forked from OSchip/llvm-project
2665 lines
99 KiB
C++
2665 lines
99 KiB
C++
//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the RAGreedy function pass for register allocation in
|
|
// optimized builds.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AllocationOrder.h"
|
|
#include "InterferenceCache.h"
|
|
#include "LiveDebugVariables.h"
|
|
#include "RegAllocBase.h"
|
|
#include "SpillPlacement.h"
|
|
#include "Spiller.h"
|
|
#include "SplitKit.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/CodeGen/CalcSpillWeights.h"
|
|
#include "llvm/CodeGen/EdgeBundles.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/CodeGen/LiveRangeEdit.h"
|
|
#include "llvm/CodeGen/LiveRegMatrix.h"
|
|
#include "llvm/CodeGen/LiveStackAnalysis.h"
|
|
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/RegAllocRegistry.h"
|
|
#include "llvm/CodeGen/RegisterClassInfo.h"
|
|
#include "llvm/CodeGen/VirtRegMap.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/PassAnalysisSupport.h"
|
|
#include "llvm/Support/BranchProbability.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/Timer.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
#include <queue>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "regalloc"
|
|
|
|
STATISTIC(NumGlobalSplits, "Number of split global live ranges");
|
|
STATISTIC(NumLocalSplits, "Number of split local live ranges");
|
|
STATISTIC(NumEvicted, "Number of interferences evicted");
|
|
|
|
static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
|
|
"split-spill-mode", cl::Hidden,
|
|
cl::desc("Spill mode for splitting live ranges"),
|
|
cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
|
|
clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
|
|
clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
|
|
cl::init(SplitEditor::SM_Speed));
|
|
|
|
static cl::opt<unsigned>
|
|
LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
|
|
cl::desc("Last chance recoloring max depth"),
|
|
cl::init(5));
|
|
|
|
static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
|
|
"lcr-max-interf", cl::Hidden,
|
|
cl::desc("Last chance recoloring maximum number of considered"
|
|
" interference at a time"),
|
|
cl::init(8));
|
|
|
|
static cl::opt<bool>
|
|
ExhaustiveSearch("exhaustive-register-search", cl::NotHidden,
|
|
cl::desc("Exhaustive Search for registers bypassing the depth "
|
|
"and interference cutoffs of last chance recoloring"));
|
|
|
|
static cl::opt<bool> EnableLocalReassignment(
|
|
"enable-local-reassign", cl::Hidden,
|
|
cl::desc("Local reassignment can yield better allocation decisions, but "
|
|
"may be compile time intensive"),
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool> EnableDeferredSpilling(
|
|
"enable-deferred-spilling", cl::Hidden,
|
|
cl::desc("Instead of spilling a variable right away, defer the actual "
|
|
"code insertion to the end of the allocation. That way the "
|
|
"allocator might still find a suitable coloring for this "
|
|
"variable because of other evicted variables."),
|
|
cl::init(false));
|
|
|
|
// FIXME: Find a good default for this flag and remove the flag.
|
|
static cl::opt<unsigned>
|
|
CSRFirstTimeCost("regalloc-csr-first-time-cost",
|
|
cl::desc("Cost for first time use of callee-saved register."),
|
|
cl::init(0), cl::Hidden);
|
|
|
|
static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
|
|
createGreedyRegisterAllocator);
|
|
|
|
namespace {
|
|
class RAGreedy : public MachineFunctionPass,
|
|
public RegAllocBase,
|
|
private LiveRangeEdit::Delegate {
|
|
// Convenient shortcuts.
|
|
typedef std::priority_queue<std::pair<unsigned, unsigned> > PQueue;
|
|
typedef SmallPtrSet<LiveInterval *, 4> SmallLISet;
|
|
typedef SmallSet<unsigned, 16> SmallVirtRegSet;
|
|
|
|
// context
|
|
MachineFunction *MF;
|
|
|
|
// Shortcuts to some useful interface.
|
|
const TargetInstrInfo *TII;
|
|
const TargetRegisterInfo *TRI;
|
|
RegisterClassInfo RCI;
|
|
|
|
// analyses
|
|
SlotIndexes *Indexes;
|
|
MachineBlockFrequencyInfo *MBFI;
|
|
MachineDominatorTree *DomTree;
|
|
MachineLoopInfo *Loops;
|
|
EdgeBundles *Bundles;
|
|
SpillPlacement *SpillPlacer;
|
|
LiveDebugVariables *DebugVars;
|
|
AliasAnalysis *AA;
|
|
|
|
// state
|
|
std::unique_ptr<Spiller> SpillerInstance;
|
|
PQueue Queue;
|
|
unsigned NextCascade;
|
|
|
|
// Live ranges pass through a number of stages as we try to allocate them.
|
|
// Some of the stages may also create new live ranges:
|
|
//
|
|
// - Region splitting.
|
|
// - Per-block splitting.
|
|
// - Local splitting.
|
|
// - Spilling.
|
|
//
|
|
// Ranges produced by one of the stages skip the previous stages when they are
|
|
// dequeued. This improves performance because we can skip interference checks
|
|
// that are unlikely to give any results. It also guarantees that the live
|
|
// range splitting algorithm terminates, something that is otherwise hard to
|
|
// ensure.
|
|
enum LiveRangeStage {
|
|
/// Newly created live range that has never been queued.
|
|
RS_New,
|
|
|
|
/// Only attempt assignment and eviction. Then requeue as RS_Split.
|
|
RS_Assign,
|
|
|
|
/// Attempt live range splitting if assignment is impossible.
|
|
RS_Split,
|
|
|
|
/// Attempt more aggressive live range splitting that is guaranteed to make
|
|
/// progress. This is used for split products that may not be making
|
|
/// progress.
|
|
RS_Split2,
|
|
|
|
/// Live range will be spilled. No more splitting will be attempted.
|
|
RS_Spill,
|
|
|
|
|
|
/// Live range is in memory. Because of other evictions, it might get moved
|
|
/// in a register in the end.
|
|
RS_Memory,
|
|
|
|
/// There is nothing more we can do to this live range. Abort compilation
|
|
/// if it can't be assigned.
|
|
RS_Done
|
|
};
|
|
|
|
// Enum CutOffStage to keep a track whether the register allocation failed
|
|
// because of the cutoffs encountered in last chance recoloring.
|
|
// Note: This is used as bitmask. New value should be next power of 2.
|
|
enum CutOffStage {
|
|
// No cutoffs encountered
|
|
CO_None = 0,
|
|
|
|
// lcr-max-depth cutoff encountered
|
|
CO_Depth = 1,
|
|
|
|
// lcr-max-interf cutoff encountered
|
|
CO_Interf = 2
|
|
};
|
|
|
|
uint8_t CutOffInfo;
|
|
|
|
#ifndef NDEBUG
|
|
static const char *const StageName[];
|
|
#endif
|
|
|
|
// RegInfo - Keep additional information about each live range.
|
|
struct RegInfo {
|
|
LiveRangeStage Stage;
|
|
|
|
// Cascade - Eviction loop prevention. See canEvictInterference().
|
|
unsigned Cascade;
|
|
|
|
RegInfo() : Stage(RS_New), Cascade(0) {}
|
|
};
|
|
|
|
IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
|
|
|
|
LiveRangeStage getStage(const LiveInterval &VirtReg) const {
|
|
return ExtraRegInfo[VirtReg.reg].Stage;
|
|
}
|
|
|
|
void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
|
|
ExtraRegInfo.resize(MRI->getNumVirtRegs());
|
|
ExtraRegInfo[VirtReg.reg].Stage = Stage;
|
|
}
|
|
|
|
template<typename Iterator>
|
|
void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
|
|
ExtraRegInfo.resize(MRI->getNumVirtRegs());
|
|
for (;Begin != End; ++Begin) {
|
|
unsigned Reg = *Begin;
|
|
if (ExtraRegInfo[Reg].Stage == RS_New)
|
|
ExtraRegInfo[Reg].Stage = NewStage;
|
|
}
|
|
}
|
|
|
|
/// Cost of evicting interference.
|
|
struct EvictionCost {
|
|
unsigned BrokenHints; ///< Total number of broken hints.
|
|
float MaxWeight; ///< Maximum spill weight evicted.
|
|
|
|
EvictionCost(): BrokenHints(0), MaxWeight(0) {}
|
|
|
|
bool isMax() const { return BrokenHints == ~0u; }
|
|
|
|
void setMax() { BrokenHints = ~0u; }
|
|
|
|
void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
|
|
|
|
bool operator<(const EvictionCost &O) const {
|
|
return std::tie(BrokenHints, MaxWeight) <
|
|
std::tie(O.BrokenHints, O.MaxWeight);
|
|
}
|
|
};
|
|
|
|
// splitting state.
|
|
std::unique_ptr<SplitAnalysis> SA;
|
|
std::unique_ptr<SplitEditor> SE;
|
|
|
|
/// Cached per-block interference maps
|
|
InterferenceCache IntfCache;
|
|
|
|
/// All basic blocks where the current register has uses.
|
|
SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
|
|
|
|
/// Global live range splitting candidate info.
|
|
struct GlobalSplitCandidate {
|
|
// Register intended for assignment, or 0.
|
|
unsigned PhysReg;
|
|
|
|
// SplitKit interval index for this candidate.
|
|
unsigned IntvIdx;
|
|
|
|
// Interference for PhysReg.
|
|
InterferenceCache::Cursor Intf;
|
|
|
|
// Bundles where this candidate should be live.
|
|
BitVector LiveBundles;
|
|
SmallVector<unsigned, 8> ActiveBlocks;
|
|
|
|
void reset(InterferenceCache &Cache, unsigned Reg) {
|
|
PhysReg = Reg;
|
|
IntvIdx = 0;
|
|
Intf.setPhysReg(Cache, Reg);
|
|
LiveBundles.clear();
|
|
ActiveBlocks.clear();
|
|
}
|
|
|
|
// Set B[i] = C for every live bundle where B[i] was NoCand.
|
|
unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
|
|
unsigned Count = 0;
|
|
for (int i = LiveBundles.find_first(); i >= 0;
|
|
i = LiveBundles.find_next(i))
|
|
if (B[i] == NoCand) {
|
|
B[i] = C;
|
|
Count++;
|
|
}
|
|
return Count;
|
|
}
|
|
};
|
|
|
|
/// Candidate info for each PhysReg in AllocationOrder.
|
|
/// This vector never shrinks, but grows to the size of the largest register
|
|
/// class.
|
|
SmallVector<GlobalSplitCandidate, 32> GlobalCand;
|
|
|
|
enum : unsigned { NoCand = ~0u };
|
|
|
|
/// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
|
|
/// NoCand which indicates the stack interval.
|
|
SmallVector<unsigned, 32> BundleCand;
|
|
|
|
/// Callee-save register cost, calculated once per machine function.
|
|
BlockFrequency CSRCost;
|
|
|
|
/// Run or not the local reassignment heuristic. This information is
|
|
/// obtained from the TargetSubtargetInfo.
|
|
bool EnableLocalReassign;
|
|
|
|
/// Set of broken hints that may be reconciled later because of eviction.
|
|
SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
|
|
|
|
public:
|
|
RAGreedy();
|
|
|
|
/// Return the pass name.
|
|
StringRef getPassName() const override { return "Greedy Register Allocator"; }
|
|
|
|
/// RAGreedy analysis usage.
