forked from OSchip/llvm-project
1129 lines
39 KiB
C++
1129 lines
39 KiB
C++
//===- MLIRContext.cpp - MLIR Type Classes --------------------------------===//
|
|
//
|
|
// Copyright 2019 The MLIR Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
// =============================================================================
|
|
|
|
#include "mlir/IR/MLIRContext.h"
|
|
#include "AffineExprDetail.h"
|
|
#include "AttributeListStorage.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/Attributes.h"
|
|
#include "mlir/IR/Function.h"
|
|
#include "mlir/IR/Identifier.h"
|
|
#include "mlir/IR/IntegerSet.h"
|
|
#include "mlir/IR/Location.h"
|
|
#include "mlir/IR/OperationSet.h"
|
|
#include "mlir/IR/StandardOps.h"
|
|
#include "mlir/IR/Types.h"
|
|
#include "mlir/Support/MathExtras.h"
|
|
#include "mlir/Support/STLExtras.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::detail;
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
struct FunctionTypeKeyInfo : DenseMapInfo<FunctionType *> {
|
|
// Functions are uniqued based on their inputs and results.
|
|
using KeyTy = std::pair<ArrayRef<Type *>, ArrayRef<Type *>>;
|
|
using DenseMapInfo<FunctionType *>::getHashValue;
|
|
using DenseMapInfo<FunctionType *>::isEqual;
|
|
|
|
static unsigned getHashValue(KeyTy key) {
|
|
return hash_combine(
|
|
hash_combine_range(key.first.begin(), key.first.end()),
|
|
hash_combine_range(key.second.begin(), key.second.end()));
|
|
}
|
|
|
|
static bool isEqual(const KeyTy &lhs, const FunctionType *rhs) {
|
|
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
|
|
return false;
|
|
return lhs == KeyTy(rhs->getInputs(), rhs->getResults());
|
|
}
|
|
};
|
|
|
|
struct AffineMapKeyInfo : DenseMapInfo<AffineMap *> {
|
|
// Affine maps are uniqued based on their dim/symbol counts and affine
|
|
// expressions.
|
|
using KeyTy = std::tuple<unsigned, unsigned, ArrayRef<AffineExpr>,
|
|
ArrayRef<AffineExpr>>;
|
|
using DenseMapInfo<AffineMap *>::getHashValue;
|
|
using DenseMapInfo<AffineMap *>::isEqual;
|
|
|
|
static unsigned getHashValue(KeyTy key) {
|
|
return hash_combine(
|
|
std::get<0>(key), std::get<1>(key),
|
|
hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()),
|
|
hash_combine_range(std::get<3>(key).begin(), std::get<3>(key).end()));
|
|
}
|
|
|
|
static bool isEqual(const KeyTy &lhs, AffineMap *rhs) {
|
|
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
|
|
return false;
|
|
return lhs == std::make_tuple(rhs->getNumDims(), rhs->getNumSymbols(),
|
|
rhs->getResults(), rhs->getRangeSizes());
|
|
}
|
|
};
|
|
|
|
struct VectorTypeKeyInfo : DenseMapInfo<VectorType *> {
|
|
// Vectors are uniqued based on their element type and shape.
|
|
using KeyTy = std::pair<Type *, ArrayRef<unsigned>>;
|
|
using DenseMapInfo<VectorType *>::getHashValue;
|
|
using DenseMapInfo<VectorType *>::isEqual;
|
|
|
|
static unsigned getHashValue(KeyTy key) {
|
|
return hash_combine(
|
|
DenseMapInfo<Type *>::getHashValue(key.first),
|
|
hash_combine_range(key.second.begin(), key.second.end()));
|
|
}
|
|
|
|
static bool isEqual(const KeyTy &lhs, const VectorType *rhs) {
|
|
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
|
|
return false;
|
|
return lhs == KeyTy(rhs->getElementType(), rhs->getShape());
|
|
}
|
|
};
|
|
|
|
struct RankedTensorTypeKeyInfo : DenseMapInfo<RankedTensorType *> {
|
|
// Ranked tensors are uniqued based on their element type and shape.
|
|
using KeyTy = std::pair<Type *, ArrayRef<int>>;
|
|
using DenseMapInfo<RankedTensorType *>::getHashValue;
|
|
using DenseMapInfo<RankedTensorType *>::isEqual;
|
|
|
|
static unsigned getHashValue(KeyTy key) {
|
|
return hash_combine(
|
|
DenseMapInfo<Type *>::getHashValue(key.first),
|
|
hash_combine_range(key.second.begin(), key.second.end()));
|
|
}
|
|
|
|
static bool isEqual(const KeyTy &lhs, const RankedTensorType *rhs) {
|
|
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
|
|
return false;
|
|
return lhs == KeyTy(rhs->getElementType(), rhs->getShape());
|
|
}
|
|
};
|
|
|
|
struct MemRefTypeKeyInfo : DenseMapInfo<MemRefType *> {
|
|
// MemRefs are uniqued based on their element type, shape, affine map
|
|
// composition, and memory space.
|
|
using KeyTy =
|
|
std::tuple<Type *, ArrayRef<int>, ArrayRef<AffineMap *>, unsigned>;
|
|
using DenseMapInfo<MemRefType *>::getHashValue;
|
|
using DenseMapInfo<MemRefType *>::isEqual;
|
|
|
|
static unsigned getHashValue(KeyTy key) {
|
|
return hash_combine(
|
|
DenseMapInfo<Type *>::getHashValue(std::get<0>(key)),
|
|
hash_combine_range(std::get<1>(key).begin(), std::get<1>(key).end()),
|
|
hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()),
|
|
std::get<3>(key));
|
|
}
|
|
|
|
static bool isEqual(const KeyTy &lhs, const MemRefType *rhs) {
|
|
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
|
|
return false;
|
|
return lhs == std::make_tuple(rhs->getElementType(), rhs->getShape(),
|
|
rhs->getAffineMaps(), rhs->getMemorySpace());
|
|
}
|
|
};
|
|
|
|
struct ArrayAttrKeyInfo : DenseMapInfo<ArrayAttr *> {
|
|
// Array attributes are uniqued based on their elements.
