
|
|
auto existing = container.insert_as(ValueT(), key);
|
|
if (!existing.second)
|
|
return *existing.first;
|
|
|
|
// Otherwise, construct a new instance of the value.
|
|
return *existing.first = constructorFn();
|
|
}
|
|
|
|
/// A utility function to thread-safely get or create a uniqued instance within
|
|
/// the given vector container.
|
|
template <typename ValueT, typename ConstructorFn>
|
|
ValueT safeGetOrCreate(std::vector<ValueT> &container, unsigned position,
|
|
llvm::sys::SmartRWMutex<true> &mutex,
|
|
ConstructorFn &&constructorFn) {
|
|
{ // Check for an existing instance in read-only mode.
|
|
llvm::sys::SmartScopedReader<true> lock(mutex);
|
|
if (container.size() > position && container[position])
|
|
return container[position];
|
|
}
|
|
|
|
// Aquire a writer-lock so that we can safely create the new instance.
|
|
llvm::sys::SmartScopedWriter<true> lock(mutex);
|
|
|
|
// Check if we need to resize.
|
|
if (position >= container.size())
|
|
container.resize(position + 1, nullptr);
|
|
|
|
// Check for an existing instance again here, because another writer thread
|
|
// may have already created one.
|
|
auto *&result = container[position];
|
|
if (result)
|
|
return result;
|
|
|
|
return result = constructorFn();
|
|
}
|
|
|
|
/// A utility function to safely get or create a uniqued instance within the
|
|
/// given map container.
|
|
template <typename ContainerTy, typename KeyT, typename ConstructorFn>
|
|
static typename ContainerTy::mapped_type
|
|
safeGetOrCreate(ContainerTy &container, KeyT &&key,
|
|
llvm::sys::SmartRWMutex<true> &mutex,
|
|
ConstructorFn &&constructorFn) {
|
|
{ // Check for an existing instance in read-only mode.
|
|
llvm::sys::SmartScopedReader<true> instanceLock(mutex);
|
|
auto it = container.find(key);
|
|
if (it != container.end())
|
|
return it->second;
|
|
}
|
|
|
|
// Aquire a writer-lock so that we can safely create the new instance.
|
|
llvm::sys::SmartScopedWriter<true> instanceLock(mutex);
|
|
|
|
// Check for an existing instance again here, because another writer thread
|
|
// may have already created one.
|
|
auto *&result = container[key];
|
|
if (result)
|
|
return result;
|
|
|
|
// Otherwise, construct a new instance of the value.
|
|
return result = constructorFn();
|
|
}
|
|
|
|
namespace {
|
|
/// A builtin dialect to define types/etc that are necessary for the validity of
|
|
/// the IR.
|
|
struct BuiltinDialect : public Dialect {
|
|
BuiltinDialect(MLIRContext *context) : Dialect(/*name=*/"", context) {
|
|
addAttributes<AffineMapAttr, ArrayAttr, BoolAttr, DenseIntElementsAttr,
|
|
DenseFPElementsAttr, FloatAttr, FunctionAttr, IntegerAttr,
|
|
IntegerSetAttr, OpaqueAttr, OpaqueElementsAttr,
|
|
SparseElementsAttr, SplatElementsAttr, StringAttr, TypeAttr,
|
|
UnitAttr>();
|
|
addTypes<ComplexType, FloatType, FunctionType, IndexType, IntegerType,
|
|
MemRefType, NoneType, OpaqueType, RankedTensorType, TupleType,
|
|
UnrankedTensorType, VectorType>();
|
|
}
|
|
};
|
|
|
|
struct AffineMapKeyInfo : DenseMapInfo<AffineMap> {
|
|
// Affine maps are uniqued based on their dim/symbol counts and affine
|
|
// expressions.