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
void releaseMemory() override;
|
|
Spiller &spiller() override { return *SpillerInstance; }
|
|
void enqueue(LiveInterval *LI) override;
|
|
LiveInterval *dequeue() override;
|
|
unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override;
|
|
void aboutToRemoveInterval(LiveInterval &) override;
|
|
|
|
/// Perform register allocation.
|
|
bool runOnMachineFunction(MachineFunction &mf) override;
|
|
|
|
MachineFunctionProperties getRequiredProperties() const override {
|
|
return MachineFunctionProperties().set(
|
|
MachineFunctionProperties::Property::NoPHIs);
|
|
}
|
|
|
|
static char ID;
|
|
|
|
private:
|
|
unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &,
|
|
SmallVirtRegSet &, unsigned = 0);
|
|
|
|
bool LRE_CanEraseVirtReg(unsigned) override;
|
|
void LRE_WillShrinkVirtReg(unsigned) override;
|
|
void LRE_DidCloneVirtReg(unsigned, unsigned) override;
|
|
void enqueue(PQueue &CurQueue, LiveInterval *LI);
|
|
LiveInterval *dequeue(PQueue &CurQueue);
|
|
|
|
BlockFrequency calcSpillCost();
|
|
bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
|
|
void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
|
|
void growRegion(GlobalSplitCandidate &Cand);
|
|
BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate&);
|
|
bool calcCompactRegion(GlobalSplitCandidate&);
|
|
void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
|
|
void calcGapWeights(unsigned, SmallVectorImpl<float>&);
|
|
unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg);
|
|
bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
|
|
bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
|
|
void evictInterference(LiveInterval&, unsigned,
|
|
SmallVectorImpl<unsigned>&);
|
|
bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
|
|
SmallLISet &RecoloringCandidates,
|
|
const SmallVirtRegSet &FixedRegisters);
|
|
|
|
unsigned tryAssign(LiveInterval&, AllocationOrder&,
|
|
SmallVectorImpl<unsigned>&);
|
|
unsigned tryEvict(LiveInterval&, AllocationOrder&,
|
|
SmallVectorImpl<unsigned>&, unsigned = ~0u);
|
|
unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
|
|
SmallVectorImpl<unsigned>&);
|
|
/// Calculate cost of region splitting.
|
|
unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
|
|
AllocationOrder &Order,
|
|
BlockFrequency &BestCost,
|
|
unsigned &NumCands, bool IgnoreCSR);
|
|
/// Perform region splitting.
|
|
unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
|
|
bool HasCompact,
|
|
SmallVectorImpl<unsigned> &NewVRegs);
|
|
/// Check other options before using a callee-saved register for the first
|
|
/// time.
|
|
unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
|
|
unsigned PhysReg, unsigned &CostPerUseLimit,
|
|
SmallVectorImpl<unsigned> &NewVRegs);
|
|
void initializeCSRCost();
|
|
unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
|
|
SmallVectorImpl<unsigned>&);
|
|
unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
|
|
SmallVectorImpl<unsigned>&);
|
|
unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
|
|
SmallVectorImpl<unsigned>&);
|
|
unsigned trySplit(LiveInterval&, AllocationOrder&,
|
|
SmallVectorImpl<unsigned>&);
|
|
unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
|
|
SmallVectorImpl<unsigned> &,
|
|
SmallVirtRegSet &, unsigned);
|
|
bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &,
|
|
SmallVirtRegSet &, unsigned);
|
|
void tryHintRecoloring(LiveInterval &);
|
|
void tryHintsRecoloring();
|
|
|
|
/// Model the information carried by one end of a copy.
|
|
struct HintInfo {
|
|
/// The frequency of the copy.
|
|
BlockFrequency Freq;
|
|
/// The virtual register or physical register.
|
|
unsigned Reg;
|
|
/// Its currently assigned register.
|
|
/// In case of a physical register Reg == PhysReg.
|
|
unsigned PhysReg;
|
|
HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg)
|
|
: Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
|
|
};
|
|
typedef SmallVector<HintInfo, 4> HintsInfo;
|
|
BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned);
|
|
void collectHintInfo(unsigned, HintsInfo &);
|
|
|
|
bool isUnusedCalleeSavedReg(unsigned PhysReg) const;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
char RAGreedy::ID = 0;
|
|
char &llvm::RAGreedyID = RAGreedy::ID;
|
|
|
|
INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
|
|
"Greedy Register Allocator", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
|
|
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
|
|
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
|
|
INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
|
|
INITIALIZE_PASS_DEPENDENCY(LiveStacks)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
|
|
INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
|
|
INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
|
|
INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
|
|
INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
|
|
INITIALIZE_PASS_END(RAGreedy, "greedy",
|
|
"Greedy Register Allocator", false, false)
|
|
|
|
#ifndef NDEBUG
|
|
const char *const RAGreedy::StageName[] = {
|
|
"RS_New",
|
|
"RS_Assign",
|
|
"RS_Split",
|
|
"RS_Split2",
|
|
"RS_Spill",
|
|
"RS_Memory",
|
|
"RS_Done"
|
|
};
|
|
#endif
|
|
|
|
// Hysteresis to use when comparing floats.
|
|
// This helps stabilize decisions based on float comparisons.
|
|
const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
|
|
|
|
|
|
FunctionPass* llvm::createGreedyRegisterAllocator() {
|
|
return new RAGreedy();
|
|
}
|
|
|
|
RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
|
|
}
|
|
|
|
void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<MachineBlockFrequencyInfo>();
|
|
AU.addPreserved<MachineBlockFrequencyInfo>();
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
AU.addPreserved<AAResultsWrapperPass>();
|
|
AU.addRequired<LiveIntervals>();
|
|
AU.addPreserved<LiveIntervals>();
|
|
AU.addRequired<SlotIndexes>();
|
|
AU.addPreserved<SlotIndexes>();
|
|
AU.addRequired<LiveDebugVariables>();
|
|
AU.addPreserved<LiveDebugVariables>();
|
|
AU.addRequired<LiveStacks>();
|
|
AU.addPreserved<LiveStacks>();
|
|
AU.addRequired<MachineDominatorTree>();
|
|
AU.addPreserved<MachineDominatorTree>();
|
|
AU.addRequired<MachineLoopInfo>();
|
|
AU.addPreserved<MachineLoopInfo>();
|
|
AU.addRequired<VirtRegMap>();
|
|
AU.addPreserved<VirtRegMap>();
|
|
AU.addRequired<LiveRegMatrix>();
|
|
AU.addPreserved<LiveRegMatrix>();
|
|
AU.addRequired<EdgeBundles>();
|
|
AU.addRequired<SpillPlacement>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LiveRangeEdit delegate methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
|
|
if (VRM->hasPhys(VirtReg)) {
|
|
LiveInterval &LI = LIS->getInterval(VirtReg);
|
|
Matrix->unassign(LI);
|
|
aboutToRemoveInterval(LI);
|
|
return true;
|
|
}
|
|
// Unassigned virtreg is probably in the priority queue.
|
|
// RegAllocBase will erase it after dequeueing.
|
|
return false;
|
|
}
|
|
|
|
void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
|
|
if (!VRM->hasPhys(VirtReg))
|
|
return;
|
|
|
|
// Register is assigned, put it back on the queue for reassignment.
|
|
LiveInterval &LI = LIS->getInterval(VirtReg);
|
|
Matrix->unassign(LI);
|
|
enqueue(&LI);
|
|
}
|
|
|
|
void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
|
|
// Cloning a register we haven't even heard about yet? Just ignore it.
|
|
if (!ExtraRegInfo.inBounds(Old))
|
|
return;
|
|
|
|
// LRE may clone a virtual register because dead code elimination causes it to
|
|
// be split into connected components. The new components are much smaller
|
|
// than the original, so they should get a new chance at being assigned.
|
|
// same stage as the parent.
|
|
ExtraRegInfo[Old].Stage = RS_Assign;
|
|
ExtraRegInfo.grow(New);
|
|
ExtraRegInfo[New] = ExtraRegInfo[Old];
|
|
}
|
|
|
|
void RAGreedy::releaseMemory() {
|
|
SpillerInstance.reset();
|
|
ExtraRegInfo.clear();
|
|
GlobalCand.clear();
|
|
}
|
|
|
|
void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
|
|
|
|
void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
|
|
// Prioritize live ranges by size, assigning larger ranges first.
|
|
// The queue holds (size, reg) pairs.
|
|
const unsigned Size = LI->getSize();
|
|
const unsigned Reg = LI->reg;
|
|
assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
|
|
"Can only enqueue virtual registers");
|
|
unsigned Prio;
|
|
|
|
ExtraRegInfo.grow(Reg);
|
|
if (ExtraRegInfo[Reg].Stage == RS_New)
|
|
ExtraRegInfo[Reg].Stage = RS_Assign;
|
|
|
|
if (ExtraRegInfo[Reg].Stage == RS_Split) {
|
|
// Unsplit ranges that couldn't be allocated immediately are deferred until
|
|
// everything else has been allocated.
|
|
Prio = Size;
|
|
} else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
|
|
// Memory operand should be considered last.
|
|
// Change the priority such that Memory operand are assigned in
|
|
// the reverse order that they came in.
|
|
// TODO: Make this a member variable and probably do something about hints.
|
|
static unsigned MemOp = 0;
|
|
Prio = MemOp++;
|
|
} else {
|
|
// Giant live ranges fall back to the global assignment heuristic, which
|
|
// prevents excessive spilling in pathological cases.
|
|
bool ReverseLocal = TRI->reverseLocalAssignment();
|
|
const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
|
|
bool ForceGlobal = !ReverseLocal &&
|
|
(Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
|
|
|
|
if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
|
|
LIS->intervalIsInOneMBB(*LI)) {
|
|
// Allocate original local ranges in linear instruction order. Since they
|
|
// are singly defined, this produces optimal coloring in the absence of
|
|
// global interference and other constraints.
|
|
if (!ReverseLocal)
|
|
Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
|
|
else {
|
|
// Allocating bottom up may allow many short LRGs to be assigned first
|
|
// to one of the cheap registers. This could be much faster for very
|
|
// large blocks on targets with many physical registers.
|
|
Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
|
|
}
|
|
Prio |= RC.AllocationPriority << 24;
|
|
} else {
|
|
// Allocate global and split ranges in long->short order. Long ranges that
|
|
// don't fit should be spilled (or split) ASAP so they don't create
|
|
// interference. Mark a bit to prioritize global above local ranges.
|
|
Prio = (1u << 29) + Size;
|
|
}
|
|
// Mark a higher bit to prioritize global and local above RS_Split.
|
|
Prio |= (1u << 31);
|
|
|
|
// Boost ranges that have a physical register hint.
|
|
if (VRM->hasKnownPreference(Reg))
|
|
Prio |= (1u << 30);
|
|
}
|
|
// The virtual register number is a tie breaker for same-sized ranges.
|
|
// Give lower vreg numbers higher priority to assign them first.
|
|
CurQueue.push(std::make_pair(Prio, ~Reg));
|
|
}
|
|
|
|
LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
|
|
|
|
LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
|
|
if (CurQueue.empty())
|
|
return nullptr;
|
|
LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
|
|
CurQueue.pop();
|
|
return LI;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Direct Assignment
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// tryAssign - Try to assign VirtReg to an available register.
|
|
unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
|
|
AllocationOrder &Order,
|
|
SmallVectorImpl<unsigned> &NewVRegs) {
|
|
Order.rewind();
|
|
unsigned PhysReg;
|
|
while ((PhysReg = Order.next()))
|
|
if (!Matrix->checkInterference(VirtReg, PhysReg))
|
|
break;
|
|
if (!PhysReg || Order.isHint())
|
|
return PhysReg;
|
|
|
|
// PhysReg is available, but there may be a better choice.
|
|
|
|
// If we missed a simple hint, try to cheaply evict interference from the
|
|
// preferred register.
|
|
if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
|
|
if (Order.isHint(Hint)) {
|
|
DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
|
|
EvictionCost MaxCost;
|
|
MaxCost.setBrokenHints(1);
|
|
if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
|
|
evictInterference(VirtReg, Hint, NewVRegs);
|
|
return Hint;
|
|
}
|
|
// Record the missed hint, we may be able to recover
|
|
// at the end if the surrounding allocation changed.
|
|
SetOfBrokenHints.insert(&VirtReg);
|
|
}
|
|
|
|
// Try to evict interference from a cheaper alternative.
|
|
unsigned Cost = TRI->getCostPerUse(PhysReg);
|
|
|
|
// Most registers have 0 additional cost.
|
|
if (!Cost)
|
|
return PhysReg;
|
|
|
|
DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
|
|
<< '\n');
|
|
unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
|
|
return CheapReg ? CheapReg : PhysReg;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Interference eviction
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) {
|
|
AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
|
|
unsigned PhysReg;
|
|
while ((PhysReg = Order.next())) {
|
|
if (PhysReg == PrevReg)
|
|
continue;
|
|
|
|
MCRegUnitIterator Units(PhysReg, TRI);
|
|
for (; Units.isValid(); ++Units) {
|
|
// Instantiate a "subquery", not to be confused with the Queries array.
|
|
LiveIntervalUnion::Query subQ(&VirtReg, &Matrix->getLiveUnions()[*Units]);
|
|
if (subQ.checkInterference())
|
|
break;
|
|
}
|
|
// If no units have interference, break out with the current PhysReg.
|
|
if (!Units.isValid())
|
|
break;
|
|
}
|
|
if (PhysReg)
|
|
DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
|
|
<< PrintReg(PrevReg, TRI) << " to " << PrintReg(PhysReg, TRI)
|
|
<< '\n');
|
|
return PhysReg;
|
|
}
|
|
|
|
/// shouldEvict - determine if A should evict the assigned live range B. The
|
|
/// eviction policy defined by this function together with the allocation order
|
|
/// defined by enqueue() decides which registers ultimately end up being split
|
|
/// and spilled.