|
|
using KeyTy = ArrayRef<Attribute *>;
|
|
using DenseMapInfo<ArrayAttr *>::getHashValue;
|
|
using DenseMapInfo<ArrayAttr *>::isEqual;
|
|
|
|
static unsigned getHashValue(KeyTy key) {
|
|
return hash_combine_range(key.begin(), key.end());
|
|
}
|
|
|
|
static bool isEqual(const KeyTy &lhs, const ArrayAttr *rhs) {
|
|
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
|
|
return false;
|
|
return lhs == rhs->getValue();
|
|
}
|
|
};
|
|
|
|
struct AttributeListKeyInfo : DenseMapInfo<AttributeListStorage *> {
|
|
// Array attributes are uniqued based on their elements.
|
|
using KeyTy = ArrayRef<NamedAttribute>;
|
|
using DenseMapInfo<AttributeListStorage *>::getHashValue;
|
|
using DenseMapInfo<AttributeListStorage *>::isEqual;
|
|
|
|
static unsigned getHashValue(KeyTy key) {
|
|
return hash_combine_range(key.begin(), key.end());
|
|
}
|
|
|
|
static bool isEqual(const KeyTy &lhs, const AttributeListStorage *rhs) {
|
|
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
|
|
return false;
|
|
return lhs == rhs->getElements();
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace.
|
|
|
|
namespace mlir {
|
|
/// This is the implementation of the MLIRContext class, using the pImpl idiom.
|
|
/// This class is completely private to this file, so everything is public.
|
|
class MLIRContextImpl {
|
|
public:
|
|
/// This is the set of all operations that are registered with the system.
|
|
OperationSet operationSet;
|
|
|
|
/// We put location info into this allocator, since it is generally not
|
|
/// touched by compiler passes.
|
|
llvm::BumpPtrAllocator locationAllocator;
|
|
|
|
/// The singleton for UnknownLoc.
|
|
UnknownLoc *theUnknownLoc = nullptr;
|
|
|
|
/// These are filename locations uniqued into this MLIRContext.
|
|
llvm::StringMap<char, llvm::BumpPtrAllocator &> filenames;
|
|
|
|
/// FileLineColLoc uniquing.
|
|
DenseMap<std::tuple<const char *, unsigned, unsigned>, FileLineColLoc *>
|
|
fileLineColLocs;
|
|
|
|
/// We put immortal objects into this allocator.
|
|
llvm::BumpPtrAllocator allocator;
|
|
|
|
/// This is the handler to use to report diagnostics, or null if not
|
|
/// registered.
|
|
MLIRContext::DiagnosticHandlerTy diagnosticHandler;
|
|
|
|
/// These are identifiers uniqued into this MLIRContext.
|
|
llvm::StringMap<char, llvm::BumpPtrAllocator &> identifiers;
|
|
|
|
// Uniquing table for 'other' types.
|
|
OtherType *otherTypes[int(Type::Kind::LAST_OTHER_TYPE) -
|
|
int(Type::Kind::FIRST_OTHER_TYPE) + 1] = {nullptr};
|
|
|
|
// Uniquing table for 'float' types.
|
|
FloatType *floatTypes[int(Type::Kind::LAST_FLOATING_POINT_TYPE) -
|
|
int(Type::Kind::FIRST_FLOATING_POINT_TYPE) + 1] = {
|
|
nullptr};
|
|
|
|
// Affine map uniquing.
|
|
using AffineMapSet = DenseSet<AffineMap *, AffineMapKeyInfo>;
|
|
AffineMapSet affineMaps;
|
|
|
|
// Affine binary op expression uniquing. Figure out uniquing of dimensional
|
|
// or symbolic identifiers.
|
|
DenseMap<std::tuple<unsigned, AffineExpr, AffineExpr>, AffineExpr>
|
|
affineExprs;
|
|
|
|
// Uniqui'ing of AffineDimExpr, AffineSymbolExpr's by their position.
|
|
std::vector<AffineDimExprStorage *> dimExprs;
|
|
std::vector<AffineSymbolExprStorage *> symbolExprs;
|
|
|
|
// Uniqui'ing of AffineConstantExprStorage using constant value as key.
|
|
DenseMap<int64_t, AffineConstantExprStorage *> constExprs;
|
|
|
|
/// Integer type uniquing.
|
|
DenseMap<unsigned, IntegerType *> integers;
|
|
|
|
/// Function type uniquing.
|
|
using FunctionTypeSet = DenseSet<FunctionType *, FunctionTypeKeyInfo>;
|
|
FunctionTypeSet functions;
|
|
|
|
/// Vector type uniquing.
|
|
using VectorTypeSet = DenseSet<VectorType *, VectorTypeKeyInfo>;
|
|
VectorTypeSet vectors;
|
|
|
|
/// Ranked tensor type uniquing.
|
|
using RankedTensorTypeSet =
|
|
DenseSet<RankedTensorType *, RankedTensorTypeKeyInfo>;
|
|
RankedTensorTypeSet rankedTensors;
|
|
|
|
/// Unranked tensor type uniquing.
|
|
DenseMap<Type *, UnrankedTensorType *> unrankedTensors;
|
|
|
|
/// MemRef type uniquing.
|
|
using MemRefTypeSet = DenseSet<MemRefType *, MemRefTypeKeyInfo>;
|
|
MemRefTypeSet memrefs;
|
|
|
|
// Attribute uniquing.
