llvm-project/llvm/unittests/DebugInfo/MSF/MappedBlockStreamTest.cpp

549 lines
21 KiB
C++

//===- llvm/unittest/DebugInfo/MSF/MappedBlockStreamTest.cpp --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/MSF/MappedBlockStream.h"
#include "llvm/Support/BinaryByteStream.h"
#include "llvm/Support/BinaryStreamReader.h"
#include "llvm/Support/BinaryStreamRef.h"
#include "llvm/Support/BinaryStreamWriter.h"
#include "llvm/Testing/Support/Error.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
using namespace llvm;
using namespace llvm::msf;
using namespace llvm::support;
namespace {
static const uint32_t BlocksAry[] = {0, 1, 2, 5, 4, 3, 6, 7, 8, 9};
static uint8_t DataAry[] = {'A', 'B', 'C', 'F', 'E', 'D', 'G', 'H', 'I', 'J'};
class DiscontiguousStream : public WritableBinaryStream {
public:
DiscontiguousStream(ArrayRef<uint32_t> Blocks, MutableArrayRef<uint8_t> Data)
: Blocks(Blocks.begin(), Blocks.end()), Data(Data.begin(), Data.end()) {}
uint32_t block_size() const { return 1; }
uint32_t block_count() const { return Blocks.size(); }
endianness getEndian() const override { return little; }
Error readBytes(uint32_t Offset, uint32_t Size,
ArrayRef<uint8_t> &Buffer) override {
if (auto EC = checkOffsetForRead(Offset, Size))
return EC;
Buffer = Data.slice(Offset, Size);
return Error::success();
}
Error readLongestContiguousChunk(uint32_t Offset,
ArrayRef<uint8_t> &Buffer) override {
if (auto EC = checkOffsetForRead(Offset, 1))
return EC;
Buffer = Data.drop_front(Offset);
return Error::success();
}
uint32_t getLength() override { return Data.size(); }
Error writeBytes(uint32_t Offset, ArrayRef<uint8_t> SrcData) override {
if (auto EC = checkOffsetForWrite(Offset, SrcData.size()))
return EC;
::memcpy(&Data[Offset], SrcData.data(), SrcData.size());
return Error::success();
}
Error commit() override { return Error::success(); }
MSFStreamLayout layout() const {
return MSFStreamLayout{static_cast<uint32_t>(Data.size()), Blocks};
}
BumpPtrAllocator Allocator;
private:
std::vector<support::ulittle32_t> Blocks;
MutableArrayRef<uint8_t> Data;
};
TEST(MappedBlockStreamTest, NumBlocks) {
DiscontiguousStream F(BlocksAry, DataAry);
auto S = MappedBlockStream::createStream(F.block_size(), F.layout(), F,
F.Allocator);
EXPECT_EQ(F.block_size(), S->getBlockSize());
EXPECT_EQ(F.layout().Blocks.size(), S->getNumBlocks());
}
// Tests that a read which is entirely contained within a single block works
// and does not allocate.
TEST(MappedBlockStreamTest, ReadBeyondEndOfStreamRef) {
DiscontiguousStream F(BlocksAry, DataAry);
auto S = MappedBlockStream::createStream(F.block_size(), F.layout(), F,
F.Allocator);
BinaryStreamReader R(*S);
BinaryStreamRef SR;
EXPECT_THAT_ERROR(R.readStreamRef(SR, 0U), Succeeded());
ArrayRef<uint8_t> Buffer;
EXPECT_THAT_ERROR(SR.readBytes(0U, 1U, Buffer), Failed());
EXPECT_THAT_ERROR(R.readStreamRef(SR, 1U), Succeeded());
EXPECT_THAT_ERROR(SR.readBytes(1U, 1U, Buffer), Failed());
}
// Tests that a read which outputs into a full destination buffer works and
// does not fail due to the length of the output buffer.