|
|
///
|
|
/// Cascade numbers are used to prevent infinite loops if this function is a
|
|
/// cyclic relation.
|
|
///
|
|
/// @param A The live range to be assigned.
|
|
/// @param IsHint True when A is about to be assigned to its preferred
|
|
/// register.
|
|
/// @param B The live range to be evicted.
|
|
/// @param BreaksHint True when B is already assigned to its preferred register.
|
|
bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
|
|
LiveInterval &B, bool BreaksHint) {
|
|
bool CanSplit = getStage(B) < RS_Spill;
|
|
|
|
// Be fairly aggressive about following hints as long as the evictee can be
|
|
// split.
|
|
if (CanSplit && IsHint && !BreaksHint)
|
|
return true;
|
|
|
|
if (A.weight > B.weight) {
|
|
DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n');
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// canEvictInterference - Return true if all interferences between VirtReg and
|
|
/// PhysReg can be evicted.
|
|
///
|
|
/// @param VirtReg Live range that is about to be assigned.
|
|
/// @param PhysReg Desired register for assignment.
|
|
/// @param IsHint True when PhysReg is VirtReg's preferred register.
|
|
/// @param MaxCost Only look for cheaper candidates and update with new cost
|
|
/// when returning true.
|
|
/// @returns True when interference can be evicted cheaper than MaxCost.
|
|
bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
|
|
bool IsHint, EvictionCost &MaxCost) {
|
|
// It is only possible to evict virtual register interference.
|
|
if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
|
|
return false;
|
|
|
|
bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
|
|
|
|
// Find VirtReg's cascade number. This will be unassigned if VirtReg was never
|
|
// involved in an eviction before. If a cascade number was assigned, deny
|
|
// evicting anything with the same or a newer cascade number. This prevents
|
|
// infinite eviction loops.
|
|
//
|
|
// This works out so a register without a cascade number is allowed to evict
|
|
// anything, and it can be evicted by anything.
|
|
unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
|
|
if (!Cascade)
|
|
Cascade = NextCascade;
|
|
|
|
EvictionCost Cost;
|
|
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
|
|
LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
|
|
// If there is 10 or more interferences, chances are one is heavier.
|
|
if (Q.collectInterferingVRegs(10) >= 10)
|
|
return false;
|
|
|
|
// Check if any interfering live range is heavier than MaxWeight.
|
|
for (unsigned i = Q.interferingVRegs().size(); i; --i) {
|
|
LiveInterval *Intf = Q.interferingVRegs()[i - 1];
|
|
assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) &&
|
|
"Only expecting virtual register interference from query");
|
|
// Never evict spill products. They cannot split or spill.
|
|
if (getStage(*Intf) == RS_Done)
|
|
return false;
|
|
// Once a live range becomes small enough, it is urgent that we find a
|
|
// register for it. This is indicated by an infinite spill weight. These
|
|
// urgent live ranges get to evict almost anything.
|
|
//
|
|
// Also allow urgent evictions of unspillable ranges from a strictly
|
|
// larger allocation order.
|
|
bool Urgent = !VirtReg.isSpillable() &&
|
|
(Intf->isSpillable() ||
|
|
RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
|
|
RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
|
|
// Only evict older cascades or live ranges without a cascade.
|
|
unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
|
|
if (Cascade <= IntfCascade) {
|
|
if (!Urgent)
|
|
return false;
|
|
// We permit breaking cascades for urgent evictions. It should be the
|
|
// last resort, though, so make it really expensive.
|
|
Cost.BrokenHints += 10;
|
|
}
|
|
// Would this break a satisfied hint?
|
|
bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
|
|
// Update eviction cost.
|
|
Cost.BrokenHints += BreaksHint;
|
|
Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
|
|
// Abort if this would be too expensive.
|
|
if (!(Cost < MaxCost))
|
|
return false;
|
|
if (Urgent)
|
|
continue;
|
|
// Apply the eviction policy for non-urgent evictions.
|
|
if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
|
|
return false;
|
|
// If !MaxCost.isMax(), then we're just looking for a cheap register.
|
|
// Evicting another local live range in this case could lead to suboptimal
|
|
// coloring.
|
|
if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
|
|
(!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
MaxCost = Cost;
|
|
return true;
|
|
}
|
|
|
|
/// evictInterference - Evict any interferring registers that prevent VirtReg
|
|
/// from being assigned to Physreg. This assumes that canEvictInterference
|
|
/// returned true.
|
|
void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
|
|
SmallVectorImpl<unsigned> &NewVRegs) {
|
|
// Make sure that VirtReg has a cascade number, and assign that cascade
|
|
// number to every evicted register. These live ranges than then only be
|
|
// evicted by a newer cascade, preventing infinite loops.
|
|
unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
|
|
if (!Cascade)
|
|
Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
|
|
|
|
DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
|
|
<< " interference: Cascade " << Cascade << '\n');
|
|
|
|
// Collect all interfering virtregs first.
|
|
SmallVector<LiveInterval*, 8> Intfs;
|
|
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
|
|
LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
|
|
assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
|
|
ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
|
|
Intfs.append(IVR.begin(), IVR.end());
|
|
}
|
|
|
|
// Evict them second. This will invalidate the queries.
|
|
for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
|
|
LiveInterval *Intf = Intfs[i];
|
|
// The same VirtReg may be present in multiple RegUnits. Skip duplicates.
|
|
if (!VRM->hasPhys(Intf->reg))
|
|
continue;
|
|
Matrix->unassign(*Intf);
|
|
assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
|
|
VirtReg.isSpillable() < Intf->isSpillable()) &&
|
|
"Cannot decrease cascade number, illegal eviction");
|
|
ExtraRegInfo[Intf->reg].Cascade = Cascade;
|
|
++NumEvicted;
|
|
NewVRegs.push_back(Intf->reg);
|
|
}
|
|
}
|
|
|
|
/// Returns true if the given \p PhysReg is a callee saved register and has not
|
|
/// been used for allocation yet.
|
|
bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const {
|
|
unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
|
|
if (CSR == 0)
|
|
return false;
|
|
|
|
return !Matrix->isPhysRegUsed(PhysReg);
|
|
}
|
|
|
|
/// tryEvict - Try to evict all interferences for a physreg.
|
|
/// @param VirtReg Currently unassigned virtual register.
|
|
/// @param Order Physregs to try.
|
|
/// @return Physreg to assign VirtReg, or 0.
|
|
unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
|
|
AllocationOrder &Order,
|
|
SmallVectorImpl<unsigned> &NewVRegs,
|
|
unsigned CostPerUseLimit) {
|
|
NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
|
|
TimePassesIsEnabled);
|
|
|
|
// Keep track of the cheapest interference seen so far.
|
|
EvictionCost BestCost;
|
|
BestCost.setMax();
|
|
unsigned BestPhys = 0;
|
|
unsigned OrderLimit = Order.getOrder().size();
|
|
|
|
// When we are just looking for a reduced cost per use, don't break any
|
|
// hints, and only evict smaller spill weights.
|
|
if (CostPerUseLimit < ~0u) {
|
|
BestCost.BrokenHints = 0;
|
|
BestCost.MaxWeight = VirtReg.weight;
|
|
|
|
// Check of any registers in RC are below CostPerUseLimit.
|
|
const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
|
|
unsigned MinCost = RegClassInfo.getMinCost(RC);
|
|
if (MinCost >= CostPerUseLimit) {
|
|
DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " << MinCost
|
|
<< ", no cheaper registers to be found.\n");
|
|
return 0;
|
|
}
|
|
|
|
// It is normal for register classes to have a long tail of registers with
|
|
// the same cost. We don't need to look at them if they're too expensive.
|
|
if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
|
|
OrderLimit = RegClassInfo.getLastCostChange(RC);
|
|
DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n");
|
|
}
|
|
}
|
|
|
|
Order.rewind();
|
|
while (unsigned PhysReg = Order.next(OrderLimit)) {
|
|
if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
|
|
continue;
|
|
// The first use of a callee-saved register in a function has cost 1.
|
|
// Don't start using a CSR when the CostPerUseLimit is low.
|
|
if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
|
|
DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
|
|
<< PrintReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
|
|
<< '\n');
|
|
continue;
|
|
}
|
|
|
|
if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
|
|
continue;
|
|
|
|
// Best so far.
|
|
BestPhys = PhysReg;
|
|
|
|
// Stop if the hint can be used.
|
|
if (Order.isHint())
|
|
break;
|
|
}
|
|
|
|
if (!BestPhys)
|
|
return 0;
|
|
|
|
evictInterference(VirtReg, BestPhys, NewVRegs);
|
|
return BestPhys;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Region Splitting
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// addSplitConstraints - Fill out the SplitConstraints vector based on the
|
|
/// interference pattern in Physreg and its aliases. Add the constraints to
|
|
/// SpillPlacement and return the static cost of this split in Cost, assuming
|
|
/// that all preferences in SplitConstraints are met.
|
|
/// Return false if there are no bundles with positive bias.
|
|
bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
|
|
BlockFrequency &Cost) {
|
|
ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
|
|
|
|
// Reset interference dependent info.
|
|
SplitConstraints.resize(UseBlocks.size());
|
|
BlockFrequency StaticCost = 0;
|
|
for (unsigned i = 0; i != UseBlocks.size(); ++i) {
|
|
const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
|
|
SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
|
|
|
|
BC.Number = BI.MBB->getNumber();
|
|
Intf.moveToBlock(BC.Number);
|
|
BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
|
|
BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
|
|
BC.ChangesValue = BI.FirstDef.isValid();
|
|
|
|
if (!Intf.hasInterference())
|
|
continue;
|
|
|
|
// Number of spill code instructions to insert.
|
|
unsigned Ins = 0;
|
|
|
|
// Interference for the live-in value.
|
|
if (BI.LiveIn) {
|
|
if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
|
|
BC.Entry = SpillPlacement::MustSpill;
|
|
++Ins;
|
|
} else if (Intf.first() < BI.FirstInstr) {
|
|
BC.Entry = SpillPlacement::PrefSpill;
|
|
++Ins;
|
|
} else if (Intf.first() < BI.LastInstr) {
|
|
++Ins;
|
|
}
|
|
}
|
|
|
|
// Interference for the live-out value.
|
|
if (BI.LiveOut) {
|
|
if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
|
|
BC.Exit = SpillPlacement::MustSpill;
|
|
++Ins;
|
|
} else if (Intf.last() > BI.LastInstr) {
|
|
BC.Exit = SpillPlacement::PrefSpill;
|
|
++Ins;
|
|
} else if (Intf.last() > BI.FirstInstr) {
|
|
++Ins;
|
|
}
|
|
}
|
|
|
|
// Accumulate the total frequency of inserted spill code.
|
|
while (Ins--)
|
|
StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
|
|
}
|
|
Cost = StaticCost;
|
|
|
|
// Add constraints for use-blocks. Note that these are the only constraints
|
|
// that may add a positive bias, it is downhill from here.
|
|
SpillPlacer->addConstraints(SplitConstraints);
|
|
return SpillPlacer->scanActiveBundles();
|
|
}
|
|
|
|
|
|
/// addThroughConstraints - Add constraints and links to SpillPlacer from the
|
|
/// live-through blocks in Blocks.
|
|
void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
|
|
ArrayRef<unsigned> Blocks) {
|
|
const unsigned GroupSize = 8;
|
|
SpillPlacement::BlockConstraint BCS[GroupSize];
|
|
unsigned TBS[GroupSize];
|
|
unsigned B = 0, T = 0;
|
|
|
|
for (unsigned i = 0; i != Blocks.size(); ++i) {
|
|
unsigned Number = Blocks[i];
|
|
Intf.moveToBlock(Number);
|
|
|
|
if (!Intf.hasInterference()) {
|
|
assert(T < GroupSize && "Array overflow");
|
|
TBS[T] = Number;
|
|
if (++T == GroupSize) {
|
|
SpillPlacer->addLinks(makeArrayRef(TBS, T));
|
|
T = 0;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
assert(B < GroupSize && "Array overflow");
|
|
BCS[B].Number = Number;
|
|
|
|
// Interference for the live-in value.
|
|
if (Intf.first() <= Indexes->getMBBStartIdx(Number))
|
|
BCS[B].Entry = SpillPlacement::MustSpill;
|
|
else
|
|
BCS[B].Entry = SpillPlacement::PrefSpill;
|
|
|
|
// Interference for the live-out value.