|
|
BoolAttr *boolAttrs[2] = {nullptr};
|
|
DenseMap<int64_t, IntegerAttr *> integerAttrs;
|
|
DenseMap<int64_t, FloatAttr *> floatAttrs;
|
|
StringMap<StringAttr *> stringAttrs;
|
|
using ArrayAttrSet = DenseSet<ArrayAttr *, ArrayAttrKeyInfo>;
|
|
ArrayAttrSet arrayAttrs;
|
|
DenseMap<AffineMap *, AffineMapAttr *> affineMapAttrs;
|
|
DenseMap<Type *, TypeAttr *> typeAttrs;
|
|
using AttributeListSet =
|
|
DenseSet<AttributeListStorage *, AttributeListKeyInfo>;
|
|
AttributeListSet attributeLists;
|
|
DenseMap<const Function *, FunctionAttr *> functionAttrs;
|
|
|
|
public:
|
|
MLIRContextImpl() : filenames(locationAllocator), identifiers(allocator) {
|
|
registerStandardOperations(operationSet);
|
|
}
|
|
|
|
/// Copy the specified array of elements into memory managed by our bump
|
|
/// pointer allocator. This assumes the elements are all PODs.
|
|
template <typename T> ArrayRef<T> copyInto(ArrayRef<T> elements) {
|
|
auto result = allocator.Allocate<T>(elements.size());
|
|
std::uninitialized_copy(elements.begin(), elements.end(), result);
|
|
return ArrayRef<T>(result, elements.size());
|
|
}
|
|
};
|
|
} // end namespace mlir
|
|
|
|
MLIRContext::MLIRContext() : impl(new MLIRContextImpl()) {
|
|
initializeAllRegisteredOps(this);
|
|
}
|
|
|
|
MLIRContext::~MLIRContext() {}
|
|
|
|
/// Register an issue handler with this LLVM context. The issue handler is
|
|
/// passed location information if present (nullptr if not) along with a
|
|
/// message and a boolean that indicates whether this is an error or warning.
|
|
void MLIRContext::registerDiagnosticHandler(
|
|
const DiagnosticHandlerTy &handler) {
|
|
getImpl().diagnosticHandler = handler;
|
|
}
|
|
|
|
/// Return the current diagnostic handler, or null if none is present.
|
|
auto MLIRContext::getDiagnosticHandler() const -> DiagnosticHandlerTy {
|
|
return getImpl().diagnosticHandler;
|
|
}
|
|
|
|
/// This emits a diagnostic using the registered issue handle if present, or
|
|
/// with the default behavior if not. The MLIR compiler should not generally
|
|
/// interact with this, it should use methods on Operation instead.
|
|
void MLIRContext::emitDiagnostic(Location *location, const llvm::Twine &message,
|
|
DiagnosticKind kind) const {
|
|
// If we had a handler registered, emit the diagnostic using it.
|
|
auto handler = getImpl().diagnosticHandler;
|
|
if (handler && location)
|
|
return handler(location, message.str(), kind);
|
|
|
|
// The default behavior for notes and warnings is to ignore them.
|
|
if (kind != DiagnosticKind::Error)
|
|
return;
|
|
|
|
auto &os = llvm::errs();
|
|
|
|
if (auto fileLoc = dyn_cast<FileLineColLoc>(location))
|
|
os << fileLoc->getFilename() << ':' << fileLoc->getLine() << ':'
|
|
<< fileLoc->getColumn() << ": ";
|
|
|
|
os << "error: ";
|
|
|
|
// The default behavior for errors is to emit them to stderr and exit.
|
|
os << message.str() << '\n';
|
|
os.flush();
|
|
exit(1);
|
|
}
|
|
|
|
/// Return the operation set associated with the specified MLIRContext object.
|
|
OperationSet &OperationSet::get(MLIRContext *context) {
|
|
return context->getImpl().operationSet;
|
|
}
|
|
|
|
/// If this operation has a registered operation description in the
|
|
/// OperationSet, return it. Otherwise return null.
|
|
const AbstractOperation *Operation::getAbstractOperation() const {
|
|
return OperationSet::get(getContext()).lookup(getName().str());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Identifier uniquing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Return an identifier for the specified string.
|
|
Identifier Identifier::get(StringRef str, const MLIRContext *context) {
|
|
assert(!str.empty() && "Cannot create an empty identifier");
|
|
assert(str.find('\0') == StringRef::npos &&
|
|
"Cannot create an identifier with a nul character");
|
|
|
|
auto &impl = context->getImpl();
|
|
auto it = impl.identifiers.insert({str, char()}).first;
|
|
return Identifier(it->getKeyData());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Location uniquing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
UnknownLoc *UnknownLoc::get(MLIRContext *context) {
|
|
auto &impl = context->getImpl();
|
|
if (auto *result = impl.theUnknownLoc)
|
|
return result;
|
|
|
|
impl.theUnknownLoc = impl.allocator.Allocate<UnknownLoc>();
|
|
new (impl.theUnknownLoc) UnknownLoc();
|
|
return impl.theUnknownLoc;
|
|
}
|
|
|
|
UniquedFilename UniquedFilename::get(StringRef filename, MLIRContext *context) {
|
|
auto &impl = context->getImpl();
|
|
auto it = impl.filenames.insert({filename, char()}).first;
|
|
return UniquedFilename(it->getKeyData());
|
|
}
|
|
|
|
FileLineColLoc *FileLineColLoc::get(UniquedFilename filename, unsigned line,
|
|
unsigned column, MLIRContext *context) {
|
|
auto &impl = context->getImpl();
|
|
auto &entry =
|
|
impl.fileLineColLocs[std::make_tuple(filename.data(), line, column)];
|
|
if (!entry) {
|
|
entry = impl.allocator.Allocate<FileLineColLoc>();
|
|
new (entry) FileLineColLoc(filename, line, column);
|
|
}
|
|
|
|
return entry;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type uniquing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
IntegerType *IntegerType::get(unsigned width, MLIRContext *context) {
|
|
auto &impl = context->getImpl();
|
|
|
|
auto *&result = impl.integers[width];
|
|
if (!result) {
|
|
result = impl.allocator.Allocate<IntegerType>();
|
|
new (result) IntegerType(width, context);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
FloatType *FloatType::get(Kind kind, MLIRContext *context) {
|
|
assert(kind >= Kind::FIRST_FLOATING_POINT_TYPE &&
|
|
kind <= Kind::LAST_FLOATING_POINT_TYPE && "Not an FP type kind");
|
|
auto &impl = context->getImpl();
|
|
|
|
// We normally have these types.
