llvm-project/mlir/lib/Conversion/GPUToNVVM/WmmaOpsToNvvm.cpp

380 lines
16 KiB
C++

//===------ WmmaOpsToNVVM.cpp - WMMA LD/ST/Compute to NVVM lowering -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains definitions of patterns to lower GPU Subgroup MMA ops to
// NVVM Dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/GPUToNVVM/GPUToNVVMPass.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Dialect/GPU/GPUDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/NVVMDialect.h"
#include "mlir/IR/TypeUtilities.h"
using namespace mlir;
namespace {
/// Checks if all the operands of the op being lowered are of LLVM Types. The
/// types are expected to be converted by the `LLVMTypeConverter` before the op
/// is actually lowered. If the type of an operands is not already converted it
/// hints a missing typeConversion and failure is returned in that case.
static LogicalResult areAllLLVMTypes(Operation *op, ValueRange operands,
ConversionPatternRewriter &rewriter) {
if (!llvm::all_of(operands, [](Value value) {
return LLVM::isCompatibleType(value.getType());
})) {
return rewriter.notifyMatchFailure(
op, "cannot convert if operands aren't of LLVM type.");
}
return success();
}
/// Error string to emit when an unimplemented WMMA variant is encountered.
static constexpr StringRef kInvalidCaseStr = "Unsupported WMMA variant.";
static NVVM::MMAFrag convertOperand(StringRef operandName) {
if (operandName.equals("AOp"))
return NVVM::MMAFrag::a;
if (operandName.equals("BOp"))
return NVVM::MMAFrag::b;
if (operandName.equals("COp"))
return NVVM::MMAFrag::c;
llvm_unreachable("Unknown operand name");
}
static NVVM::MMATypes getElementType(gpu::MMAMatrixType type) {
if (type.getElementType().isF16())
return NVVM::MMATypes::f16;
if (type.getElementType().isF32())
return type.getOperand().equals("COp") ? NVVM::MMATypes::f32
: NVVM::MMATypes::tf32;
llvm_unreachable("Unsupported type");
}
/// This class implements the conversion of GPU MMA loadOp to wmma.load op
/// in the NVVM dialect. The conversion not only emits the NVVM op but also
/// emits code that is necessary to store the data in the destination memref
/// after it has been loaded.
struct WmmaLoadOpToNVVMLowering
: public ConvertOpToLLVMPattern<gpu::SubgroupMmaLoadMatrixOp> {
using ConvertOpToLLVMPattern<
gpu::SubgroupMmaLoadMatrixOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(gpu::SubgroupMmaLoadMatrixOp subgroupMmaLoadMatrixOp,
OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Operation *op = subgroupMmaLoadMatrixOp.getOperation();
if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)))
return failure();
// Get the shape of the MMAMatrix type being returned. The shape will
// choose which intrinsic this op will be lowered to.
gpu::MMAMatrixType retType =
subgroupMmaLoadMatrixOp.res().getType().cast<gpu::MMAMatrixType>();
ArrayRef<int64_t> retTypeShape = retType.getShape();
int64_t m = 0;
int64_t n = 0;
int64_t k = 0;
NVVM::MMATypes eltype = getElementType(retType);
// NVVM intrinsics require to give mxnxk dimensions, infer the missing
// dimension based on the valid intrinsics available.
if (retType.getOperand().equals("AOp")) {
m = retTypeShape[0];
k = retTypeShape[1];
n = NVVM::WMMALoadOp::inferNDimension(m, k, eltype);
} else if (retType.getOperand().equals("BOp")) {
k = retTypeShape[0];
n = retTypeShape[1];
m = NVVM::WMMALoadOp::inferMDimension(k, n, eltype);
} else if (retType.getOperand().equals("COp")) {
m = retTypeShape[0];
n = retTypeShape[1];
k = NVVM::WMMALoadOp::inferKDimension(m, n, eltype);
}
NVVM::MMALayout layout = NVVM::MMALayout::row;
NVVM::MMAFrag frag = convertOperand(retType.getOperand());
// Check that there is an exisiting instruction for the combination we need.
if (NVVM::WMMALoadOp::getIntrinsicID(m, n, k, layout, eltype, frag) == 0)
return rewriter.notifyMatchFailure(op, kInvalidCaseStr);
Type resType = convertMMAToLLVMType(retType);
Location loc = op->getLoc();
// Create nvvm.mma_load op according to the operand types.