|
|
using KeyTy = std::tuple<unsigned, unsigned, ArrayRef<AffineExpr>,
|
|
ArrayRef<AffineExpr>>;
|
|
using DenseMapInfo<AffineMap>::isEqual;
|
|
|
|
static unsigned getHashValue(const AffineMap &key) {
|
|
return getHashValue(KeyTy(key.getNumDims(), key.getNumSymbols(),
|
|
key.getResults(), key.getRangeSizes()));
|
|
}
|
|
|
|
static unsigned getHashValue(KeyTy key) {
|
|
return hash_combine(
|
|
std::get<0>(key), std::get<1>(key),
|
|
hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()),
|
|
hash_combine_range(std::get<3>(key).begin(), std::get<3>(key).end()));
|
|
}
|
|
|
|
static bool isEqual(const KeyTy &lhs, AffineMap rhs) {
|
|
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
|
|
return false;
|
|
return lhs == std::make_tuple(rhs.getNumDims(), rhs.getNumSymbols(),
|
|
rhs.getResults(), rhs.getRangeSizes());
|
|
}
|
|
};
|
|
|
|
struct IntegerSetKeyInfo : DenseMapInfo<IntegerSet> {
|
|
// Integer sets are uniqued based on their dim/symbol counts, affine
|
|
// expressions appearing in the LHS of constraints, and eqFlags.
|
|
using KeyTy =
|
|
std::tuple<unsigned, unsigned, ArrayRef<AffineExpr>, ArrayRef<bool>>;
|
|
using DenseMapInfo<IntegerSet>::isEqual;
|
|
|
|
static unsigned getHashValue(const IntegerSet &key) {
|
|
return getHashValue(KeyTy(key.getNumDims(), key.getNumSymbols(),
|
|
key.getConstraints(), key.getEqFlags()));
|
|
}
|
|
|
|
static unsigned getHashValue(KeyTy key) {
|
|
return hash_combine(
|
|
std::get<0>(key), std::get<1>(key),
|
|
hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()),
|
|
hash_combine_range(std::get<3>(key).begin(), std::get<3>(key).end()));
|
|
}
|
|
|
|
static bool isEqual(const KeyTy &lhs, IntegerSet rhs) {
|
|
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
|
|
return false;
|
|
return lhs == std::make_tuple(rhs.getNumDims(), rhs.getNumSymbols(),
|
|
rhs.getConstraints(), rhs.getEqFlags());
|
|
}
|
|
};
|
|
|
|
struct AttributeListKeyInfo : DenseMapInfo<AttributeListStorage *> {
|
|
// Array attributes are uniqued based on their elements.
|
|
using KeyTy = ArrayRef<NamedAttribute>;
|
|
using DenseMapInfo<AttributeListStorage *>::isEqual;
|
|
|
|
static unsigned getHashValue(AttributeListStorage *key) {
|
|
return getHashValue(KeyTy(key->getElements()));
|
|
}
|
|
|
|
static unsigned getHashValue(KeyTy key) {
|
|
return hash_combine_range(key.begin(), key.end());
|
|
}
|
|
|
|
static bool isEqual(const KeyTy &lhs, const AttributeListStorage *rhs) {
|
|
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
|
|
return false;
|
|
return lhs == rhs->getElements();
|
|
}
|
|
};
|
|
|
|
struct CallSiteLocationKeyInfo : DenseMapInfo<CallSiteLocationStorage *> {
|
|
// Call locations are uniqued based on their held concret location
|
|
// and the caller location.
|
|
using KeyTy = std::pair<Location, Location>;
|
|
using DenseMapInfo<CallSiteLocationStorage *>::isEqual;
|
|
|
|
static unsigned getHashValue(CallSiteLocationStorage *key) {
|
|
return getHashValue(KeyTy(key->callee, key->caller));
|
|
}
|
|
|
|
static unsigned getHashValue(KeyTy key) {
|
|
return hash_combine(key.first, key.second);
|
|
}
|
|
|
|
static bool isEqual(const KeyTy &lhs, const CallSiteLocationStorage *rhs) {
|
|
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
|
|
return false;
|
|
return lhs == std::make_pair(rhs->callee, rhs->caller);
|
|
}
|
|
};
|
|
|
|
struct FusedLocKeyInfo : DenseMapInfo<FusedLocationStorage *> {
|
|
// Fused locations are uniqued based on their held locations and an optional
|
|
// metadata attribute.
|
|
using KeyTy = std::pair<ArrayRef<Location>, Attribute>;
|
|
using DenseMapInfo<FusedLocationStorage *>::isEqual;
|
|
|
|
static unsigned getHashValue(FusedLocationStorage *key) {
|
|
return getHashValue(KeyTy(key->getLocations(), key->metadata));
|
|
}
|
|
|
|
static unsigned getHashValue(KeyTy key) {
|
|
return hash_combine(hash_combine_range(key.first.begin(), key.first.end()),
|
|
key.second);
|
|
}
|
|
|
|
static bool isEqual(const KeyTy &lhs, const FusedLocationStorage *rhs) {
|
|
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
|
|
return false;
|
|
return lhs == std::make_pair(rhs->getLocations(), rhs->metadata);
|
|
}
|
|
};
|
|
} // end anonymous namespace.