TEST(MappedBlockStreamTest, ReadOntoNonEmptyBuffer) {
DiscontiguousStream F(BlocksAry, DataAry);
auto S = MappedBlockStream::createStream(F.block_size(), F.layout(), F,
F.Allocator);
BinaryStreamReader R(*S);
StringRef Str = "ZYXWVUTSRQPONMLKJIHGFEDCBA";
EXPECT_THAT_ERROR(R.readFixedString(Str, 1), Succeeded());
EXPECT_EQ(Str, StringRef("A"));
EXPECT_EQ(0U, F.Allocator.getBytesAllocated());
}
// Tests that a read which crosses a block boundary, but where the subsequent
// blocks are still contiguous in memory to the previous block works and does
// not allocate memory.
TEST(MappedBlockStreamTest, ZeroCopyReadContiguousBreak) {
DiscontiguousStream F(BlocksAry, DataAry);
auto S = MappedBlockStream::createStream(F.block_size(), F.layout(), F,
F.Allocator);
BinaryStreamReader R(*S);
StringRef Str;
EXPECT_THAT_ERROR(R.readFixedString(Str, 2), Succeeded());
EXPECT_EQ(Str, StringRef("AB"));
EXPECT_EQ(0U, F.Allocator.getBytesAllocated());
R.setOffset(6);
EXPECT_THAT_ERROR(R.readFixedString(Str, 4), Succeeded());
EXPECT_EQ(Str, StringRef("GHIJ"));
EXPECT_EQ(0U, F.Allocator.getBytesAllocated());
}
// Tests that a read which crosses a block boundary and cannot be referenced
// contiguously works and allocates only the precise amount of bytes
// requested.
TEST(MappedBlockStreamTest, CopyReadNonContiguousBreak) {
DiscontiguousStream F(BlocksAry, DataAry);
auto S = MappedBlockStream::createStream(F.block_size(), F.layout(), F,
F.Allocator);
BinaryStreamReader R(*S);
StringRef Str;
EXPECT_THAT_ERROR(R.readFixedString(Str, 10), Succeeded());
EXPECT_EQ(Str, StringRef("ABCDEFGHIJ"));
EXPECT_EQ(10U, F.Allocator.getBytesAllocated());
}
// Test that an out of bounds read which doesn't cross a block boundary
// fails and allocates no memory.
TEST(MappedBlockStreamTest, InvalidReadSizeNoBreak) {
DiscontiguousStream F(BlocksAry, DataAry);
auto S = MappedBlockStream::createStream(F.block_size(), F.layout(), F,
F.Allocator);
BinaryStreamReader R(*S);
StringRef Str;
R.setOffset(10);
EXPECT_THAT_ERROR(R.readFixedString(Str, 1), Failed());
EXPECT_EQ(0U, F.Allocator.getBytesAllocated());
}
// Test that an out of bounds read which crosses a contiguous block boundary
// fails and allocates no memory.
TEST(MappedBlockStreamTest, InvalidReadSizeContiguousBreak) {
DiscontiguousStream F(BlocksAry, DataAry);
auto S = MappedBlockStream::createStream(F.block_size(), F.layout(), F,
F.Allocator);
BinaryStreamReader R(*S);
StringRef Str;
R.setOffset(6);
EXPECT_THAT_ERROR(R.readFixedString(Str, 5), Failed());
EXPECT_EQ(0U, F.Allocator.getBytesAllocated());
}
// Test that an out of bounds read which crosses a discontiguous block
// boundary fails and allocates no memory.
TEST(MappedBlockStreamTest, InvalidReadSizeNonContiguousBreak) {
DiscontiguousStream F(BlocksAry, DataAry);
auto S = MappedBlockStream::createStream(F.block_size(), F.layout(), F,
F.Allocator);
BinaryStreamReader R(*S);
StringRef Str;
EXPECT_THAT_ERROR(R.readFixedString(Str, 11), Failed());
EXPECT_EQ(0U, F.Allocator.getBytesAllocated());
}
// Tests that a read which is entirely contained within a single block but
// beyond the end of a StreamRef fails.