|
|
auto *&entry =
|
|
impl.floatTypes[(int)kind - int(Kind::FIRST_FLOATING_POINT_TYPE)];
|
|
if (entry)
|
|
return entry;
|
|
|
|
// On the first use, we allocate them into the bump pointer.
|
|
auto *ptr = impl.allocator.Allocate<FloatType>();
|
|
|
|
// Initialize the memory using placement new.
|
|
new (ptr) FloatType(kind, context);
|
|
|
|
// Cache and return it.
|
|
return entry = ptr;
|
|
}
|
|
|
|
OtherType *OtherType::get(Kind kind, MLIRContext *context) {
|
|
assert(kind >= Kind::FIRST_OTHER_TYPE && kind <= Kind::LAST_OTHER_TYPE &&
|
|
"Not an 'other' type kind");
|
|
auto &impl = context->getImpl();
|
|
|
|
// We normally have these types.
|
|
auto *&entry = impl.otherTypes[(int)kind - int(Kind::FIRST_OTHER_TYPE)];
|
|
if (entry)
|
|
return entry;
|
|
|
|
// On the first use, we allocate them into the bump pointer.
|
|
auto *ptr = impl.allocator.Allocate<OtherType>();
|
|
|
|
// Initialize the memory using placement new.
|
|
new (ptr) OtherType(kind, context);
|
|
|
|
// Cache and return it.
|
|
return entry = ptr;
|
|
}
|
|
|
|
FunctionType *FunctionType::get(ArrayRef<Type *> inputs,
|
|
ArrayRef<Type *> results,
|
|
MLIRContext *context) {
|
|
auto &impl = context->getImpl();
|
|
|
|
// Look to see if we already have this function type.
|
|
FunctionTypeKeyInfo::KeyTy key(inputs, results);
|
|
auto existing = impl.functions.insert_as(nullptr, key);
|
|
|
|
// If we already have it, return that value.
|
|
if (!existing.second)
|
|
return *existing.first;
|
|
|
|
// On the first use, we allocate them into the bump pointer.
|
|
auto *result = impl.allocator.Allocate<FunctionType>();
|
|
|
|
// Copy the inputs and results into the bump pointer.
|
|
SmallVector<Type *, 16> types;
|
|
types.reserve(inputs.size() + results.size());
|
|
types.append(inputs.begin(), inputs.end());
|
|
types.append(results.begin(), results.end());
|
|
auto typesList = impl.copyInto(ArrayRef<Type *>(types));
|
|
|
|
// Initialize the memory using placement new.
|
|
new (result)
|
|
FunctionType(typesList.data(), inputs.size(), results.size(), context);
|
|
|
|
// Cache and return it.
|
|
return *existing.first = result;
|
|
}
|
|
|
|
VectorType *VectorType::get(ArrayRef<unsigned> shape, Type *elementType) {
|
|
assert(!shape.empty() && "vector types must have at least one dimension");
|
|
assert((isa<FloatType>(elementType) || isa<IntegerType>(elementType)) &&
|
|
"vectors elements must be primitives");
|
|
|
|
auto *context = elementType->getContext();
|
|
auto &impl = context->getImpl();
|
|
|
|
// Look to see if we already have this vector type.
|
|
VectorTypeKeyInfo::KeyTy key(elementType, shape);
|
|
auto existing = impl.vectors.insert_as(nullptr, key);
|
|
|
|
// If we already have it, return that value.
|
|
if (!existing.second)
|
|
return *existing.first;
|
|
|
|
// On the first use, we allocate them into the bump pointer.
|
|
auto *result = impl.allocator.Allocate<VectorType>();
|
|
|
|
// Copy the shape into the bump pointer.
|
|
shape = impl.copyInto(shape);
|
|
|
|
// Initialize the memory using placement new.
|
|
new (result) VectorType(shape, elementType, context);
|
|
|
|
// Cache and return it.
|
|
return *existing.first = result;
|
|
}
|
|
|
|
RankedTensorType *RankedTensorType::get(ArrayRef<int> shape,
|
|
Type *elementType) {
|
|
auto *context = elementType->getContext();
|
|
auto &impl = context->getImpl();
|
|
|
|
// Look to see if we already have this ranked tensor type.
|
|
RankedTensorTypeKeyInfo::KeyTy key(elementType, shape);
|
|
auto existing = impl.rankedTensors.insert_as(nullptr, key);
|
|
|
|
// If we already have it, return that value.
|
|
if (!existing.second)
|
|
return *existing.first;
|
|
|
|
// On the first use, we allocate them into the bump pointer.
|
|
auto *result = impl.allocator.Allocate<RankedTensorType>();
|
|
|
|
// Copy the shape into the bump pointer.
|
|
shape = impl.copyInto(shape);
|
|
|
|
// Initialize the memory using placement new.
|
|
new (result) RankedTensorType(shape, elementType, context);
|
|
|
|
// Cache and return it.
|
|
return *existing.first = result;
|
|
}
|
|
|
|
UnrankedTensorType *UnrankedTensorType::get(Type *elementType) {
|
|
auto *context = elementType->getContext();
|
|
auto &impl = context->getImpl();
|
|
|
|
// Look to see if we already have this unranked tensor type.
|
|
auto *&result = impl.unrankedTensors[elementType];
|
|
|
|
// If we already have it, return that value.