|
|
|
|
namespace mlir {
|
|
/// This is the implementation of the MLIRContext class, using the pImpl idiom.
|
|
/// This class is completely private to this file, so everything is public.
|
|
class MLIRContextImpl {
|
|
public:
|
|
//===--------------------------------------------------------------------===//
|
|
// Location uniquing
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
// Location allocator and mutex for thread safety.
|
|
llvm::BumpPtrAllocator locationAllocator;
|
|
llvm::sys::SmartRWMutex<true> locationMutex;
|
|
|
|
/// The singleton for UnknownLoc.
|
|
UnknownLocationStorage theUnknownLoc;
|
|
|
|
/// These are filename locations uniqued into this MLIRContext.
|
|
llvm::StringMap<char, llvm::BumpPtrAllocator &> filenames;
|
|
|
|
/// FileLineColLoc uniquing.
|
|
DenseMap<std::tuple<const char *, unsigned, unsigned>,
|
|
FileLineColLocationStorage *>
|
|
fileLineColLocs;
|
|
|
|
/// NameLocation uniquing.
|
|
DenseMap<const char *, NameLocationStorage *> nameLocs;
|
|
|
|
/// CallLocation uniquing.
|
|
DenseSet<CallSiteLocationStorage *, CallSiteLocationKeyInfo> callLocs;
|
|
|
|
/// FusedLoc uniquing.
|
|
using FusedLocations = DenseSet<FusedLocationStorage *, FusedLocKeyInfo>;
|
|
FusedLocations fusedLocs;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Identifier uniquing
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
// Identifier allocator and mutex for thread safety.
|
|
llvm::BumpPtrAllocator identifierAllocator;
|
|
llvm::sys::SmartRWMutex<true> identifierMutex;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Diagnostics
|
|
//===--------------------------------------------------------------------===//
|
|
DiagnosticEngine diagEngine;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Other
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// A general purpose mutex to lock access to parts of the context that do not
|
|
/// have a more specific mutex, e.g. registry operations.
|
|
llvm::sys::SmartRWMutex<true> contextMutex;
|
|
|
|
/// This is a list of dialects that are created referring to this context.
|
|
/// The MLIRContext owns the objects.
|
|
std::vector<std::unique_ptr<Dialect>> dialects;
|
|
|
|
/// This is a mapping from operation name to AbstractOperation for registered
|
|
/// operations.
|
|
llvm::StringMap<AbstractOperation> registeredOperations;
|
|
|
|
/// This is a mapping from class identifier to Dialect for registered
|
|
/// attributes and types.
|
|
DenseMap<const ClassID *, Dialect *> registeredDialectSymbols;
|
|
|
|
/// These are identifiers uniqued into this MLIRContext.
|
|
llvm::StringMap<char, llvm::BumpPtrAllocator &> identifiers;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Affine uniquing
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
// Affine allocator and mutex for thread safety.
|
|
llvm::BumpPtrAllocator affineAllocator;
|
|
llvm::sys::SmartRWMutex<true> affineMutex;
|
|
|
|
// Affine map uniquing.
|
|
using AffineMapSet = DenseSet<AffineMap, AffineMapKeyInfo>;
|
|
AffineMapSet affineMaps;
|
|
|
|
// Integer set uniquing.
|
|
using IntegerSets = DenseSet<IntegerSet, IntegerSetKeyInfo>;
|
|
IntegerSets integerSets;
|
|
|
|
// Affine expression uniqui'ing.
|
|
StorageUniquer affineUniquer;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Type uniquing
|
|
//===--------------------------------------------------------------------===//
|
|
StorageUniquer typeUniquer;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Attribute uniquing
|
|
//===--------------------------------------------------------------------===//
|
|
StorageUniquer attributeUniquer;
|
|
|
|
// Attribute list allocator and mutex for thread safety.