|
|
if (Intf.last() >= SA->getLastSplitPoint(Number))
|
|
BCS[B].Exit = SpillPlacement::MustSpill;
|
|
else
|
|
BCS[B].Exit = SpillPlacement::PrefSpill;
|
|
|
|
if (++B == GroupSize) {
|
|
SpillPlacer->addConstraints(makeArrayRef(BCS, B));
|
|
B = 0;
|
|
}
|
|
}
|
|
|
|
SpillPlacer->addConstraints(makeArrayRef(BCS, B));
|
|
SpillPlacer->addLinks(makeArrayRef(TBS, T));
|
|
}
|
|
|
|
void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
|
|
// Keep track of through blocks that have not been added to SpillPlacer.
|
|
BitVector Todo = SA->getThroughBlocks();
|
|
SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
|
|
unsigned AddedTo = 0;
|
|
#ifndef NDEBUG
|
|
unsigned Visited = 0;
|
|
#endif
|
|
|
|
for (;;) {
|
|
ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
|
|
// Find new through blocks in the periphery of PrefRegBundles.
|
|
for (int i = 0, e = NewBundles.size(); i != e; ++i) {
|
|
unsigned Bundle = NewBundles[i];
|
|
// Look at all blocks connected to Bundle in the full graph.
|
|
ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
|
|
for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
|
|
I != E; ++I) {
|
|
unsigned Block = *I;
|
|
if (!Todo.test(Block))
|
|
continue;
|
|
Todo.reset(Block);
|
|
// This is a new through block. Add it to SpillPlacer later.
|
|
ActiveBlocks.push_back(Block);
|
|
#ifndef NDEBUG
|
|
++Visited;
|
|
#endif
|
|
}
|
|
}
|
|
// Any new blocks to add?
|
|
if (ActiveBlocks.size() == AddedTo)
|
|
break;
|
|
|
|
// Compute through constraints from the interference, or assume that all
|
|
// through blocks prefer spilling when forming compact regions.
|
|
auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
|
|
if (Cand.PhysReg)
|
|
addThroughConstraints(Cand.Intf, NewBlocks);
|
|
else
|
|
// Provide a strong negative bias on through blocks to prevent unwanted
|
|
// liveness on loop backedges.
|
|
SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
|
|
AddedTo = ActiveBlocks.size();
|
|
|
|
// Perhaps iterating can enable more bundles?
|
|
SpillPlacer->iterate();
|
|
}
|
|
DEBUG(dbgs() << ", v=" << Visited);
|
|
}
|
|
|
|
/// calcCompactRegion - Compute the set of edge bundles that should be live
|
|
/// when splitting the current live range into compact regions. Compact
|
|
/// regions can be computed without looking at interference. They are the
|
|
/// regions formed by removing all the live-through blocks from the live range.
|
|
///
|
|
/// Returns false if the current live range is already compact, or if the
|
|
/// compact regions would form single block regions anyway.
|
|
bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
|
|
// Without any through blocks, the live range is already compact.
|
|
if (!SA->getNumThroughBlocks())
|
|
return false;
|
|
|
|
// Compact regions don't correspond to any physreg.
|
|
Cand.reset(IntfCache, 0);
|
|
|
|
DEBUG(dbgs() << "Compact region bundles");
|
|
|
|
// Use the spill placer to determine the live bundles. GrowRegion pretends
|
|
// that all the through blocks have interference when PhysReg is unset.
|
|
SpillPlacer->prepare(Cand.LiveBundles);
|
|
|
|
// The static split cost will be zero since Cand.Intf reports no interference.
|
|
BlockFrequency Cost;
|
|
if (!addSplitConstraints(Cand.Intf, Cost)) {
|
|
DEBUG(dbgs() << ", none.\n");
|
|
return false;
|
|
}
|
|
|
|
growRegion(Cand);
|
|
SpillPlacer->finish();
|
|
|
|
if (!Cand.LiveBundles.any()) {
|
|
DEBUG(dbgs() << ", none.\n");
|
|
return false;
|
|
}
|
|
|
|
DEBUG({
|
|
for (int i = Cand.LiveBundles.find_first(); i>=0;
|
|
i = Cand.LiveBundles.find_next(i))
|
|
dbgs() << " EB#" << i;
|
|
dbgs() << ".\n";
|
|
});
|
|
return true;
|
|
}
|
|
|
|
/// calcSpillCost - Compute how expensive it would be to split the live range in
|
|
/// SA around all use blocks instead of forming bundle regions.
|
|
BlockFrequency RAGreedy::calcSpillCost() {
|
|
BlockFrequency Cost = 0;
|
|
ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
|
|
for (unsigned i = 0; i != UseBlocks.size(); ++i) {
|
|
const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
|
|
unsigned Number = BI.MBB->getNumber();
|
|
// We normally only need one spill instruction - a load or a store.
|
|
Cost += SpillPlacer->getBlockFrequency(Number);
|
|
|
|
// Unless the value is redefined in the block.
|
|
if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
|
|
Cost += SpillPlacer->getBlockFrequency(Number);
|
|
}
|
|
return Cost;
|
|
}
|
|
|
|
/// calcGlobalSplitCost - Return the global split cost of following the split
|
|
/// pattern in LiveBundles. This cost should be added to the local cost of the
|
|
/// interference pattern in SplitConstraints.
|
|
///
|
|
BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
|
|
BlockFrequency GlobalCost = 0;
|
|
const BitVector &LiveBundles = Cand.LiveBundles;
|
|
ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
|
|
for (unsigned i = 0; i != UseBlocks.size(); ++i) {
|
|
const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
|
|
SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
|
|
bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, 0)];
|
|
bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
|
|
unsigned Ins = 0;
|
|
|
|
if (BI.LiveIn)
|
|
Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
|
|
if (BI.LiveOut)
|
|
Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
|
|
while (Ins--)
|
|
GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
|
|
}
|
|
|
|
for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
|
|
unsigned Number = Cand.ActiveBlocks[i];
|
|
bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)];
|
|
bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
|
|
if (!RegIn && !RegOut)
|
|
continue;
|
|
if (RegIn && RegOut) {
|
|
// We need double spill code if this block has interference.
|
|
Cand.Intf.moveToBlock(Number);
|
|
if (Cand.Intf.hasInterference()) {
|
|
GlobalCost += SpillPlacer->getBlockFrequency(Number);
|
|
GlobalCost += SpillPlacer->getBlockFrequency(Number);
|
|
}
|
|
continue;
|
|
}
|
|
// live-in / stack-out or stack-in live-out.
|
|
GlobalCost += SpillPlacer->getBlockFrequency(Number);
|
|
}
|
|
return GlobalCost;
|
|
}
|
|
|
|
/// splitAroundRegion - Split the current live range around the regions
|
|
/// determined by BundleCand and GlobalCand.
|
|
///
|
|
/// Before calling this function, GlobalCand and BundleCand must be initialized
|
|
/// so each bundle is assigned to a valid candidate, or NoCand for the
|
|
/// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor
|
|
/// objects must be initialized for the current live range, and intervals
|
|
/// created for the used candidates.
|
|
///
|
|
/// @param LREdit The LiveRangeEdit object handling the current split.
|
|
/// @param UsedCands List of used GlobalCand entries. Every BundleCand value
|
|
/// must appear in this list.
|
|
void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
|
|
ArrayRef<unsigned> UsedCands) {
|
|
// These are the intervals created for new global ranges. We may create more
|
|
// intervals for local ranges.
|
|
const unsigned NumGlobalIntvs = LREdit.size();
|
|
DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n");
|
|
assert(NumGlobalIntvs && "No global intervals configured");
|
|
|
|
// Isolate even single instructions when dealing with a proper sub-class.
|
|
// That guarantees register class inflation for the stack interval because it
|
|
// is all copies.
|
|
unsigned Reg = SA->getParent().reg;
|
|
bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
|
|
|
|
// First handle all the blocks with uses.
|
|
ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
|
|
for (unsigned i = 0; i != UseBlocks.size(); ++i) {
|
|
const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
|
|
unsigned Number = BI.MBB->getNumber();
|
|
unsigned IntvIn = 0, IntvOut = 0;
|
|
SlotIndex IntfIn, IntfOut;
|
|
if (BI.LiveIn) {
|
|
unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
|
|
if (CandIn != NoCand) {
|
|
GlobalSplitCandidate &Cand = GlobalCand[CandIn];
|
|
IntvIn = Cand.IntvIdx;
|
|
Cand.Intf.moveToBlock(Number);
|
|
IntfIn = Cand.Intf.first();
|
|
}
|
|
}
|
|
if (BI.LiveOut) {
|
|
unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
|
|
if (CandOut != NoCand) {
|
|
GlobalSplitCandidate &Cand = GlobalCand[CandOut];
|
|
IntvOut = Cand.IntvIdx;
|
|
Cand.Intf.moveToBlock(Number);
|
|
IntfOut = Cand.Intf.last();
|
|
}
|
|
}
|
|
|
|
// Create separate intervals for isolated blocks with multiple uses.
|
|
if (!IntvIn && !IntvOut) {
|
|
DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
|
|
if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
|
|
SE->splitSingleBlock(BI);
|
|
continue;
|
|
}
|
|
|
|
if (IntvIn && IntvOut)
|
|
SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
|
|
else if (IntvIn)
|
|
SE->splitRegInBlock(BI, IntvIn, IntfIn);
|
|
else
|
|
SE->splitRegOutBlock(BI, IntvOut, IntfOut);
|
|
}
|
|
|
|
// Handle live-through blocks. The relevant live-through blocks are stored in
|
|
// the ActiveBlocks list with each candidate. We need to filter out
|
|
// duplicates.
|
|
BitVector Todo = SA->getThroughBlocks();
|
|
for (unsigned c = 0; c != UsedCands.size(); ++c) {
|
|
ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
|
|
for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
|
|
unsigned Number = Blocks[i];
|
|
if (!Todo.test(Number))
|
|
continue;
|
|
Todo.reset(Number);
|
|
|
|
unsigned IntvIn = 0, IntvOut = 0;
|
|
SlotIndex IntfIn, IntfOut;
|
|
|
|
unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
|
|
if (CandIn != NoCand) {
|
|
GlobalSplitCandidate &Cand = GlobalCand[CandIn];
|
|
IntvIn = Cand.IntvIdx;
|
|
Cand.Intf.moveToBlock(Number);
|
|
IntfIn = Cand.Intf.first();
|
|
}
|
|
|
|
unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
|
|
if (CandOut != NoCand) {
|
|
GlobalSplitCandidate &Cand = GlobalCand[CandOut];
|
|
IntvOut = Cand.IntvIdx;
|
|
Cand.Intf.moveToBlock(Number);
|
|
IntfOut = Cand.Intf.last();
|
|
}
|
|
if (!IntvIn && !IntvOut)
|
|
continue;
|
|
SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
|
|
}
|
|
}
|
|
|
|
++NumGlobalSplits;
|
|
|
|
SmallVector<unsigned, 8> IntvMap;
|
|
SE->finish(&IntvMap);
|
|
DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
|
|
|
|
ExtraRegInfo.resize(MRI->getNumVirtRegs());
|
|
unsigned OrigBlocks = SA->getNumLiveBlocks();
|
|
|
|
// Sort out the new intervals created by splitting. We get four kinds:
|
|
// - Remainder intervals should not be split again.
|
|
// - Candidate intervals can be assigned to Cand.PhysReg.
|
|
// - Block-local splits are candidates for local splitting.
|
|
// - DCE leftovers should go back on the queue.
|
|
for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
|
|
LiveInterval &Reg = LIS->getInterval(LREdit.get(i));
|
|
|
|
// Ignore old intervals from DCE.
|
|
if (getStage(Reg) != RS_New)
|
|
continue;
|
|
|
|
// Remainder interval. Don't try splitting again, spill if it doesn't
|
|
// allocate.
|
|
if (IntvMap[i] == 0) {
|
|
setStage(Reg, RS_Spill);
|
|
continue;
|
|
}
|
|
|
|
// Global intervals. Allow repeated splitting as long as the number of live
|
|
// blocks is strictly decreasing.
|
|
if (IntvMap[i] < NumGlobalIntvs) {
|
|
if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
|
|
DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
|
|
<< " blocks as original.\n");
|
|
// Don't allow repeated splitting as a safe guard against looping.
|
|
setStage(Reg, RS_Split2);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Other intervals are treated as new. This includes local intervals created
|
|
// for blocks with multiple uses, and anything created by DCE.
|
|
}
|
|
|
|
if (VerifyEnabled)
|
|
MF->verify(this, "After splitting live range around region");
|
|
}
|
|
|
|
unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
|
|
SmallVectorImpl<unsigned> &NewVRegs) {
|
|
unsigned NumCands = 0;
|
|
BlockFrequency BestCost;
|
|
|
|
// Check if we can split this live range around a compact region.