Value dataPtr = getStridedElementPtr(
loc, subgroupMmaLoadMatrixOp.srcMemref().getType().cast<MemRefType>(),
adaptor.srcMemref(), adaptor.indices(), rewriter);
Value leadingDim = rewriter.create<LLVM::ConstantOp>(
loc, rewriter.getI32Type(),
subgroupMmaLoadMatrixOp.leadDimensionAttr());
rewriter.replaceOpWithNewOp<NVVM::WMMALoadOp>(
op, resType, dataPtr, leadingDim, m, n, k, layout, eltype, frag);
return success();
}
};
/// This class implements the conversion of GPU MMA storeOp to wmma.store op
/// in the NVVM dialect. The conversion not only emits the NVVM op but also
/// emits code that is necessary to unpack the data in the source and
/// convert the data in the format that is needed by the NVVM op.
struct WmmaStoreOpToNVVMLowering
: public ConvertOpToLLVMPattern<gpu::SubgroupMmaStoreMatrixOp> {
using ConvertOpToLLVMPattern<
gpu::SubgroupMmaStoreMatrixOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(gpu::SubgroupMmaStoreMatrixOp subgroupMmaStoreMatrixOp,
OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Operation *op = subgroupMmaStoreMatrixOp.getOperation();
if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)))
return failure();
Location loc = op->getLoc();
SmallVector<Value, 4> storeOpOperands;
// Get the shape of the MMAMatrix type being stored. The shape will
// choose which intrinsic this op will be lowered to.
gpu::MMAMatrixType srcType =
subgroupMmaStoreMatrixOp.src().getType().cast<gpu::MMAMatrixType>();
ArrayRef<int64_t> srcTypeShape = srcType.getShape();
NVVM::MMALayout layout = NVVM::MMALayout::row;
NVVM::MMATypes eltype = getElementType(srcType);
int64_t m = srcTypeShape[0];
int64_t n = srcTypeShape[1];
int64_t k = NVVM::WMMAStoreOp::inferKDimension(m, n, eltype);
if (NVVM::WMMAStoreOp::getIntrinsicID(m, n, k, layout, eltype) == 0)
return rewriter.notifyMatchFailure(op, kInvalidCaseStr);
auto matrixType = adaptor.src().getType().cast<LLVM::LLVMStructType>();
for (unsigned i = 0, e = matrixType.getBody().size(); i < e; ++i) {
Value toUse = rewriter.create<LLVM::ExtractValueOp>(
loc, matrixType.getBody()[i], adaptor.src(),
rewriter.getI32ArrayAttr(i));
storeOpOperands.push_back(toUse);
}
Value dataPtr = getStridedElementPtr(
loc, subgroupMmaStoreMatrixOp.dstMemref().getType().cast<MemRefType>(),
adaptor.dstMemref(), adaptor.indices(), rewriter);
Value leadingDim = rewriter.create<LLVM::ConstantOp>(
loc, rewriter.getI32Type(),
subgroupMmaStoreMatrixOp.leadDimensionAttr());
rewriter.replaceOpWithNewOp<NVVM::WMMAStoreOp>(
op, dataPtr, m, n, k, layout, eltype, storeOpOperands, leadingDim);
return success();
}
};
/// This class implements the conversion of GPU MMA computeOp to wmma.mma op
/// in the NVVM dialect.
struct WmmaMmaOpToNVVMLowering
: public ConvertOpToLLVMPattern<gpu::SubgroupMmaComputeOp> {
using ConvertOpToLLVMPattern<
gpu::SubgroupMmaComputeOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(gpu::SubgroupMmaComputeOp subgroupMmaComputeOp,
OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Operation *op = subgroupMmaComputeOp.getOperation();
if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)))
return failure();
Location loc = op->getLoc();
// The wmma.mma intrinsic in llvm requires the operands as individual
// values. So individual elements from the memrefs need to be extracted and
// then passed on to the intrinsic call. Emit llvm ops to extract individual
// values form lowered memrefs.