TEST(MappedBlockStreamTest, ZeroCopyReadNoBreak) {
DiscontiguousStream F(BlocksAry, DataAry);
auto S = MappedBlockStream::createStream(F.block_size(), F.layout(), F,
F.Allocator);
BinaryStreamReader R(*S);
StringRef Str;
EXPECT_THAT_ERROR(R.readFixedString(Str, 1), Succeeded());
EXPECT_EQ(Str, StringRef("A"));
EXPECT_EQ(0U, F.Allocator.getBytesAllocated());
}
// Tests that a read which is not aligned on the same boundary as a previous
// cached request, but which is known to overlap that request, shares the
// previous allocation.
TEST(MappedBlockStreamTest, UnalignedOverlappingRead) {
DiscontiguousStream F(BlocksAry, DataAry);
auto S = MappedBlockStream::createStream(F.block_size(), F.layout(), F,
F.Allocator);
BinaryStreamReader R(*S);
StringRef Str1;
StringRef Str2;
EXPECT_THAT_ERROR(R.readFixedString(Str1, 7), Succeeded());
EXPECT_EQ(Str1, StringRef("ABCDEFG"));
EXPECT_EQ(7U, F.Allocator.getBytesAllocated());
R.setOffset(2);
EXPECT_THAT_ERROR(R.readFixedString(Str2, 3), Succeeded());
EXPECT_EQ(Str2, StringRef("CDE"));
EXPECT_EQ(Str1.data() + 2, Str2.data());
EXPECT_EQ(7U, F.Allocator.getBytesAllocated());
}
// Tests that a read which is not aligned on the same boundary as a previous
// cached request, but which only partially overlaps a previous cached request,
// still works correctly and allocates again from the shared pool.
TEST(MappedBlockStreamTest, UnalignedOverlappingReadFail) {
DiscontiguousStream F(BlocksAry, DataAry);
auto S = MappedBlockStream::createStream(F.block_size(), F.layout(), F,
F.Allocator);
BinaryStreamReader R(*S);
StringRef Str1;
StringRef Str2;
EXPECT_THAT_ERROR(R.readFixedString(Str1, 6), Succeeded());
EXPECT_EQ(Str1, StringRef("ABCDEF"));
EXPECT_EQ(6U, F.Allocator.getBytesAllocated());
R.setOffset(4);
EXPECT_THAT_ERROR(R.readFixedString(Str2, 4), Succeeded());
EXPECT_EQ(Str2, StringRef("EFGH"));
EXPECT_EQ(10U, F.Allocator.getBytesAllocated());
}
TEST(MappedBlockStreamTest, WriteBeyondEndOfStream) {
static uint8_t Data[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'};
static uint8_t LargeBuffer[] = {'0', '1', '2', '3', '4', '5',
'6', '7', '8', '9', 'A'};
static uint8_t SmallBuffer[] = {'0', '1', '2'};
static_assert(sizeof(LargeBuffer) > sizeof(Data),
"LargeBuffer is not big enough");
DiscontiguousStream F(BlocksAry, Data);
auto S = WritableMappedBlockStream::createStream(F.block_size(), F.layout(),
F, F.Allocator);
EXPECT_THAT_ERROR(S->writeBytes(0, ArrayRef<uint8_t>(LargeBuffer)), Failed());
EXPECT_THAT_ERROR(S->writeBytes(0, ArrayRef<uint8_t>(SmallBuffer)),
Succeeded());
EXPECT_THAT_ERROR(S->writeBytes(7, ArrayRef<uint8_t>(SmallBuffer)),
Succeeded());
EXPECT_THAT_ERROR(S->writeBytes(8, ArrayRef<uint8_t>(SmallBuffer)), Failed());
}
TEST(MappedBlockStreamTest, TestWriteBytesNoBreakBoundary) {