|
|
bool HasCompact = calcCompactRegion(GlobalCand.front());
|
|
if (HasCompact) {
|
|
// Yes, keep GlobalCand[0] as the compact region candidate.
|
|
NumCands = 1;
|
|
BestCost = BlockFrequency::getMaxFrequency();
|
|
} else {
|
|
// No benefit from the compact region, our fallback will be per-block
|
|
// splitting. Make sure we find a solution that is cheaper than spilling.
|
|
BestCost = calcSpillCost();
|
|
DEBUG(dbgs() << "Cost of isolating all blocks = ";
|
|
MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
|
|
}
|
|
|
|
unsigned BestCand =
|
|
calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
|
|
false/*IgnoreCSR*/);
|
|
|
|
// No solutions found, fall back to single block splitting.
|
|
if (!HasCompact && BestCand == NoCand)
|
|
return 0;
|
|
|
|
return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
|
|
}
|
|
|
|
unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
|
|
AllocationOrder &Order,
|
|
BlockFrequency &BestCost,
|
|
unsigned &NumCands,
|
|
bool IgnoreCSR) {
|
|
unsigned BestCand = NoCand;
|
|
Order.rewind();
|
|
while (unsigned PhysReg = Order.next()) {
|
|
if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
|
|
continue;
|
|
|
|
// Discard bad candidates before we run out of interference cache cursors.
|
|
// This will only affect register classes with a lot of registers (>32).
|
|
if (NumCands == IntfCache.getMaxCursors()) {
|
|
unsigned WorstCount = ~0u;
|
|
unsigned Worst = 0;
|
|
for (unsigned i = 0; i != NumCands; ++i) {
|
|
if (i == BestCand || !GlobalCand[i].PhysReg)
|
|
continue;
|
|
unsigned Count = GlobalCand[i].LiveBundles.count();
|
|
if (Count < WorstCount) {
|
|
Worst = i;
|
|
WorstCount = Count;
|
|
}
|
|
}
|
|
--NumCands;
|
|
GlobalCand[Worst] = GlobalCand[NumCands];
|
|
if (BestCand == NumCands)
|
|
BestCand = Worst;
|
|
}
|
|
|
|
if (GlobalCand.size() <= NumCands)
|
|
GlobalCand.resize(NumCands+1);
|
|
GlobalSplitCandidate &Cand = GlobalCand[NumCands];
|
|
Cand.reset(IntfCache, PhysReg);
|
|
|
|
SpillPlacer->prepare(Cand.LiveBundles);
|
|
BlockFrequency Cost;
|
|
if (!addSplitConstraints(Cand.Intf, Cost)) {
|
|
DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
|
|
continue;
|
|
}
|
|
DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = ";
|
|
MBFI->printBlockFreq(dbgs(), Cost));
|
|
if (Cost >= BestCost) {
|
|
DEBUG({
|
|
if (BestCand == NoCand)
|
|
dbgs() << " worse than no bundles\n";
|
|
else
|
|
dbgs() << " worse than "
|
|
<< PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
|
|
});
|
|
continue;
|
|
}
|
|
growRegion(Cand);
|
|
|
|
SpillPlacer->finish();
|
|
|
|
// No live bundles, defer to splitSingleBlocks().
|
|
if (!Cand.LiveBundles.any()) {
|
|
DEBUG(dbgs() << " no bundles.\n");
|
|
continue;
|
|
}
|
|
|
|
Cost += calcGlobalSplitCost(Cand);
|
|
DEBUG({
|
|
dbgs() << ", total = "; MBFI->printBlockFreq(dbgs(), Cost)
|
|
<< " with bundles";
|
|
for (int i = Cand.LiveBundles.find_first(); i>=0;
|
|
i = Cand.LiveBundles.find_next(i))
|
|
dbgs() << " EB#" << i;
|
|
dbgs() << ".\n";
|
|
});
|
|
if (Cost < BestCost) {
|
|
BestCand = NumCands;
|
|
BestCost = Cost;
|
|
}
|
|
++NumCands;
|
|
}
|
|
return BestCand;
|
|
}
|
|
|
|
unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
|
|
bool HasCompact,
|
|
SmallVectorImpl<unsigned> &NewVRegs) {
|
|
SmallVector<unsigned, 8> UsedCands;
|
|
// Prepare split editor.
|
|
LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
|
|
SE->reset(LREdit, SplitSpillMode);
|
|
|
|
// Assign all edge bundles to the preferred candidate, or NoCand.
|
|
BundleCand.assign(Bundles->getNumBundles(), NoCand);
|
|
|
|
// Assign bundles for the best candidate region.
|
|
if (BestCand != NoCand) {
|
|
GlobalSplitCandidate &Cand = GlobalCand[BestCand];
|
|
if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
|
|
UsedCands.push_back(BestCand);
|
|
Cand.IntvIdx = SE->openIntv();
|
|
DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in "
|
|
<< B << " bundles, intv " << Cand.IntvIdx << ".\n");
|
|
(void)B;
|
|
}
|
|
}
|
|
|
|
// Assign bundles for the compact region.
|
|
if (HasCompact) {
|
|
GlobalSplitCandidate &Cand = GlobalCand.front();
|
|
assert(!Cand.PhysReg && "Compact region has no physreg");
|
|
if (unsigned B = Cand.getBundles(BundleCand, 0)) {
|
|
UsedCands.push_back(0);
|
|
Cand.IntvIdx = SE->openIntv();
|
|
DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv "
|
|
<< Cand.IntvIdx << ".\n");
|
|
(void)B;
|
|
}
|
|
}
|
|
|
|
splitAroundRegion(LREdit, UsedCands);
|
|
return 0;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Per-Block Splitting
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// tryBlockSplit - Split a global live range around every block with uses. This
|
|
/// creates a lot of local live ranges, that will be split by tryLocalSplit if
|
|
/// they don't allocate.
|
|
unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
|
|
SmallVectorImpl<unsigned> &NewVRegs) {
|
|
assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
|
|
unsigned Reg = VirtReg.reg;
|
|
bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
|
|
LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
|
|
SE->reset(LREdit, SplitSpillMode);
|
|
ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
|
|
for (unsigned i = 0; i != UseBlocks.size(); ++i) {
|
|
const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
|
|
if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
|
|
SE->splitSingleBlock(BI);
|
|
}
|
|
// No blocks were split.
|
|
if (LREdit.empty())
|
|
return 0;
|
|
|
|
// We did split for some blocks.
|
|
SmallVector<unsigned, 8> IntvMap;
|
|
SE->finish(&IntvMap);
|
|
|
|
// Tell LiveDebugVariables about the new ranges.
|
|
DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
|
|
|
|
ExtraRegInfo.resize(MRI->getNumVirtRegs());
|
|
|
|
// Sort out the new intervals created by splitting. The remainder interval
|
|
// goes straight to spilling, the new local ranges get to stay RS_New.
|
|
for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
|
|
LiveInterval &LI = LIS->getInterval(LREdit.get(i));
|
|
if (getStage(LI) == RS_New && IntvMap[i] == 0)
|
|
setStage(LI, RS_Spill);
|
|
}
|
|
|
|
if (VerifyEnabled)
|
|
MF->verify(this, "After splitting live range around basic blocks");
|
|
return 0;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Per-Instruction Splitting
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Get the number of allocatable registers that match the constraints of \p Reg
|
|
/// on \p MI and that are also in \p SuperRC.
|
|
static unsigned getNumAllocatableRegsForConstraints(
|
|
const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
|
|
const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
|
|
const RegisterClassInfo &RCI) {
|
|
assert(SuperRC && "Invalid register class");
|
|
|
|
const TargetRegisterClass *ConstrainedRC =
|
|
MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
|
|
/* ExploreBundle */ true);
|
|
if (!ConstrainedRC)
|
|
return 0;
|
|
return RCI.getNumAllocatableRegs(ConstrainedRC);
|
|
}
|
|
|
|
/// tryInstructionSplit - Split a live range around individual instructions.
|
|
/// This is normally not worthwhile since the spiller is doing essentially the
|
|
/// same thing. However, when the live range is in a constrained register
|
|
/// class, it may help to insert copies such that parts of the live range can
|
|
/// be moved to a larger register class.
|
|
///
|
|
/// This is similar to spilling to a larger register class.
|
|
unsigned
|
|
RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
|
|
SmallVectorImpl<unsigned> &NewVRegs) {
|
|
const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
|
|
// There is no point to this if there are no larger sub-classes.
|
|
if (!RegClassInfo.isProperSubClass(CurRC))
|
|
return 0;
|
|
|
|
// Always enable split spill mode, since we're effectively spilling to a
|
|
// register.
|
|
LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
|
|
SE->reset(LREdit, SplitEditor::SM_Size);
|
|
|
|
ArrayRef<SlotIndex> Uses = SA->getUseSlots();
|
|
if (Uses.size() <= 1)
|
|
return 0;
|
|
|
|
DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n");
|
|
|
|
const TargetRegisterClass *SuperRC =
|
|
TRI->getLargestLegalSuperClass(CurRC, *MF);
|
|
unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
|
|
// Split around every non-copy instruction if this split will relax
|
|
// the constraints on the virtual register.
|
|
// Otherwise, splitting just inserts uncoalescable copies that do not help
|
|
// the allocation.
|
|
for (unsigned i = 0; i != Uses.size(); ++i) {
|
|
if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
|
|
if (MI->isFullCopy() ||
|
|
SuperRCNumAllocatableRegs ==
|
|
getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII,
|
|
TRI, RCI)) {
|
|
DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI);
|
|
continue;
|
|
}
|
|
SE->openIntv();
|
|
SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
|
|
SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]);
|
|
SE->useIntv(SegStart, SegStop);
|
|
}
|
|
|
|
if (LREdit.empty()) {
|
|
DEBUG(dbgs() << "All uses were copies.\n");
|
|
return 0;
|
|
}
|
|
|
|
SmallVector<unsigned, 8> IntvMap;
|
|
SE->finish(&IntvMap);
|
|
DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
|
|
ExtraRegInfo.resize(MRI->getNumVirtRegs());
|
|
|
|
// Assign all new registers to RS_Spill. This was the last chance.
|
|
setStage(LREdit.begin(), LREdit.end(), RS_Spill);
|
|
return 0;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Local Splitting
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
|
|
/// in order to use PhysReg between two entries in SA->UseSlots.
|
|
///
|
|
/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
|
|
///
|
|
void RAGreedy::calcGapWeights(unsigned PhysReg,
|
|
SmallVectorImpl<float> &GapWeight) {
|
|
assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
|
|
const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
|
|
ArrayRef<SlotIndex> Uses = SA->getUseSlots();
|
|
const unsigned NumGaps = Uses.size()-1;
|
|
|
|
// Start and end points for the interference check.
|
|
SlotIndex StartIdx =
|
|
BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
|
|
SlotIndex StopIdx =
|
|
BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
|
|
|
|
GapWeight.assign(NumGaps, 0.0f);
|
|
|
|
// Add interference from each overlapping register.
|
|
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
|
|
if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
|
|
.checkInterference())
|
|
continue;
|
|
|
|
// We know that VirtReg is a continuous interval from FirstInstr to
|
|
// LastInstr, so we don't need InterferenceQuery.
|
|
//
|
|
// Interference that overlaps an instruction is counted in both gaps
|
|
// surrounding the instruction. The exception is interference before
|
|
// StartIdx and after StopIdx.
|
|
//
|
|
LiveIntervalUnion::SegmentIter IntI =
|
|
Matrix->getLiveUnions()[*Units] .find(StartIdx);
|
|
for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
|
|
// Skip the gaps before IntI.
|
|
while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
|
|
if (++Gap == NumGaps)
|
|
break;
|
|
if (Gap == NumGaps)
|
|
break;
|
|
|
|
// Update the gaps covered by IntI.
|
|
const float weight = IntI.value()->weight;
|
|
for (; Gap != NumGaps; ++Gap) {
|
|
GapWeight[Gap] = std::max(GapWeight[Gap], weight);
|
|
if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
|
|
break;
|
|
}
|
|
if (Gap == NumGaps)
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Add fixed interference.
|
|
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
|
|
const LiveRange &LR = LIS->getRegUnit(*Units);
|
|
LiveRange::const_iterator I = LR.find(StartIdx);
|
|
LiveRange::const_iterator E = LR.end();
|
|
|
|
// Same loop as above. Mark any overlapped gaps as HUGE_VALF.