|
|
llvm::BumpPtrAllocator attributeAllocator;
|
|
llvm::sys::SmartRWMutex<true> attributeMutex;
|
|
|
|
using AttributeListSet =
|
|
DenseSet<AttributeListStorage *, AttributeListKeyInfo>;
|
|
AttributeListSet attributeLists;
|
|
|
|
public:
|
|
MLIRContextImpl()
|
|
: filenames(locationAllocator), identifiers(identifierAllocator) {}
|
|
};
|
|
} // end namespace mlir
|
|
|
|
MLIRContext::MLIRContext() : impl(new MLIRContextImpl()) {
|
|
new BuiltinDialect(this);
|
|
registerAllDialects(this);
|
|
}
|
|
|
|
MLIRContext::~MLIRContext() {}
|
|
|
|
/// Copy the specified array of elements into memory managed by the provided
|
|
/// bump pointer allocator. This assumes the elements are all PODs.
|
|
template <typename T>
|
|
static ArrayRef<T> copyArrayRefInto(llvm::BumpPtrAllocator &allocator,
|
|
ArrayRef<T> elements) {
|
|
auto result = allocator.Allocate<T>(elements.size());
|
|
std::uninitialized_copy(elements.begin(), elements.end(), result);
|
|
return ArrayRef<T>(result, elements.size());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Diagnostic Handlers
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Helper function used to emit a diagnostic with an optionally empty twine
|
|
/// message. If the message is empty, then it is not inserted into the
|
|
/// diagnostic.
|
|
static InFlightDiagnostic emitDiag(MLIRContextImpl &ctx, Location location,
|
|
DiagnosticSeverity severity,
|
|
const llvm::Twine &message) {
|
|
auto diag = ctx.diagEngine.emit(location, severity);
|
|
if (!message.isTriviallyEmpty())
|
|
diag << message;
|
|
return diag;
|
|
}
|
|
|
|
InFlightDiagnostic MLIRContext::emitError(Location location) {
|
|
return emitError(location, /*message=*/{});
|
|
}
|
|
InFlightDiagnostic MLIRContext::emitError(Location location,
|
|
const llvm::Twine &message) {
|
|
return emitDiag(getImpl(), location, DiagnosticSeverity::Error, message);
|
|
}
|
|
|
|
/// Emit a warning message using the diagnostic engine.
|
|
InFlightDiagnostic MLIRContext::emitWarning(Location location) {
|
|
return emitWarning(location, /*message=*/{});
|
|
}
|
|
InFlightDiagnostic MLIRContext::emitWarning(Location location,
|
|
const Twine &message) {
|
|
return emitDiag(getImpl(), location, DiagnosticSeverity::Warning, message);
|
|
}
|
|
|
|
/// Emit a remark message using the diagnostic engine.
|
|
InFlightDiagnostic MLIRContext::emitRemark(Location location) {
|
|
return emitRemark(location, /*message=*/{});
|
|
}
|
|
InFlightDiagnostic MLIRContext::emitRemark(Location location,
|
|
const Twine &message) {
|
|
return emitDiag(getImpl(), location, DiagnosticSeverity::Remark, message);
|
|
}
|
|
|
|
/// Returns the diagnostic engine for this context.
|
|
DiagnosticEngine &MLIRContext::getDiagEngine() { return getImpl().diagEngine; }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Dialect and Operation Registration
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Return information about all registered IR dialects.
|
|
std::vector<Dialect *> MLIRContext::getRegisteredDialects() {
|
|
// Lock access to the context registry.
|
|
llvm::sys::SmartScopedReader<true> registryLock(getImpl().contextMutex);
|
|
|
|
std::vector<Dialect *> result;
|
|
result.reserve(getImpl().dialects.size());
|
|
for (auto &dialect : getImpl().dialects)
|
|
result.push_back(dialect.get());
|
|
return result;
|
|
}
|
|
|
|
/// Get a registered IR dialect with the given namespace. If none is found,
|
|
/// then return nullptr.
|
|
Dialect *MLIRContext::getRegisteredDialect(StringRef name) {
|
|
// Lock access to the context registry.
|
|
llvm::sys::SmartScopedReader<true> registryLock(getImpl().contextMutex);
|
|
for (auto &dialect : getImpl().dialects)
|
|
if (name == dialect->getNamespace())
|
|
return dialect.get();
|
|
return nullptr;
|
|
}
|
|
|
|
/// Register this dialect object with the specified context. The context
|
|
/// takes ownership of the heap allocated dialect.
