forked from OSchip/llvm-project
547 lines
19 KiB
C++
547 lines
19 KiB
C++
//===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARMTargetMachine.h"
|
|
#include "ARM.h"
|
|
#include "ARMMacroFusion.h"
|
|
#include "ARMSubtarget.h"
|
|
#include "ARMTargetObjectFile.h"
|
|
#include "ARMTargetTransformInfo.h"
|
|
#include "MCTargetDesc/ARMMCTargetDesc.h"
|
|
#include "TargetInfo/ARMTargetInfo.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/CodeGen/ExecutionDomainFix.h"
|
|
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
|
|
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
|
|
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
|
|
#include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
|
|
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
|
|
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
|
|
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
|
|
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineScheduler.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CodeGen.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/TargetParser.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Target/TargetLoweringObjectFile.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Transforms/CFGuard.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include <cassert>
|
|
#include <memory>
|
|
#include <string>
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool>
|
|
DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden,
|
|
cl::desc("Inhibit optimization of S->D register accesses on A15"),
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool>
|
|
EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden,
|
|
cl::desc("Run SimplifyCFG after expanding atomic operations"
|
|
" to make use of cmpxchg flow-based information"),
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool>
|
|
EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden,
|
|
cl::desc("Enable ARM load/store optimization pass"),
|
|
cl::init(true));
|
|
|
|
// FIXME: Unify control over GlobalMerge.
|
|
static cl::opt<cl::boolOrDefault>
|
|
EnableGlobalMerge("arm-global-merge", cl::Hidden,
|
|
cl::desc("Enable the global merge pass"));
|
|
|
|
namespace llvm {
|
|
void initializeARMExecutionDomainFixPass(PassRegistry&);
|
|
}
|
|
|
|
extern "C" void LLVMInitializeARMTarget() {
|
|
// Register the target.
|
|
RegisterTargetMachine<ARMLETargetMachine> X(getTheARMLETarget());
|
|
RegisterTargetMachine<ARMLETargetMachine> A(getTheThumbLETarget());
|
|
RegisterTargetMachine<ARMBETargetMachine> Y(getTheARMBETarget());
|
|
RegisterTargetMachine<ARMBETargetMachine> B(getTheThumbBETarget());
|
|
|
|
PassRegistry &Registry = *PassRegistry::getPassRegistry();
|
|
initializeGlobalISel(Registry);
|
|
initializeARMLoadStoreOptPass(Registry);
|
|
initializeARMPreAllocLoadStoreOptPass(Registry);
|
|
initializeARMParallelDSPPass(Registry);
|
|
initializeARMCodeGenPreparePass(Registry);
|
|
initializeARMConstantIslandsPass(Registry);
|
|
initializeARMExecutionDomainFixPass(Registry);
|
|
initializeARMExpandPseudoPass(Registry);
|
|
initializeThumb2SizeReducePass(Registry);
|
|
initializeMVEVPTBlockPass(Registry);
|
|
initializeMVETailPredicationPass(Registry);
|
|
initializeARMLowOverheadLoopsPass(Registry);
|
|
}
|
|
|
|
static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
|
|
if (TT.isOSBinFormatMachO())
|
|
return std::make_unique<TargetLoweringObjectFileMachO>();
|
|
if (TT.isOSWindows())
|
|
return std::make_unique<TargetLoweringObjectFileCOFF>();
|
|
return std::make_unique<ARMElfTargetObjectFile>();
|
|
}
|
|
|
|
static ARMBaseTargetMachine::ARMABI
|
|
computeTargetABI(const Triple &TT, StringRef CPU,
|
|
const TargetOptions &Options) {
|
|
StringRef ABIName = Options.MCOptions.getABIName();
|
|
|
|
if (ABIName.empty())
|
|
ABIName = ARM::computeDefaultTargetABI(TT, CPU);
|
|
|
|
if (ABIName == "aapcs16")
|
|
return ARMBaseTargetMachine::ARM_ABI_AAPCS16;
|
|
else if (ABIName.startswith("aapcs"))
|
|
return ARMBaseTargetMachine::ARM_ABI_AAPCS;
|
|
else if (ABIName.startswith("apcs"))
|
|
return ARMBaseTargetMachine::ARM_ABI_APCS;
|
|
|
|
llvm_unreachable("Unhandled/unknown ABI Name!");
|
|
return ARMBaseTargetMachine::ARM_ABI_UNKNOWN;
|
|
}
|
|
|
|
static std::string computeDataLayout(const Triple &TT, StringRef CPU,
|
|
const TargetOptions &Options,
|
|
bool isLittle) {
|
|
auto ABI = computeTargetABI(TT, CPU, Options);
|
|
std::string Ret;
|
|
|
|
if (isLittle)
|
|
// Little endian.