static uint8_t Data[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'};
DiscontiguousStream F(BlocksAry, Data);
auto S = WritableMappedBlockStream::createStream(F.block_size(), F.layout(),
F, F.Allocator);
ArrayRef<uint8_t> Buffer;
EXPECT_THAT_ERROR(S->readBytes(0, 1, Buffer), Succeeded());
EXPECT_EQ(Buffer, ArrayRef<uint8_t>('A'));
EXPECT_THAT_ERROR(S->readBytes(9, 1, Buffer), Succeeded());
EXPECT_EQ(Buffer, ArrayRef<uint8_t>('J'));
EXPECT_THAT_ERROR(S->writeBytes(0, ArrayRef<uint8_t>('J')), Succeeded());
EXPECT_THAT_ERROR(S->writeBytes(9, ArrayRef<uint8_t>('A')), Succeeded());
EXPECT_THAT_ERROR(S->readBytes(0, 1, Buffer), Succeeded());
EXPECT_EQ(Buffer, ArrayRef<uint8_t>('J'));
EXPECT_THAT_ERROR(S->readBytes(9, 1, Buffer), Succeeded());
EXPECT_EQ(Buffer, ArrayRef<uint8_t>('A'));
EXPECT_THAT_ERROR(S->writeBytes(0, ArrayRef<uint8_t>('A')), Succeeded());
EXPECT_THAT_ERROR(S->writeBytes(9, ArrayRef<uint8_t>('J')), Succeeded());
EXPECT_THAT_ERROR(S->readBytes(0, 1, Buffer), Succeeded());
EXPECT_EQ(Buffer, ArrayRef<uint8_t>('A'));
EXPECT_THAT_ERROR(S->readBytes(9, 1, Buffer), Succeeded());
EXPECT_EQ(Buffer, ArrayRef<uint8_t>('J'));
}
TEST(MappedBlockStreamTest, TestWriteBytesBreakBoundary) {
static uint8_t Data[] = {'0', '0', '0', '0', '0', '0', '0', '0', '0', '0'};
static uint8_t TestData[] = {'T', 'E', 'S', 'T', 'I', 'N', 'G', '.'};
static uint8_t Expected[] = {'T', 'E', 'S', 'N', 'I',
'T', 'G', '.', '0', '0'};
DiscontiguousStream F(BlocksAry, Data);
auto S = WritableMappedBlockStream::createStream(F.block_size(), F.layout(),
F, F.Allocator);
ArrayRef<uint8_t> Buffer;
EXPECT_THAT_ERROR(S->writeBytes(0, TestData), Succeeded());
// First just compare the memory, then compare the result of reading the
// string out.
EXPECT_EQ(ArrayRef<uint8_t>(Data), ArrayRef<uint8_t>(Expected));
EXPECT_THAT_ERROR(S->readBytes(0, 8, Buffer), Succeeded());
EXPECT_EQ(Buffer, ArrayRef<uint8_t>(TestData));
}
TEST(MappedBlockStreamTest, TestWriteThenRead) {
std::vector<uint8_t> DataBytes(10);
MutableArrayRef<uint8_t> Data(DataBytes);
const uint32_t Blocks[] = {2, 1, 0, 6, 3, 4, 5, 7, 9, 8};
DiscontiguousStream F(Blocks, Data);
auto S = WritableMappedBlockStream::createStream(F.block_size(), F.layout(),
F, F.Allocator);
enum class MyEnum : uint32_t { Val1 = 2908234, Val2 = 120891234 };
using support::ulittle32_t;
uint16_t u16[] = {31468, 0};
uint32_t u32[] = {890723408, 0};
MyEnum Enum[] = {MyEnum::Val1, MyEnum::Val2};
StringRef ZStr[] = {"Zero Str", ""};
StringRef FStr[] = {"Fixed Str", ""};
uint8_t byteArray0[] = {'1', '2'};
uint8_t byteArray1[] = {'0', '0'};
ArrayRef<uint8_t> byteArrayRef0(byteArray0);
ArrayRef<uint8_t> byteArrayRef1(byteArray1);
ArrayRef<uint8_t> byteArray[] = {byteArrayRef0, byteArrayRef1};
uint32_t intArr0[] = {890723408, 29082234};