|
|
void Dialect::registerDialect(MLIRContext *context) {
|
|
auto &impl = context->getImpl();
|
|
|
|
// Lock access to the context registry.
|
|
llvm::sys::SmartScopedWriter<true> registryLock(impl.contextMutex);
|
|
// Abort if dialect with namespace has already been registered.
|
|
if (llvm::any_of(impl.dialects, [this](std::unique_ptr<Dialect> &dialect) {
|
|
return dialect->getNamespace() == getNamespace();
|
|
})) {
|
|
llvm::report_fatal_error("a dialect with namespace '" +
|
|
Twine(getNamespace()) +
|
|
"' has already been registered");
|
|
}
|
|
impl.dialects.push_back(std::unique_ptr<Dialect>(this));
|
|
}
|
|
|
|
/// Return information about all registered operations. This isn't very
|
|
/// efficient, typically you should ask the operations about their properties
|
|
/// directly.
|
|
std::vector<AbstractOperation *> MLIRContext::getRegisteredOperations() {
|
|
std::vector<std::pair<StringRef, AbstractOperation *>> opsToSort;
|
|
|
|
{ // Lock access to the context registry.
|
|
llvm::sys::SmartScopedReader<true> registryLock(getImpl().contextMutex);
|
|
|
|
// We just have the operations in a non-deterministic hash table order. Dump
|
|
// into a temporary array, then sort it by operation name to get a stable
|
|
// ordering.
|
|
llvm::StringMap<AbstractOperation> ®isteredOps =
|
|
getImpl().registeredOperations;
|
|
|
|
opsToSort.reserve(registeredOps.size());
|
|
for (auto &elt : registeredOps)
|
|
opsToSort.push_back({elt.first(), &elt.second});
|
|
}
|
|
|
|
llvm::array_pod_sort(opsToSort.begin(), opsToSort.end());
|
|
|
|
std::vector<AbstractOperation *> result;
|
|
result.reserve(opsToSort.size());
|
|
for (auto &elt : opsToSort)
|
|
result.push_back(elt.second);
|
|
return result;
|
|
}
|
|
|
|
void Dialect::addOperation(AbstractOperation opInfo) {
|
|
assert(opInfo.name.split('.').first == getNamespace() &&
|
|
"op name doesn't start with dialect namespace");
|
|
assert(&opInfo.dialect == this && "Dialect object mismatch");
|
|
auto &impl = context->getImpl();
|
|
|
|
// Lock access to the context registry.
|
|
llvm::sys::SmartScopedWriter<true> registryLock(impl.contextMutex);
|
|
if (!impl.registeredOperations.insert({opInfo.name, opInfo}).second) {
|
|
llvm::errs() << "error: operation named '" << opInfo.name
|
|
<< "' is already registered.\n";
|
|
abort();
|
|
}
|
|
}
|
|
|
|
/// Register a dialect-specific symbol(e.g. type) with the current context.
|
|
void Dialect::addSymbol(const ClassID *const classID) {
|
|
auto &impl = context->getImpl();
|
|
|
|
// Lock access to the context registry.
|
|
llvm::sys::SmartScopedWriter<true> registryLock(impl.contextMutex);
|
|
if (!impl.registeredDialectSymbols.insert({classID, this}).second) {
|
|
llvm::errs() << "error: dialect symbol already registered.\n";
|
|
abort();
|
|
}
|
|
}
|
|
|
|
/// Look up the specified operation in the operation set and return a pointer
|
|
/// to it if present. Otherwise, return a null pointer.
|
|
const AbstractOperation *AbstractOperation::lookup(StringRef opName,
|
|
MLIRContext *context) {
|
|
auto &impl = context->getImpl();
|
|
|
|
// Lock access to the context registry.
|
|
llvm::sys::SmartScopedReader<true> registryLock(impl.contextMutex);
|
|
auto it = impl.registeredOperations.find(opName);
|
|
if (it != impl.registeredOperations.end())
|
|
return &it->second;
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Identifier uniquing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Return an identifier for the specified string.
|
|
Identifier Identifier::get(StringRef str, MLIRContext *context) {
|
|
assert(!str.empty() && "Cannot create an empty identifier");
|
|
assert(str.find('\0') == StringRef::npos &&
|
|
"Cannot create an identifier with a nul character");
|
|
|
|
auto &impl = context->getImpl();
|
|
|
|
{ // Check for an existing identifier in read-only mode.
