Go to file
Ben Langmuir 83902c4036 Reapply "[clang][deps] Split translation units into individual -cc1 or other commands"
Attempt to fix the test failures observed in CI:
* Add Option dependency, which caused BUILD_SHARED_LIBS builds to fail
* Adapt tests that accidentally depended on the host platform: platforms
  that don't use an integrated assembler (e.g. AIX) get a different set
  of commands from the driver. Most dependency scanner tests can use
  -fsyntax-only or -E instead of -c to avoid this, and in the rare case
  we want to check -c specifically, set an explicit target so the
  behaviour is independent of the host.

Original commit message follows.

---

Instead of trying to "fix" the original driver invocation by appending
arguments to it, split it into multiple commands, and for each -cc1
command use a CompilerInvocation to give precise control over the
invocation.

This change should make it easier to (in the future) canonicalize the
command-line (e.g. to improve hits in something like ccache), apply
optimizations, or start supporting multi-arch builds, which would
require different modules for each arch.

In the long run it may make sense to treat the TU commands as a
dependency graph, each with their own dependencies on modules or earlier
TU commands, but for now they are simply a list that is executed in
order, and the dependencies are simply duplicated. Since we currently
only support single-arch builds, there is no parallelism available in
the execution.

Differential Revision: https://reviews.llvm.org/D132405
2022-08-31 09:45:11 -07:00
.github workflows/llvm-project-tests: Workaround an issue with lldb builds on Windows 2022-08-20 00:15:18 -07:00
bolt Use StringRef::contains (NFC) 2022-08-28 23:29:02 -07:00
clang Reapply "[clang][deps] Split translation units into individual -cc1 or other commands" 2022-08-31 09:45:11 -07:00
clang-tools-extra [clang-tidy] Fix modernize-use-emplace to support alias cases 2022-08-31 10:21:10 +01:00
cmake Revert "[cmake] Use `CMAKE_INSTALL_LIBDIR` too" 2022-08-18 22:46:32 -04:00
compiler-rt [msan] Add more specific messages for use-after-destroy 2022-08-30 19:52:32 -07:00
cross-project-tests [debuginfo-tests] Un-XFAIL no passing unused-merged-value.c test 2022-08-25 16:43:40 +01:00
flang [flang] Support lowering of intrinsic module procedure C_FUNLOC 2022-08-31 23:35:42 +08:00
libc [libc][doc] Update implementation status of atanf and atanhf. 2022-08-31 01:27:23 -04:00
libclc [libclc] Quote addition of CLC/LLAsm flags 2022-08-31 11:10:24 +02:00
libcxx [SystemZ][z/OS] Account for renamed parameter name (libc++) 2022-08-30 14:18:44 -04:00
libcxxabi [runtimes] Don't link against compiler-rt when we don't find it 2022-08-24 10:33:10 -04:00
libunwind [libunwind] Fixed a number of typos 2022-08-20 18:09:03 -07:00
lld [lld-macho] Set the SG_READ_ONLY flag on __DATA_CONST 2022-08-31 17:04:20 +02:00
lldb [lldb] Fix two bugs in ObjectContainerMachOFileset 2022-08-30 14:07:20 -07:00
llvm [CostModel][X86] Add and/or/xor general cost kinds support 2022-08-31 17:26:05 +01:00
llvm-libgcc [cmake] Slight fix ups to make robust to the full range of GNUInstallDirs 2022-07-26 14:48:49 +00:00
mlir [MLIR] Update pass declarations to new autogenerated files 2022-08-31 12:28:45 +02:00
openmp [Libomptarget] Remove old workaround for GCC 5,6 from libomptarget 2022-08-30 19:13:48 -05:00
polly Use std::gcd (NFC) 2022-08-28 10:41:53 -07:00
pstl Revert "[cmake] Use `CMAKE_INSTALL_LIBDIR` too" 2022-08-18 22:46:32 -04:00
runtimes Revert "[runtimes] Use a response file for runtimes test suites" 2022-08-29 11:25:29 -07:00
third-party Revert "[cmake] Use `CMAKE_INSTALL_LIBDIR` too" 2022-08-18 22:46:32 -04:00
utils [bazel overlay][libc] Add unistd targets. 2022-08-31 14:29:50 +00:00
.arcconfig
.arclint
.clang-format Revert "Title: [RISCV] Add missing part of instruction vmsge {u}. VX Review By: craig.topper Differential Revision : https://reviews.llvm.org/D100115" 2021-04-14 08:04:37 +01:00
.clang-tidy Add -misc-const-correctness to .clang-tidy 2022-08-08 13:00:52 -07:00
.git-blame-ignore-revs Add __config formatting to .git-blame-ignore-revs 2022-06-14 09:52:49 -04:00
.gitignore [llvm] Ignore .rej files in .gitignore 2022-04-28 08:44:51 -07:00
.mailmap [mailmap] Add entry for myself 2022-08-08 16:29:06 +08:00
CONTRIBUTING.md docs: update some bug tracker references (NFC) 2022-01-10 15:59:08 -08:00
LICENSE.TXT [docs] Add LICENSE.txt to the root of the mono-repo 2022-08-24 09:35:00 +02:00
README.md Fix grammar and punctuation across several docs; NFC 2022-04-07 07:11:11 -04:00
SECURITY.md [docs] Describe reporting security issues on the chromium tracker. 2021-05-19 15:21:50 -07:00

README.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from here.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • cmake -S llvm -B build -G <generator> [options]

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some common options:

      • -DLLVM_ENABLE_PROJECTS='...' and -DLLVM_ENABLE_RUNTIMES='...' --- semicolon-separated list of the LLVM sub-projects and runtimes you'd like to additionally build. LLVM_ENABLE_PROJECTS can include any of: clang, clang-tools-extra, cross-project-tests, flang, libc, libclc, lld, lldb, mlir, openmp, polly, or pstl. LLVM_ENABLE_RUNTIMES can include any of libcxx, libcxxabi, libunwind, compiler-rt, libc or openmp. Some runtime projects can be specified either in LLVM_ENABLE_PROJECTS or in LLVM_ENABLE_RUNTIMES.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang" -DLLVM_ENABLE_RUNTIMES="libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local). Be careful if you install runtime libraries: if your system uses those provided by LLVM (like libc++ or libc++abi), you must not overwrite your system's copy of those libraries, since that could render your system unusable. In general, using something like /usr is not advised, but /usr/local is fine.

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build build [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs to run. In most cases, you get the best performance if you specify the number of CPU threads you have. On some Unix systems, you can specify this with -j$(nproc).

    • For more information see CMake.

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.

Getting in touch

Join LLVM Discourse forums, discord chat or #llvm IRC channel on OFTC.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.