SmallVector<Value> unpackedOps;
auto unpackOp = [&](Value operand) {
auto structType = operand.getType().cast<LLVM::LLVMStructType>();
for (size_t i = 0, e = structType.getBody().size(); i < e; ++i) {
Value toUse = rewriter.create<LLVM::ExtractValueOp>(
loc, structType.getBody()[i], operand, rewriter.getI32ArrayAttr(i));
unpackedOps.push_back(toUse);
}
};
// Get the shapes of the MMAMatrix type being used. The shapes will
// choose which intrinsic this op will be lowered to.
gpu::MMAMatrixType aType =
subgroupMmaComputeOp.opA().getType().cast<gpu::MMAMatrixType>();
ArrayRef<int64_t> aTypeShape = aType.getShape();
gpu::MMAMatrixType cType =
subgroupMmaComputeOp.opC().getType().cast<gpu::MMAMatrixType>();
ArrayRef<int64_t> cTypeShape = cType.getShape();
int64_t m = cTypeShape[0];
int64_t n = cTypeShape[1];
int64_t k = aTypeShape[1];
NVVM::MMALayout layout = NVVM::MMALayout::row;
NVVM::MMATypes sourceType = getElementType(aType);
NVVM::MMATypes destType = getElementType(cType);
if (NVVM::WMMAMmaOp::getIntrinsicID(m, n, k, layout, layout, sourceType,
destType) == 0)
return rewriter.notifyMatchFailure(op, kInvalidCaseStr);
unpackOp(adaptor.opA());
unpackOp(adaptor.opB());
unpackOp(adaptor.opC());
rewriter.replaceOpWithNewOp<NVVM::WMMAMmaOp>(
op, adaptor.opC().getType(), m, n, k, layout, layout, sourceType,
destType, unpackedOps);
return success();
}
};
/// Convert GPU MMA ConstantMatrixOp to a chain of InsertValueOp.
struct WmmaConstantOpToNVVMLowering
: public ConvertOpToLLVMPattern<gpu::SubgroupMmaConstantMatrixOp> {
using ConvertOpToLLVMPattern<
gpu::SubgroupMmaConstantMatrixOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(gpu::SubgroupMmaConstantMatrixOp subgroupMmaConstantOp,
OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(areAllLLVMTypes(subgroupMmaConstantOp.getOperation(),
adaptor.getOperands(), rewriter)))
return failure();
Location loc = subgroupMmaConstantOp.getLoc();
Value cst = adaptor.getOperands()[0];
LLVM::LLVMStructType type = convertMMAToLLVMType(
subgroupMmaConstantOp.getType().cast<gpu::MMAMatrixType>());
// If the element type is a vector create a vector from the operand.
if (auto vecType = type.getBody()[0].dyn_cast<VectorType>()) {
Value vecCst = rewriter.create<LLVM::UndefOp>(loc, vecType);
for (int64_t vecEl = 0; vecEl < vecType.getNumElements(); vecEl++) {
Value idx = rewriter.create<LLVM::ConstantOp>(
loc, typeConverter->convertType(rewriter.getIntegerType(32)),
rewriter.getI32IntegerAttr(vecEl));
vecCst = rewriter.create<LLVM::InsertElementOp>(loc, vecType, vecCst,
cst, idx);
}
cst = vecCst;
}
Value matrixStruct = rewriter.create<LLVM::UndefOp>(loc, type);
for (size_t i : llvm::seq(size_t(0), type.getBody().size())) {
matrixStruct = rewriter.create<LLVM::InsertValueOp>(
loc, matrixStruct, cst, rewriter.getI32ArrayAttr(i));
}
rewriter.replaceOp(subgroupMmaConstantOp, matrixStruct);
return success();
}
};
static Value createMinMaxF(OpBuilder &builder, Location loc, Value lhs,
Value rhs, bool isMin) {
auto floatType = getElementTypeOrSelf(lhs.getType()).cast<FloatType>();
Type i1Type = builder.getI1Type();
if (auto vecType = lhs.getType().dyn_cast<VectorType>())
i1Type = VectorType::get(vecType.getShape(), i1Type);
Value cmp = builder.create<LLVM::FCmpOp>(
loc, i1Type, isMin ? LLVM::FCmpPredicate::olt : LLVM::FCmpPredicate::ogt,
lhs, rhs);