|
|
if (result)
|
|
return result;
|
|
|
|
// On the first use, we allocate them into the bump pointer.
|
|
result = impl.allocator.Allocate<UnrankedTensorType>();
|
|
|
|
// Initialize the memory using placement new.
|
|
new (result) UnrankedTensorType(elementType, context);
|
|
return result;
|
|
}
|
|
|
|
MemRefType *MemRefType::get(ArrayRef<int> shape, Type *elementType,
|
|
ArrayRef<AffineMap *> affineMapComposition,
|
|
unsigned memorySpace) {
|
|
auto *context = elementType->getContext();
|
|
auto &impl = context->getImpl();
|
|
|
|
// Look to see if we already have this memref type.
|
|
auto key =
|
|
std::make_tuple(elementType, shape, affineMapComposition, memorySpace);
|
|
auto existing = impl.memrefs.insert_as(nullptr, key);
|
|
|
|
// If we already have it, return that value.
|
|
if (!existing.second)
|
|
return *existing.first;
|
|
|
|
// On the first use, we allocate them into the bump pointer.
|
|
auto *result = impl.allocator.Allocate<MemRefType>();
|
|
|
|
// Copy the shape into the bump pointer.
|
|
shape = impl.copyInto(shape);
|
|
|
|
// Copy the affine map composition into the bump pointer.
|
|
// TODO(andydavis) Assert that the structure of the composition is valid.
|
|
affineMapComposition =
|
|
impl.copyInto(ArrayRef<AffineMap *>(affineMapComposition));
|
|
|
|
// Initialize the memory using placement new.
|
|
new (result) MemRefType(shape, elementType, affineMapComposition, memorySpace,
|
|
context);
|
|
// Cache and return it.
|
|
return *existing.first = result;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Attribute uniquing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
BoolAttr *BoolAttr::get(bool value, MLIRContext *context) {
|
|
auto *&result = context->getImpl().boolAttrs[value];
|
|
if (result)
|
|
return result;
|
|
|
|
result = context->getImpl().allocator.Allocate<BoolAttr>();
|
|
new (result) BoolAttr(value);
|
|
return result;
|
|
}
|
|
|
|
IntegerAttr *IntegerAttr::get(int64_t value, MLIRContext *context) {
|
|
auto *&result = context->getImpl().integerAttrs[value];
|
|
if (result)
|
|
return result;
|
|
|
|
result = context->getImpl().allocator.Allocate<IntegerAttr>();
|
|
new (result) IntegerAttr(value);
|
|
return result;
|
|
}
|
|
|
|
FloatAttr *FloatAttr::get(double value, MLIRContext *context) {
|
|
// We hash based on the bit representation of the double to ensure we don't
|
|
// merge things like -0.0 and 0.0 in the hash comparison.
|
|
union {
|
|
double floatValue;
|
|
int64_t intValue;
|
|
};
|
|
floatValue = value;
|
|
|
|
auto *&result = context->getImpl().floatAttrs[intValue];
|
|
if (result)
|
|
return result;
|
|
|
|
result = context->getImpl().allocator.Allocate<FloatAttr>();
|
|
new (result) FloatAttr(value);
|
|
return result;
|
|
}
|
|
|
|
StringAttr *StringAttr::get(StringRef bytes, MLIRContext *context) {
|
|
auto it = context->getImpl().stringAttrs.insert({bytes, nullptr}).first;
|
|
|
|
if (it->second)
|
|
return it->second;
|
|
|
|
auto result = context->getImpl().allocator.Allocate<StringAttr>();
|
|
new (result) StringAttr(it->first());
|
|
it->second = result;
|
|
return result;
|
|
}
|
|
|
|
ArrayAttr *ArrayAttr::get(ArrayRef<Attribute *> value, MLIRContext *context) {
|
|
auto &impl = context->getImpl();
|
|
|
|
// Look to see if we already have this.
|
|
auto existing = impl.arrayAttrs.insert_as(nullptr, value);
|
|
|
|
// If we already have it, return that value.
|
|
if (!existing.second)
|
|
return *existing.first;
|
|
|
|
// On the first use, we allocate them into the bump pointer.
|
|
auto *result = impl.allocator.Allocate<ArrayAttr>();
|
|
|
|
// Copy the elements into the bump pointer.
|
|
value = impl.copyInto(value);
|
|
|
|
// Check to see if any of the elements have a function attr.
|
|
bool hasFunctionAttr = false;
|
|
for (auto *elt : value)
|
|
if (elt->isOrContainsFunction()) {
|
|
hasFunctionAttr = true;
|
|
break;
|
|
}
|
|
|
|
// Initialize the memory using placement new.
|
|
new (result) ArrayAttr(value, hasFunctionAttr);
|
|
|
|
// Cache and return it.
|
|
return *existing.first = result;
|
|
}
|
|
|
|
AffineMapAttr *AffineMapAttr::get(AffineMap *value, MLIRContext *context) {
|
|
auto *&result = context->getImpl().affineMapAttrs[value];
|
|
if (result)
|
|
return result;
|
|
|
|
result = context->getImpl().allocator.Allocate<AffineMapAttr>();
|
|
new (result) AffineMapAttr(value);
|
|
return result;
|
|
}
|
|
|
|
TypeAttr *TypeAttr::get(Type *type, MLIRContext *context) {
|
|
auto *&result = context->getImpl().typeAttrs[type];
|
|
if (result)
|
|
return result;
|
|
|
|
result = context->getImpl().allocator.Allocate<TypeAttr>();
|
|
new (result) TypeAttr(type);
|
|
return result;
|
|
}
|
|
|
|
FunctionAttr *FunctionAttr::get(const Function *value, MLIRContext *context) {
|
|
assert(value && "Cannot get FunctionAttr for a null function");
|
|
|
|
auto *&result = context->getImpl().functionAttrs[value];
|
|
if (result)
|
|
return result;
|
|
|
|
result = context->getImpl().allocator.Allocate<FunctionAttr>();
|
|
new (result) FunctionAttr(const_cast<Function *>(value));
|
|
return result;
|
|
}
|
|
|
|
FunctionType *FunctionAttr::getType() const { return getValue()->getType(); }
|
|
|
|
/// This function is used by the internals of the Function class to null out
|
|
/// attributes refering to functions that are about to be deleted.