uint32_t intArr1[] = {890723408, 29082234};
ArrayRef<uint32_t> intArray[] = {intArr0, intArr1};
BinaryStreamReader Reader(*S);
BinaryStreamWriter Writer(*S);
EXPECT_THAT_ERROR(Writer.writeInteger(u16[0]), Succeeded());
EXPECT_THAT_ERROR(Reader.readInteger(u16[1]), Succeeded());
EXPECT_EQ(u16[0], u16[1]);
EXPECT_EQ(std::vector<uint8_t>({0, 0x7A, 0xEC, 0, 0, 0, 0, 0, 0, 0}),
DataBytes);
Reader.setOffset(0);
Writer.setOffset(0);
::memset(DataBytes.data(), 0, 10);
EXPECT_THAT_ERROR(Writer.writeInteger(u32[0]), Succeeded());
EXPECT_THAT_ERROR(Reader.readInteger(u32[1]), Succeeded());
EXPECT_EQ(u32[0], u32[1]);
EXPECT_EQ(std::vector<uint8_t>({0x17, 0x5C, 0x50, 0, 0, 0, 0x35, 0, 0, 0}),
DataBytes);
Reader.setOffset(0);
Writer.setOffset(0);
::memset(DataBytes.data(), 0, 10);
EXPECT_THAT_ERROR(Writer.writeEnum(Enum[0]), Succeeded());
EXPECT_THAT_ERROR(Reader.readEnum(Enum[1]), Succeeded());
EXPECT_EQ(Enum[0], Enum[1]);
EXPECT_EQ(std::vector<uint8_t>({0x2C, 0x60, 0x4A, 0, 0, 0, 0, 0, 0, 0}),
DataBytes);
Reader.setOffset(0);
Writer.setOffset(0);
::memset(DataBytes.data(), 0, 10);
EXPECT_THAT_ERROR(Writer.writeCString(ZStr[0]), Succeeded());
EXPECT_THAT_ERROR(Reader.readCString(ZStr[1]), Succeeded());
EXPECT_EQ(ZStr[0], ZStr[1]);
EXPECT_EQ(
std::vector<uint8_t>({'r', 'e', 'Z', ' ', 'S', 't', 'o', 'r', 0, 0}),
DataBytes);
Reader.setOffset(0);
Writer.setOffset(0);
::memset(DataBytes.data(), 0, 10);
EXPECT_THAT_ERROR(Writer.writeFixedString(FStr[0]), Succeeded());
EXPECT_THAT_ERROR(Reader.readFixedString(FStr[1], FStr[0].size()),
Succeeded());
EXPECT_EQ(FStr[0], FStr[1]);
EXPECT_EQ(
std::vector<uint8_t>({'x', 'i', 'F', 'd', ' ', 'S', 'e', 't', 0, 'r'}),
DataBytes);
Reader.setOffset(0);
Writer.setOffset(0);
::memset(DataBytes.data(), 0, 10);
EXPECT_THAT_ERROR(Writer.writeArray(byteArray[0]), Succeeded());
EXPECT_THAT_ERROR(Reader.readArray(byteArray[1], byteArray[0].size()),
Succeeded());
EXPECT_EQ(byteArray[0], byteArray[1]);
EXPECT_EQ(std::vector<uint8_t>({0, 0x32, 0x31, 0, 0, 0, 0, 0, 0, 0}),
DataBytes);
Reader.setOffset(0);
Writer.setOffset(0);
::memset(DataBytes.data(), 0, 10);
EXPECT_THAT_ERROR(Writer.writeArray(intArray[0]), Succeeded());
EXPECT_THAT_ERROR(Reader.readArray(intArray[1], intArray[0].size()),
Succeeded());
EXPECT_EQ(intArray[0], intArray[1]);
}
TEST(MappedBlockStreamTest, TestWriteContiguousStreamRef) {
std::vector<uint8_t> DestDataBytes(10);
MutableArrayRef<uint8_t> DestData(DestDataBytes);
const uint32_t DestBlocks[] = {2, 1, 0, 6, 3, 4, 5, 7, 9, 8};
std::vector<uint8_t> SrcDataBytes(10);
MutableArrayRef<uint8_t> SrcData(SrcDataBytes);
DiscontiguousStream F(DestBlocks, DestData);
auto DestStream = WritableMappedBlockStream::createStream(
F.block_size(), F.layout(), F, F.Allocator);
// First write "Test Str" into the source stream.