Value sel = builder.create<LLVM::SelectOp>(loc, cmp, lhs, rhs);
Value isNan = builder.create<LLVM::FCmpOp>(
loc, i1Type, LLVM::FCmpPredicate::uno, lhs, rhs);
Value nan = builder.create<LLVM::ConstantOp>(
loc, lhs.getType(),
builder.getFloatAttr(floatType,
APFloat::getQNaN(floatType.getFloatSemantics())));
return builder.create<LLVM::SelectOp>(loc, isNan, sel, nan);
}
static Value createScalarOp(OpBuilder &builder, Location loc,
gpu::MMAElementwiseOp op,
ArrayRef<Value> operands) {
switch (op) {
case gpu::MMAElementwiseOp::ADDF:
return builder.create<LLVM::FAddOp>(loc, operands[0].getType(), operands);
case gpu::MMAElementwiseOp::MULF:
return builder.create<LLVM::FMulOp>(loc, operands[0].getType(), operands);
case gpu::MMAElementwiseOp::DIVF:
return builder.create<LLVM::FDivOp>(loc, operands[0].getType(), operands);
case gpu::MMAElementwiseOp::MAXF:
return createMinMaxF(builder, loc, operands[0], operands[1],
/*isMin=*/false);
case gpu::MMAElementwiseOp::MINF:
return createMinMaxF(builder, loc, operands[0], operands[1],
/*isMin=*/true);
}
llvm_unreachable("unknown op");
}
/// Convert GPU MMA elementwise ops to extract + op + insert.
struct WmmaElementwiseOpToNVVMLowering
: public ConvertOpToLLVMPattern<gpu::SubgroupMmaElementwiseOp> {
using ConvertOpToLLVMPattern<
gpu::SubgroupMmaElementwiseOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(gpu::SubgroupMmaElementwiseOp subgroupMmaElementwiseOp,
OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(areAllLLVMTypes(subgroupMmaElementwiseOp.getOperation(),
adaptor.getOperands(), rewriter)))
return failure();
Location loc = subgroupMmaElementwiseOp.getLoc();
size_t numOperands = adaptor.getOperands().size();
LLVM::LLVMStructType destType = convertMMAToLLVMType(
subgroupMmaElementwiseOp.getType().cast<gpu::MMAMatrixType>());
Value matrixStruct = rewriter.create<LLVM::UndefOp>(loc, destType);
for (size_t i = 0, e = destType.getBody().size(); i < e; ++i) {
SmallVector<Value> extractedOperands;
for (size_t opIdx = 0; opIdx < numOperands; opIdx++) {
Type elementType = adaptor.getOperands()[opIdx]
.getType()
.cast<LLVM::LLVMStructType>()
.getBody()[i];
extractedOperands.push_back(rewriter.create<LLVM::ExtractValueOp>(
loc, elementType, adaptor.getOperands()[opIdx],
rewriter.getI32ArrayAttr(i)));
}
Value element =
createScalarOp(rewriter, loc, subgroupMmaElementwiseOp.operation(),
extractedOperands);
matrixStruct = rewriter.create<LLVM::InsertValueOp>(
loc, matrixStruct, element, rewriter.getI32ArrayAttr(i));
}
rewriter.replaceOp(subgroupMmaElementwiseOp, matrixStruct);
return success();
}
};
} // namespace
namespace mlir {
/// Return the LLVMStructureType corresponding to the MMAMatrixType `type`.
LLVM::LLVMStructType convertMMAToLLVMType(gpu::MMAMatrixType type) {
NVVM::MMAFrag frag = convertOperand(type.getOperand());
NVVM::MMATypes eltType = getElementType(type);
std::pair<Type, unsigned> typeInfo =
inferMMAType(eltType, frag, type.getContext());
return LLVM::LLVMStructType::getLiteral(
type.getContext(), SmallVector<Type, 8>(typeInfo.second, typeInfo.first));
}
void populateGpuWMMAToNVVMConversionPatterns(LLVMTypeConverter &converter,
RewritePatternSet &patterns) {
patterns.insert<WmmaLoadOpToNVVMLowering, WmmaMmaOpToNVVMLowering,
WmmaStoreOpToNVVMLowering, WmmaConstantOpToNVVMLowering,
WmmaElementwiseOpToNVVMLowering>(converter);
}
} // namespace mlir