|
|
Ret += "e";
|
|
else
|
|
// Big endian.
|
|
Ret += "E";
|
|
|
|
Ret += DataLayout::getManglingComponent(TT);
|
|
|
|
// Pointers are 32 bits and aligned to 32 bits.
|
|
Ret += "-p:32:32";
|
|
|
|
// Function pointers are aligned to 8 bits (because the LSB stores the
|
|
// ARM/Thumb state).
|
|
Ret += "-Fi8";
|
|
|
|
// ABIs other than APCS have 64 bit integers with natural alignment.
|
|
if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS)
|
|
Ret += "-i64:64";
|
|
|
|
// We have 64 bits floats. The APCS ABI requires them to be aligned to 32
|
|
// bits, others to 64 bits. We always try to align to 64 bits.
|
|
if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
|
|
Ret += "-f64:32:64";
|
|
|
|
// We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others
|
|
// to 64. We always ty to give them natural alignment.
|
|
if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
|
|
Ret += "-v64:32:64-v128:32:128";
|
|
else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16)
|
|
Ret += "-v128:64:128";
|
|
|
|
// Try to align aggregates to 32 bits (the default is 64 bits, which has no
|
|
// particular hardware support on 32-bit ARM).
|
|
Ret += "-a:0:32";
|
|
|
|
// Integer registers are 32 bits.
|
|
Ret += "-n32";
|
|
|
|
// The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit
|
|
// aligned everywhere else.
|
|
if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16)
|
|
Ret += "-S128";
|
|
else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS)
|
|
Ret += "-S64";
|
|
else
|
|
Ret += "-S32";
|
|
|
|
return Ret;
|
|
}
|
|
|
|
static Reloc::Model getEffectiveRelocModel(const Triple &TT,
|
|
Optional<Reloc::Model> RM) {
|
|
if (!RM.hasValue())
|
|
// Default relocation model on Darwin is PIC.
|
|
return TT.isOSBinFormatMachO() ? Reloc::PIC_ : Reloc::Static;
|
|
|
|
if (*RM == Reloc::ROPI || *RM == Reloc::RWPI || *RM == Reloc::ROPI_RWPI)
|
|
assert(TT.isOSBinFormatELF() &&
|
|
"ROPI/RWPI currently only supported for ELF");
|
|
|
|
// DynamicNoPIC is only used on darwin.
|
|
if (*RM == Reloc::DynamicNoPIC && !TT.isOSDarwin())
|
|
return Reloc::Static;
|
|
|
|
return *RM;
|
|
}
|
|
|
|
/// Create an ARM architecture model.
|
|
///
|
|
ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT,
|
|
StringRef CPU, StringRef FS,
|
|
const TargetOptions &Options,
|
|
Optional<Reloc::Model> RM,
|
|
Optional<CodeModel::Model> CM,
|
|
CodeGenOpt::Level OL, bool isLittle)
|
|
: LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT,
|
|
CPU, FS, Options, getEffectiveRelocModel(TT, RM),
|
|
getEffectiveCodeModel(CM, CodeModel::Small), OL),
|
|
TargetABI(computeTargetABI(TT, CPU, Options)),
|
|
TLOF(createTLOF(getTargetTriple())), isLittle(isLittle) {
|
|
|
|
// Default to triple-appropriate float ABI
|
|
if (Options.FloatABIType == FloatABI::Default) {
|
|
if (isTargetHardFloat())
|
|
this->Options.FloatABIType = FloatABI::Hard;
|
|
else
|
|
this->Options.FloatABIType = FloatABI::Soft;
|
|
}
|
|
|
|
// Default to triple-appropriate EABI
|
|
if (Options.EABIVersion == EABI::Default ||
|
|
Options.EABIVersion == EABI::Unknown) {
|
|
// musl is compatible with glibc with regard to EABI version
|
|
if ((TargetTriple.getEnvironment() == Triple::GNUEABI ||
|
|
TargetTriple.getEnvironment() == Triple::GNUEABIHF ||
|
|
TargetTriple.getEnvironment() == Triple::MuslEABI ||
|
|
TargetTriple.getEnvironment() == Triple::MuslEABIHF) &&
|
|
!(TargetTriple.isOSWindows() || TargetTriple.isOSDarwin()))
