llvm-project/llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp

4402 lines
156 KiB
C++

//===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This is the parent TargetLowering class for hardware code gen
/// targets.
//
//===----------------------------------------------------------------------===//
#define AMDGPU_LOG2E_F 1.44269504088896340735992468100189214f
#define AMDGPU_LN2_F 0.693147180559945309417232121458176568f
#define AMDGPU_LN10_F 2.30258509299404568401799145468436421f
#include "AMDGPUISelLowering.h"
#include "AMDGPU.h"
#include "AMDGPUCallLowering.h"
#include "AMDGPUFrameLowering.h"
#include "AMDGPUIntrinsicInfo.h"
#include "AMDGPURegisterInfo.h"
#include "AMDGPUSubtarget.h"
#include "AMDGPUTargetMachine.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "R600MachineFunctionInfo.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/Support/KnownBits.h"
using namespace llvm;
static bool allocateKernArg(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
MachineFunction &MF = State.getMachineFunction();
AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
uint64_t Offset = MFI->allocateKernArg(LocVT.getStoreSize(),
ArgFlags.getOrigAlign());
State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return true;
}
static bool allocateCCRegs(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State,
const TargetRegisterClass *RC,
unsigned NumRegs) {
ArrayRef<MCPhysReg> RegList = makeArrayRef(RC->begin(), NumRegs);
unsigned RegResult = State.AllocateReg(RegList);
if (RegResult == AMDGPU::NoRegister)
return false;
State.addLoc(CCValAssign::getReg(ValNo, ValVT, RegResult, LocVT, LocInfo));
return true;
}
static bool allocateSGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
switch (LocVT.SimpleTy) {
case MVT::i64:
case MVT::f64:
case MVT::v2i32:
case MVT::v2f32:
case MVT::v4i16:
case MVT::v4f16: {
// Up to SGPR0-SGPR39
return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
&AMDGPU::SGPR_64RegClass, 20);
}
default:
return false;
}
}
// Allocate up to VGPR31.
//
// TODO: Since there are no VGPR alignent requirements would it be better to
// split into individual scalar registers?
static bool allocateVGPRTuple(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
switch (LocVT.SimpleTy) {
case MVT::i64:
case MVT::f64:
case MVT::v2i32:
case MVT::v2f32:
case MVT::v4i16:
case MVT::v4f16: {
return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
&AMDGPU::VReg_64RegClass, 31);
}
case MVT::v4i32:
case MVT::v4f32:
case MVT::v2i64:
case MVT::v2f64: {
return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
&AMDGPU::VReg_128RegClass, 29);
}
case MVT::v8i32:
case MVT::v8f32: {
return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
&AMDGPU::VReg_256RegClass, 25);
}
case MVT::v16i32:
case MVT::v16f32: {
return allocateCCRegs(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State,
&AMDGPU::VReg_512RegClass, 17);
}
default:
return false;
}
}
#include "AMDGPUGenCallingConv.inc"
// Find a larger type to do a load / store of a vector with.
EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
unsigned StoreSize = VT.getStoreSizeInBits();
if (StoreSize <= 32)
return EVT::getIntegerVT(Ctx, StoreSize);
assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
}
unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
KnownBits Known;
EVT VT = Op.getValueType();
DAG.computeKnownBits(Op, Known);
return VT.getSizeInBits() - Known.countMinLeadingZeros();
}
unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
EVT VT = Op.getValueType();
// In order for this to be a signed 24-bit value, bit 23, must
// be a sign bit.
return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op);
}
AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
const AMDGPUSubtarget &STI)
: TargetLowering(TM), Subtarget(&STI) {
AMDGPUASI = AMDGPU::getAMDGPUAS(TM);
// Lower floating point store/load to integer store/load to reduce the number
// of patterns in tablegen.
setOperationAction(ISD::LOAD, MVT::f32, Promote);
AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
setOperationAction(ISD::LOAD, MVT::i64, Promote);
AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
setOperationAction(ISD::LOAD, MVT::f64, Promote);
AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
// There are no 64-bit extloads. These should be done as a 32-bit extload and
// an extension to 64-bit.
for (MVT VT : MVT::integer_valuetypes()) {
setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
}
for (MVT VT : MVT::integer_valuetypes()) {
if (VT == MVT::i64)
continue;
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
}
for (MVT VT : MVT::integer_vector_valuetypes()) {
setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
}
setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
setOperationAction(ISD::STORE, MVT::f32, Promote);
AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
setOperationAction(ISD::STORE, MVT::v2f32, Promote);
AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
setOperationAction(ISD::STORE, MVT::v4f32, Promote);
AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
setOperationAction(ISD::STORE, MVT::v8f32, Promote);
AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
setOperationAction(ISD::STORE, MVT::v16f32, Promote);
AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
setOperationAction(ISD::STORE, MVT::i64, Promote);
AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
setOperationAction(ISD::STORE, MVT::v2i64, Promote);
AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
setOperationAction(ISD::STORE, MVT::f64, Promote);
AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
setOperationAction(ISD::STORE, MVT::v2f64, Promote);
AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
setTruncStoreAction(MVT::i64, MVT::i1, Expand);
setTruncStoreAction(MVT::i64, MVT::i8, Expand);
setTruncStoreAction(MVT::i64, MVT::i16, Expand);
setTruncStoreAction(MVT::i64, MVT::i32, Expand);
setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
setOperationAction(ISD::Constant, MVT::i32, Legal);
setOperationAction(ISD::Constant, MVT::i64, Legal);
setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
setOperationAction(ISD::BRIND, MVT::Other, Expand);
// This is totally unsupported, just custom lower to produce an error.
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
// Library functions. These default to Expand, but we have instructions
// for them.
setOperationAction(ISD::FCEIL, MVT::f32, Legal);
setOperationAction(ISD::FEXP2, MVT::f32, Legal);
setOperationAction(ISD::FPOW, MVT::f32, Legal);
setOperationAction(ISD::FLOG2, MVT::f32, Legal);
setOperationAction(ISD::FABS, MVT::f32, Legal);
setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
setOperationAction(ISD::FRINT, MVT::f32, Legal);
setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
setOperationAction(ISD::FROUND, MVT::f32, Custom);
setOperationAction(ISD::FROUND, MVT::f64, Custom);
setOperationAction(ISD::FLOG, MVT::f32, Custom);
setOperationAction(ISD::FLOG10, MVT::f32, Custom);
if (Subtarget->has16BitInsts()) {
setOperationAction(ISD::FLOG, MVT::f16, Custom);
setOperationAction(ISD::FLOG10, MVT::f16, Custom);
}
setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
setOperationAction(ISD::FREM, MVT::f32, Custom);
setOperationAction(ISD::FREM, MVT::f64, Custom);
// v_mad_f32 does not support denormals according to some sources.
if (!Subtarget->hasFP32Denormals())
setOperationAction(ISD::FMAD, MVT::f32, Legal);
// Expand to fneg + fadd.
setOperationAction(ISD::FSUB, MVT::f64, Expand);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
setOperationAction(ISD::FCEIL, MVT::f64, Custom);
setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
setOperationAction(ISD::FRINT, MVT::f64, Custom);
setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
}
if (!Subtarget->hasBFI()) {
// fcopysign can be done in a single instruction with BFI.
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
}
setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
for (MVT VT : ScalarIntVTs) {
// These should use [SU]DIVREM, so set them to expand
setOperationAction(ISD::SDIV, VT, Expand);
setOperationAction(ISD::UDIV, VT, Expand);
setOperationAction(ISD::SREM, VT, Expand);
setOperationAction(ISD::UREM, VT, Expand);
// GPU does not have divrem function for signed or unsigned.
setOperationAction(ISD::SDIVREM, VT, Custom);
setOperationAction(ISD::UDIVREM, VT, Custom);
// GPU does not have [S|U]MUL_LOHI functions as a single instruction.
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
setOperationAction(ISD::BSWAP, VT, Expand);
setOperationAction(ISD::CTTZ, VT, Expand);
setOperationAction(ISD::CTLZ, VT, Expand);
// AMDGPU uses ADDC/SUBC/ADDE/SUBE
setOperationAction(ISD::ADDC, VT, Legal);
setOperationAction(ISD::SUBC, VT, Legal);
setOperationAction(ISD::ADDE, VT, Legal);
setOperationAction(ISD::SUBE, VT, Legal);
}
if (!Subtarget->hasBCNT(32))
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
if (!Subtarget->hasBCNT(64))
setOperationAction(ISD::CTPOP, MVT::i64, Expand);
// The hardware supports 32-bit ROTR, but not ROTL.
setOperationAction(ISD::ROTL, MVT::i32, Expand);
setOperationAction(ISD::ROTL, MVT::i64, Expand);
setOperationAction(ISD::ROTR, MVT::i64, Expand);
setOperationAction(ISD::MUL, MVT::i64, Expand);
setOperationAction(ISD::MULHU, MVT::i64, Expand);
setOperationAction(ISD::MULHS, MVT::i64, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
setOperationAction(ISD::SMIN, MVT::i32, Legal);
setOperationAction(ISD::UMIN, MVT::i32, Legal);
setOperationAction(ISD::SMAX, MVT::i32, Legal);
setOperationAction(ISD::UMAX, MVT::i32, Legal);
if (Subtarget->hasFFBH())
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
if (Subtarget->hasFFBL())
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
setOperationAction(ISD::CTTZ, MVT::i64, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
setOperationAction(ISD::CTLZ, MVT::i64, Custom);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
// We only really have 32-bit BFE instructions (and 16-bit on VI).
//
// On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
// effort to match them now. We want this to be false for i64 cases when the
// extraction isn't restricted to the upper or lower half. Ideally we would
// have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
// span the midpoint are probably relatively rare, so don't worry about them
// for now.
if (Subtarget->hasBFE())
setHasExtractBitsInsn(true);
static const MVT::SimpleValueType VectorIntTypes[] = {
MVT::v2i32, MVT::v4i32
};
for (MVT VT : VectorIntTypes) {
// Expand the following operations for the current type by default.
setOperationAction(ISD::ADD, VT, Expand);
setOperationAction(ISD::AND, VT, Expand);
setOperationAction(ISD::FP_TO_SINT, VT, Expand);
setOperationAction(ISD::FP_TO_UINT, VT, Expand);
setOperationAction(ISD::MUL, VT, Expand);
setOperationAction(ISD::MULHU, VT, Expand);
setOperationAction(ISD::MULHS, VT, Expand);
setOperationAction(ISD::OR, VT, Expand);
setOperationAction(ISD::SHL, VT, Expand);
setOperationAction(ISD::SRA, VT, Expand);
setOperationAction(ISD::SRL, VT, Expand);
setOperationAction(ISD::ROTL, VT, Expand);
setOperationAction(ISD::ROTR, VT, Expand);
setOperationAction(ISD::SUB, VT, Expand);
setOperationAction(ISD::SINT_TO_FP, VT, Expand);
setOperationAction(ISD::UINT_TO_FP, VT, Expand);
setOperationAction(ISD::SDIV, VT, Expand);
setOperationAction(ISD::UDIV, VT, Expand);
setOperationAction(ISD::SREM, VT, Expand);
setOperationAction(ISD::UREM, VT, Expand);
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
setOperationAction(ISD::SDIVREM, VT, Custom);
setOperationAction(ISD::UDIVREM, VT, Expand);
setOperationAction(ISD::SELECT, VT, Expand);
setOperationAction(ISD::VSELECT, VT, Expand);
setOperationAction(ISD::SELECT_CC, VT, Expand);
setOperationAction(ISD::XOR, VT, Expand);
setOperationAction(ISD::BSWAP, VT, Expand);
setOperationAction(ISD::CTPOP, VT, Expand);
setOperationAction(ISD::CTTZ, VT, Expand);
setOperationAction(ISD::CTLZ, VT, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
setOperationAction(ISD::SETCC, VT, Expand);
}
static const MVT::SimpleValueType FloatVectorTypes[] = {
MVT::v2f32, MVT::v4f32
};
for (MVT VT : FloatVectorTypes) {
setOperationAction(ISD::FABS, VT, Expand);
setOperationAction(ISD::FMINNUM, VT, Expand);
setOperationAction(ISD::FMAXNUM, VT, Expand);
setOperationAction(ISD::FADD, VT, Expand);
setOperationAction(ISD::FCEIL, VT, Expand);
setOperationAction(ISD::FCOS, VT, Expand);
setOperationAction(ISD::FDIV, VT, Expand);
setOperationAction(ISD::FEXP2, VT, Expand);
setOperationAction(ISD::FLOG2, VT, Expand);
setOperationAction(ISD::FREM, VT, Expand);
setOperationAction(ISD::FLOG, VT, Expand);
setOperationAction(ISD::FLOG10, VT, Expand);
setOperationAction(ISD::FPOW, VT, Expand);
setOperationAction(ISD::FFLOOR, VT, Expand);
setOperationAction(ISD::FTRUNC, VT, Expand);
setOperationAction(ISD::FMUL, VT, Expand);
setOperationAction(ISD::FMA, VT, Expand);
setOperationAction(ISD::FRINT, VT, Expand);
setOperationAction(ISD::FNEARBYINT, VT, Expand);
setOperationAction(ISD::FSQRT, VT, Expand);
setOperationAction(ISD::FSIN, VT, Expand);
setOperationAction(ISD::FSUB, VT, Expand);
setOperationAction(ISD::FNEG, VT, Expand);
setOperationAction(ISD::VSELECT, VT, Expand);
setOperationAction(ISD::SELECT_CC, VT, Expand);
setOperationAction(ISD::FCOPYSIGN, VT, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
setOperationAction(ISD::SETCC, VT, Expand);
}
// This causes using an unrolled select operation rather than expansion with
// bit operations. This is in general better, but the alternative using BFI
// instructions may be better if the select sources are SGPRs.
setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
// There are no libcalls of any kind.
for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
setBooleanContents(ZeroOrNegativeOneBooleanContent);
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
setSchedulingPreference(Sched::RegPressure);
setJumpIsExpensive(true);
// FIXME: This is only partially true. If we have to do vector compares, any
// SGPR pair can be a condition register. If we have a uniform condition, we
// are better off doing SALU operations, where there is only one SCC. For now,
// we don't have a way of knowing during instruction selection if a condition
// will be uniform and we always use vector compares. Assume we are using
// vector compares until that is fixed.
setHasMultipleConditionRegisters(true);
// SI at least has hardware support for floating point exceptions, but no way
// of using or handling them is implemented. They are also optional in OpenCL
// (Section 7.3)
setHasFloatingPointExceptions(Subtarget->hasFPExceptions());
PredictableSelectIsExpensive = false;
// We want to find all load dependencies for long chains of stores to enable
// merging into very wide vectors. The problem is with vectors with > 4
// elements. MergeConsecutiveStores will attempt to merge these because x8/x16
// vectors are a legal type, even though we have to split the loads
// usually. When we can more precisely specify load legality per address
// space, we should be able to make FindBetterChain/MergeConsecutiveStores
// smarter so that they can figure out what to do in 2 iterations without all
// N > 4 stores on the same chain.
GatherAllAliasesMaxDepth = 16;
// memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
// about these during lowering.
MaxStoresPerMemcpy = 0xffffffff;
MaxStoresPerMemmove = 0xffffffff;
MaxStoresPerMemset = 0xffffffff;
setTargetDAGCombine(ISD::BITCAST);
setTargetDAGCombine(ISD::SHL);
setTargetDAGCombine(ISD::SRA);
setTargetDAGCombine(ISD::SRL);
setTargetDAGCombine(ISD::TRUNCATE);
setTargetDAGCombine(ISD::MUL);
setTargetDAGCombine(ISD::MULHU);
setTargetDAGCombine(ISD::MULHS);
setTargetDAGCombine(ISD::SELECT);
setTargetDAGCombine(ISD::SELECT_CC);
setTargetDAGCombine(ISD::STORE);
setTargetDAGCombine(ISD::FADD);
setTargetDAGCombine(ISD::FSUB);
setTargetDAGCombine(ISD::FNEG);
setTargetDAGCombine(ISD::FABS);
setTargetDAGCombine(ISD::AssertZext);
setTargetDAGCombine(ISD::AssertSext);
}
//===----------------------------------------------------------------------===//
// Target Information
//===----------------------------------------------------------------------===//
LLVM_READNONE
static bool fnegFoldsIntoOp(unsigned Opc) {
switch (Opc) {
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FMA:
case ISD::FMAD:
case ISD::FMINNUM:
case ISD::FMAXNUM:
case ISD::FSIN:
case ISD::FTRUNC:
case ISD::FRINT:
case ISD::FNEARBYINT:
case AMDGPUISD::RCP:
case AMDGPUISD::RCP_LEGACY:
case AMDGPUISD::SIN_HW:
case AMDGPUISD::FMUL_LEGACY:
case AMDGPUISD::FMIN_LEGACY:
case AMDGPUISD::FMAX_LEGACY:
return true;
default:
return false;
}
}
/// \p returns true if the operation will definitely need to use a 64-bit
/// encoding, and thus will use a VOP3 encoding regardless of the source
/// modifiers.
LLVM_READONLY
static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
return N->getNumOperands() > 2 || VT == MVT::f64;
}
// Most FP instructions support source modifiers, but this could be refined
// slightly.
LLVM_READONLY
static bool hasSourceMods(const SDNode *N) {
if (isa<MemSDNode>(N))
return false;
switch (N->getOpcode()) {
case ISD::CopyToReg:
case ISD::SELECT:
case ISD::FDIV:
case ISD::FREM:
case ISD::INLINEASM:
case AMDGPUISD::INTERP_P1:
case AMDGPUISD::INTERP_P2:
case AMDGPUISD::DIV_SCALE:
// TODO: Should really be looking at the users of the bitcast. These are
// problematic because bitcasts are used to legalize all stores to integer
// types.
case ISD::BITCAST:
return false;
default:
return true;
}
}
bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
unsigned CostThreshold) {
// Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
// it is truly free to use a source modifier in all cases. If there are
// multiple users but for each one will necessitate using VOP3, there will be
// a code size increase. Try to avoid increasing code size unless we know it
// will save on the instruction count.
unsigned NumMayIncreaseSize = 0;
MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
// XXX - Should this limit number of uses to check?
for (const SDNode *U : N->uses()) {
if (!hasSourceMods(U))
return false;
if (!opMustUseVOP3Encoding(U, VT)) {
if (++NumMayIncreaseSize > CostThreshold)
return false;
}
}
return true;
}
MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
return MVT::i32;
}
bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
return true;
}
// The backend supports 32 and 64 bit floating point immediates.
// FIXME: Why are we reporting vectors of FP immediates as legal?
bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
EVT ScalarVT = VT.getScalarType();
return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
(ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
}
// We don't want to shrink f64 / f32 constants.
bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
EVT ScalarVT = VT.getScalarType();
return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
}
bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
ISD::LoadExtType,
EVT NewVT) const {
unsigned NewSize = NewVT.getStoreSizeInBits();
// If we are reducing to a 32-bit load, this is always better.
if (NewSize == 32)
return true;
EVT OldVT = N->getValueType(0);
unsigned OldSize = OldVT.getStoreSizeInBits();
// Don't produce extloads from sub 32-bit types. SI doesn't have scalar
// extloads, so doing one requires using a buffer_load. In cases where we
// still couldn't use a scalar load, using the wider load shouldn't really
// hurt anything.
// If the old size already had to be an extload, there's no harm in continuing
// to reduce the width.
return (OldSize < 32);
}
bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
EVT CastTy) const {
assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
if (LoadTy.getScalarType() == MVT::i32)
return false;
unsigned LScalarSize = LoadTy.getScalarSizeInBits();
unsigned CastScalarSize = CastTy.getScalarSizeInBits();
return (LScalarSize < CastScalarSize) ||
(CastScalarSize >= 32);
}
// SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
// profitable with the expansion for 64-bit since it's generally good to
// speculate things.
// FIXME: These should really have the size as a parameter.
bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
return true;
}
bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
return true;
}
bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const {
switch (N->getOpcode()) {
default:
return false;
case ISD::EntryToken:
case ISD::TokenFactor:
return true;
case ISD::INTRINSIC_WO_CHAIN:
{
unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
switch (IntrID) {
default:
return false;
case Intrinsic::amdgcn_readfirstlane:
case Intrinsic::amdgcn_readlane:
return true;
}
}
break;
case ISD::LOAD:
{
const LoadSDNode * L = dyn_cast<LoadSDNode>(N);
if (L->getMemOperand()->getAddrSpace()
== Subtarget->getAMDGPUAS().CONSTANT_ADDRESS_32BIT)
return true;
return false;
}
break;
}
}
//===---------------------------------------------------------------------===//
// Target Properties
//===---------------------------------------------------------------------===//
bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
assert(VT.isFloatingPoint());
// Packed operations do not have a fabs modifier.
return VT == MVT::f32 || VT == MVT::f64 ||
(Subtarget->has16BitInsts() && VT == MVT::f16);
}
bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
assert(VT.isFloatingPoint());
return VT == MVT::f32 || VT == MVT::f64 ||
(Subtarget->has16BitInsts() && VT == MVT::f16) ||
(Subtarget->hasVOP3PInsts() && VT == MVT::v2f16);
}
bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
unsigned NumElem,
unsigned AS) const {
return true;
}
bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
// There are few operations which truly have vector input operands. Any vector
// operation is going to involve operations on each component, and a
// build_vector will be a copy per element, so it always makes sense to use a
// build_vector input in place of the extracted element to avoid a copy into a
// super register.
//
// We should probably only do this if all users are extracts only, but this
// should be the common case.
return true;
}
bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
// Truncate is just accessing a subregister.
unsigned SrcSize = Source.getSizeInBits();
unsigned DestSize = Dest.getSizeInBits();
return DestSize < SrcSize && DestSize % 32 == 0 ;
}
bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
// Truncate is just accessing a subregister.
unsigned SrcSize = Source->getScalarSizeInBits();
unsigned DestSize = Dest->getScalarSizeInBits();
if (DestSize== 16 && Subtarget->has16BitInsts())
return SrcSize >= 32;
return DestSize < SrcSize && DestSize % 32 == 0;
}
bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
unsigned SrcSize = Src->getScalarSizeInBits();
unsigned DestSize = Dest->getScalarSizeInBits();
if (SrcSize == 16 && Subtarget->has16BitInsts())
return DestSize >= 32;
return SrcSize == 32 && DestSize == 64;
}
bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
// Any register load of a 64-bit value really requires 2 32-bit moves. For all
// practical purposes, the extra mov 0 to load a 64-bit is free. As used,
// this will enable reducing 64-bit operations the 32-bit, which is always
// good.
if (Src == MVT::i16)
return Dest == MVT::i32 ||Dest == MVT::i64 ;
return Src == MVT::i32 && Dest == MVT::i64;
}
bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
return isZExtFree(Val.getValueType(), VT2);
}
bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
// There aren't really 64-bit registers, but pairs of 32-bit ones and only a
// limited number of native 64-bit operations. Shrinking an operation to fit
// in a single 32-bit register should always be helpful. As currently used,
// this is much less general than the name suggests, and is only used in
// places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
// not profitable, and may actually be harmful.
return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
}
//===---------------------------------------------------------------------===//
// TargetLowering Callbacks
//===---------------------------------------------------------------------===//
CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
bool IsVarArg) {
switch (CC) {
case CallingConv::AMDGPU_KERNEL:
case CallingConv::SPIR_KERNEL:
return CC_AMDGPU_Kernel;
case CallingConv::AMDGPU_VS:
case CallingConv::AMDGPU_GS:
case CallingConv::AMDGPU_PS:
case CallingConv::AMDGPU_CS:
case CallingConv::AMDGPU_HS:
case CallingConv::AMDGPU_ES:
case CallingConv::AMDGPU_LS:
return CC_AMDGPU;
case CallingConv::C:
case CallingConv::Fast:
case CallingConv::Cold:
return CC_AMDGPU_Func;
default:
report_fatal_error("Unsupported calling convention.");
}
}
CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
bool IsVarArg) {
switch (CC) {
case CallingConv::AMDGPU_KERNEL:
case CallingConv::SPIR_KERNEL:
return CC_AMDGPU_Kernel;
case CallingConv::AMDGPU_VS:
case CallingConv::AMDGPU_GS:
case CallingConv::AMDGPU_PS:
case CallingConv::AMDGPU_CS:
case CallingConv::AMDGPU_HS:
case CallingConv::AMDGPU_ES:
case CallingConv::AMDGPU_LS:
return RetCC_SI_Shader;
case CallingConv::C:
case CallingConv::Fast:
case CallingConv::Cold:
return RetCC_AMDGPU_Func;
default:
report_fatal_error("Unsupported calling convention.");
}
}
/// The SelectionDAGBuilder will automatically promote function arguments
/// with illegal types. However, this does not work for the AMDGPU targets
/// since the function arguments are stored in memory as these illegal types.
/// In order to handle this properly we need to get the original types sizes
/// from the LLVM IR Function and fixup the ISD:InputArg values before
/// passing them to AnalyzeFormalArguments()
/// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
/// input values across multiple registers. Each item in the Ins array
/// represents a single value that will be stored in registers. Ins[x].VT is
/// the value type of the value that will be stored in the register, so
/// whatever SDNode we lower the argument to needs to be this type.
///
/// In order to correctly lower the arguments we need to know the size of each
/// argument. Since Ins[x].VT gives us the size of the register that will
/// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
/// for the orignal function argument so that we can deduce the correct memory
/// type to use for Ins[x]. In most cases the correct memory type will be
/// Ins[x].ArgVT. However, this will not always be the case. If, for example,
/// we have a kernel argument of type v8i8, this argument will be split into
/// 8 parts and each part will be represented by its own item in the Ins array.
/// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
/// the argument before it was split. From this, we deduce that the memory type
/// for each individual part is i8. We pass the memory type as LocVT to the
/// calling convention analysis function and the register type (Ins[x].VT) as
/// the ValVT.
void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(CCState &State,
const SmallVectorImpl<ISD::InputArg> &Ins) const {
for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
const ISD::InputArg &In = Ins[i];
EVT MemVT;
unsigned NumRegs = getNumRegisters(State.getContext(), In.ArgVT);
if (!Subtarget->isAmdHsaOS() &&
(In.ArgVT == MVT::i16 || In.ArgVT == MVT::i8 || In.ArgVT == MVT::f16)) {
// The ABI says the caller will extend these values to 32-bits.
MemVT = In.ArgVT.isInteger() ? MVT::i32 : MVT::f32;
} else if (NumRegs == 1) {
// This argument is not split, so the IR type is the memory type.
assert(!In.Flags.isSplit());
if (In.ArgVT.isExtended()) {
// We have an extended type, like i24, so we should just use the register type
MemVT = In.VT;
} else {
MemVT = In.ArgVT;
}
} else if (In.ArgVT.isVector() && In.VT.isVector() &&
In.ArgVT.getScalarType() == In.VT.getScalarType()) {
assert(In.ArgVT.getVectorNumElements() > In.VT.getVectorNumElements());
// We have a vector value which has been split into a vector with
// the same scalar type, but fewer elements. This should handle
// all the floating-point vector types.
MemVT = In.VT;
} else if (In.ArgVT.isVector() &&
In.ArgVT.getVectorNumElements() == NumRegs) {
// This arg has been split so that each element is stored in a separate
// register.
MemVT = In.ArgVT.getScalarType();
} else if (In.ArgVT.isExtended()) {
// We have an extended type, like i65.
MemVT = In.VT;
} else {
unsigned MemoryBits = In.ArgVT.getStoreSizeInBits() / NumRegs;
assert(In.ArgVT.getStoreSizeInBits() % NumRegs == 0);
if (In.VT.isInteger()) {
MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
} else if (In.VT.isVector()) {
assert(!In.VT.getScalarType().isFloatingPoint());
unsigned NumElements = In.VT.getVectorNumElements();
assert(MemoryBits % NumElements == 0);
// This vector type has been split into another vector type with
// a different elements size.
EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
MemoryBits / NumElements);
MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
} else {
llvm_unreachable("cannot deduce memory type.");
}
}
// Convert one element vectors to scalar.
if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
MemVT = MemVT.getScalarType();
if (MemVT.isExtended()) {
// This should really only happen if we have vec3 arguments
assert(MemVT.isVector() && MemVT.getVectorNumElements() == 3);
MemVT = MemVT.getPow2VectorType(State.getContext());
}
assert(MemVT.isSimple());
allocateKernArg(i, In.VT, MemVT.getSimpleVT(), CCValAssign::Full, In.Flags,
State);
}
}
SDValue AMDGPUTargetLowering::LowerReturn(
SDValue Chain, CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &DL, SelectionDAG &DAG) const {
// FIXME: Fails for r600 tests
//assert(!isVarArg && Outs.empty() && OutVals.empty() &&
// "wave terminate should not have return values");
return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
}
//===---------------------------------------------------------------------===//
// Target specific lowering
//===---------------------------------------------------------------------===//
/// Selects the correct CCAssignFn for a given CallingConvention value.
CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
bool IsVarArg) {
return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
}
CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
bool IsVarArg) {
return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
}
SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
SelectionDAG &DAG,
MachineFrameInfo &MFI,
int ClobberedFI) const {
SmallVector<SDValue, 8> ArgChains;
int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
// Include the original chain at the beginning of the list. When this is
// used by target LowerCall hooks, this helps legalize find the
// CALLSEQ_BEGIN node.
ArgChains.push_back(Chain);
// Add a chain value for each stack argument corresponding
for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
UE = DAG.getEntryNode().getNode()->use_end();
U != UE; ++U) {
if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) {
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
if (FI->getIndex() < 0) {
int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
int64_t InLastByte = InFirstByte;
InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
(FirstByte <= InFirstByte && InFirstByte <= LastByte))
ArgChains.push_back(SDValue(L, 1));
}
}
}
}
// Build a tokenfactor for all the chains.
return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
}
SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals,
StringRef Reason) const {
SDValue Callee = CLI.Callee;
SelectionDAG &DAG = CLI.DAG;
const Function &Fn = DAG.getMachineFunction().getFunction();
StringRef FuncName("<unknown>");
if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
FuncName = G->getSymbol();
else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
FuncName = G->getGlobal()->getName();
DiagnosticInfoUnsupported NoCalls(
Fn, Reason + FuncName, CLI.DL.getDebugLoc());
DAG.getContext()->diagnose(NoCalls);
if (!CLI.IsTailCall) {
for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
}
return DAG.getEntryNode();
}
SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
}
SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
SelectionDAG &DAG) const {
const Function &Fn = DAG.getMachineFunction().getFunction();
DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
SDLoc(Op).getDebugLoc());
DAG.getContext()->diagnose(NoDynamicAlloca);
auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
return DAG.getMergeValues(Ops, SDLoc());
}
SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default:
Op->print(errs(), &DAG);
llvm_unreachable("Custom lowering code for this"
"instruction is not implemented yet!");
break;
case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
case ISD::FREM: return LowerFREM(Op, DAG);
case ISD::FCEIL: return LowerFCEIL(Op, DAG);
case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
case ISD::FRINT: return LowerFRINT(Op, DAG);
case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
case ISD::FROUND: return LowerFROUND(Op, DAG);
case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
case ISD::FLOG:
return LowerFLOG(Op, DAG, 1 / AMDGPU_LOG2E_F);
case ISD::FLOG10:
return LowerFLOG(Op, DAG, AMDGPU_LN2_F / AMDGPU_LN10_F);
case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
case ISD::CTTZ:
case ISD::CTTZ_ZERO_UNDEF:
case ISD::CTLZ:
case ISD::CTLZ_ZERO_UNDEF:
return LowerCTLZ_CTTZ(Op, DAG);
case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
}
return Op;
}
void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
switch (N->getOpcode()) {
case ISD::SIGN_EXTEND_INREG:
// Different parts of legalization seem to interpret which type of
// sign_extend_inreg is the one to check for custom lowering. The extended
// from type is what really matters, but some places check for custom
// lowering of the result type. This results in trying to use
// ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
// nothing here and let the illegal result integer be handled normally.
return;
default:
return;
}
}
static bool hasDefinedInitializer(const GlobalValue *GV) {
const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
if (!GVar || !GVar->hasInitializer())
return false;
return !isa<UndefValue>(GVar->getInitializer());
}
SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
SDValue Op,
SelectionDAG &DAG) const {
const DataLayout &DL = DAG.getDataLayout();
GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
const GlobalValue *GV = G->getGlobal();
if (G->getAddressSpace() == AMDGPUASI.LOCAL_ADDRESS ||
G->getAddressSpace() == AMDGPUASI.REGION_ADDRESS) {
if (!MFI->isEntryFunction()) {
const Function &Fn = DAG.getMachineFunction().getFunction();
DiagnosticInfoUnsupported BadLDSDecl(
Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc());
DAG.getContext()->diagnose(BadLDSDecl);
}
// XXX: What does the value of G->getOffset() mean?
assert(G->getOffset() == 0 &&
"Do not know what to do with an non-zero offset");
// TODO: We could emit code to handle the initialization somewhere.
if (!hasDefinedInitializer(GV)) {
unsigned Offset = MFI->allocateLDSGlobal(DL, *GV);
return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
}
}
const Function &Fn = DAG.getMachineFunction().getFunction();
DiagnosticInfoUnsupported BadInit(
Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
DAG.getContext()->diagnose(BadInit);
return SDValue();
}
SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
SelectionDAG &DAG) const {
SmallVector<SDValue, 8> Args;
EVT VT = Op.getValueType();
if (VT == MVT::v4i16 || VT == MVT::v4f16) {
SDLoc SL(Op);
SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0));
SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1));
SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi });
return DAG.getNode(ISD::BITCAST, SL, VT, BV);
}
for (const SDUse &U : Op->ops())
DAG.ExtractVectorElements(U.get(), Args);
return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
}
SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
SelectionDAG &DAG) const {
SmallVector<SDValue, 8> Args;
unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
EVT VT = Op.getValueType();
DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
VT.getVectorNumElements());
return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
}
/// Generate Min/Max node
SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
SDValue LHS, SDValue RHS,
SDValue True, SDValue False,
SDValue CC,
DAGCombinerInfo &DCI) const {
if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
return SDValue();
SelectionDAG &DAG = DCI.DAG;
ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
switch (CCOpcode) {
case ISD::SETOEQ:
case ISD::SETONE:
case ISD::SETUNE:
case ISD::SETNE:
case ISD::SETUEQ:
case ISD::SETEQ:
case ISD::SETFALSE:
case ISD::SETFALSE2:
case ISD::SETTRUE:
case ISD::SETTRUE2:
case ISD::SETUO:
case ISD::SETO:
break;
case ISD::SETULE:
case ISD::SETULT: {
if (LHS == True)
return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
}
case ISD::SETOLE:
case ISD::SETOLT:
case ISD::SETLE:
case ISD::SETLT: {
// Ordered. Assume ordered for undefined.
// Only do this after legalization to avoid interfering with other combines
// which might occur.
if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
!DCI.isCalledByLegalizer())
return SDValue();
// We need to permute the operands to get the correct NaN behavior. The
// selected operand is the second one based on the failing compare with NaN,
// so permute it based on the compare type the hardware uses.
if (LHS == True)
return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
}
case ISD::SETUGE:
case ISD::SETUGT: {
if (LHS == True)
return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
}
case ISD::SETGT:
case ISD::SETGE:
case ISD::SETOGE:
case ISD::SETOGT: {
if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
!DCI.isCalledByLegalizer())
return SDValue();
if (LHS == True)
return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
}
case ISD::SETCC_INVALID:
llvm_unreachable("Invalid setcc condcode!");
}
return SDValue();
}
std::pair<SDValue, SDValue>
AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
const SDValue One = DAG.getConstant(1, SL, MVT::i32);
SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
return std::make_pair(Lo, Hi);
}
SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
}
SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
const SDValue One = DAG.getConstant(1, SL, MVT::i32);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
}
SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
SelectionDAG &DAG) const {
LoadSDNode *Load = cast<LoadSDNode>(Op);
EVT VT = Op.getValueType();
// If this is a 2 element vector, we really want to scalarize and not create
// weird 1 element vectors.
if (VT.getVectorNumElements() == 2)
return scalarizeVectorLoad(Load, DAG);
SDValue BasePtr = Load->getBasePtr();
EVT MemVT = Load->getMemoryVT();
SDLoc SL(Op);
const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
EVT LoVT, HiVT;
EVT LoMemVT, HiMemVT;
SDValue Lo, Hi;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
unsigned Size = LoMemVT.getStoreSize();
unsigned BaseAlign = Load->getAlignment();
unsigned HiAlign = MinAlign(BaseAlign, Size);
SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
Load->getChain(), BasePtr, SrcValue, LoMemVT,
BaseAlign, Load->getMemOperand()->getFlags());
SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size);
SDValue HiLoad =
DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
SDValue Ops[] = {
DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
LoLoad.getValue(1), HiLoad.getValue(1))
};
return DAG.getMergeValues(Ops, SL);
}
SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
SelectionDAG &DAG) const {
StoreSDNode *Store = cast<StoreSDNode>(Op);
SDValue Val = Store->getValue();
EVT VT = Val.getValueType();
// If this is a 2 element vector, we really want to scalarize and not create
// weird 1 element vectors.
if (VT.getVectorNumElements() == 2)
return scalarizeVectorStore(Store, DAG);
EVT MemVT = Store->getMemoryVT();
SDValue Chain = Store->getChain();
SDValue BasePtr = Store->getBasePtr();
SDLoc SL(Op);
EVT LoVT, HiVT;
EVT LoMemVT, HiMemVT;
SDValue Lo, Hi;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize());
const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
unsigned BaseAlign = Store->getAlignment();
unsigned Size = LoMemVT.getStoreSize();
unsigned HiAlign = MinAlign(BaseAlign, Size);
SDValue LoStore =
DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
Store->getMemOperand()->getFlags());
SDValue HiStore =
DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
}
// This is a shortcut for integer division because we have fast i32<->f32
// conversions, and fast f32 reciprocal instructions. The fractional part of a
// float is enough to accurately represent up to a 24-bit signed integer.
SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
bool Sign) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
MVT IntVT = MVT::i32;
MVT FltVT = MVT::f32;
unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
if (LHSSignBits < 9)
return SDValue();
unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
if (RHSSignBits < 9)
return SDValue();
unsigned BitSize = VT.getSizeInBits();
unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
unsigned DivBits = BitSize - SignBits;
if (Sign)
++DivBits;
ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
SDValue jq = DAG.getConstant(1, DL, IntVT);
if (Sign) {
// char|short jq = ia ^ ib;
jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
// jq = jq >> (bitsize - 2)
jq = DAG.getNode(ISD::SRA, DL, VT, jq,
DAG.getConstant(BitSize - 2, DL, VT));
// jq = jq | 0x1
jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
}
// int ia = (int)LHS;
SDValue ia = LHS;
// int ib, (int)RHS;
SDValue ib = RHS;
// float fa = (float)ia;
SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
// float fb = (float)ib;
SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
// fq = trunc(fq);
fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
// float fqneg = -fq;
SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
// float fr = mad(fqneg, fb, fa);
unsigned OpCode = Subtarget->hasFP32Denormals() ?