|
|
void FunctionAttr::dropFunctionReference(Function *value) {
|
|
// Check to see if there was an attribute referring to this function.
|
|
auto &functionAttrs = value->getContext()->getImpl().functionAttrs;
|
|
|
|
// If not, then we're done.
|
|
auto it = functionAttrs.find(value);
|
|
if (it == functionAttrs.end())
|
|
return;
|
|
|
|
// If so, null out the function reference in the attribute (to avoid dangling
|
|
// pointers) and remove the entry from the map so the map doesn't contain
|
|
// dangling keys.
|
|
it->second->value = nullptr;
|
|
functionAttrs.erase(it);
|
|
}
|
|
|
|
/// Perform a three-way comparison between the names of the specified
|
|
/// NamedAttributes.
|
|
static int compareNamedAttributes(const NamedAttribute *lhs,
|
|
const NamedAttribute *rhs) {
|
|
return lhs->first.str().compare(rhs->first.str());
|
|
}
|
|
|
|
/// Given a list of NamedAttribute's, canonicalize the list (sorting
|
|
/// by name) and return the unique'd result. Note that the empty list is
|
|
/// represented with a null pointer.
|
|
AttributeListStorage *AttributeListStorage::get(ArrayRef<NamedAttribute> attrs,
|
|
MLIRContext *context) {
|
|
// We need to sort the element list to canonicalize it, but we also don't want
|
|
// to do a ton of work in the super common case where the element list is
|
|
// already sorted.
|
|
SmallVector<NamedAttribute, 8> storage;
|
|
switch (attrs.size()) {
|
|
case 0:
|
|
// An empty list is represented with a null pointer.
|
|
return nullptr;
|
|
case 1:
|
|
// A single element is already sorted.
|
|
break;
|
|
case 2:
|
|
// Don't invoke a general sort for two element case.
|
|
if (attrs[0].first.str() > attrs[1].first.str()) {
|
|
storage.push_back(attrs[1]);
|
|
storage.push_back(attrs[0]);
|
|
attrs = storage;
|
|
}
|
|
break;
|
|
default:
|
|
// Check to see they are sorted already.
|
|
bool isSorted = true;
|
|
for (unsigned i = 0, e = attrs.size() - 1; i != e; ++i) {
|
|
if (attrs[i].first.str() > attrs[i + 1].first.str()) {
|
|
isSorted = false;
|
|
break;
|
|
}
|
|
}
|
|
// If not, do a general sort.
|
|
if (!isSorted) {
|
|
storage.append(attrs.begin(), attrs.end());
|
|
llvm::array_pod_sort(storage.begin(), storage.end(),
|
|
compareNamedAttributes);
|
|
attrs = storage;
|
|
}
|
|
}
|
|
|
|
// Ok, now that we've canonicalized our attributes, unique them.
|
|
auto &impl = context->getImpl();
|
|
|
|
// Look to see if we already have this.
|
|
auto existing = impl.attributeLists.insert_as(nullptr, attrs);
|
|
|
|
// If we already have it, return that value.
|
|
if (!existing.second)
|
|
return *existing.first;
|
|
|
|
// Otherwise, allocate a new AttributeListStorage, unique it and return it.
|
|
auto byteSize =
|
|
AttributeListStorage::totalSizeToAlloc<NamedAttribute>(attrs.size());
|
|
auto rawMem = impl.allocator.Allocate(byteSize, alignof(NamedAttribute));
|
|
|
|
// Placement initialize the AggregateSymbolicValue.
|
|
auto result = ::new (rawMem) AttributeListStorage(attrs.size());
|
|
std::uninitialized_copy(attrs.begin(), attrs.end(),
|
|
result->getTrailingObjects<NamedAttribute>());
|
|
return *existing.first = result;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AffineMap and AffineExpr uniquing
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
AffineMap *AffineMap::get(unsigned dimCount, unsigned symbolCount,
|
|
ArrayRef<AffineExpr> results,
|
|
ArrayRef<AffineExpr> rangeSizes) {
|
|
// The number of results can't be zero.
|
|
assert(!results.empty());
|
|
|
|
assert(rangeSizes.empty() || results.size() == rangeSizes.size());
|
|
|
|
auto &impl = results[0].getContext()->getImpl();
|
|
|
|
// Check if we already have this affine map.
|
|
auto key = std::make_tuple(dimCount, symbolCount, results, rangeSizes);
|
|
auto existing = impl.affineMaps.insert_as(nullptr, key);
|
|
|
|
// If we already have it, return that value.
|
|
if (!existing.second)
|
|
return *existing.first;
|
|
|
|
// On the first use, we allocate them into the bump pointer.
|
|
auto *res = impl.allocator.Allocate<AffineMap>();
|
|
|
|
// Copy the results and range sizes into the bump pointer.
|
|
results = impl.copyInto(results);
|
|
rangeSizes = impl.copyInto(rangeSizes);
|
|
|
|
// Initialize the memory using placement new.
|
|
new (res)
|
|
AffineMap(dimCount, symbolCount, results.size(), results, rangeSizes);
|
|
|
|
// Cache and return it.
|
|
return *existing.first = res;
|
|
}
|
|
|
|
/// Simplify add expression. Return nullptr if it can't be simplified.
|
|
static AffineExpr simplifyAdd(AffineExpr lhs, AffineExpr rhs) {
|
|
auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
|
|
auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
|
|
// Fold if both LHS, RHS are a constant.