|
|
this->Options.EABIVersion = EABI::GNU;
|
|
else
|
|
this->Options.EABIVersion = EABI::EABI5;
|
|
}
|
|
|
|
if (TT.isOSBinFormatMachO()) {
|
|
this->Options.TrapUnreachable = true;
|
|
this->Options.NoTrapAfterNoreturn = true;
|
|
}
|
|
|
|
initAsmInfo();
|
|
}
|
|
|
|
ARMBaseTargetMachine::~ARMBaseTargetMachine() = default;
|
|
|
|
const ARMSubtarget *
|
|
ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const {
|
|
Attribute CPUAttr = F.getFnAttribute("target-cpu");
|
|
Attribute FSAttr = F.getFnAttribute("target-features");
|
|
|
|
std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
|
|
? CPUAttr.getValueAsString().str()
|
|
: TargetCPU;
|
|
std::string FS = !FSAttr.hasAttribute(Attribute::None)
|
|
? FSAttr.getValueAsString().str()
|
|
: TargetFS;
|
|
|
|
// FIXME: This is related to the code below to reset the target options,
|
|
// we need to know whether or not the soft float flag is set on the
|
|
// function before we can generate a subtarget. We also need to use
|
|
// it as a key for the subtarget since that can be the only difference
|
|
// between two functions.
|
|
bool SoftFloat =
|
|
F.getFnAttribute("use-soft-float").getValueAsString() == "true";
|
|
// If the soft float attribute is set on the function turn on the soft float
|
|
// subtarget feature.
|
|
if (SoftFloat)
|
|
FS += FS.empty() ? "+soft-float" : ",+soft-float";
|
|
|
|
// Use the optminsize to identify the subtarget, but don't use it in the
|
|
// feature string.
|
|
std::string Key = CPU + FS;
|
|
if (F.hasMinSize())
|
|
Key += "+minsize";
|
|
|
|
auto &I = SubtargetMap[Key];
|
|
if (!I) {
|
|
// This needs to be done before we create a new subtarget since any
|
|
// creation will depend on the TM and the code generation flags on the
|
|
// function that reside in TargetOptions.
|
|
resetTargetOptions(F);
|
|
I = std::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle,
|
|
F.hasMinSize());
|
|
|
|
if (!I->isThumb() && !I->hasARMOps())
|
|
F.getContext().emitError("Function '" + F.getName() + "' uses ARM "
|
|
"instructions, but the target does not support ARM mode execution.");
|
|
}
|
|
|
|
return I.get();
|
|
}
|
|
|
|
TargetTransformInfo
|
|
ARMBaseTargetMachine::getTargetTransformInfo(const Function &F) {
|
|
return TargetTransformInfo(ARMTTIImpl(this, F));
|
|
}
|
|
|
|
ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT,
|
|
StringRef CPU, StringRef FS,
|
|
const TargetOptions &Options,
|
|
Optional<Reloc::Model> RM,
|
|
Optional<CodeModel::Model> CM,
|
|
CodeGenOpt::Level OL, bool JIT)
|
|
: ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
|
|
|
|
ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT,
|
|
StringRef CPU, StringRef FS,
|
|
const TargetOptions &Options,
|
|
Optional<Reloc::Model> RM,
|
|
Optional<CodeModel::Model> CM,
|
|
CodeGenOpt::Level OL, bool JIT)
|
|
: ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
|
|
|
|
namespace {
|
|
|
|
/// ARM Code Generator Pass Configuration Options.
|
|
class ARMPassConfig : public TargetPassConfig {
|
|
public:
|
|
ARMPassConfig(ARMBaseTargetMachine &TM, PassManagerBase &PM)
|
|
: TargetPassConfig(TM, PM) {}
|
|
|
|
ARMBaseTargetMachine &getARMTargetMachine() const {
|
|
return getTM<ARMBaseTargetMachine>();
|
|
}
|
|
|
|
ScheduleDAGInstrs *
|
|
createMachineScheduler(MachineSchedContext *C) const override {
|
|
ScheduleDAGMILive *DAG = createGenericSchedLive(C);
|
|
// add DAG Mutations here.