|
|
llvm::sys::SmartScopedReader<true> contextLock(impl.identifierMutex);
|
|
auto it = impl.identifiers.find(str);
|
|
if (it != impl.identifiers.end())
|
|
return Identifier(it->getKeyData());
|
|
}
|
|
|
|
// Aquire a writer-lock so that we can safely create the new instance.
|
|
llvm::sys::SmartScopedWriter<true> contextLock(impl.identifierMutex);
|
|
auto it = impl.identifiers.insert({str, char()}).first;
|
|
return Identifier(it->getKeyData());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Location uniquing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
UnknownLoc UnknownLoc::get(MLIRContext *context) {
|
|
return &context->getImpl().theUnknownLoc;
|
|
}
|
|
|
|
UniquedFilename UniquedFilename::get(StringRef filename, MLIRContext *context) {
|
|
auto &impl = context->getImpl();
|
|
|
|
// Aquire a writer-lock so that we can safely create the new instance.
|
|
llvm::sys::SmartScopedWriter<true> locationLock(impl.locationMutex);
|
|
auto it = impl.filenames.insert({filename, char()}).first;
|
|
return UniquedFilename(it->getKeyData());
|
|
}
|
|
|
|
FileLineColLoc FileLineColLoc::get(UniquedFilename filename, unsigned line,
|
|
unsigned column, MLIRContext *context) {
|
|
auto &impl = context->getImpl();
|
|
|
|
// Safely get or create a location instance.
|
|
auto key = std::make_tuple(filename.data(), line, column);
|
|
return safeGetOrCreate(impl.fileLineColLocs, key, impl.locationMutex, [&] {
|
|
return new (impl.locationAllocator.Allocate<FileLineColLocationStorage>())
|
|
FileLineColLocationStorage(filename, line, column);
|
|
});
|
|
}
|
|
|
|
NameLoc NameLoc::get(Identifier name, Location child, MLIRContext *context) {
|
|
auto &impl = context->getImpl();
|
|
assert(!child.isa<NameLoc>() &&
|
|
"a NameLoc cannot be used as a child of another NameLoc");
|
|
|
|
// Safely get or create a location instance.
|
|
return safeGetOrCreate(impl.nameLocs, name.data(), impl.locationMutex, [&] {
|
|
return new (impl.locationAllocator.Allocate<NameLocationStorage>())
|
|
NameLocationStorage(name, child);
|
|
});
|
|
}
|
|
|
|
CallSiteLoc CallSiteLoc::get(Location callee, Location caller,
|
|
MLIRContext *context) {
|
|
auto &impl = context->getImpl();
|
|
|
|
// Safely get or create a location instance.
|
|
auto key = std::make_pair(callee, caller);
|
|
return safeGetOrCreate(impl.callLocs, key, impl.locationMutex, [&] {
|
|
return new (impl.locationAllocator.Allocate<CallSiteLocationStorage>())
|
|
CallSiteLocationStorage(callee, caller);
|
|
});
|
|
}
|
|
|
|
Location FusedLoc::get(ArrayRef<Location> locs, Attribute metadata,
|
|
MLIRContext *context) {
|
|
// Unique the set of locations to be fused.
|
|
llvm::SmallSetVector<Location, 4> decomposedLocs;
|
|
for (auto loc : locs) {
|
|
// If the location is a fused location we decompose it if it has no
|
|
// metadata or the metadata is the same as the top level metadata.
|
|
if (auto fusedLoc = loc.dyn_cast<FusedLoc>()) {
|
|
if (fusedLoc->getMetadata() == metadata) {
|
|
// UnknownLoc's have already been removed from FusedLocs so we can
|
|
// simply add all of the internal locations.
|
|
decomposedLocs.insert(fusedLoc->getLocations().begin(),
|
|
fusedLoc->getLocations().end());
|
|
continue;
|
|
}
|
|
}
|
|
// Otherwise, only add known locations to the set.
|
|
if (!loc.isa<UnknownLoc>())
|
|
decomposedLocs.insert(loc);
|
|
}
|
|
locs = decomposedLocs.getArrayRef();
|
|
|
|
// Handle the simple cases of less than two locations.
|
|
if (locs.empty())
|
|
return UnknownLoc::get(context);
|
|
if (locs.size() == 1)
|
|
return locs.front();
|
|
|
|
auto &impl = context->getImpl();
|
|
|
|
// Safely get or create a location instance.