|
|
for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
|
|
while (Uses[Gap+1].getBoundaryIndex() < I->start)
|
|
if (++Gap == NumGaps)
|
|
break;
|
|
if (Gap == NumGaps)
|
|
break;
|
|
|
|
for (; Gap != NumGaps; ++Gap) {
|
|
GapWeight[Gap] = llvm::huge_valf;
|
|
if (Uses[Gap+1].getBaseIndex() >= I->end)
|
|
break;
|
|
}
|
|
if (Gap == NumGaps)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
|
|
/// basic block.
|
|
///
|
|
unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
|
|
SmallVectorImpl<unsigned> &NewVRegs) {
|
|
assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
|
|
const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
|
|
|
|
// Note that it is possible to have an interval that is live-in or live-out
|
|
// while only covering a single block - A phi-def can use undef values from
|
|
// predecessors, and the block could be a single-block loop.
|
|
// We don't bother doing anything clever about such a case, we simply assume
|
|
// that the interval is continuous from FirstInstr to LastInstr. We should
|
|
// make sure that we don't do anything illegal to such an interval, though.
|
|
|
|
ArrayRef<SlotIndex> Uses = SA->getUseSlots();
|
|
if (Uses.size() <= 2)
|
|
return 0;
|
|
const unsigned NumGaps = Uses.size()-1;
|
|
|
|
DEBUG({
|
|
dbgs() << "tryLocalSplit: ";
|
|
for (unsigned i = 0, e = Uses.size(); i != e; ++i)
|
|
dbgs() << ' ' << Uses[i];
|
|
dbgs() << '\n';
|
|
});
|
|
|
|
// If VirtReg is live across any register mask operands, compute a list of
|
|
// gaps with register masks.
|
|
SmallVector<unsigned, 8> RegMaskGaps;
|
|
if (Matrix->checkRegMaskInterference(VirtReg)) {
|
|
// Get regmask slots for the whole block.
|
|
ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
|
|
DEBUG(dbgs() << RMS.size() << " regmasks in block:");
|
|
// Constrain to VirtReg's live range.
|
|
unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
|
|
Uses.front().getRegSlot()) - RMS.begin();
|
|
unsigned re = RMS.size();
|
|
for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
|
|
// Look for Uses[i] <= RMS <= Uses[i+1].
|
|
assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
|
|
if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
|
|
continue;
|
|
// Skip a regmask on the same instruction as the last use. It doesn't
|
|
// overlap the live range.
|
|
if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
|
|
break;
|
|
DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]);
|
|
RegMaskGaps.push_back(i);
|
|
// Advance ri to the next gap. A regmask on one of the uses counts in
|
|
// both gaps.
|
|
while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
|
|
++ri;
|
|
}
|
|
DEBUG(dbgs() << '\n');
|
|
}
|
|
|
|
// Since we allow local split results to be split again, there is a risk of
|
|
// creating infinite loops. It is tempting to require that the new live
|
|
// ranges have less instructions than the original. That would guarantee
|
|
// convergence, but it is too strict. A live range with 3 instructions can be
|
|
// split 2+3 (including the COPY), and we want to allow that.
|
|
//
|
|
// Instead we use these rules:
|
|
//
|
|
// 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
|
|
// noop split, of course).
|
|
// 2. Require progress be made for ranges with getStage() == RS_Split2. All
|
|
// the new ranges must have fewer instructions than before the split.
|
|
// 3. New ranges with the same number of instructions are marked RS_Split2,
|
|
// smaller ranges are marked RS_New.
|
|
//
|
|
// These rules allow a 3 -> 2+3 split once, which we need. They also prevent
|
|
// excessive splitting and infinite loops.
|
|
//
|
|
bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
|
|
|
|
// Best split candidate.
|
|
unsigned BestBefore = NumGaps;
|
|
unsigned BestAfter = 0;
|
|
float BestDiff = 0;
|
|
|
|
const float blockFreq =
|
|
SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
|
|
(1.0f / MBFI->getEntryFreq());
|
|
SmallVector<float, 8> GapWeight;
|
|
|
|
Order.rewind();
|
|
while (unsigned PhysReg = Order.next()) {
|
|
// Keep track of the largest spill weight that would need to be evicted in
|
|
// order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
|
|
calcGapWeights(PhysReg, GapWeight);
|
|
|
|
// Remove any gaps with regmask clobbers.
|
|
if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
|
|
for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
|
|
GapWeight[RegMaskGaps[i]] = llvm::huge_valf;
|
|
|
|
// Try to find the best sequence of gaps to close.
|
|
// The new spill weight must be larger than any gap interference.
|
|
|
|
// We will split before Uses[SplitBefore] and after Uses[SplitAfter].
|
|
unsigned SplitBefore = 0, SplitAfter = 1;
|
|
|
|
// MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
|
|
// It is the spill weight that needs to be evicted.
|
|
float MaxGap = GapWeight[0];
|
|
|
|
for (;;) {
|
|
// Live before/after split?
|
|
const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
|
|
const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
|
|
|
|
DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
|
|
<< Uses[SplitBefore] << '-' << Uses[SplitAfter]
|
|
<< " i=" << MaxGap);
|
|
|
|
// Stop before the interval gets so big we wouldn't be making progress.
|
|
if (!LiveBefore && !LiveAfter) {
|
|
DEBUG(dbgs() << " all\n");
|
|
break;
|
|
}
|
|
// Should the interval be extended or shrunk?
|
|
bool Shrink = true;
|
|
|
|
// How many gaps would the new range have?
|
|
unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
|
|
|
|
// Legally, without causing looping?
|
|
bool Legal = !ProgressRequired || NewGaps < NumGaps;
|
|
|
|
if (Legal && MaxGap < llvm::huge_valf) {
|
|
// Estimate the new spill weight. Each instruction reads or writes the
|
|
// register. Conservatively assume there are no read-modify-write
|
|
// instructions.
|
|
//
|
|
// Try to guess the size of the new interval.
|
|
const float EstWeight = normalizeSpillWeight(
|
|
blockFreq * (NewGaps + 1),
|
|
Uses[SplitBefore].distance(Uses[SplitAfter]) +
|
|
(LiveBefore + LiveAfter) * SlotIndex::InstrDist,
|
|
1);
|
|
// Would this split be possible to allocate?
|
|
// Never allocate all gaps, we wouldn't be making progress.
|
|
DEBUG(dbgs() << " w=" << EstWeight);
|
|
if (EstWeight * Hysteresis >= MaxGap) {
|
|
Shrink = false;
|
|
float Diff = EstWeight - MaxGap;
|
|
if (Diff > BestDiff) {
|
|
DEBUG(dbgs() << " (best)");
|
|
BestDiff = Hysteresis * Diff;
|
|
BestBefore = SplitBefore;
|
|
BestAfter = SplitAfter;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Try to shrink.
|
|
if (Shrink) {
|
|
if (++SplitBefore < SplitAfter) {
|
|
DEBUG(dbgs() << " shrink\n");
|
|
// Recompute the max when necessary.
|
|
if (GapWeight[SplitBefore - 1] >= MaxGap) {
|
|
MaxGap = GapWeight[SplitBefore];
|
|
for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
|
|
MaxGap = std::max(MaxGap, GapWeight[i]);
|
|
}
|
|
continue;
|
|
}
|
|
MaxGap = 0;
|
|
}
|
|
|
|
// Try to extend the interval.
|
|
if (SplitAfter >= NumGaps) {
|
|
DEBUG(dbgs() << " end\n");
|
|
break;
|
|
}
|
|
|
|
DEBUG(dbgs() << " extend\n");
|
|
MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
|
|
}
|
|
}
|
|
|
|
// Didn't find any candidates?
|
|
if (BestBefore == NumGaps)
|
|
return 0;
|
|
|
|
DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
|
|
<< '-' << Uses[BestAfter] << ", " << BestDiff
|
|
<< ", " << (BestAfter - BestBefore + 1) << " instrs\n");
|
|
|
|
LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
|
|
SE->reset(LREdit);
|
|
|
|
SE->openIntv();
|
|
SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
|
|
SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]);
|
|
SE->useIntv(SegStart, SegStop);
|
|
SmallVector<unsigned, 8> IntvMap;
|
|
SE->finish(&IntvMap);
|
|
DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
|
|
|
|
// If the new range has the same number of instructions as before, mark it as
|
|
// RS_Split2 so the next split will be forced to make progress. Otherwise,
|
|
// leave the new intervals as RS_New so they can compete.
|
|
bool LiveBefore = BestBefore != 0 || BI.LiveIn;
|
|
bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
|
|
unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
|
|
if (NewGaps >= NumGaps) {
|
|
DEBUG(dbgs() << "Tagging non-progress ranges: ");
|
|
assert(!ProgressRequired && "Didn't make progress when it was required.");
|
|
for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
|
|
if (IntvMap[i] == 1) {
|
|
setStage(LIS->getInterval(LREdit.get(i)), RS_Split2);
|
|
DEBUG(dbgs() << PrintReg(LREdit.get(i)));
|
|
}
|
|
DEBUG(dbgs() << '\n');
|
|
}
|
|
++NumLocalSplits;
|
|
|
|
return 0;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Live Range Splitting
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// trySplit - Try to split VirtReg or one of its interferences, making it
|
|
/// assignable.
|
|
/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
|
|
unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
|
|
SmallVectorImpl<unsigned>&NewVRegs) {
|
|
// Ranges must be Split2 or less.
|
|
if (getStage(VirtReg) >= RS_Spill)
|
|
return 0;
|
|
|
|
// Local intervals are handled separately.
|
|
if (LIS->intervalIsInOneMBB(VirtReg)) {
|
|
NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
|
|
TimerGroupDescription, TimePassesIsEnabled);
|
|
SA->analyze(&VirtReg);
|
|
unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
|
|
if (PhysReg || !NewVRegs.empty())
|
|
return PhysReg;
|
|
return tryInstructionSplit(VirtReg, Order, NewVRegs);
|
|
}
|
|
|
|
NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
|
|
TimerGroupDescription, TimePassesIsEnabled);
|
|
|
|
SA->analyze(&VirtReg);
|
|
|
|
// FIXME: SplitAnalysis may repair broken live ranges coming from the
|
|
// coalescer. That may cause the range to become allocatable which means that
|
|
// tryRegionSplit won't be making progress. This check should be replaced with
|
|
// an assertion when the coalescer is fixed.
|
|
if (SA->didRepairRange()) {
|
|
// VirtReg has changed, so all cached queries are invalid.
|
|
Matrix->invalidateVirtRegs();
|
|
if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
|
|
return PhysReg;
|
|
}
|
|
|
|
// First try to split around a region spanning multiple blocks. RS_Split2
|
|
// ranges already made dubious progress with region splitting, so they go
|
|
// straight to single block splitting.
|
|
if (getStage(VirtReg) < RS_Split2) {
|
|
unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
|
|
if (PhysReg || !NewVRegs.empty())
|
|
return PhysReg;
|
|
}
|
|
|
|
// Then isolate blocks.
|
|
return tryBlockSplit(VirtReg, Order, NewVRegs);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Last Chance Recoloring
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// mayRecolorAllInterferences - Check if the virtual registers that
|
|
/// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
|
|
/// recolored to free \p PhysReg.
|
|
/// When true is returned, \p RecoloringCandidates has been augmented with all
|
|
/// the live intervals that need to be recolored in order to free \p PhysReg
|
|
/// for \p VirtReg.
|
|
/// \p FixedRegisters contains all the virtual registers that cannot be
|
|
/// recolored.
|
|
bool
|
|
RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
|
|
SmallLISet &RecoloringCandidates,
|
|
const SmallVirtRegSet &FixedRegisters) {
|
|
const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
|
|
|
|
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
|
|
LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
|
|
// If there is LastChanceRecoloringMaxInterference or more interferences,
|
|
// chances are one would not be recolorable.
|
|
if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
|
|
LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
|
|
DEBUG(dbgs() << "Early abort: too many interferences.\n");
|
|
CutOffInfo |= CO_Interf;
|
|
return false;
|
|
}
|
|
for (unsigned i = Q.interferingVRegs().size(); i; --i) {
|
|
LiveInterval *Intf = Q.interferingVRegs()[i - 1];
|
|
// If Intf is done and sit on the same register class as VirtReg,
|
|
// it would not be recolorable as it is in the same state as VirtReg.
|
|
if ((getStage(*Intf) == RS_Done &&
|
|
MRI->getRegClass(Intf->reg) == CurRC) ||
|
|
FixedRegisters.count(Intf->reg)) {
|
|
DEBUG(dbgs() << "Early abort: the inteference is not recolorable.\n");
|
|
return false;
|
|
}
|
|
RecoloringCandidates.insert(Intf);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
|
|
/// its interferences.