|
|
const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
|
|
if (ST.hasFusion())
|
|
DAG->addMutation(createARMMacroFusionDAGMutation());
|
|
return DAG;
|
|
}
|
|
|
|
ScheduleDAGInstrs *
|
|
createPostMachineScheduler(MachineSchedContext *C) const override {
|
|
ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
|
|
// add DAG Mutations here.
|
|
const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
|
|
if (ST.hasFusion())
|
|
DAG->addMutation(createARMMacroFusionDAGMutation());
|
|
return DAG;
|
|
}
|
|
|
|
void addIRPasses() override;
|
|
void addCodeGenPrepare() override;
|
|
bool addPreISel() override;
|
|
bool addInstSelector() override;
|
|
bool addIRTranslator() override;
|
|
bool addLegalizeMachineIR() override;
|
|
bool addRegBankSelect() override;
|
|
bool addGlobalInstructionSelect() override;
|
|
void addPreRegAlloc() override;
|
|
void addPreSched2() override;
|
|
void addPreEmitPass() override;
|
|
|
|
std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
|
|
};
|
|
|
|
class ARMExecutionDomainFix : public ExecutionDomainFix {
|
|
public:
|
|
static char ID;
|
|
ARMExecutionDomainFix() : ExecutionDomainFix(ID, ARM::DPRRegClass) {}
|
|
StringRef getPassName() const override {
|
|
return "ARM Execution Domain Fix";
|
|
}
|
|
};
|
|
char ARMExecutionDomainFix::ID;
|
|
|
|
} // end anonymous namespace
|
|
|
|
INITIALIZE_PASS_BEGIN(ARMExecutionDomainFix, "arm-execution-domain-fix",
|
|
"ARM Execution Domain Fix", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
|
|
INITIALIZE_PASS_END(ARMExecutionDomainFix, "arm-execution-domain-fix",
|
|
"ARM Execution Domain Fix", false, false)
|
|
|
|
TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) {
|
|
return new ARMPassConfig(*this, PM);
|
|
}
|
|
|
|
std::unique_ptr<CSEConfigBase> ARMPassConfig::getCSEConfig() const {
|
|
return getStandardCSEConfigForOpt(TM->getOptLevel());
|
|
}
|
|
|
|
void ARMPassConfig::addIRPasses() {
|
|
if (TM->Options.ThreadModel == ThreadModel::Single)
|
|
addPass(createLowerAtomicPass());
|
|
else
|
|
addPass(createAtomicExpandPass());
|
|
|
|
// Cmpxchg instructions are often used with a subsequent comparison to
|
|
// determine whether it succeeded. We can exploit existing control-flow in
|
|
// ldrex/strex loops to simplify this, but it needs tidying up.
|
|
if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
|
|
addPass(createCFGSimplificationPass(
|
|
1, false, false, true, true, [this](const Function &F) {
|
|
const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F);
|
|
return ST.hasAnyDataBarrier() && !ST.isThumb1Only();
|
|
}));
|
|
|
|
TargetPassConfig::addIRPasses();
|
|
|
|
// Run the parallel DSP pass.
|
|
if (getOptLevel() == CodeGenOpt::Aggressive)
|
|
addPass(createARMParallelDSPPass());
|
|
|
|
// Match interleaved memory accesses to ldN/stN intrinsics.
|
|
if (TM->getOptLevel() != CodeGenOpt::None)
|
|
addPass(createInterleavedAccessPass());
|
|
|
|
// Add Control Flow Guard checks.
|
|
if (TM->getTargetTriple().isOSWindows())
|
|
addPass(createCFGuardCheckPass());
|
|
}
|
|
|
|
void ARMPassConfig::addCodeGenPrepare() {
|
|
if (getOptLevel() != CodeGenOpt::None)
|
|
addPass(createARMCodeGenPreparePass());
|
|
TargetPassConfig::addCodeGenPrepare();
|
|
}
|
|
|
|
bool ARMPassConfig::addPreISel() {
|
|
if ((TM->getOptLevel() != CodeGenOpt::None &&
|
|
EnableGlobalMerge == cl::BOU_UNSET) ||
|
|
EnableGlobalMerge == cl::BOU_TRUE) {
|
|
// FIXME: This is using the thumb1 only constant value for
|
|
// maximal global offset for merging globals. We may want
|
|
// to look into using the old value for non-thumb1 code of
|
|
// 4095 based on the TargetMachine, but this starts to become
|
|
// tricky when doing code gen per function.