|
|
if (lhsConst && rhsConst)
|
|
return getAffineConstantExpr(lhsConst.getValue() + rhsConst.getValue(),
|
|
lhs.getContext());
|
|
|
|
// Canonicalize so that only the RHS is a constant. (4 + d0 becomes d0 + 4).
|
|
// If only one of them is a symbolic expressions, make it the RHS.
|
|
if (lhs.isa<AffineConstantExpr>() ||
|
|
(lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant())) {
|
|
return rhs + lhs;
|
|
}
|
|
|
|
// At this point, if there was a constant, it would be on the right.
|
|
|
|
// Addition with a zero is a noop, return the other input.
|
|
if (rhsConst) {
|
|
if (rhsConst.getValue() == 0)
|
|
return lhs;
|
|
}
|
|
// Fold successive additions like (d0 + 2) + 3 into d0 + 5.
|
|
auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
|
|
if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Add) {
|
|
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>())
|
|
return lBin.getLHS() + (lrhs.getValue() + rhsConst.getValue());
|
|
}
|
|
|
|
// When doing successive additions, bring constant to the right: turn (d0 + 2)
|
|
// + d1 into (d0 + d1) + 2.
|
|
if (lBin && lBin.getKind() == AffineExprKind::Add) {
|
|
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
|
|
return lBin.getLHS() + rhs + lrhs;
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Simplify a multiply expression. Return nullptr if it can't be simplified.
|
|
static AffineExpr simplifyMul(AffineExpr lhs, AffineExpr rhs) {
|
|
auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
|
|
auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
|
|
|
|
if (lhsConst && rhsConst)
|
|
return getAffineConstantExpr(lhsConst.getValue() * rhsConst.getValue(),
|
|
lhs.getContext());
|
|
|
|
assert(lhs.isSymbolicOrConstant() || rhs.isSymbolicOrConstant());
|
|
|
|
// Canonicalize the mul expression so that the constant/symbolic term is the
|
|
// RHS. If both the lhs and rhs are symbolic, swap them if the lhs is a
|
|
// constant. (Note that a constant is trivially symbolic).
|
|
if (!rhs.isSymbolicOrConstant() || lhs.isa<AffineConstantExpr>()) {
|
|
// At least one of them has to be symbolic.
|
|
return rhs * lhs;
|
|
}
|
|
|
|
// At this point, if there was a constant, it would be on the right.
|
|
|
|
// Multiplication with a one is a noop, return the other input.
|
|
if (rhsConst) {
|
|
if (rhsConst.getValue() == 1)
|
|
return lhs;
|
|
// Multiplication with zero.
|
|
if (rhsConst.getValue() == 0)
|
|
return rhsConst;
|
|
}
|
|
|
|
// Fold successive multiplications: eg: (d0 * 2) * 3 into d0 * 6.
|
|
auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
|
|
if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Mul) {
|
|
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>())
|
|
return lBin.getLHS() * (lrhs.getValue() * rhsConst.getValue());
|
|
}
|
|
|
|
// When doing successive multiplication, bring constant to the right: turn (d0
|
|
// * 2) * d1 into (d0 * d1) * 2.
|
|
if (lBin && lBin.getKind() == AffineExprKind::Mul) {
|
|
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
|
|
return (lBin.getLHS() * rhs) * lrhs;
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static AffineExpr simplifyFloorDiv(AffineExpr lhs, AffineExpr rhs) {
|
|
auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
|
|
auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
|
|
|
|
if (lhsConst && rhsConst)
|
|
return getAffineConstantExpr(
|
|
floorDiv(lhsConst.getValue(), rhsConst.getValue()), lhs.getContext());
|
|
|
|
// Fold floordiv of a multiply with a constant that is a multiple of the
|
|
// divisor. Eg: (i * 128) floordiv 64 = i * 2.
|
|
if (rhsConst) {
|
|
if (rhsConst.getValue() == 1)
|
|
return lhs;
|
|
|
|
auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
|
|
if (lBin && lBin.getKind() == AffineExprKind::Mul) {
|
|
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
|
|
// rhsConst is known to be positive if a constant.
|
|
if (lrhs.getValue() % rhsConst.getValue() == 0)
|
|
return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue());
|
|
}
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static AffineExpr simplifyCeilDiv(AffineExpr lhs, AffineExpr rhs) {
|
|
auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
|
|
auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
|
|
|
|
if (lhsConst && rhsConst)
|
|
return getAffineConstantExpr(
|
|
ceilDiv(lhsConst.getValue(), rhsConst.getValue()), lhs.getContext());
|
|
|
|
// Fold ceildiv of a multiply with a constant that is a multiple of the
|
|
// divisor. Eg: (i * 128) ceildiv 64 = i * 2.
|
|
if (rhsConst) {
|
|
if (rhsConst.getValue() == 1)
|
|
return lhs;
|
|
|
|
auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
|
|
if (lBin && lBin.getKind() == AffineExprKind::Mul) {
|
|
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
|
|
// rhsConst is known to be positive if a constant.
|
|
if (lrhs.getValue() % rhsConst.getValue() == 0)
|
|
return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue());
|
|
}
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static AffineExpr simplifyMod(AffineExpr lhs, AffineExpr rhs) {
|
|
auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
|
|
auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
|
|
|
|
if (lhsConst && rhsConst)
|
|
return getAffineConstantExpr(mod(lhsConst.getValue(), rhsConst.getValue()),
|
|
lhs.getContext());
|
|
|
|
// Fold modulo of an expression that is known to be a multiple of a constant
|
|
// to zero if that constant is a multiple of the modulo factor. Eg: (i * 128)
|
|
// mod 64 is folded to 0, and less trivially, (i*(j*4*(k*32))) mod 128 = 0.
|
|
if (rhsConst) {
|
|
// rhsConst is known to be positive if a constant.