(unsigned)AMDGPUISD::FMAD_FTZ :
(unsigned)ISD::FMAD;
SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
// int iq = (int)fq;
SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
// fr = fabs(fr);
fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
// fb = fabs(fb);
fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
// int cv = fr >= fb;
SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
// jq = (cv ? jq : 0);
jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
// dst = iq + jq;
SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
// Rem needs compensation, it's easier to recompute it
SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
// Truncate to number of bits this divide really is.
if (Sign) {
SDValue InRegSize
= DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
} else {
SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
}
return DAG.getMergeValues({ Div, Rem }, DL);
}
void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
SelectionDAG &DAG,
SmallVectorImpl<SDValue> &Results) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
SDValue One = DAG.getConstant(1, DL, HalfVT);
SDValue Zero = DAG.getConstant(0, DL, HalfVT);
//HiLo split
SDValue LHS = Op.getOperand(0);
SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
SDValue RHS = Op.getOperand(1);
SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
LHS_Lo, RHS_Lo);
SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
return;
}
if (isTypeLegal(MVT::i64)) {
// Compute denominator reciprocal.
unsigned FMAD = Subtarget->hasFP32Denormals() ?
(unsigned)AMDGPUISD::FMAD_FTZ :
(unsigned)ISD::FMAD;
SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
Cvt_Lo);
SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
Mul1);
SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
SDValue Rcp64 = DAG.getBitcast(VT,
DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
SDValue Zero64 = DAG.getConstant(0, DL, VT);
SDValue One64 = DAG.getConstant(1, DL, VT);
SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
Zero);
SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
One);
SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
Mulhi1_Lo, Zero1);
SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
Mulhi1_Hi, Add1_Lo.getValue(1));
SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi);
SDValue Add1 = DAG.getBitcast(VT,
DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
Zero);
SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
One);
SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
Mulhi2_Lo, Zero1);
SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc,
Mulhi2_Hi, Add1_Lo.getValue(1));
SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC,
Zero, Add2_Lo.getValue(1));
SDValue Add2 = DAG.getBitcast(VT,
DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
Mul3_Lo, Zero1);
SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
Mul3_Hi, Sub1_Lo.getValue(1));
SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
SDValue Sub1 = DAG.getBitcast(VT,
DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
ISD::SETUGE);
SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
ISD::SETUGE);
SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
// TODO: Here and below portions of the code can be enclosed into if/endif.
// Currently control flow is unconditional and we have 4 selects after
// potential endif to substitute PHIs.
// if C3 != 0 ...
SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
RHS_Lo, Zero1);
SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
RHS_Hi, Sub1_Lo.getValue(1));
SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
Zero, Sub2_Lo.getValue(1));
SDValue Sub2 = DAG.getBitcast(VT,
DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
ISD::SETUGE);
SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
ISD::SETUGE);
SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
// if (C6 != 0)
SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
RHS_Lo, Zero1);
SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
RHS_Hi, Sub2_Lo.getValue(1));
SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
Zero, Sub3_Lo.getValue(1));
SDValue Sub3 = DAG.getBitcast(VT,
DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
// endif C6
// endif C3
SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
Results.push_back(Div);
Results.push_back(Rem);
return;
}
// r600 expandion.
// Get Speculative values
SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
SDValue DIV_Lo = Zero;
const unsigned halfBitWidth = HalfVT.getSizeInBits();
for (unsigned i = 0; i < halfBitWidth; ++i) {
const unsigned bitPos = halfBitWidth - i - 1;
SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
// Get value of high bit
SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
// Shift
REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
// Add LHS high bit
REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
// Update REM
SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
}
SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
Results.push_back(DIV);
Results.push_back(REM);
}
SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
if (VT == MVT::i64) {
SmallVector<SDValue, 2> Results;
LowerUDIVREM64(Op, DAG, Results);
return DAG.getMergeValues(Results, DL);
}
if (VT == MVT::i32) {
if (SDValue Res = LowerDIVREM24(Op, DAG, false))
return Res;
}
SDValue Num = Op.getOperand(0);
SDValue Den = Op.getOperand(1);
// RCP = URECIP(Den) = 2^32 / Den + e
// e is rounding error.
SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
// RCP_LO = mul(RCP, Den) */
SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
// RCP_HI = mulhu (RCP, Den) */
SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
// NEG_RCP_LO = -RCP_LO
SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
RCP_LO);
// ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
NEG_RCP_LO, RCP_LO,
ISD::SETEQ);
// Calculate the rounding error from the URECIP instruction
// E = mulhu(ABS_RCP_LO, RCP)
SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
// RCP_A_E = RCP + E
SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
// RCP_S_E = RCP - E
SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
// Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
RCP_A_E, RCP_S_E,
ISD::SETEQ);
// Quotient = mulhu(Tmp0, Num)
SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
// Num_S_Remainder = Quotient * Den
SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
// Remainder = Num - Num_S_Remainder
SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
// Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
DAG.getConstant(-1, DL, VT),
DAG.getConstant(0, DL, VT),
ISD::SETUGE);
// Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
Num_S_Remainder,
DAG.getConstant(-1, DL, VT),
DAG.getConstant(0, DL, VT),
ISD::SETUGE);
// Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
Remainder_GE_Zero);
// Calculate Division result:
// Quotient_A_One = Quotient + 1
SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
DAG.getConstant(1, DL, VT));
// Quotient_S_One = Quotient - 1
SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
DAG.getConstant(1, DL, VT));
// Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
Quotient, Quotient_A_One, ISD::SETEQ);
// Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
Quotient_S_One, Div, ISD::SETEQ);
// Calculate Rem result:
// Remainder_S_Den = Remainder - Den
SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
// Remainder_A_Den = Remainder + Den
SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
// Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
Remainder, Remainder_S_Den, ISD::SETEQ);
// Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
Remainder_A_Den, Rem, ISD::SETEQ);
SDValue Ops[2] = {
Div,
Rem
};
return DAG.getMergeValues(Ops, DL);
}
SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue Zero = DAG.getConstant(0, DL, VT);
SDValue NegOne = DAG.getConstant(-1, DL, VT);
if (VT == MVT::i32) {
if (SDValue Res = LowerDIVREM24(Op, DAG, true))
return Res;
}
if (VT == MVT::i64 &&
DAG.ComputeNumSignBits(LHS) > 32 &&
DAG.ComputeNumSignBits(RHS) > 32) {
EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
//HiLo split
SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
LHS_Lo, RHS_Lo);
SDValue Res[2] = {
DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
};
return DAG.getMergeValues(Res, DL);
}
SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
SDValue RSign = LHSign; // Remainder sign is the same as LHS
LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
SDValue Rem = Div.getValue(1);
Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
SDValue Res[2] = {
Div,
Rem
};
return DAG.getMergeValues(Res, DL);
}
// (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
EVT VT = Op.getValueType();
SDValue X = Op.getOperand(0);
SDValue Y = Op.getOperand(1);
// TODO: Should this propagate fast-math-flags?
SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
}
SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue Src = Op.getOperand(0);
// result = trunc(src)
// if (src > 0.0 && src != result)
// result += 1.0
SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
EVT SetCCVT =
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
// TODO: Should this propagate fast-math-flags?
return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
}
static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
SelectionDAG &DAG) {
const unsigned FractBits = 52;
const unsigned ExpBits = 11;
SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
Hi,
DAG.getConstant(FractBits - 32, SL, MVT::i32),
DAG.getConstant(ExpBits, SL, MVT::i32));
SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
DAG.getConstant(1023, SL, MVT::i32));
return Exp;
}
SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue Src = Op.getOperand(0);
assert(Op.getValueType() == MVT::f64);
const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
const SDValue One = DAG.getConstant(1, SL, MVT::i32);
SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
// Extract the upper half, since this is where we will find the sign and
// exponent.
SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
SDValue Exp = extractF64Exponent(Hi, SL, DAG);
const unsigned FractBits = 52;
// Extract the sign bit.
const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
// Extend back to 64-bits.
SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
const SDValue FractMask
= DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
EVT SetCCVT =
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
}
SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue Src = Op.getOperand(0);
assert(Op.getValueType() == MVT::f64);
APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
// TODO: Should this propagate fast-math-flags?
SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
EVT SetCCVT =
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
}
SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
// FNEARBYINT and FRINT are the same, except in their handling of FP
// exceptions. Those aren't really meaningful for us, and OpenCL only has
// rint, so just treat them as equivalent.
return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
}
// XXX - May require not supporting f32 denormals?
// Don't handle v2f16. The extra instructions to scalarize and repack around the
// compare and vselect end up producing worse code than scalarizing the whole
// operation.
SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue X = Op.getOperand(0);
EVT VT = Op.getValueType();
SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
// TODO: Should this propagate fast-math-flags?
SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
const SDValue One = DAG.getConstantFP(1.0, SL, VT);
const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
EVT SetCCVT =
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
}
SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue X = Op.getOperand(0);
SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
const SDValue One = DAG.getConstant(1, SL, MVT::i32);
const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
EVT SetCCVT =
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
SDValue Exp = extractF64Exponent(Hi, SL, DAG);
const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
MVT::i64);
SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
DAG.getConstant(INT64_C(0x0008000000000000), SL,
MVT::i64),
Exp);
SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
DAG.getConstant(0, SL, MVT::i64), Tmp0,
ISD::SETNE);
SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
D, DAG.getConstant(0, SL, MVT::i64));
SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
ExpEqNegOne,
DAG.getConstantFP(1.0, SL, MVT::f64),
DAG.getConstantFP(0.0, SL, MVT::f64));
SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
return K;
}
SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
if (VT == MVT::f32 || VT == MVT::f16)
return LowerFROUND32_16(Op, DAG);
if (VT == MVT::f64)
return LowerFROUND64(Op, DAG);
llvm_unreachable("unhandled type");
}
SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue Src = Op.getOperand(0);
// result = trunc(src);
// if (src < 0.0 && src != result)
// result += -1.0.
SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
EVT SetCCVT =
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
// TODO: Should this propagate fast-math-flags?
return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
}
SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG,
double Log2BaseInverted) const {
EVT VT = Op.getValueType();
SDLoc SL(Op);
SDValue Operand = Op.getOperand(0);
SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand);
SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT);
return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand);
}
static bool isCtlzOpc(unsigned Opc) {
return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
}
static bool isCttzOpc(unsigned Opc) {
return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
}
SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue Src = Op.getOperand(0);
bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF ||
Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
unsigned ISDOpc, NewOpc;
if (isCtlzOpc(Op.getOpcode())) {
ISDOpc = ISD::CTLZ_ZERO_UNDEF;
NewOpc = AMDGPUISD::FFBH_U32;
} else if (isCttzOpc(Op.getOpcode())) {
ISDOpc = ISD::CTTZ_ZERO_UNDEF;
NewOpc = AMDGPUISD::FFBL_B32;
} else
llvm_unreachable("Unexpected OPCode!!!");
if (ZeroUndef && Src.getValueType() == MVT::i32)
return DAG.getNode(NewOpc, SL, MVT::i32, Src);
SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
const SDValue One = DAG.getConstant(1, SL, MVT::i32);
SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
*DAG.getContext(), MVT::i32);
SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo;
SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ);
SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo);
SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi);
const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
SDValue Add, NewOpr;
if (isCtlzOpc(Op.getOpcode())) {
Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32);
// ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi);
} else {
Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32);
// cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo);
}
if (!ZeroUndef) {
// Test if the full 64-bit input is zero.
// FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
// which we probably don't want.
SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi;
SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ);
SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0);
// TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
// with the same cycles, otherwise it is slower.
// SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
// DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
// The instruction returns -1 for 0 input, but the defined intrinsic
// behavior is to return the number of bits.
NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32,
SrcIsZero, Bits32, NewOpr);
}
return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
}
SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
bool Signed) const {
// Unsigned
// cul2f(ulong u)
//{
// uint lz = clz(u);
// uint e = (u != 0) ? 127U + 63U - lz : 0;
// u = (u << lz) & 0x7fffffffffffffffUL;
// ulong t = u & 0xffffffffffUL;
// uint v = (e << 23) | (uint)(u >> 40);
// uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
// return as_float(v + r);
//}
// Signed
// cl2f(long l)
//{
// long s = l >> 63;
// float r = cul2f((l + s) ^ s);
// return s ? -r : r;
//}
SDLoc SL(Op);
SDValue Src = Op.getOperand(0);
SDValue L = Src;
SDValue S;
if (Signed) {
const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
}
EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
*DAG.getContext(), MVT::f32);
SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
SDValue E = DAG.getSelect(SL, MVT::i32,
DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
ZeroI32);
SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
U, DAG.getConstant(40, SL, MVT::i64));
SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl));
SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
SDValue One = DAG.getConstant(1, SL, MVT::i32);
SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
SDValue R = DAG.getSelect(SL, MVT::i32,
RCmp,
One,
DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
if (!Signed)
return R;
SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
}
SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
bool Signed) const {
SDLoc SL(Op);
SDValue Src = Op.getOperand(0);
SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
DAG.getConstant(0, SL, MVT::i32));
SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
DAG.getConstant(1, SL, MVT::i32));
SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
SL, MVT::f64, Hi);
SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
DAG.getConstant(32, SL, MVT::i32));
// TODO: Should this propagate fast-math-flags?
return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
}
SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getOperand(0).getValueType() == MVT::i64 &&
"operation should be legal");
// TODO: Factor out code common with LowerSINT_TO_FP.