|
|
auto key = std::make_pair(locs, metadata);
|
|
return safeGetOrCreate(impl.fusedLocs, key, impl.locationMutex, [&] {
|
|
auto byteSize =
|
|
FusedLocationStorage::totalSizeToAlloc<Location>(locs.size());
|
|
auto rawMem = impl.locationAllocator.Allocate(
|
|
byteSize, alignof(FusedLocationStorage));
|
|
auto result = new (rawMem) FusedLocationStorage(locs.size(), metadata);
|
|
|
|
std::uninitialized_copy(locs.begin(), locs.end(),
|
|
result->getTrailingObjects<Location>());
|
|
return result;
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type uniquing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static Dialect &lookupDialectForSymbol(MLIRContext *ctx,
|
|
const ClassID *const classID) {
|
|
auto &impl = ctx->getImpl();
|
|
auto it = impl.registeredDialectSymbols.find(classID);
|
|
assert(it != impl.registeredDialectSymbols.end() &&
|
|
"symbol is not registered.");
|
|
return *it->second;
|
|
}
|
|
|
|
/// Returns the storage unqiuer used for constructing type storage instances.
|
|
/// This should not be used directly.
|
|
StorageUniquer &MLIRContext::getTypeUniquer() { return getImpl().typeUniquer; }
|
|
|
|
/// Get the dialect that registered the type with the provided typeid.
|
|
Dialect &TypeUniquer::lookupDialectForType(MLIRContext *ctx,
|
|
const ClassID *const typeID) {
|
|
return lookupDialectForSymbol(ctx, typeID);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Attribute uniquing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Returns the storage uniquer used for constructing attribute storage
|
|
/// instances. This should not be used directly.
|
|
StorageUniquer &MLIRContext::getAttributeUniquer() {
|
|
return getImpl().attributeUniquer;
|
|
}
|
|
|
|
/// Returns a functor used to initialize new attribute storage instances.
|
|
std::function<void(AttributeStorage *)>
|
|
AttributeUniquer::getInitFn(MLIRContext *ctx, const ClassID *const attrID) {
|
|
return [ctx, attrID](AttributeStorage *storage) {
|
|
storage->initializeDialect(lookupDialectForSymbol(ctx, attrID));
|
|
|
|
// If the attribute did not provide a type, then default to NoneType.
|
|
if (!storage->getType())
|
|
storage->setType(NoneType::get(ctx));
|
|
};
|
|
}
|
|
|
|
/// Perform a three-way comparison between the names of the specified
|
|
/// NamedAttributes.
|
|
static int compareNamedAttributes(const NamedAttribute *lhs,
|
|
const NamedAttribute *rhs) {
|
|
return lhs->first.str().compare(rhs->first.str());
|
|
}
|
|
|
|
/// Given a list of NamedAttribute's, canonicalize the list (sorting
|
|
/// by name) and return the unique'd result. Note that the empty list is
|
|
/// represented with a null pointer.
|
|
AttributeListStorage *
|
|
AttributeListStorage::get(ArrayRef<NamedAttribute> attrs) {
|
|
// We need to sort the element list to canonicalize it, but we also don't want
|
|
// to do a ton of work in the super common case where the element list is
|
|
// already sorted.
|
|
SmallVector<NamedAttribute, 8> storage;
|
|
switch (attrs.size()) {
|
|
case 0:
|
|
// An empty list is represented with a null pointer.
|
|
return nullptr;
|
|
case 1:
|
|
// A single element is already sorted.
|
|
break;
|
|
case 2:
|
|
// Don't invoke a general sort for two element case.
|
|
if (attrs[0].first.str() > attrs[1].first.str()) {
|
|
storage.push_back(attrs[1]);
|
|
storage.push_back(attrs[0]);
|
|
attrs = storage;
|
|
}
|
|
break;
|
|
default:
|
|
// Check to see they are sorted already.
|
|
bool isSorted = true;
|
|
for (unsigned i = 0, e = attrs.size() - 1; i != e; ++i) {
|
|
if (attrs[i].first.str() > attrs[i + 1].first.str()) {
|
|
isSorted = false;
|
|
break;
|
|
}
|
|
}
|
|
// If not, do a general sort.