MutableBinaryByteStream SourceStream(SrcData, little);
BinaryStreamWriter SourceWriter(SourceStream);
EXPECT_THAT_ERROR(SourceWriter.writeCString("Test Str"), Succeeded());
EXPECT_EQ(SrcDataBytes, std::vector<uint8_t>(
{'T', 'e', 's', 't', ' ', 'S', 't', 'r', 0, 0}));
// Then write the source stream into the dest stream.
BinaryStreamWriter DestWriter(*DestStream);
EXPECT_THAT_ERROR(DestWriter.writeStreamRef(SourceStream), Succeeded());
EXPECT_EQ(DestDataBytes, std::vector<uint8_t>(
{'s', 'e', 'T', ' ', 'S', 't', 't', 'r', 0, 0}));
// Then read the string back out of the dest stream.
StringRef Result;
BinaryStreamReader DestReader(*DestStream);
EXPECT_THAT_ERROR(DestReader.readCString(Result), Succeeded());
EXPECT_EQ(Result, "Test Str");
}
TEST(MappedBlockStreamTest, TestWriteDiscontiguousStreamRef) {
std::vector<uint8_t> DestDataBytes(10);
MutableArrayRef<uint8_t> DestData(DestDataBytes);
const uint32_t DestBlocks[] = {2, 1, 0, 6, 3, 4, 5, 7, 9, 8};
std::vector<uint8_t> SrcDataBytes(10);
MutableArrayRef<uint8_t> SrcData(SrcDataBytes);
const uint32_t SrcBlocks[] = {1, 0, 6, 3, 4, 5, 2, 7, 8, 9};
DiscontiguousStream DestF(DestBlocks, DestData);
DiscontiguousStream SrcF(SrcBlocks, SrcData);
auto Dest = WritableMappedBlockStream::createStream(
DestF.block_size(), DestF.layout(), DestF, DestF.Allocator);
auto Src = WritableMappedBlockStream::createStream(
SrcF.block_size(), SrcF.layout(), SrcF, SrcF.Allocator);
// First write "Test Str" into the source stream.
BinaryStreamWriter SourceWriter(*Src);
EXPECT_THAT_ERROR(SourceWriter.writeCString("Test Str"), Succeeded());
EXPECT_EQ(SrcDataBytes, std::vector<uint8_t>(
{'e', 'T', 't', 't', ' ', 'S', 's', 'r', 0, 0}));
// Then write the source stream into the dest stream.
BinaryStreamWriter DestWriter(*Dest);
EXPECT_THAT_ERROR(DestWriter.writeStreamRef(*Src), Succeeded());
EXPECT_EQ(DestDataBytes, std::vector<uint8_t>(
{'s', 'e', 'T', ' ', 'S', 't', 't', 'r', 0, 0}));
// Then read the string back out of the dest stream.