EVT DestVT = Op.getValueType();
if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
SDLoc DL(Op);
SDValue Src = Op.getOperand(0);
SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
SDValue FPRound =
DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
return FPRound;
}
if (DestVT == MVT::f32)
return LowerINT_TO_FP32(Op, DAG, false);
assert(DestVT == MVT::f64);
return LowerINT_TO_FP64(Op, DAG, false);
}
SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
SelectionDAG &DAG) const {
assert(Op.getOperand(0).getValueType() == MVT::i64 &&
"operation should be legal");
// TODO: Factor out code common with LowerUINT_TO_FP.
EVT DestVT = Op.getValueType();
if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
SDLoc DL(Op);
SDValue Src = Op.getOperand(0);
SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
SDValue FPRound =
DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
return FPRound;
}
if (DestVT == MVT::f32)
return LowerINT_TO_FP32(Op, DAG, true);
assert(DestVT == MVT::f64);
return LowerINT_TO_FP64(Op, DAG, true);
}
SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
bool Signed) const {
SDLoc SL(Op);
SDValue Src = Op.getOperand(0);
SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
MVT::f64);
SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
MVT::f64);
// TODO: Should this propagate fast-math-flags?
SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
MVT::i32, FloorMul);
SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi});
return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
}
SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
SDValue N0 = Op.getOperand(0);
// Convert to target node to get known bits
if (N0.getValueType() == MVT::f32)
return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
if (getTargetMachine().Options.UnsafeFPMath) {
// There is a generic expand for FP_TO_FP16 with unsafe fast math.
return SDValue();
}
assert(N0.getSimpleValueType() == MVT::f64);
// f64 -> f16 conversion using round-to-nearest-even rounding mode.
const unsigned ExpMask = 0x7ff;
const unsigned ExpBiasf64 = 1023;
const unsigned ExpBiasf16 = 15;
SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
SDValue One = DAG.getConstant(1, DL, MVT::i32);
SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
DAG.getConstant(32, DL, MVT::i64));
UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
DAG.getConstant(20, DL, MVT::i64));
E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
DAG.getConstant(ExpMask, DL, MVT::i32));
// Subtract the fp64 exponent bias (1023) to get the real exponent and
// add the f16 bias (15) to get the biased exponent for the f16 format.
E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
DAG.getConstant(8, DL, MVT::i32));
M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
DAG.getConstant(0xffe, DL, MVT::i32));
SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
DAG.getConstant(0x1ff, DL, MVT::i32));
MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
// (M != 0 ? 0x0200 : 0) | 0x7c00;
SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
// N = M | (E << 12);
SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
DAG.getNode(ISD::SHL, DL, MVT::i32, E,
DAG.getConstant(12, DL, MVT::i32)));
// B = clamp(1-E, 0, 13);
SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
One, E);
SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
DAG.getConstant(13, DL, MVT::i32));
SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
DAG.getConstant(0x1000, DL, MVT::i32));
SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
DAG.getConstant(0x7, DL, MVT::i32));
V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
DAG.getConstant(2, DL, MVT::i32));
SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
One, Zero, ISD::SETEQ);
SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
One, Zero, ISD::SETGT);
V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
I, V, ISD::SETEQ);
// Extract the sign bit.
SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
DAG.getConstant(16, DL, MVT::i32));
Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
DAG.getConstant(0x8000, DL, MVT::i32));
V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
}
SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
SelectionDAG &DAG) const {
SDValue Src = Op.getOperand(0);
// TODO: Factor out code common with LowerFP_TO_UINT.
EVT SrcVT = Src.getValueType();
if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
SDLoc DL(Op);
SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
SDValue FpToInt32 =
DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
return FpToInt32;
}
if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
return LowerFP64_TO_INT(Op, DAG, true);
return SDValue();
}
SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
SelectionDAG &DAG) const {
SDValue Src = Op.getOperand(0);
// TODO: Factor out code common with LowerFP_TO_SINT.
EVT SrcVT = Src.getValueType();
if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) {
SDLoc DL(Op);
SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src);
SDValue FpToInt32 =
DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend);
return FpToInt32;
}
if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
return LowerFP64_TO_INT(Op, DAG, false);
return SDValue();
}
SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
SelectionDAG &DAG) const {
EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
MVT VT = Op.getSimpleValueType();
MVT ScalarVT = VT.getScalarType();
assert(VT.isVector());
SDValue Src = Op.getOperand(0);
SDLoc DL(Op);
// TODO: Don't scalarize on Evergreen?
unsigned NElts = VT.getVectorNumElements();
SmallVector<SDValue, 8> Args;
DAG.ExtractVectorElements(Src, Args, 0, NElts);
SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
for (unsigned I = 0; I < NElts; ++I)
Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
return DAG.getBuildVector(VT, DL, Args);
}
//===----------------------------------------------------------------------===//
// Custom DAG optimizations
//===----------------------------------------------------------------------===//
static bool isU24(SDValue Op, SelectionDAG &DAG) {
return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
}
static bool isI24(SDValue Op, SelectionDAG &DAG) {
EVT VT = Op.getValueType();
return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
// as unsigned 24-bit values.
AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24;
}
static bool simplifyI24(SDNode *Node24, unsigned OpIdx,
TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
SDValue Op = Node24->getOperand(OpIdx);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT VT = Op.getValueType();
APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
APInt KnownZero, KnownOne;
TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
if (TLI.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI, TLO))
return true;
return false;
}
template <typename IntTy>
static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
uint32_t Width, const SDLoc &DL) {
if (Width + Offset < 32) {
uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
return DAG.getConstant(Result, DL, MVT::i32);
}
return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
}
static bool hasVolatileUser(SDNode *Val) {
for (SDNode *U : Val->uses()) {
if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
if (M->isVolatile())
return true;
}
}
return false;
}
bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
// i32 vectors are the canonical memory type.
if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
return false;
if (!VT.isByteSized())
return false;
unsigned Size = VT.getStoreSize();
if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
return false;
if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
return false;
return true;
}
// Replace load of an illegal type with a store of a bitcast to a friendlier
// type.
SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
if (!DCI.isBeforeLegalize())
return SDValue();
LoadSDNode *LN = cast<LoadSDNode>(N);
if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
return SDValue();
SDLoc SL(N);
SelectionDAG &DAG = DCI.DAG;
EVT VT = LN->getMemoryVT();
unsigned Size = VT.getStoreSize();
unsigned Align = LN->getAlignment();
if (Align < Size && isTypeLegal(VT)) {
bool IsFast;
unsigned AS = LN->getAddressSpace();
// Expand unaligned loads earlier than legalization. Due to visitation order
// problems during legalization, the emitted instructions to pack and unpack
// the bytes again are not eliminated in the case of an unaligned copy.
if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
if (VT.isVector())
return scalarizeVectorLoad(LN, DAG);
SDValue Ops[2];
std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
return DAG.getMergeValues(Ops, SDLoc(N));
}
if (!IsFast)
return SDValue();
}
if (!shouldCombineMemoryType(VT))
return SDValue();
EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
SDValue NewLoad
= DAG.getLoad(NewVT, SL, LN->getChain(),
LN->getBasePtr(), LN->getMemOperand());
SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
DCI.CombineTo(N, BC, NewLoad.getValue(1));
return SDValue(N, 0);
}
// Replace store of an illegal type with a store of a bitcast to a friendlier
// type.
SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
if (!DCI.isBeforeLegalize())
return SDValue();
StoreSDNode *SN = cast<StoreSDNode>(N);
if (SN->isVolatile() || !ISD::isNormalStore(SN))
return SDValue();
EVT VT = SN->getMemoryVT();
unsigned Size = VT.getStoreSize();
SDLoc SL(N);
SelectionDAG &DAG = DCI.DAG;
unsigned Align = SN->getAlignment();
if (Align < Size && isTypeLegal(VT)) {
bool IsFast;
unsigned AS = SN->getAddressSpace();
// Expand unaligned stores earlier than legalization. Due to visitation
// order problems during legalization, the emitted instructions to pack and
// unpack the bytes again are not eliminated in the case of an unaligned
// copy.
if (!allowsMisalignedMemoryAccesses(VT, AS, Align, &IsFast)) {
if (VT.isVector())
return scalarizeVectorStore(SN, DAG);
return expandUnalignedStore(SN, DAG);
}
if (!IsFast)
return SDValue();
}
if (!shouldCombineMemoryType(VT))
return SDValue();
EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
SDValue Val = SN->getValue();
//DCI.AddToWorklist(Val.getNode());
bool OtherUses = !Val.hasOneUse();
SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
if (OtherUses) {
SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
}
return DAG.getStore(SN->getChain(), SL, CastVal,
SN->getBasePtr(), SN->getMemOperand());
}
// FIXME: This should go in generic DAG combiner with an isTruncateFree check,
// but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
// issues.
SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDValue N0 = N->getOperand(0);
// (vt2 (assertzext (truncate vt0:x), vt1)) ->
// (vt2 (truncate (assertzext vt0:x, vt1)))
if (N0.getOpcode() == ISD::TRUNCATE) {
SDValue N1 = N->getOperand(1);
EVT ExtVT = cast<VTSDNode>(N1)->getVT();
SDLoc SL(N);
SDValue Src = N0.getOperand(0);
EVT SrcVT = Src.getValueType();
if (SrcVT.bitsGE(ExtVT)) {
SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
}
}
return SDValue();
}
/// Split the 64-bit value \p LHS into two 32-bit components, and perform the
/// binary operation \p Opc to it with the corresponding constant operands.
SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
DAGCombinerInfo &DCI, const SDLoc &SL,
unsigned Opc, SDValue LHS,
uint32_t ValLo, uint32_t ValHi) const {
SelectionDAG &DAG = DCI.DAG;
SDValue Lo, Hi;
std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
// Re-visit the ands. It's possible we eliminated one of them and it could
// simplify the vector.
DCI.AddToWorklist(Lo.getNode());
DCI.AddToWorklist(Hi.getNode());
SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
}
SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
EVT VT = N->getValueType(0);
ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!RHS)
return SDValue();
SDValue LHS = N->getOperand(0);
unsigned RHSVal = RHS->getZExtValue();
if (!RHSVal)
return LHS;
SDLoc SL(N);
SelectionDAG &DAG = DCI.DAG;
switch (LHS->getOpcode()) {
default:
break;
case ISD::ZERO_EXTEND:
case ISD::SIGN_EXTEND:
case ISD::ANY_EXTEND: {
SDValue X = LHS->getOperand(0);
if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) {
// Prefer build_vector as the canonical form if packed types are legal.
// (shl ([asz]ext i16:x), 16 -> build_vector 0, x
SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
{ DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
}
// shl (ext x) => zext (shl x), if shift does not overflow int
if (VT != MVT::i64)
break;
KnownBits Known;
DAG.computeKnownBits(X, Known);
unsigned LZ = Known.countMinLeadingZeros();
if (LZ < RHSVal)
break;
EVT XVT = X.getValueType();
SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
return DAG.getZExtOrTrunc(Shl, SL, VT);
}
}
if (VT != MVT::i64)
return SDValue();
// i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
// On some subtargets, 64-bit shift is a quarter rate instruction. In the
// common case, splitting this into a move and a 32-bit shift is faster and
// the same code size.
if (RHSVal < 32)
return SDValue();
SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
}
SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
if (N->getValueType(0) != MVT::i64)
return SDValue();
const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!RHS)
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc SL(N);
unsigned RHSVal = RHS->getZExtValue();
// (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
if (RHSVal == 32) {
SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
DAG.getConstant(31, SL, MVT::i32));
SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
}
// (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
if (RHSVal == 63) {
SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
DAG.getConstant(31, SL, MVT::i32));
SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
}
return SDValue();
}
SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
if (N->getValueType(0) != MVT::i64)
return SDValue();
const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!RHS)
return SDValue();
unsigned ShiftAmt = RHS->getZExtValue();
if (ShiftAmt < 32)
return SDValue();
// srl i64:x, C for C >= 32
// =>
// build_pair (srl hi_32(x), C - 32), 0
SelectionDAG &DAG = DCI.DAG;
SDLoc SL(N);
SDValue One = DAG.getConstant(1, SL, MVT::i32);
SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, N->getOperand(0));
SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32,
VecOp, One);
SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
}
SDValue AMDGPUTargetLowering::performTruncateCombine(
SDNode *N, DAGCombinerInfo &DCI) const {
SDLoc SL(N);
SelectionDAG &DAG = DCI.DAG;
EVT VT = N->getValueType(0);
SDValue Src = N->getOperand(0);
// vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
if (Src.getOpcode() == ISD::BITCAST) {
SDValue Vec = Src.getOperand(0);
if (Vec.getOpcode() == ISD::BUILD_VECTOR) {
SDValue Elt0 = Vec.getOperand(0);
EVT EltVT = Elt0.getValueType();
if (VT.getSizeInBits() <= EltVT.getSizeInBits()) {
if (EltVT.isFloatingPoint()) {
Elt0 = DAG.getNode(ISD::BITCAST, SL,
EltVT.changeTypeToInteger(), Elt0);
}
return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0);
}
}
}
// Equivalent of above for accessing the high element of a vector as an
// integer operation.
// trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
if (Src.getOpcode() == ISD::SRL) {
if (auto K = isConstOrConstSplat(Src.getOperand(1))) {
if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) {
SDValue BV = stripBitcast(Src.getOperand(0));
if (BV.getOpcode() == ISD::BUILD_VECTOR &&
BV.getValueType().getVectorNumElements() == 2) {
SDValue SrcElt = BV.getOperand(1);
EVT SrcEltVT = SrcElt.getValueType();
if (SrcEltVT.isFloatingPoint()) {
SrcElt = DAG.getNode(ISD::BITCAST, SL,
SrcEltVT.changeTypeToInteger(), SrcElt);
}
return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt);
}
}
}
}
// Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
//
// i16 (trunc (srl i64:x, K)), K <= 16 ->
// i16 (trunc (srl (i32 (trunc x), K)))
if (VT.getScalarSizeInBits() < 32) {
EVT SrcVT = Src.getValueType();
if (SrcVT.getScalarSizeInBits() > 32 &&
(Src.getOpcode() == ISD::SRL ||
Src.getOpcode() == ISD::SRA ||
Src.getOpcode() == ISD::SHL)) {
SDValue Amt = Src.getOperand(1);
KnownBits Known;
DAG.computeKnownBits(Amt, Known);
unsigned Size = VT.getScalarSizeInBits();
if ((Known.isConstant() && Known.getConstant().ule(Size)) ||
(Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) {
EVT MidVT = VT.isVector() ?
EVT::getVectorVT(*DAG.getContext(), MVT::i32,
VT.getVectorNumElements()) : MVT::i32;
EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout());
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT,
Src.getOperand(0));
DCI.AddToWorklist(Trunc.getNode());
if (Amt.getValueType() != NewShiftVT) {
Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT);
DCI.AddToWorklist(Amt.getNode());
}
SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT,
Trunc, Amt);
return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift);
}
}
}
return SDValue();
}
// We need to specifically handle i64 mul here to avoid unnecessary conversion
// instructions. If we only match on the legalized i64 mul expansion,
// SimplifyDemandedBits will be unable to remove them because there will be
// multiple uses due to the separate mul + mulh[su].
static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
SDValue N0, SDValue N1, unsigned Size, bool Signed) {
if (Size <= 32) {
unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
}
// Because we want to eliminate extension instructions before the
// operation, we need to create a single user here (i.e. not the separate
// mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it.
unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24;
SDValue Mul = DAG.getNode(MulOpc, SL,
DAG.getVTList(MVT::i32, MVT::i32), N0, N1);
return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64,
Mul.getValue(0), Mul.getValue(1));
}
SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
EVT VT = N->getValueType(0);
unsigned Size = VT.getSizeInBits();
if (VT.isVector() || Size > 64)
return SDValue();
// There are i16 integer mul/mad.
if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// SimplifyDemandedBits has the annoying habit of turning useful zero_extends
// in the source into any_extends if the result of the mul is truncated. Since
// we can assume the high bits are whatever we want, use the underlying value
// to avoid the unknown high bits from interfering.
if (N0.getOpcode() == ISD::ANY_EXTEND)
N0 = N0.getOperand(0);
if (N1.getOpcode() == ISD::ANY_EXTEND)
N1 = N1.getOperand(0);
SDValue Mul;
if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
Mul = getMul24(DAG, DL, N0, N1, Size, false);
} else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
Mul = getMul24(DAG, DL, N0, N1, Size, true);
} else {
return SDValue();
}
// We need to use sext even for MUL_U24, because MUL_U24 is used
// for signed multiply of 8 and 16-bit types.
return DAG.getSExtOrTrunc(Mul, DL, VT);
}
SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
EVT VT = N->getValueType(0);
if (!Subtarget->hasMulI24() || VT.isVector())
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
if (!isI24(N0, DAG) || !isI24(N1, DAG))
return SDValue();
N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
DCI.AddToWorklist(Mulhi.getNode());
return DAG.getSExtOrTrunc(Mulhi, DL, VT);
}
SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
EVT VT = N->getValueType(0);
if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
if (!isU24(N0, DAG) || !isU24(N1, DAG))
return SDValue();
N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
DCI.AddToWorklist(Mulhi.getNode());
return DAG.getZExtOrTrunc(Mulhi, DL, VT);
}
SDValue AMDGPUTargetLowering::performMulLoHi24Combine(
SDNode *N, DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
// Simplify demanded bits before splitting into multiple users.
if (simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI))
return SDValue();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24);
unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
SDLoc SL(N);
SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
return DAG.getMergeValues({ MulLo, MulHi }, SL);
}
static bool isNegativeOne(SDValue Val) {
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
return C->isAllOnesValue();
return false;
}
SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
SDValue Op,
const SDLoc &DL,
unsigned Opc) const {
EVT VT = Op.getValueType();
EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
LegalVT != MVT::i16))
return SDValue();
if (VT != MVT::i32)
Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
if (VT != MVT::i32)
FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
return FFBX;
}
// The native instructions return -1 on 0 input. Optimize out a select that
// produces -1 on 0.
//
// TODO: If zero is not undef, we could also do this if the output is compared
// against the bitwidth.
//
// TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
SDValue LHS, SDValue RHS,
DAGCombinerInfo &DCI) const {
ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
if (!CmpRhs || !CmpRhs->isNullValue())
return SDValue();
SelectionDAG &DAG = DCI.DAG;
ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
SDValue CmpLHS = Cond.getOperand(0);
unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 :
AMDGPUISD::FFBH_U32;
// select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
// select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
if (CCOpcode == ISD::SETEQ &&
(isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
RHS.getOperand(0) == CmpLHS &&
isNegativeOne(LHS)) {
return getFFBX_U32(DAG, CmpLHS, SL, Opc);
}
// select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
// select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
if (CCOpcode == ISD::SETNE &&
(isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
LHS.getOperand(0) == CmpLHS &&
isNegativeOne(RHS)) {
return getFFBX_U32(DAG, CmpLHS, SL, Opc);
}
return SDValue();
}
static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
unsigned Op,
const SDLoc &SL,
SDValue Cond,
SDValue N1,
SDValue N2) {
SelectionDAG &DAG = DCI.DAG;
EVT VT = N1.getValueType();
SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
N1.getOperand(0), N2.getOperand(0));
DCI.AddToWorklist(NewSelect.getNode());
return DAG.getNode(Op, SL, VT, NewSelect);
}
// Pull a free FP operation out of a select so it may fold into uses.
//
// select c, (fneg x), (fneg y) -> fneg (select c, x, y)
// select c, (fneg x), k -> fneg (select c, x, (fneg k))
//
// select c, (fabs x), (fabs y) -> fabs (select c, x, y)
// select c, (fabs x), +k -> fabs (select c, x, k)
static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
SDValue N) {
SelectionDAG &DAG = DCI.DAG;
SDValue Cond = N.getOperand(0);
SDValue LHS = N.getOperand(1);
SDValue RHS = N.getOperand(2);
EVT VT = N.getValueType();
if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
(LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
return distributeOpThroughSelect(DCI, LHS.getOpcode(),
SDLoc(N), Cond, LHS, RHS);
}
bool Inv = false;
if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
std::swap(LHS, RHS);
Inv = true;
}
// TODO: Support vector constants.
ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
SDLoc SL(N);
// If one side is an fneg/fabs and the other is a constant, we can push the
// fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
SDValue NewLHS = LHS.getOperand(0);
SDValue NewRHS = RHS;
// Careful: if the neg can be folded up, don't try to pull it back down.
bool ShouldFoldNeg = true;
if (NewLHS.hasOneUse()) {
unsigned Opc = NewLHS.getOpcode();
if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
ShouldFoldNeg = false;
if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
ShouldFoldNeg = false;
}
if (ShouldFoldNeg) {
if (LHS.getOpcode() == ISD::FNEG)
NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
else if (CRHS->isNegative())
return SDValue();
if (Inv)
std::swap(NewLHS, NewRHS);
SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
Cond, NewLHS, NewRHS);
DCI.AddToWorklist(NewSelect.getNode());
return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
}
}
return SDValue();
}
SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
return Folded;
SDValue Cond = N->getOperand(0);
if (Cond.getOpcode() != ISD::SETCC)
return SDValue();
EVT VT = N->getValueType(0);
SDValue LHS = Cond.getOperand(0);
SDValue RHS = Cond.getOperand(1);
SDValue CC = Cond.getOperand(2);
SDValue True = N->getOperand(1);
SDValue False = N->getOperand(2);
if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
SelectionDAG &DAG = DCI.DAG;
if ((DAG.isConstantValueOfAnyType(True) ||
DAG.isConstantValueOfAnyType(True)) &&
(!DAG.isConstantValueOfAnyType(False) &&
!DAG.isConstantValueOfAnyType(False))) {
// Swap cmp + select pair to move constant to false input.
// This will allow using VOPC cndmasks more often.
// select (setcc x, y), k, x -> select (setcc y, x) x, x
SDLoc SL(N);
ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
LHS.getValueType().isInteger());
SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
}
if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
SDValue MinMax
= combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
// Revisit this node so we can catch min3/max3/med3 patterns.
//DCI.AddToWorklist(MinMax.getNode());
return MinMax;
}
}
// There's no reason to not do this if the condition has other uses.
return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
}
static bool isConstantFPZero(SDValue N) {
if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N))
return C->isZero() && !C->isNegative();
return false;
}
static unsigned inverseMinMax(unsigned Opc) {
switch (Opc) {
case ISD::FMAXNUM:
return ISD::FMINNUM;
case ISD::FMINNUM:
return ISD::FMAXNUM;
case AMDGPUISD::FMAX_LEGACY:
return AMDGPUISD::FMIN_LEGACY;
case AMDGPUISD::FMIN_LEGACY:
return AMDGPUISD::FMAX_LEGACY;
default:
llvm_unreachable("invalid min/max opcode");
}
}
SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
unsigned Opc = N0.getOpcode();
// If the input has multiple uses and we can either fold the negate down, or
// the other uses cannot, give up. This both prevents unprofitable
// transformations and infinite loops: we won't repeatedly try to fold around
// a negate that has no 'good' form.
if (N0.hasOneUse()) {
// This may be able to fold into the source, but at a code size cost. Don't
// fold if the fold into the user is free.
if (allUsesHaveSourceMods(N, 0))
return SDValue();
} else {
if (fnegFoldsIntoOp(Opc) &&
(allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
return SDValue();
}
SDLoc SL(N);
switch (Opc) {
case ISD::FADD: {
if (!mayIgnoreSignedZero(N0))
return SDValue();
// (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
SDValue LHS = N0.getOperand(0);
SDValue RHS = N0.getOperand(1);
if (LHS.getOpcode() != ISD::FNEG)
LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
else
LHS = LHS.getOperand(0);
if (RHS.getOpcode() != ISD::FNEG)
RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
else
RHS = RHS.getOperand(0);
SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
if (!N0.hasOneUse())
DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
return Res;
}
case ISD::FMUL:
case AMDGPUISD::FMUL_LEGACY: {
// (fneg (fmul x, y)) -> (fmul x, (fneg y))
// (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
SDValue LHS = N0.getOperand(0);
SDValue RHS = N0.getOperand(1);
if (LHS.getOpcode() == ISD::FNEG)
LHS = LHS.getOperand(0);
else if (RHS.getOpcode() == ISD::FNEG)
RHS = RHS.getOperand(0);
else
RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
if (!N0.hasOneUse())
DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
return Res;
}
case ISD::FMA:
case ISD::FMAD: {
if (!mayIgnoreSignedZero(N0))
return SDValue();
// (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
SDValue LHS = N0.getOperand(0);
SDValue MHS = N0.getOperand(1);
SDValue RHS = N0.getOperand(2);
if (LHS.getOpcode() == ISD::FNEG)
LHS = LHS.getOperand(0);
else if (MHS.getOpcode() == ISD::FNEG)
MHS = MHS.getOperand(0);
else
MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
if (RHS.getOpcode() != ISD::FNEG)
RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
else
RHS = RHS.getOperand(0);
SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
if (!N0.hasOneUse())
DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
return Res;
}
case ISD::FMAXNUM:
case ISD::FMINNUM:
case AMDGPUISD::FMAX_LEGACY:
case AMDGPUISD::FMIN_LEGACY: {
// fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
// fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
// fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
// fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
SDValue LHS = N0.getOperand(0);
SDValue RHS = N0.getOperand(1);
// 0 doesn't have a negated inline immediate.