|
|
bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) &&
|
|
(EnableGlobalMerge == cl::BOU_UNSET);
|
|
// Merging of extern globals is enabled by default on non-Mach-O as we
|
|
// expect it to be generally either beneficial or harmless. On Mach-O it
|
|
// is disabled as we emit the .subsections_via_symbols directive which
|
|
// means that merging extern globals is not safe.
|
|
bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO();
|
|
addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize,
|
|
MergeExternalByDefault));
|
|
}
|
|
|
|
if (TM->getOptLevel() != CodeGenOpt::None) {
|
|
addPass(createHardwareLoopsPass());
|
|
addPass(createMVETailPredicationPass());
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ARMPassConfig::addInstSelector() {
|
|
addPass(createARMISelDag(getARMTargetMachine(), getOptLevel()));
|
|
return false;
|
|
}
|
|
|
|
bool ARMPassConfig::addIRTranslator() {
|
|
addPass(new IRTranslator());
|
|
return false;
|
|
}
|
|
|
|
bool ARMPassConfig::addLegalizeMachineIR() {
|
|
addPass(new Legalizer());
|
|
return false;
|
|
}
|
|
|
|
bool ARMPassConfig::addRegBankSelect() {
|
|
addPass(new RegBankSelect());
|
|
return false;
|
|
}
|
|
|
|
bool ARMPassConfig::addGlobalInstructionSelect() {
|
|
addPass(new InstructionSelect());
|
|
return false;
|
|
}
|
|
|
|
void ARMPassConfig::addPreRegAlloc() {
|
|
if (getOptLevel() != CodeGenOpt::None) {
|
|
addPass(createMLxExpansionPass());
|
|
|
|
if (EnableARMLoadStoreOpt)
|
|
addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true));
|
|
|
|
if (!DisableA15SDOptimization)
|
|
addPass(createA15SDOptimizerPass());
|
|
}
|
|
}
|
|
|
|
void ARMPassConfig::addPreSched2() {
|
|
if (getOptLevel() != CodeGenOpt::None) {
|
|
if (EnableARMLoadStoreOpt)
|
|
addPass(createARMLoadStoreOptimizationPass());
|
|
|
|
addPass(new ARMExecutionDomainFix());
|
|
addPass(createBreakFalseDeps());
|
|
}
|
|
|
|
// Expand some pseudo instructions into multiple instructions to allow
|
|
// proper scheduling.
|
|
addPass(createARMExpandPseudoPass());
|
|
|
|
if (getOptLevel() != CodeGenOpt::None) {
|
|
// in v8, IfConversion depends on Thumb instruction widths
|
|
addPass(createThumb2SizeReductionPass([this](const Function &F) {
|
|
return this->TM->getSubtarget<ARMSubtarget>(F).restrictIT();
|
|
}));
|
|
|
|
addPass(createIfConverter([](const MachineFunction &MF) {
|
|
return !MF.getSubtarget<ARMSubtarget>().isThumb1Only();
|
|
}));
|
|
}
|
|
addPass(createMVEVPTBlockPass());
|
|
addPass(createThumb2ITBlockPass());
|
|
|
|
// Add both scheduling passes to give the subtarget an opportunity to pick
|
|
// between them.
|
|
if (getOptLevel() != CodeGenOpt::None) {
|
|
addPass(&PostMachineSchedulerID);
|
|
addPass(&PostRASchedulerID);
|
|
}
|
|
}
|
|
|
|
void ARMPassConfig::addPreEmitPass() {
|
|
addPass(createThumb2SizeReductionPass());
|
|
|
|
// Constant island pass work on unbundled instructions.
|
|
addPass(createUnpackMachineBundles([](const MachineFunction &MF) {
|
|
return MF.getSubtarget<ARMSubtarget>().isThumb2();
|
|
}));
|
|
|
|
// Don't optimize barriers at -O0.
|
|
if (getOptLevel() != CodeGenOpt::None)
|
|
addPass(createARMOptimizeBarriersPass());
|
|
|
|
addPass(createARMConstantIslandPass());
|
|
addPass(createARMLowOverheadLoopsPass());
|
|
|
|
// Identify valid longjmp targets for Windows Control Flow Guard.
|
|
if (TM->getTargetTriple().isOSWindows())
|
|
addPass(createCFGuardLongjmpPass());
|
|
}
|