StringRef Result;
BinaryStreamReader DestReader(*Dest);
EXPECT_THAT_ERROR(DestReader.readCString(Result), Succeeded());
EXPECT_EQ(Result, "Test Str");
}
TEST(MappedBlockStreamTest, DataLivesAfterStreamDestruction) {
std::vector<uint8_t> DataBytes(10);
MutableArrayRef<uint8_t> Data(DataBytes);
const uint32_t Blocks[] = {2, 1, 0, 6, 3, 4, 5, 7, 9, 8};
StringRef Str[] = {"Zero Str", ""};
DiscontiguousStream F(Blocks, Data);
{
auto S = WritableMappedBlockStream::createStream(F.block_size(), F.layout(),
F, F.Allocator);
BinaryStreamReader Reader(*S);
BinaryStreamWriter Writer(*S);
::memset(DataBytes.data(), 0, 10);
EXPECT_THAT_ERROR(Writer.writeCString(Str[0]), Succeeded());
EXPECT_THAT_ERROR(Reader.readCString(Str[1]), Succeeded());
EXPECT_EQ(Str[0], Str[1]);
}
EXPECT_EQ(Str[0], Str[1]);
}
} // namespace
MATCHER_P3(BlockIsFilledWith, Layout, BlockIndex, Byte, "succeeded") {
uint64_t Offset = msf::blockToOffset(BlockIndex, Layout.SB->BlockSize);
ArrayRef<uint8_t> BufferRef = makeArrayRef(arg);
BufferRef = BufferRef.slice(Offset, Layout.SB->BlockSize);
return llvm::all_of(BufferRef, [this](uint8_t B) { return B == Byte; });
}
namespace {
TEST(MappedBlockStreamTest, CreateFpmStream) {
BumpPtrAllocator Allocator;
SuperBlock SB;
MSFLayout L;
L.SB = &SB;
SB.FreeBlockMapBlock = 1;
SB.BlockSize = 4096;
constexpr uint32_t NumFileBlocks = 4096 * 4;
std::vector<uint8_t> MsfBuffer(NumFileBlocks * SB.BlockSize);
MutableBinaryByteStream MsfStream(MsfBuffer, llvm::support::little);
SB.NumBlocks = NumFileBlocks;
auto FpmStream =
WritableMappedBlockStream::createFpmStream(L, MsfStream, Allocator);
// 4096 * 4 / 8 = 2048 bytes of FPM data is needed to describe 4096 * 4
// blocks. This translates to 1 FPM block.
EXPECT_EQ(2048u, FpmStream->getLength());
EXPECT_EQ(1u, FpmStream->getStreamLayout().Blocks.size());
EXPECT_EQ(1u, FpmStream->getStreamLayout().Blocks[0]);
// All blocks from FPM1 should be 1 initialized, and all blocks from FPM2
// should be 0 initialized (since we requested the main FPM, not the alt FPM)
for (int I = 0; I < 4; ++I) {
EXPECT_THAT(MsfBuffer, BlockIsFilledWith(L, 1 + I * SB.BlockSize, 0xFF));
EXPECT_THAT(MsfBuffer, BlockIsFilledWith(L, 2 + I * SB.BlockSize, 0));
}
::memset(MsfBuffer.data(), 0, MsfBuffer.size());
FpmStream =
WritableMappedBlockStream::createFpmStream(L, MsfStream, Allocator, true);
// 4096 * 4 / 8 = 2048 bytes of FPM data is needed to describe 4096 * 4
// blocks. This translates to 1 FPM block.
EXPECT_EQ(2048u, FpmStream->getLength());
EXPECT_EQ(1u, FpmStream->getStreamLayout().Blocks.size());
EXPECT_EQ(2u, FpmStream->getStreamLayout().Blocks[0]);
// All blocks from FPM2 should be 1 initialized, and all blocks from FPM1
// should be 0 initialized (since we requested the alt FPM, not the main FPM)
for (int I = 0; I < 4; ++I) {
EXPECT_THAT(MsfBuffer, BlockIsFilledWith(L, 1 + I * SB.BlockSize, 0));
EXPECT_THAT(MsfBuffer, BlockIsFilledWith(L, 2 + I * SB.BlockSize, 0xFF));
}
}
} // end anonymous namespace