|
|
if (lhs.getLargestKnownDivisor() % rhsConst.getValue() == 0)
|
|
return getAffineConstantExpr(0, lhs.getContext());
|
|
}
|
|
|
|
return nullptr;
|
|
// TODO(bondhugula): In general, this can be simplified more by using the GCD
|
|
// test, or in general using quantifier elimination (add two new variables q
|
|
// and r, and eliminate all variables from the linear system other than r. All
|
|
// of this can be done through mlir/Analysis/'s FlatAffineConstraints.
|
|
}
|
|
|
|
/// Return a binary affine op expression with the specified op type and
|
|
/// operands: if it doesn't exist, create it and store it; if it is already
|
|
/// present, return from the list. The stored expressions are unique: they are
|
|
/// constructed and stored in a simplified/canonicalized form. The result after
|
|
/// simplification could be any form of affine expression.
|
|
AffineExpr AffineBinaryOpExprStorage::get(AffineExprKind kind, AffineExpr lhs,
|
|
AffineExpr rhs) {
|
|
auto &impl = lhs.getContext()->getImpl();
|
|
|
|
// Check if we already have this affine expression, and return it if we do.
|
|
auto keyValue = std::make_tuple((unsigned)kind, lhs, rhs);
|
|
auto cached = impl.affineExprs.find(keyValue);
|
|
if (cached != impl.affineExprs.end())
|
|
return cached->second;
|
|
|
|
// Simplify the expression if possible.
|
|
AffineExpr simplified;
|
|
switch (kind) {
|
|
case AffineExprKind::Add:
|
|
simplified = simplifyAdd(lhs, rhs);
|
|
break;
|
|
case AffineExprKind::Mul:
|
|
simplified = simplifyMul(lhs, rhs);
|
|
break;
|
|
case AffineExprKind::FloorDiv:
|
|
simplified = simplifyFloorDiv(lhs, rhs);
|
|
break;
|
|
case AffineExprKind::CeilDiv:
|
|
simplified = simplifyCeilDiv(lhs, rhs);
|
|
break;
|
|
case AffineExprKind::Mod:
|
|
simplified = simplifyMod(lhs, rhs);
|
|
break;
|
|
default:
|
|
llvm_unreachable("unexpected binary affine expr");
|
|
}
|
|
|
|
// The simplified one would have already been cached; just return it.
|
|
if (simplified)
|
|
return simplified;
|
|
|
|
// An expression with these operands will already be in the
|
|
// simplified/canonical form. Create and store it.
|
|
auto *result = impl.allocator.Allocate<AffineBinaryOpExprStorage>();
|
|
// Initialize the memory using placement new.
|
|
new (result) AffineBinaryOpExprStorage{{kind, lhs.getContext()}, lhs, rhs};
|
|
bool inserted = impl.affineExprs.insert({keyValue, result}).second;
|
|
assert(inserted && "the expression shouldn't already exist in the map");
|
|
(void)inserted;
|
|
return result;
|
|
}
|
|
|
|
AffineExpr mlir::getAffineDimExpr(unsigned position, MLIRContext *context) {
|
|
auto &impl = context->getImpl();
|
|
|
|
// Check if we need to resize.
|
|
if (position >= impl.dimExprs.size())
|
|
impl.dimExprs.resize(position + 1, nullptr);
|
|
|
|
auto *&result = impl.dimExprs[position];
|
|
if (result)
|
|
return result;
|
|
|
|
result = impl.allocator.Allocate<AffineDimExprStorage>();
|
|
// Initialize the memory using placement new.
|
|
new (result) AffineDimExprStorage{{AffineExprKind::DimId, context}, position};
|
|
return result;
|
|
}
|
|
|
|
AffineExpr mlir::getAffineSymbolExpr(unsigned position, MLIRContext *context) {
|
|
auto &impl = context->getImpl();
|
|
|
|
// Check if we need to resize.
|
|
if (position >= impl.symbolExprs.size())
|
|
impl.symbolExprs.resize(position + 1, nullptr);
|
|
|
|
auto *&result = impl.symbolExprs[position];
|
|
if (result)
|
|
return result;
|
|
|
|
result = impl.allocator.Allocate<AffineSymbolExprStorage>();
|
|
// Initialize the memory using placement new.
|
|
new (result)
|
|
AffineSymbolExprStorage{{AffineExprKind::SymbolId, context}, position};
|
|
return result;
|
|
}
|
|
|
|
AffineExpr mlir::getAffineConstantExpr(int64_t constant, MLIRContext *context) {
|
|
auto &impl = context->getImpl();
|
|
auto *&result = impl.constExprs[constant];
|
|
|
|
if (result)
|
|
return result;
|
|
|
|
result = impl.allocator.Allocate<AffineConstantExprStorage>();
|
|
// Initialize the memory using placement new.
|
|
new (result)
|
|
AffineConstantExprStorage{{AffineExprKind::Constant, context}, constant};
|
|
return result;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Integer Sets: these are allocated into the bump pointer, and are immutable.
|
|
// But they aren't uniqued like AffineMap's; there isn't an advantage to.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
IntegerSet *IntegerSet::get(unsigned dimCount, unsigned symbolCount,
|
|
ArrayRef<AffineExpr> constraints,
|
|
ArrayRef<bool> eqFlags, MLIRContext *context) {
|
|
assert(eqFlags.size() == constraints.size());
|
|
|
|
auto &impl = context->getImpl();
|
|
|
|
// Allocate them into the bump pointer.
|
|
auto *res = impl.allocator.Allocate<IntegerSet>();
|
|
|
|
// Copy the equalities and inequalities into the bump pointer.
|
|
constraints = impl.copyInto(ArrayRef<AffineExpr>(constraints));
|
|
eqFlags = impl.copyInto(ArrayRef<bool>(eqFlags));
|
|
|
|
// Initialize the memory using placement new.
|
|
return new (res) IntegerSet(dimCount, symbolCount, constraints.size(),
|
|
constraints, eqFlags);
|
|
}
|