|
|
if (!isSorted) {
|
|
storage.append(attrs.begin(), attrs.end());
|
|
llvm::array_pod_sort(storage.begin(), storage.end(),
|
|
compareNamedAttributes);
|
|
attrs = storage;
|
|
}
|
|
}
|
|
|
|
auto &impl = attrs[0].second.getContext()->getImpl();
|
|
|
|
// Safely get or create an attribute instance.
|
|
return safeGetOrCreate(impl.attributeLists, attrs, impl.attributeMutex, [&] {
|
|
auto byteSize =
|
|
AttributeListStorage::totalSizeToAlloc<NamedAttribute>(attrs.size());
|
|
auto rawMem =
|
|
impl.attributeAllocator.Allocate(byteSize, alignof(NamedAttribute));
|
|
|
|
// Placement initialize the AggregateSymbolicValue.
|
|
auto result = ::new (rawMem) AttributeListStorage(attrs.size());
|
|
std::uninitialized_copy(attrs.begin(), attrs.end(),
|
|
result->getTrailingObjects<NamedAttribute>());
|
|
return result;
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AffineMap uniquing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
StorageUniquer &MLIRContext::getAffineUniquer() {
|
|
return getImpl().affineUniquer;
|
|
}
|
|
|
|
AffineMap AffineMap::get(unsigned dimCount, unsigned symbolCount,
|
|
ArrayRef<AffineExpr> results,
|
|
ArrayRef<AffineExpr> rangeSizes) {
|
|
// The number of results can't be zero.
|
|
assert(!results.empty());
|
|
|
|
assert(rangeSizes.empty() || results.size() == rangeSizes.size());
|
|
|
|
auto &impl = results[0].getContext()->getImpl();
|
|
auto key = std::make_tuple(dimCount, symbolCount, results, rangeSizes);
|
|
|
|
// Safely get or create an AffineMap instance.
|
|
return safeGetOrCreate(impl.affineMaps, key, impl.affineMutex, [&] {
|
|
auto *res = impl.affineAllocator.Allocate<detail::AffineMapStorage>();
|
|
|
|
// Copy the results and range sizes into the bump pointer.
|
|
results = copyArrayRefInto(impl.affineAllocator, results);
|
|
rangeSizes = copyArrayRefInto(impl.affineAllocator, rangeSizes);
|
|
|
|
// Initialize the memory using placement new.
|
|
new (res)
|
|
detail::AffineMapStorage{dimCount, symbolCount, results, rangeSizes};
|
|
return AffineMap(res);
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Integer Sets: these are allocated into the bump pointer, and are immutable.
|
|
// Unlike AffineMap's, these are uniqued only if they are small.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
IntegerSet IntegerSet::get(unsigned dimCount, unsigned symbolCount,
|
|
ArrayRef<AffineExpr> constraints,
|
|
ArrayRef<bool> eqFlags) {
|
|
// The number of constraints can't be zero.
|
|
assert(!constraints.empty());
|
|
assert(constraints.size() == eqFlags.size());
|
|
|
|
auto &impl = constraints[0].getContext()->getImpl();
|
|
|
|
// A utility function to construct a new IntegerSetStorage instance.
|
|
auto constructorFn = [&] {
|
|
auto *res = impl.affineAllocator.Allocate<detail::IntegerSetStorage>();
|
|
|
|
// Copy the results and equality flags into the bump pointer.
|
|
constraints = copyArrayRefInto(impl.affineAllocator, constraints);
|
|
eqFlags = copyArrayRefInto(impl.affineAllocator, eqFlags);
|
|
|
|
// Initialize the memory using placement new.
|
|
new (res)
|
|
detail::IntegerSetStorage{dimCount, symbolCount, constraints, eqFlags};
|
|
return IntegerSet(res);
|
|
};
|
|
|
|
// If this instance is uniqued, then we handle it separately so that multiple
|
|
// threads may simulatenously access existing instances.
|
|
if (constraints.size() < IntegerSet::kUniquingThreshold) {
|
|
auto key = std::make_tuple(dimCount, symbolCount, constraints, eqFlags);
|
|
return safeGetOrCreate(impl.integerSets, key, impl.affineMutex,
|
|
constructorFn);
|
|
}
|
|
|
|
// Otherwise, aquire a writer-lock so that we can safely create the new
|
|
// instance.
|
|
llvm::sys::SmartScopedWriter<true> affineLock(impl.affineMutex);
|
|
return constructorFn();
|
|
}
|