|
|
/// Last chance recoloring chooses a color for \p VirtReg and recolors every
|
|
/// virtual register that was using it. The recoloring process may recursively
|
|
/// use the last chance recoloring. Therefore, when a virtual register has been
|
|
/// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
|
|
/// be last-chance-recolored again during this recoloring "session".
|
|
/// E.g.,
|
|
/// Let
|
|
/// vA can use {R1, R2 }
|
|
/// vB can use { R2, R3}
|
|
/// vC can use {R1 }
|
|
/// Where vA, vB, and vC cannot be split anymore (they are reloads for
|
|
/// instance) and they all interfere.
|
|
///
|
|
/// vA is assigned R1
|
|
/// vB is assigned R2
|
|
/// vC tries to evict vA but vA is already done.
|
|
/// Regular register allocation fails.
|
|
///
|
|
/// Last chance recoloring kicks in:
|
|
/// vC does as if vA was evicted => vC uses R1.
|
|
/// vC is marked as fixed.
|
|
/// vA needs to find a color.
|
|
/// None are available.
|
|
/// vA cannot evict vC: vC is a fixed virtual register now.
|
|
/// vA does as if vB was evicted => vA uses R2.
|
|
/// vB needs to find a color.
|
|
/// R3 is available.
|
|
/// Recoloring => vC = R1, vA = R2, vB = R3
|
|
///
|
|
/// \p Order defines the preferred allocation order for \p VirtReg.
|
|
/// \p NewRegs will contain any new virtual register that have been created
|
|
/// (split, spill) during the process and that must be assigned.
|
|
/// \p FixedRegisters contains all the virtual registers that cannot be
|
|
/// recolored.
|
|
/// \p Depth gives the current depth of the last chance recoloring.
|
|
/// \return a physical register that can be used for VirtReg or ~0u if none
|
|
/// exists.
|
|
unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
|
|
AllocationOrder &Order,
|
|
SmallVectorImpl<unsigned> &NewVRegs,
|
|
SmallVirtRegSet &FixedRegisters,
|
|
unsigned Depth) {
|
|
DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
|
|
// Ranges must be Done.
|
|
assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
|
|
"Last chance recoloring should really be last chance");
|
|
// Set the max depth to LastChanceRecoloringMaxDepth.
|
|
// We may want to reconsider that if we end up with a too large search space
|
|
// for target with hundreds of registers.
|
|
// Indeed, in that case we may want to cut the search space earlier.
|
|
if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
|
|
DEBUG(dbgs() << "Abort because max depth has been reached.\n");
|
|
CutOffInfo |= CO_Depth;
|
|
return ~0u;
|
|
}
|
|
|
|
// Set of Live intervals that will need to be recolored.
|
|
SmallLISet RecoloringCandidates;
|
|
// Record the original mapping virtual register to physical register in case
|
|
// the recoloring fails.
|
|
DenseMap<unsigned, unsigned> VirtRegToPhysReg;
|
|
// Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
|
|
// this recoloring "session".
|
|
FixedRegisters.insert(VirtReg.reg);
|
|
SmallVector<unsigned, 4> CurrentNewVRegs;
|
|
|
|
Order.rewind();
|
|
while (unsigned PhysReg = Order.next()) {
|
|
DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
|
|
<< PrintReg(PhysReg, TRI) << '\n');
|
|
RecoloringCandidates.clear();
|
|
VirtRegToPhysReg.clear();
|
|
CurrentNewVRegs.clear();
|
|
|
|
// It is only possible to recolor virtual register interference.
|
|
if (Matrix->checkInterference(VirtReg, PhysReg) >
|
|
LiveRegMatrix::IK_VirtReg) {
|
|
DEBUG(dbgs() << "Some inteferences are not with virtual registers.\n");
|
|
|
|
continue;
|
|
}
|
|
|
|
// Early give up on this PhysReg if it is obvious we cannot recolor all
|
|
// the interferences.
|
|
if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
|
|
FixedRegisters)) {
|
|
DEBUG(dbgs() << "Some inteferences cannot be recolored.\n");
|
|
continue;
|
|
}
|
|
|
|
// RecoloringCandidates contains all the virtual registers that interfer
|
|
// with VirtReg on PhysReg (or one of its aliases).
|
|
// Enqueue them for recoloring and perform the actual recoloring.
|
|
PQueue RecoloringQueue;
|
|
for (SmallLISet::iterator It = RecoloringCandidates.begin(),
|
|
EndIt = RecoloringCandidates.end();
|
|
It != EndIt; ++It) {
|
|
unsigned ItVirtReg = (*It)->reg;
|
|
enqueue(RecoloringQueue, *It);
|
|
assert(VRM->hasPhys(ItVirtReg) &&
|
|
"Interferences are supposed to be with allocated vairables");
|
|
|
|
// Record the current allocation.
|
|
VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
|
|
// unset the related struct.
|
|
Matrix->unassign(**It);
|
|
}
|
|
|
|
// Do as if VirtReg was assigned to PhysReg so that the underlying
|
|
// recoloring has the right information about the interferes and
|
|
// available colors.
|
|
Matrix->assign(VirtReg, PhysReg);
|
|
|
|
// Save the current recoloring state.
|
|
// If we cannot recolor all the interferences, we will have to start again
|
|
// at this point for the next physical register.
|
|
SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
|
|
if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
|
|
FixedRegisters, Depth)) {
|
|
// Push the queued vregs into the main queue.
|
|
for (unsigned NewVReg : CurrentNewVRegs)
|
|
NewVRegs.push_back(NewVReg);
|
|
// Do not mess up with the global assignment process.
|
|
// I.e., VirtReg must be unassigned.
|
|
Matrix->unassign(VirtReg);
|
|
return PhysReg;
|
|
}
|
|
|
|
DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
|
|
<< PrintReg(PhysReg, TRI) << '\n');
|
|
|
|
// The recoloring attempt failed, undo the changes.
|
|
FixedRegisters = SaveFixedRegisters;
|
|
Matrix->unassign(VirtReg);
|
|
|
|
// For a newly created vreg which is also in RecoloringCandidates,
|
|
// don't add it to NewVRegs because its physical register will be restored
|
|
// below. Other vregs in CurrentNewVRegs are created by calling
|
|
// selectOrSplit and should be added into NewVRegs.
|
|
for (SmallVectorImpl<unsigned>::iterator Next = CurrentNewVRegs.begin(),
|
|
End = CurrentNewVRegs.end();
|
|
Next != End; ++Next) {
|
|
if (RecoloringCandidates.count(&LIS->getInterval(*Next)))
|
|
continue;
|
|
NewVRegs.push_back(*Next);
|
|
}
|
|
|
|
for (SmallLISet::iterator It = RecoloringCandidates.begin(),
|
|
EndIt = RecoloringCandidates.end();
|
|
It != EndIt; ++It) {
|
|
unsigned ItVirtReg = (*It)->reg;
|
|
if (VRM->hasPhys(ItVirtReg))
|
|
Matrix->unassign(**It);
|
|
unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg];
|
|
Matrix->assign(**It, ItPhysReg);
|
|
}
|
|
}
|
|
|
|
// Last chance recoloring did not worked either, give up.
|
|
return ~0u;
|
|
}
|
|
|
|
/// tryRecoloringCandidates - Try to assign a new color to every register
|
|
/// in \RecoloringQueue.
|
|
/// \p NewRegs will contain any new virtual register created during the
|
|
/// recoloring process.
|
|
/// \p FixedRegisters[in/out] contains all the registers that have been
|
|
/// recolored.
|
|
/// \return true if all virtual registers in RecoloringQueue were successfully
|
|
/// recolored, false otherwise.
|
|
bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
|
|
SmallVectorImpl<unsigned> &NewVRegs,
|
|
SmallVirtRegSet &FixedRegisters,
|
|
unsigned Depth) {
|
|
while (!RecoloringQueue.empty()) {
|
|
LiveInterval *LI = dequeue(RecoloringQueue);
|
|
DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
|
|
unsigned PhysReg;
|
|
PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
|
|
// When splitting happens, the live-range may actually be empty.
|
|
// In that case, this is okay to continue the recoloring even
|
|
// if we did not find an alternative color for it. Indeed,
|
|
// there will not be anything to color for LI in the end.
|
|
if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
|
|
return false;
|
|
|
|
if (!PhysReg) {
|
|
assert(LI->empty() && "Only empty live-range do not require a register");
|
|
DEBUG(dbgs() << "Recoloring of " << *LI << " succeeded. Empty LI.\n");
|
|
continue;
|
|
}
|
|
DEBUG(dbgs() << "Recoloring of " << *LI
|
|
<< " succeeded with: " << PrintReg(PhysReg, TRI) << '\n');
|
|
|
|
Matrix->assign(*LI, PhysReg);
|
|
FixedRegisters.insert(LI->reg);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Main Entry Point
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
|
|
SmallVectorImpl<unsigned> &NewVRegs) {
|
|
CutOffInfo = CO_None;
|
|
LLVMContext &Ctx = MF->getFunction()->getContext();
|
|
SmallVirtRegSet FixedRegisters;
|
|
unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
|
|
if (Reg == ~0U && (CutOffInfo != CO_None)) {
|
|
uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
|
|
if (CutOffEncountered == CO_Depth)
|
|
Ctx.emitError("register allocation failed: maximum depth for recoloring "
|
|
"reached. Use -fexhaustive-register-search to skip "
|
|
"cutoffs");
|
|
else if (CutOffEncountered == CO_Interf)
|
|
Ctx.emitError("register allocation failed: maximum interference for "
|
|
"recoloring reached. Use -fexhaustive-register-search "
|
|
"to skip cutoffs");
|
|
else if (CutOffEncountered == (CO_Depth | CO_Interf))
|
|
Ctx.emitError("register allocation failed: maximum interference and "
|
|
"depth for recoloring reached. Use "
|
|
"-fexhaustive-register-search to skip cutoffs");
|
|
}
|
|
return Reg;
|
|
}
|
|
|
|
/// Using a CSR for the first time has a cost because it causes push|pop
|
|
/// to be added to prologue|epilogue. Splitting a cold section of the live
|
|
/// range can have lower cost than using the CSR for the first time;
|
|
/// Spilling a live range in the cold path can have lower cost than using
|
|
/// the CSR for the first time. Returns the physical register if we decide
|
|
/// to use the CSR; otherwise return 0.
|
|
unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
|
|
AllocationOrder &Order,
|
|
unsigned PhysReg,
|
|
unsigned &CostPerUseLimit,
|
|
SmallVectorImpl<unsigned> &NewVRegs) {
|
|
if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
|
|
// We choose spill over using the CSR for the first time if the spill cost
|
|
// is lower than CSRCost.
|
|
SA->analyze(&VirtReg);
|
|
if (calcSpillCost() >= CSRCost)
|
|
return PhysReg;
|
|
|
|
// We are going to spill, set CostPerUseLimit to 1 to make sure that
|
|
// we will not use a callee-saved register in tryEvict.
|
|
CostPerUseLimit = 1;
|
|
return 0;
|
|
}
|
|
if (getStage(VirtReg) < RS_Split) {
|
|
// We choose pre-splitting over using the CSR for the first time if
|
|
// the cost of splitting is lower than CSRCost.
|
|
SA->analyze(&VirtReg);
|
|
unsigned NumCands = 0;
|
|
BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
|
|
unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
|
|
NumCands, true /*IgnoreCSR*/);
|
|
if (BestCand == NoCand)
|
|
// Use the CSR if we can't find a region split below CSRCost.
|
|
return PhysReg;
|
|
|
|
// Perform the actual pre-splitting.
|
|
doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
|
|
return 0;
|
|
}
|
|
return PhysReg;
|
|
}
|
|
|
|
void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
|
|
// Do not keep invalid information around.
|
|
SetOfBrokenHints.remove(&LI);
|
|
}
|
|
|
|
void RAGreedy::initializeCSRCost() {
|
|
// We use the larger one out of the command-line option and the value report
|
|
// by TRI.
|
|
CSRCost = BlockFrequency(
|
|
std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
|
|
if (!CSRCost.getFrequency())
|
|
return;
|
|
|
|
// Raw cost is relative to Entry == 2^14; scale it appropriately.
|
|
uint64_t ActualEntry = MBFI->getEntryFreq();
|
|
if (!ActualEntry) {
|
|
CSRCost = 0;
|
|
return;
|
|
}
|
|
uint64_t FixedEntry = 1 << 14;
|
|
if (ActualEntry < FixedEntry)
|
|
CSRCost *= BranchProbability(ActualEntry, FixedEntry);
|
|
else if (ActualEntry <= UINT32_MAX)
|
|
// Invert the fraction and divide.