// TODO: Shouldn't fold 1/2pi either, and should be generalized to other
// operations.
if (isConstantFPZero(RHS))
return SDValue();
SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
unsigned Opposite = inverseMinMax(Opc);
SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
if (!N0.hasOneUse())
DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
return Res;
}
case ISD::FP_EXTEND:
case ISD::FTRUNC:
case ISD::FRINT:
case ISD::FNEARBYINT: // XXX - Should fround be handled?
case ISD::FSIN:
case AMDGPUISD::RCP:
case AMDGPUISD::RCP_LEGACY:
case AMDGPUISD::SIN_HW: {
SDValue CvtSrc = N0.getOperand(0);
if (CvtSrc.getOpcode() == ISD::FNEG) {
// (fneg (fp_extend (fneg x))) -> (fp_extend x)
// (fneg (rcp (fneg x))) -> (rcp x)
return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
}
if (!N0.hasOneUse())
return SDValue();
// (fneg (fp_extend x)) -> (fp_extend (fneg x))
// (fneg (rcp x)) -> (rcp (fneg x))
SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
}
case ISD::FP_ROUND: {
SDValue CvtSrc = N0.getOperand(0);
if (CvtSrc.getOpcode() == ISD::FNEG) {
// (fneg (fp_round (fneg x))) -> (fp_round x)
return DAG.getNode(ISD::FP_ROUND, SL, VT,
CvtSrc.getOperand(0), N0.getOperand(1));
}
if (!N0.hasOneUse())
return SDValue();
// (fneg (fp_round x)) -> (fp_round (fneg x))
SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
}
case ISD::FP16_TO_FP: {
// v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
// f16, but legalization of f16 fneg ends up pulling it out of the source.
// Put the fneg back as a legal source operation that can be matched later.
SDLoc SL(N);
SDValue Src = N0.getOperand(0);
EVT SrcVT = Src.getValueType();
// fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
DAG.getConstant(0x8000, SL, SrcVT));
return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
}
default:
return SDValue();
}
}
SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDValue N0 = N->getOperand(0);
if (!N0.hasOneUse())
return SDValue();
switch (N0.getOpcode()) {
case ISD::FP16_TO_FP: {
assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
SDLoc SL(N);
SDValue Src = N0.getOperand(0);
EVT SrcVT = Src.getValueType();
// fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
DAG.getConstant(0x7fff, SL, SrcVT));
return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
}
default:
return SDValue();
}
}
SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
switch(N->getOpcode()) {
default:
break;
case ISD::BITCAST: {
EVT DestVT = N->getValueType(0);
// Push casts through vector builds. This helps avoid emitting a large
// number of copies when materializing floating point vector constants.
//
// vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
// vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
if (DestVT.isVector()) {
SDValue Src = N->getOperand(0);
if (Src.getOpcode() == ISD::BUILD_VECTOR) {
EVT SrcVT = Src.getValueType();
unsigned NElts = DestVT.getVectorNumElements();
if (SrcVT.getVectorNumElements() == NElts) {
EVT DestEltVT = DestVT.getVectorElementType();
SmallVector<SDValue, 8> CastedElts;
SDLoc SL(N);
for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
SDValue Elt = Src.getOperand(I);
CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
}
return DAG.getBuildVector(DestVT, SL, CastedElts);
}
}
}
if (DestVT.getSizeInBits() != 64 && !DestVT.isVector())
break;
// Fold bitcasts of constants.
//
// v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
// TODO: Generalize and move to DAGCombiner
SDValue Src = N->getOperand(0);
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
if (Src.getValueType() == MVT::i64) {
SDLoc SL(N);
uint64_t CVal = C->getZExtValue();
return DAG.getNode(ISD::BUILD_VECTOR, SL, DestVT,
DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
}
}
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
const APInt &Val = C->getValueAPF().bitcastToAPInt();
SDLoc SL(N);
uint64_t CVal = Val.getZExtValue();
SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
}
break;
}
case ISD::SHL: {
if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
break;
return performShlCombine(N, DCI);
}
case ISD::SRL: {
if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
break;
return performSrlCombine(N, DCI);
}
case ISD::SRA: {
if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
break;
return performSraCombine(N, DCI);
}
case ISD::TRUNCATE:
return performTruncateCombine(N, DCI);
case ISD::MUL:
return performMulCombine(N, DCI);
case ISD::MULHS:
return performMulhsCombine(N, DCI);
case ISD::MULHU:
return performMulhuCombine(N, DCI);
case AMDGPUISD::MUL_I24:
case AMDGPUISD::MUL_U24:
case AMDGPUISD::MULHI_I24:
case AMDGPUISD::MULHI_U24: {
// If the first call to simplify is successfull, then N may end up being
// deleted, so we shouldn't call simplifyI24 again.
simplifyI24(N, 0, DCI) || simplifyI24(N, 1, DCI);
return SDValue();
}
case AMDGPUISD::MUL_LOHI_I24:
case AMDGPUISD::MUL_LOHI_U24:
return performMulLoHi24Combine(N, DCI);
case ISD::SELECT:
return performSelectCombine(N, DCI);
case ISD::FNEG:
return performFNegCombine(N, DCI);
case ISD::FABS:
return performFAbsCombine(N, DCI);
case AMDGPUISD::BFE_I32:
case AMDGPUISD::BFE_U32: {
assert(!N->getValueType(0).isVector() &&
"Vector handling of BFE not implemented");
ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
if (!Width)
break;
uint32_t WidthVal = Width->getZExtValue() & 0x1f;
if (WidthVal == 0)
return DAG.getConstant(0, DL, MVT::i32);
ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!Offset)
break;
SDValue BitsFrom = N->getOperand(0);
uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
if (OffsetVal == 0) {
// This is already sign / zero extended, so try to fold away extra BFEs.
unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
if (OpSignBits >= SignBits)
return BitsFrom;
EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
if (Signed) {
// This is a sign_extend_inreg. Replace it to take advantage of existing
// DAG Combines. If not eliminated, we will match back to BFE during
// selection.
// TODO: The sext_inreg of extended types ends, although we can could
// handle them in a single BFE.
return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
DAG.getValueType(SmallVT));
}
return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
}
if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
if (Signed) {
return constantFoldBFE<int32_t>(DAG,
CVal->getSExtValue(),
OffsetVal,
WidthVal,
DL);
}
return constantFoldBFE<uint32_t>(DAG,
CVal->getZExtValue(),
OffsetVal,
WidthVal,
DL);
}
if ((OffsetVal + WidthVal) >= 32 &&
!(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
BitsFrom, ShiftVal);
}
if (BitsFrom.hasOneUse()) {
APInt Demanded = APInt::getBitsSet(32,
OffsetVal,
OffsetVal + WidthVal);
KnownBits Known;
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps());
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
DCI.CommitTargetLoweringOpt(TLO);
}
}
break;
}
case ISD::LOAD:
return performLoadCombine(N, DCI);
case ISD::STORE:
return performStoreCombine(N, DCI);
case AMDGPUISD::RCP: {
if (const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) {
// XXX - Should this flush denormals?
const APFloat &Val = CFP->getValueAPF();
APFloat One(Val.getSemantics(), "1.0");
return DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
}
break;
}
case ISD::AssertZext:
case ISD::AssertSext:
return performAssertSZExtCombine(N, DCI);
}
return SDValue();
}
//===----------------------------------------------------------------------===//
// Helper functions
//===----------------------------------------------------------------------===//
SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
const TargetRegisterClass *RC,
unsigned Reg, EVT VT,
const SDLoc &SL,
bool RawReg) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineRegisterInfo &MRI = MF.getRegInfo();
unsigned VReg;
if (!MRI.isLiveIn(Reg)) {
VReg = MRI.createVirtualRegister(RC);
MRI.addLiveIn(Reg, VReg);
} else {
VReg = MRI.getLiveInVirtReg(Reg);
}
if (RawReg)
return DAG.getRegister(VReg, VT);
return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
}
SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
EVT VT,
const SDLoc &SL,
int64_t Offset) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
int FI = MFI.CreateFixedObject(VT.getStoreSize(), Offset, true);
auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4,
MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant);
}
SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
const SDLoc &SL,
SDValue Chain,
SDValue StackPtr,
SDValue ArgVal,
int64_t Offset) const {
MachineFunction &MF = DAG.getMachineFunction();
MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
SDValue Ptr = DAG.getObjectPtrOffset(SL, StackPtr, Offset);
SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4,
MachineMemOperand::MODereferenceable);
return Store;
}
SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
const TargetRegisterClass *RC,
EVT VT, const SDLoc &SL,
const ArgDescriptor &Arg) const {
assert(Arg && "Attempting to load missing argument");
if (Arg.isRegister())
return CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL);
return loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
}
uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const {
unsigned Alignment = Subtarget->getAlignmentForImplicitArgPtr();
uint64_t ArgOffset = alignTo(MFI->getABIArgOffset(), Alignment);
switch (Param) {
case GRID_DIM:
return ArgOffset;
case GRID_OFFSET:
return ArgOffset + 4;
}
llvm_unreachable("unexpected implicit parameter type");
}
#define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch ((AMDGPUISD::NodeType)Opcode) {
case AMDGPUISD::FIRST_NUMBER: break;
// AMDIL DAG nodes
NODE_NAME_CASE(UMUL);
NODE_NAME_CASE(BRANCH_COND);
// AMDGPU DAG nodes
NODE_NAME_CASE(IF)
NODE_NAME_CASE(ELSE)
NODE_NAME_CASE(LOOP)
NODE_NAME_CASE(CALL)
NODE_NAME_CASE(TC_RETURN)
NODE_NAME_CASE(TRAP)
NODE_NAME_CASE(RET_FLAG)
NODE_NAME_CASE(RETURN_TO_EPILOG)
NODE_NAME_CASE(ENDPGM)
NODE_NAME_CASE(DWORDADDR)
NODE_NAME_CASE(FRACT)
NODE_NAME_CASE(SETCC)
NODE_NAME_CASE(SETREG)
NODE_NAME_CASE(FMA_W_CHAIN)
NODE_NAME_CASE(FMUL_W_CHAIN)
NODE_NAME_CASE(CLAMP)
NODE_NAME_CASE(COS_HW)
NODE_NAME_CASE(SIN_HW)
NODE_NAME_CASE(FMAX_LEGACY)
NODE_NAME_CASE(FMIN_LEGACY)
NODE_NAME_CASE(FMAX3)
NODE_NAME_CASE(SMAX3)
NODE_NAME_CASE(UMAX3)
NODE_NAME_CASE(FMIN3)
NODE_NAME_CASE(SMIN3)
NODE_NAME_CASE(UMIN3)
NODE_NAME_CASE(FMED3)
NODE_NAME_CASE(SMED3)
NODE_NAME_CASE(UMED3)
NODE_NAME_CASE(URECIP)
NODE_NAME_CASE(DIV_SCALE)
NODE_NAME_CASE(DIV_FMAS)
NODE_NAME_CASE(DIV_FIXUP)
NODE_NAME_CASE(FMAD_FTZ)
NODE_NAME_CASE(TRIG_PREOP)
NODE_NAME_CASE(RCP)
NODE_NAME_CASE(RSQ)
NODE_NAME_CASE(RCP_LEGACY)
NODE_NAME_CASE(RSQ_LEGACY)
NODE_NAME_CASE(FMUL_LEGACY)
NODE_NAME_CASE(RSQ_CLAMP)
NODE_NAME_CASE(LDEXP)
NODE_NAME_CASE(FP_CLASS)
NODE_NAME_CASE(DOT4)
NODE_NAME_CASE(CARRY)
NODE_NAME_CASE(BORROW)
NODE_NAME_CASE(BFE_U32)
NODE_NAME_CASE(BFE_I32)
NODE_NAME_CASE(BFI)
NODE_NAME_CASE(BFM)
NODE_NAME_CASE(FFBH_U32)
NODE_NAME_CASE(FFBH_I32)
NODE_NAME_CASE(FFBL_B32)
NODE_NAME_CASE(MUL_U24)
NODE_NAME_CASE(MUL_I24)
NODE_NAME_CASE(MULHI_U24)
NODE_NAME_CASE(MULHI_I24)
NODE_NAME_CASE(MUL_LOHI_U24)
NODE_NAME_CASE(MUL_LOHI_I24)
NODE_NAME_CASE(MAD_U24)
NODE_NAME_CASE(MAD_I24)
NODE_NAME_CASE(MAD_I64_I32)
NODE_NAME_CASE(MAD_U64_U32)
NODE_NAME_CASE(PERM)
NODE_NAME_CASE(TEXTURE_FETCH)
NODE_NAME_CASE(EXPORT)
NODE_NAME_CASE(EXPORT_DONE)
NODE_NAME_CASE(R600_EXPORT)
NODE_NAME_CASE(CONST_ADDRESS)
NODE_NAME_CASE(REGISTER_LOAD)
NODE_NAME_CASE(REGISTER_STORE)
NODE_NAME_CASE(SAMPLE)
NODE_NAME_CASE(SAMPLEB)
NODE_NAME_CASE(SAMPLED)
NODE_NAME_CASE(SAMPLEL)
NODE_NAME_CASE(CVT_F32_UBYTE0)
NODE_NAME_CASE(CVT_F32_UBYTE1)
NODE_NAME_CASE(CVT_F32_UBYTE2)
NODE_NAME_CASE(CVT_F32_UBYTE3)
NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
NODE_NAME_CASE(CVT_PKNORM_I16_F32)
NODE_NAME_CASE(CVT_PKNORM_U16_F32)
NODE_NAME_CASE(CVT_PK_I16_I32)
NODE_NAME_CASE(CVT_PK_U16_U32)
NODE_NAME_CASE(FP_TO_FP16)
NODE_NAME_CASE(FP16_ZEXT)
NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
NODE_NAME_CASE(CONST_DATA_PTR)
NODE_NAME_CASE(PC_ADD_REL_OFFSET)
NODE_NAME_CASE(KILL)
NODE_NAME_CASE(DUMMY_CHAIN)
case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
NODE_NAME_CASE(INIT_EXEC)
NODE_NAME_CASE(INIT_EXEC_FROM_INPUT)
NODE_NAME_CASE(SENDMSG)
NODE_NAME_CASE(SENDMSGHALT)
NODE_NAME_CASE(INTERP_MOV)
NODE_NAME_CASE(INTERP_P1)
NODE_NAME_CASE(INTERP_P2)
NODE_NAME_CASE(STORE_MSKOR)
NODE_NAME_CASE(LOAD_CONSTANT)
NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
NODE_NAME_CASE(TBUFFER_STORE_FORMAT_X3)
NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16)
NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16)
NODE_NAME_CASE(ATOMIC_CMP_SWAP)
NODE_NAME_CASE(ATOMIC_INC)
NODE_NAME_CASE(ATOMIC_DEC)
NODE_NAME_CASE(ATOMIC_LOAD_FADD)
NODE_NAME_CASE(ATOMIC_LOAD_FMIN)
NODE_NAME_CASE(ATOMIC_LOAD_FMAX)
NODE_NAME_CASE(BUFFER_LOAD)
NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16)
NODE_NAME_CASE(BUFFER_STORE)
NODE_NAME_CASE(BUFFER_STORE_FORMAT)
NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16)
NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)
NODE_NAME_CASE(BUFFER_ATOMIC_ADD)
NODE_NAME_CASE(BUFFER_ATOMIC_SUB)
NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)
NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)
NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)
NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)
NODE_NAME_CASE(BUFFER_ATOMIC_AND)
NODE_NAME_CASE(BUFFER_ATOMIC_OR)
NODE_NAME_CASE(BUFFER_ATOMIC_XOR)
NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)
NODE_NAME_CASE(IMAGE_LOAD)
NODE_NAME_CASE(IMAGE_LOAD_MIP)
NODE_NAME_CASE(IMAGE_STORE)
NODE_NAME_CASE(IMAGE_STORE_MIP)
// Basic sample.
