Go to file
Heejin Ahn 834debfffd [WebAssembly] Fix block marker placing after fixUnwindMismatches
Summary:
This fixes a few things that are connected. It is very hard to provide
an independent test case for each of those fixes, because they are
interconnected and sometimes one masks another. The provided test case
triggers some of those bugs below but not all.

---

1. Background:
`placeBlockMarker` takes a BB, and if the BB is a destination of some
branch, it places `end_block` marker there, and computes the nearest
common dominator of all predecessors (what we call 'header') and places
a `block` marker there.

When we first place markers, we traverse BBs from top to bottom. For
example, when there are 5 BBs A, B, C, D, and E and B, D, and E are
branch destinations, if mark the BB given to `placeBlockMarker` with `*`
and draw a rectangle representing the border of `block` and `end_block`
markers, the process is going to look like
```
                       -------
           -----       |-----|
 ---       |---|       ||---||
 |A|       ||A||       |||A|||
 ---  -->  |---|  -->  ||---||
 *B        | B |       || B ||
  C        | C |       || C ||
  D        -----       |-----|
  E         *D         |  D  |
             E         -------
                         *E
```
which means when we first place markers, we go from inner to outer
scopes. So when we place a `block` marker, if the header already
contains other `block` or `try` marker, it has to belong to an inner
scope, so the existing `block`/`try` markers should go _after_ the new
marker. This was the assumption we had.

But after placing all markers we run `fixUnwindMismatches` function.
There we do some control flow transformation and create some branches,
and we call `placeBlockMarker` again to place `block`/`end_block`
markers for those newly created branches. We can't assume that we are
traversing branch destination BBs from top to bottom now because we are
basically inserting some new markers in the middle of existing markers.

Fix:
In `placeBlockMarker`, we don't have the assumption that the BB given is
in the order of top to bottom, and when placing `block` markers,
calculates whether existing `block` or `try` markers are inner or
outer scopes with respect to the current scope.

---

2. Background:
In `fixUnwindMismatches`, when there is a call whose correct unwind
destination mismatches the current destination after initially placing
`try` markers, we wrap that with a new nested `try`/`catch`/`end` and
jump to the correct handler within the new `catch`. The correct handler
code is split as a separate BB from its original EH pad so it can be
branched to. Here's an example:

- Before
```
mbb:
  call @foo       <- Unwind destination mismatch!
wrong-ehpad:
  catch
  ...
cont:
  end_try
  ...
correct-ehpad:
  catch
  [handler code]
```

- After
```
mbb:
  try                (new)
  call @foo
nested-ehpad:        (new)
  catch              (new)
  local.set n / drop (new)
  br %handleri       (new)
nested-end:          (new)
  end_try            (new)
wrong-ehpad:
  catch
  ...
cont:
  end_try
  ...
correct-ehpad:
  catch
  local.set n / drop (new)
handler:             (new)
  end_try
  [handler code]
```

Note that after this transformation, it is possible there are no calls
to actually unwind to `correct-ehpad` here. `call @foo` now
branches to `handler`, and there can be no other calls to unwind to
`correct-ehpad`. In this case `correct-ehpad` does not have any
predecessors anymore.

This can cause a bug in `placeBlockMarker`, because we may need to place
`end_block` marker in `handler`, and `placeBlockMarker` computes the
nearest common dominator of all predecessors. If one of `handler`'s
predecessor (here `correct-ehpad`) does not have any predecessors, i.e.,
no way of reaching it, we cannot correctly compute the common dominator
of predecessors of `handler`, and end up placing no `block`/`end`
markers. This bug actually sometimes masks the bug 1.

Fix:
When we have an EH pad that does not have any predecessors after this
transformation, deletes all its successors, so that its successors don't
have any dangling predecessors.

---

3. Background:
Actually the `handler` BB in the example shown in bug 2 doesn't need
`end_block` marker, despite it being a new branch destination, because
it already has `end_try` marker which can serve the same purpose. I just
put that example there for an illustration purpose. There is a case we
actually need to place `end_block` marker: when the branch dest is the
appendix BB. The appendix BB is created when there is a call that is
supposed to unwind to the caller ends up unwinding to a wrong EH pad. In
this case we also wrap the call with a nested `try`/`catch`/`end`,
create an 'appendix' BB at the very end of the function, and branch to
that BB, where we rethrow the exception to the caller.