|
|
CSRCost /= BranchProbability(FixedEntry, ActualEntry);
|
|
else
|
|
// Can't use BranchProbability in general, since it takes 32-bit numbers.
|
|
CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
|
|
}
|
|
|
|
/// \brief Collect the hint info for \p Reg.
|
|
/// The results are stored into \p Out.
|
|
/// \p Out is not cleared before being populated.
|
|
void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) {
|
|
for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
|
|
if (!Instr.isFullCopy())
|
|
continue;
|
|
// Look for the other end of the copy.
|
|
unsigned OtherReg = Instr.getOperand(0).getReg();
|
|
if (OtherReg == Reg) {
|
|
OtherReg = Instr.getOperand(1).getReg();
|
|
if (OtherReg == Reg)
|
|
continue;
|
|
}
|
|
// Get the current assignment.
|
|
unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg)
|
|
? OtherReg
|
|
: VRM->getPhys(OtherReg);
|
|
// Push the collected information.
|
|
Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
|
|
OtherPhysReg));
|
|
}
|
|
}
|
|
|
|
/// \brief Using the given \p List, compute the cost of the broken hints if
|
|
/// \p PhysReg was used.
|
|
/// \return The cost of \p List for \p PhysReg.
|
|
BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
|
|
unsigned PhysReg) {
|
|
BlockFrequency Cost = 0;
|
|
for (const HintInfo &Info : List) {
|
|
if (Info.PhysReg != PhysReg)
|
|
Cost += Info.Freq;
|
|
}
|
|
return Cost;
|
|
}
|
|
|
|
/// \brief Using the register assigned to \p VirtReg, try to recolor
|
|
/// all the live ranges that are copy-related with \p VirtReg.
|
|
/// The recoloring is then propagated to all the live-ranges that have
|
|
/// been recolored and so on, until no more copies can be coalesced or
|
|
/// it is not profitable.
|
|
/// For a given live range, profitability is determined by the sum of the
|
|
/// frequencies of the non-identity copies it would introduce with the old
|
|
/// and new register.
|
|
void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
|
|
// We have a broken hint, check if it is possible to fix it by
|
|
// reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
|
|
// some register and PhysReg may be available for the other live-ranges.
|
|
SmallSet<unsigned, 4> Visited;
|
|
SmallVector<unsigned, 2> RecoloringCandidates;
|
|
HintsInfo Info;
|
|
unsigned Reg = VirtReg.reg;
|
|
unsigned PhysReg = VRM->getPhys(Reg);
|
|
// Start the recoloring algorithm from the input live-interval, then
|
|
// it will propagate to the ones that are copy-related with it.
|
|
Visited.insert(Reg);
|
|
RecoloringCandidates.push_back(Reg);
|
|
|
|
DEBUG(dbgs() << "Trying to reconcile hints for: " << PrintReg(Reg, TRI) << '('
|
|
<< PrintReg(PhysReg, TRI) << ")\n");
|
|
|
|
do {
|
|
Reg = RecoloringCandidates.pop_back_val();
|
|
|
|
// We cannot recolor physcal register.
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg))
|
|
continue;
|
|
|
|
assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
|
|
|
|
// Get the live interval mapped with this virtual register to be able
|
|
// to check for the interference with the new color.
|
|
LiveInterval &LI = LIS->getInterval(Reg);
|
|
unsigned CurrPhys = VRM->getPhys(Reg);
|
|
// Check that the new color matches the register class constraints and
|
|
// that it is free for this live range.
|
|
if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
|
|
Matrix->checkInterference(LI, PhysReg)))
|
|
continue;
|
|
|
|
DEBUG(dbgs() << PrintReg(Reg, TRI) << '(' << PrintReg(CurrPhys, TRI)
|
|
<< ") is recolorable.\n");
|
|
|
|
// Gather the hint info.
|
|
Info.clear();
|
|
collectHintInfo(Reg, Info);
|
|
// Check if recoloring the live-range will increase the cost of the
|
|
// non-identity copies.
|
|
if (CurrPhys != PhysReg) {
|
|
DEBUG(dbgs() << "Checking profitability:\n");
|
|
BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
|
|
BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
|
|
DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
|
|
<< "\nNew Cost: " << NewCopiesCost.getFrequency() << '\n');
|
|
if (OldCopiesCost < NewCopiesCost) {
|
|
DEBUG(dbgs() << "=> Not profitable.\n");
|
|
continue;
|
|
}
|
|
// At this point, the cost is either cheaper or equal. If it is
|
|
// equal, we consider this is profitable because it may expose
|
|
// more recoloring opportunities.
|
|
DEBUG(dbgs() << "=> Profitable.\n");
|
|
// Recolor the live-range.
|
|
Matrix->unassign(LI);
|
|
Matrix->assign(LI, PhysReg);
|
|
}
|
|
// Push all copy-related live-ranges to keep reconciling the broken
|
|
// hints.
|
|
for (const HintInfo &HI : Info) {
|
|
if (Visited.insert(HI.Reg).second)
|
|
RecoloringCandidates.push_back(HI.Reg);
|
|
}
|
|
} while (!RecoloringCandidates.empty());
|
|
}
|
|
|
|
/// \brief Try to recolor broken hints.
|
|
/// Broken hints may be repaired by recoloring when an evicted variable
|
|
/// freed up a register for a larger live-range.
|
|
/// Consider the following example:
|
|
/// BB1:
|
|
/// a =
|
|
/// b =
|
|
/// BB2:
|
|
/// ...
|
|
/// = b
|
|
/// = a
|
|
/// Let us assume b gets split:
|
|
/// BB1:
|
|
/// a =
|
|
/// b =
|
|
/// BB2:
|
|
/// c = b
|
|
/// ...
|
|
/// d = c
|
|
/// = d
|
|
/// = a
|
|
/// Because of how the allocation work, b, c, and d may be assigned different
|
|
/// colors. Now, if a gets evicted later:
|
|
/// BB1:
|
|
/// a =
|
|
/// st a, SpillSlot
|
|
/// b =
|
|
/// BB2:
|
|
/// c = b
|
|
/// ...
|
|
/// d = c
|
|
/// = d
|
|
/// e = ld SpillSlot
|
|
/// = e
|
|
/// This is likely that we can assign the same register for b, c, and d,
|
|
/// getting rid of 2 copies.
|
|
void RAGreedy::tryHintsRecoloring() {
|
|
for (LiveInterval *LI : SetOfBrokenHints) {
|
|
assert(TargetRegisterInfo::isVirtualRegister(LI->reg) &&
|
|
"Recoloring is possible only for virtual registers");
|
|
// Some dead defs may be around (e.g., because of debug uses).
|
|
// Ignore those.
|
|
if (!VRM->hasPhys(LI->reg))
|
|
continue;
|
|
tryHintRecoloring(*LI);
|
|
}
|
|
}
|
|
|
|
unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
|
|
SmallVectorImpl<unsigned> &NewVRegs,
|
|
SmallVirtRegSet &FixedRegisters,
|
|
unsigned Depth) {
|
|
unsigned CostPerUseLimit = ~0u;
|
|
// First try assigning a free register.
|
|
AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
|
|
if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) {
|
|
// When NewVRegs is not empty, we may have made decisions such as evicting
|
|
// a virtual register, go with the earlier decisions and use the physical
|
|
// register.
|
|
if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
|
|
NewVRegs.empty()) {
|
|
unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
|
|
CostPerUseLimit, NewVRegs);
|
|
if (CSRReg || !NewVRegs.empty())
|
|
// Return now if we decide to use a CSR or create new vregs due to
|
|
// pre-splitting.
|
|
return CSRReg;
|
|
} else
|
|
return PhysReg;
|
|
}
|
|
|
|
LiveRangeStage Stage = getStage(VirtReg);
|
|
DEBUG(dbgs() << StageName[Stage]
|
|
<< " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
|
|
|
|
// Try to evict a less worthy live range, but only for ranges from the primary
|
|
// queue. The RS_Split ranges already failed to do this, and they should not
|
|
// get a second chance until they have been split.
|
|
if (Stage != RS_Split)
|
|
if (unsigned PhysReg =
|
|
tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit)) {
|
|
unsigned Hint = MRI->getSimpleHint(VirtReg.reg);
|
|
// If VirtReg has a hint and that hint is broken record this
|
|
// virtual register as a recoloring candidate for broken hint.
|
|
// Indeed, since we evicted a variable in its neighborhood it is
|
|
// likely we can at least partially recolor some of the
|
|
// copy-related live-ranges.
|
|
if (Hint && Hint != PhysReg)
|
|
SetOfBrokenHints.insert(&VirtReg);
|
|
return PhysReg;
|
|
}
|
|
|
|
assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
|
|
|
|
// The first time we see a live range, don't try to split or spill.
|
|
// Wait until the second time, when all smaller ranges have been allocated.
|
|
// This gives a better picture of the interference to split around.
|
|
if (Stage < RS_Split) {
|
|
setStage(VirtReg, RS_Split);
|
|
DEBUG(dbgs() << "wait for second round\n");
|
|
NewVRegs.push_back(VirtReg.reg);
|
|
return 0;
|
|
}
|
|
|
|
if (Stage < RS_Spill) {
|
|
// Try splitting VirtReg or interferences.
|
|
unsigned NewVRegSizeBefore = NewVRegs.size();
|
|
unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
|
|
if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore))
|
|
return PhysReg;
|
|
}
|
|
|
|
// If we couldn't allocate a register from spilling, there is probably some
|
|
// invalid inline assembly. The base class wil report it.
|
|
if (Stage >= RS_Done || !VirtReg.isSpillable())
|
|
return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
|
|
Depth);
|
|
|
|
// Finally spill VirtReg itself.
|
|
if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) {
|
|
// TODO: This is experimental and in particular, we do not model
|
|
// the live range splitting done by spilling correctly.
|
|
// We would need a deep integration with the spiller to do the
|
|
// right thing here. Anyway, that is still good for early testing.
|
|
setStage(VirtReg, RS_Memory);
|
|
DEBUG(dbgs() << "Do as if this register is in memory\n");
|
|
NewVRegs.push_back(VirtReg.reg);
|
|
} else {
|
|
NamedRegionTimer T("spill", "Spiller", TimerGroupName,
|
|
TimerGroupDescription, TimePassesIsEnabled);
|
|
LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
|
|
spiller().spill(LRE);
|
|
setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
|
|
|
|
if (VerifyEnabled)
|
|
MF->verify(this, "After spilling");
|
|
}
|
|
|
|
// The live virtual register requesting allocation was spilled, so tell
|
|
// the caller not to allocate anything during this round.
|
|
return 0;
|
|
}
|
|
|
|
bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
|
|
DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
|
|
<< "********** Function: " << mf.getName() << '\n');
|
|
|
|
MF = &mf;
|
|
TRI = MF->getSubtarget().getRegisterInfo();
|
|
TII = MF->getSubtarget().getInstrInfo();
|
|
RCI.runOnMachineFunction(mf);
|
|
|
|
EnableLocalReassign = EnableLocalReassignment ||
|
|
MF->getSubtarget().enableRALocalReassignment(
|
|
MF->getTarget().getOptLevel());
|
|
|
|
if (VerifyEnabled)
|
|
MF->verify(this, "Before greedy register allocator");
|
|
|
|
RegAllocBase::init(getAnalysis<VirtRegMap>(),
|
|
getAnalysis<LiveIntervals>(),
|
|
getAnalysis<LiveRegMatrix>());
|
|
Indexes = &getAnalysis<SlotIndexes>();
|
|
MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
|
|
DomTree = &getAnalysis<MachineDominatorTree>();
|
|
SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
|
|
Loops = &getAnalysis<MachineLoopInfo>();
|
|
Bundles = &getAnalysis<EdgeBundles>();
|
|
SpillPlacer = &getAnalysis<SpillPlacement>();
|
|
DebugVars = &getAnalysis<LiveDebugVariables>();
|
|
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
|
|
initializeCSRCost();
|
|
|
|
calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI);
|
|
|
|
DEBUG(LIS->dump());
|
|
|
|
SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
|
|
SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI));
|
|
ExtraRegInfo.clear();
|
|
ExtraRegInfo.resize(MRI->getNumVirtRegs());
|
|
NextCascade = 1;
|
|
IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
|
|
GlobalCand.resize(32); // This will grow as needed.
|
|
SetOfBrokenHints.clear();
|
|
|
|
allocatePhysRegs();
|
|
tryHintsRecoloring();
|
|
postOptimization();
|
|
|
|
releaseMemory();
|
|
return true;
|
|
}
|