NODE_NAME_CASE(IMAGE_SAMPLE)
NODE_NAME_CASE(IMAGE_SAMPLE_CL)
NODE_NAME_CASE(IMAGE_SAMPLE_D)
NODE_NAME_CASE(IMAGE_SAMPLE_D_CL)
NODE_NAME_CASE(IMAGE_SAMPLE_L)
NODE_NAME_CASE(IMAGE_SAMPLE_B)
NODE_NAME_CASE(IMAGE_SAMPLE_B_CL)
NODE_NAME_CASE(IMAGE_SAMPLE_LZ)
NODE_NAME_CASE(IMAGE_SAMPLE_CD)
NODE_NAME_CASE(IMAGE_SAMPLE_CD_CL)
// Sample with comparison.
NODE_NAME_CASE(IMAGE_SAMPLE_C)
NODE_NAME_CASE(IMAGE_SAMPLE_C_CL)
NODE_NAME_CASE(IMAGE_SAMPLE_C_D)
NODE_NAME_CASE(IMAGE_SAMPLE_C_D_CL)
NODE_NAME_CASE(IMAGE_SAMPLE_C_L)
NODE_NAME_CASE(IMAGE_SAMPLE_C_B)
NODE_NAME_CASE(IMAGE_SAMPLE_C_B_CL)
NODE_NAME_CASE(IMAGE_SAMPLE_C_LZ)
NODE_NAME_CASE(IMAGE_SAMPLE_C_CD)
NODE_NAME_CASE(IMAGE_SAMPLE_C_CD_CL)
// Sample with offsets.
NODE_NAME_CASE(IMAGE_SAMPLE_O)
NODE_NAME_CASE(IMAGE_SAMPLE_CL_O)
NODE_NAME_CASE(IMAGE_SAMPLE_D_O)
NODE_NAME_CASE(IMAGE_SAMPLE_D_CL_O)
NODE_NAME_CASE(IMAGE_SAMPLE_L_O)
NODE_NAME_CASE(IMAGE_SAMPLE_B_O)
NODE_NAME_CASE(IMAGE_SAMPLE_B_CL_O)
NODE_NAME_CASE(IMAGE_SAMPLE_LZ_O)
NODE_NAME_CASE(IMAGE_SAMPLE_CD_O)
NODE_NAME_CASE(IMAGE_SAMPLE_CD_CL_O)
// Sample with comparison and offsets.
NODE_NAME_CASE(IMAGE_SAMPLE_C_O)
NODE_NAME_CASE(IMAGE_SAMPLE_C_CL_O)
NODE_NAME_CASE(IMAGE_SAMPLE_C_D_O)
NODE_NAME_CASE(IMAGE_SAMPLE_C_D_CL_O)
NODE_NAME_CASE(IMAGE_SAMPLE_C_L_O)
NODE_NAME_CASE(IMAGE_SAMPLE_C_B_O)
NODE_NAME_CASE(IMAGE_SAMPLE_C_B_CL_O)
NODE_NAME_CASE(IMAGE_SAMPLE_C_LZ_O)
NODE_NAME_CASE(IMAGE_SAMPLE_C_CD_O)
NODE_NAME_CASE(IMAGE_SAMPLE_C_CD_CL_O)
// Basic gather4.
NODE_NAME_CASE(IMAGE_GATHER4)
NODE_NAME_CASE(IMAGE_GATHER4_CL)
NODE_NAME_CASE(IMAGE_GATHER4_L)
NODE_NAME_CASE(IMAGE_GATHER4_B)
NODE_NAME_CASE(IMAGE_GATHER4_B_CL)
NODE_NAME_CASE(IMAGE_GATHER4_LZ)
// Gather4 with comparison.
NODE_NAME_CASE(IMAGE_GATHER4_C)
NODE_NAME_CASE(IMAGE_GATHER4_C_CL)
NODE_NAME_CASE(IMAGE_GATHER4_C_L)
NODE_NAME_CASE(IMAGE_GATHER4_C_B)
NODE_NAME_CASE(IMAGE_GATHER4_C_B_CL)
NODE_NAME_CASE(IMAGE_GATHER4_C_LZ)
// Gather4 with offsets.
NODE_NAME_CASE(IMAGE_GATHER4_O)
NODE_NAME_CASE(IMAGE_GATHER4_CL_O)
NODE_NAME_CASE(IMAGE_GATHER4_L_O)
NODE_NAME_CASE(IMAGE_GATHER4_B_O)
NODE_NAME_CASE(IMAGE_GATHER4_B_CL_O)
NODE_NAME_CASE(IMAGE_GATHER4_LZ_O)
// Gather4 with comparison and offsets.
NODE_NAME_CASE(IMAGE_GATHER4_C_O)
NODE_NAME_CASE(IMAGE_GATHER4_C_CL_O)
NODE_NAME_CASE(IMAGE_GATHER4_C_L_O)
NODE_NAME_CASE(IMAGE_GATHER4_C_B_O)
NODE_NAME_CASE(IMAGE_GATHER4_C_B_CL_O)
NODE_NAME_CASE(IMAGE_GATHER4_C_LZ_O)
case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
}
return nullptr;
}
SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
SelectionDAG &DAG, int Enabled,
int &RefinementSteps,
bool &UseOneConstNR,
bool Reciprocal) const {
EVT VT = Operand.getValueType();
if (VT == MVT::f32) {
RefinementSteps = 0;
return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
}
// TODO: There is also f64 rsq instruction, but the documentation is less
// clear on its precision.
return SDValue();
}
SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
SelectionDAG &DAG, int Enabled,
int &RefinementSteps) const {
EVT VT = Operand.getValueType();
if (VT == MVT::f32) {
// Reciprocal, < 1 ulp error.
//
// This reciprocal approximation converges to < 0.5 ulp error with one
// newton rhapson performed with two fused multiple adds (FMAs).
RefinementSteps = 0;
return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
}
// TODO: There is also f64 rcp instruction, but the documentation is less
// clear on its precision.
return SDValue();
}
void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
const SDValue Op, KnownBits &Known,
const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
Known.resetAll(); // Don't know anything.
unsigned Opc = Op.getOpcode();
switch (Opc) {
default:
break;
case AMDGPUISD::CARRY:
case AMDGPUISD::BORROW: {
Known.Zero = APInt::getHighBitsSet(32, 31);
break;
}
case AMDGPUISD::BFE_I32:
case AMDGPUISD::BFE_U32: {
ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
if (!CWidth)
return;
uint32_t Width = CWidth->getZExtValue() & 0x1f;
if (Opc == AMDGPUISD::BFE_U32)
Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
break;
}
case AMDGPUISD::FP_TO_FP16:
case AMDGPUISD::FP16_ZEXT: {
unsigned BitWidth = Known.getBitWidth();
// High bits are zero.
Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
break;
}
case AMDGPUISD::MUL_U24:
case AMDGPUISD::MUL_I24: {
KnownBits LHSKnown, RHSKnown;
DAG.computeKnownBits(Op.getOperand(0), LHSKnown, Depth + 1);
DAG.computeKnownBits(Op.getOperand(1), RHSKnown, Depth + 1);
unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
RHSKnown.countMinTrailingZeros();
Known.Zero.setLowBits(std::min(TrailZ, 32u));
unsigned LHSValBits = 32 - std::max(LHSKnown.countMinSignBits(), 8u);
unsigned RHSValBits = 32 - std::max(RHSKnown.countMinSignBits(), 8u);
unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
if (MaxValBits >= 32)
break;
bool Negative = false;
if (Opc == AMDGPUISD::MUL_I24) {
bool LHSNegative = !!(LHSKnown.One & (1 << 23));
bool LHSPositive = !!(LHSKnown.Zero & (1 << 23));
bool RHSNegative = !!(RHSKnown.One & (1 << 23));
bool RHSPositive = !!(RHSKnown.Zero & (1 << 23));
if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive))
break;
Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative);
}
if (Negative)
Known.One.setHighBits(32 - MaxValBits);
else
Known.Zero.setHighBits(32 - MaxValBits);
break;
}
case AMDGPUISD::PERM: {
ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2));
if (!CMask)
return;
KnownBits LHSKnown, RHSKnown;
DAG.computeKnownBits(Op.getOperand(0), LHSKnown, Depth + 1);
DAG.computeKnownBits(Op.getOperand(1), RHSKnown, Depth + 1);
unsigned Sel = CMask->getZExtValue();
for (unsigned I = 0; I < 32; I += 8) {
unsigned SelBits = Sel & 0xff;
if (SelBits < 4) {
SelBits *= 8;
Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
} else if (SelBits < 7) {
SelBits = (SelBits & 3) * 8;
Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
} else if (SelBits == 0x0c) {
Known.Zero |= 0xff << I;
} else if (SelBits > 0x0c) {
Known.One |= 0xff << I;
}
Sel >>= 8;
}
break;
}
case ISD::INTRINSIC_WO_CHAIN: {
unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
switch (IID) {
case Intrinsic::amdgcn_mbcnt_lo:
case Intrinsic::amdgcn_mbcnt_hi: {
// These return at most the wavefront size - 1.
unsigned Size = Op.getValueType().getSizeInBits();
Known.Zero.setHighBits(Size - Subtarget->getWavefrontSizeLog2());
break;
}
default:
break;
}
}
}
}
unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
unsigned Depth) const {
switch (Op.getOpcode()) {
case AMDGPUISD::BFE_I32: {
ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
if (!Width)
return 1;
unsigned SignBits = 32 - Width->getZExtValue() + 1;
if (!isNullConstant(Op.getOperand(1)))
return SignBits;
// TODO: Could probably figure something out with non-0 offsets.
unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
return std::max(SignBits, Op0SignBits);
}
case AMDGPUISD::BFE_U32: {
ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
}
case AMDGPUISD::CARRY:
case AMDGPUISD::BORROW:
return 31;
case AMDGPUISD::FP_TO_FP16:
case AMDGPUISD::FP16_ZEXT:
return 16;
default:
return 1;
}
}