Fix:
When we don't actually need to place block markers, we don't.

---

4. In case we fall through to the continuation BB after the catch block,
after extracting handler code in `fixUnwindMismatches` (refer to bug 2
for an example), we now have to add a branch to it to bypass the
handler.
- Before
```
try
  ...
  (falls through to 'cont')
catch
  handler body
end
              <-- cont
```

- After
```
try
  ...
  br %cont    (new)
catch
end
handler body
              <-- cont
```

The problem is, we haven't been placing a new `end_block` marker in the
`cont` BB in this case. We should, and this fixes it. But it is hard to
provide a test case that triggers this bug, because the current
compilation pipeline from .ll to .s does not generate this kind of code;
we always have a `br` after `invoke`. But code without `br` is still
valid, and we can have that kind of code if we have some pipeline
changes or optimizations later. Even mir test cases cannot trigger this
part for now, because we don't encode auxiliary EH-related data
structures (such as `WasmEHFuncInfo`) in mir now. Those functionalities
can be added later, but I don't think we should block this fix on that.

Reviewers: dschuff

Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D79324
2020-05-05 02:06:47 -07:00
clang [clang] Fix an uint32_t overflow in large preamble. 2020-05-05 10:36:34 +02:00
clang-tools-extra Fix building with GCC5 after e64f99c51a 2020-05-04 11:12:39 +02:00
compiler-rt Try to make `duplicate_os_log_reports.cpp` more reliable. 2020-05-04 13:49:55 -07:00
debuginfo-tests [debuginfo-tests] Update Python variable in lit.site.cfg.py 2020-04-30 10:51:45 -07:00
flang [flang] Fix x87 binary->decimal 2020-05-04 12:04:08 -07:00
libc [libc] Include object files from alias entrypoints also in entrypoint libraries. 2020-05-04 11:39:37 -07:00
libclc libclc: Pass system libraries to the linker after llvm libraries 2020-04-29 15:34:54 -07:00
libcxx [libc++] Always enable local submodule visibility in the test suite 2020-05-04 13:29:24 -04:00
libcxxabi [libc++abi] Add -Wno-unreachable-code when building test for throwing incomplete types 2020-05-01 15:29:40 -04:00
libunwind [libcxx][libcxxabi][libunwind] Use libgcc on Android 2020-04-30 15:42:32 -07:00
lld [ELF][ARM] Do not create .ARM.exidx sections for out of range inputs 2020-05-05 09:59:45 +01:00
lldb Clarify comment 2020-05-04 18:15:30 -07:00
llvm [WebAssembly] Fix block marker placing after fixUnwindMismatches 2020-05-05 02:06:47 -07:00
mlir [MLIR] Add conversion from AtomicRMWOp -> GenericAtomicRMWOp. 2020-05-05 10:32:13 +02:00
openmp [OpenMP] Fix an issue of wrong return type of DeviceRTLTy::getNumOfDevices 2020-05-03 15:59:06 -04:00
parallel-libs
polly Make Polly tests dependencies explicit 2020-05-04 08:06:39 +02:00
pstl [pstl] Added missing double-underscore prefixes to some types 2020-04-15 22:06:58 +02:00
utils/arcanist Use in-tree clang-format-diff.py as Arcanist linter 2020-04-06 12:02:20 -04:00
.arcconfig
.arclint Fix .arclint on Windows 2020-04-28 09:55:48 -07:00
.clang-format
.clang-tidy
.git-blame-ignore-revs Add some libc++ revisions to .git-blame-ignore-revs 2020-03-17 17:30:20 -04:00
.gitignore
CONTRIBUTING.md
README.md Revert "This is a test commit." 2020-04-11 15:55:07 -07:00

README.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and converts it into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • mkdir build

    • cd build

    • cmake -G <generator> [options] ../llvm

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM sub-projects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build . [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs, e.g. the number of CPUs you have.

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.