forked from OSchip/llvm-project
17137 lines
663 KiB
C++
17137 lines
663 KiB
C++
//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements semantic analysis for expressions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "TreeTransform.h"
|
|
#include "clang/AST/ASTConsumer.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/ASTLambda.h"
|
|
#include "clang/AST/ASTMutationListener.h"
|
|
#include "clang/AST/CXXInheritance.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/EvaluatedExprVisitor.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/AST/ExprOpenMP.h"
|
|
#include "clang/AST/RecursiveASTVisitor.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/Basic/FixedPoint.h"
|
|
#include "clang/Basic/PartialDiagnostic.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Lex/LiteralSupport.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/Sema/AnalysisBasedWarnings.h"
|
|
#include "clang/Sema/DeclSpec.h"
|
|
#include "clang/Sema/DelayedDiagnostic.h"
|
|
#include "clang/Sema/Designator.h"
|
|
#include "clang/Sema/Initialization.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/Sema/Overload.h"
|
|
#include "clang/Sema/ParsedTemplate.h"
|
|
#include "clang/Sema/Scope.h"
|
|
#include "clang/Sema/ScopeInfo.h"
|
|
#include "clang/Sema/SemaFixItUtils.h"
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "clang/Sema/Template.h"
|
|
#include "llvm/Support/ConvertUTF.h"
|
|
using namespace clang;
|
|
using namespace sema;
|
|
|
|
/// Determine whether the use of this declaration is valid, without
|
|
/// emitting diagnostics.
|
|
bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
|
|
// See if this is an auto-typed variable whose initializer we are parsing.
|
|
if (ParsingInitForAutoVars.count(D))
|
|
return false;
|
|
|
|
// See if this is a deleted function.
|
|
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
if (FD->isDeleted())
|
|
return false;
|
|
|
|
// If the function has a deduced return type, and we can't deduce it,
|
|
// then we can't use it either.
|
|
if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
|
|
DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
|
|
return false;
|
|
|
|
// See if this is an aligned allocation/deallocation function that is
|
|
// unavailable.
|
|
if (TreatUnavailableAsInvalid &&
|
|
isUnavailableAlignedAllocationFunction(*FD))
|
|
return false;
|
|
}
|
|
|
|
// See if this function is unavailable.
|
|
if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
|
|
cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
|
|
// Warn if this is used but marked unused.
|
|
if (const auto *A = D->getAttr<UnusedAttr>()) {
|
|
// [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
|
|
// should diagnose them.
|
|
if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
|
|
A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) {
|
|
const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
|
|
if (DC && !DC->hasAttr<UnusedAttr>())
|
|
S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Emit a note explaining that this function is deleted.
|
|
void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
|
|
assert(Decl->isDeleted());
|
|
|
|
CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
|
|
|
|
if (Method && Method->isDeleted() && Method->isDefaulted()) {
|
|
// If the method was explicitly defaulted, point at that declaration.
|
|
if (!Method->isImplicit())
|
|
Diag(Decl->getLocation(), diag::note_implicitly_deleted);
|
|
|
|
// Try to diagnose why this special member function was implicitly
|
|
// deleted. This might fail, if that reason no longer applies.
|
|
CXXSpecialMember CSM = getSpecialMember(Method);
|
|
if (CSM != CXXInvalid)
|
|
ShouldDeleteSpecialMember(Method, CSM, nullptr, /*Diagnose=*/true);
|
|
|
|
return;
|
|
}
|
|
|
|
auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
|
|
if (Ctor && Ctor->isInheritingConstructor())
|
|
return NoteDeletedInheritingConstructor(Ctor);
|
|
|
|
Diag(Decl->getLocation(), diag::note_availability_specified_here)
|
|
<< Decl << 1;
|
|
}
|
|
|
|
/// Determine whether a FunctionDecl was ever declared with an
|
|
/// explicit storage class.
|
|
static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
|
|
for (auto I : D->redecls()) {
|
|
if (I->getStorageClass() != SC_None)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Check whether we're in an extern inline function and referring to a
|
|
/// variable or function with internal linkage (C11 6.7.4p3).
|
|
///
|
|
/// This is only a warning because we used to silently accept this code, but
|
|
/// in many cases it will not behave correctly. This is not enabled in C++ mode
|
|
/// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
|
|
/// and so while there may still be user mistakes, most of the time we can't
|
|
/// prove that there are errors.
|
|
static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
|
|
const NamedDecl *D,
|
|
SourceLocation Loc) {
|
|
// This is disabled under C++; there are too many ways for this to fire in
|
|
// contexts where the warning is a false positive, or where it is technically
|
|
// correct but benign.
|
|
if (S.getLangOpts().CPlusPlus)
|
|
return;
|
|
|
|
// Check if this is an inlined function or method.
|
|
FunctionDecl *Current = S.getCurFunctionDecl();
|
|
if (!Current)
|
|
return;
|
|
if (!Current->isInlined())
|
|
return;
|
|
if (!Current->isExternallyVisible())
|
|
return;
|
|
|
|
// Check if the decl has internal linkage.
|
|
if (D->getFormalLinkage() != InternalLinkage)
|
|
return;
|
|
|
|
// Downgrade from ExtWarn to Extension if
|
|
// (1) the supposedly external inline function is in the main file,
|
|
// and probably won't be included anywhere else.
|
|
// (2) the thing we're referencing is a pure function.
|
|
// (3) the thing we're referencing is another inline function.
|
|
// This last can give us false negatives, but it's better than warning on
|
|
// wrappers for simple C library functions.
|
|
const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
|
|
bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
|
|
if (!DowngradeWarning && UsedFn)
|
|
DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
|
|
|
|
S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
|
|
: diag::ext_internal_in_extern_inline)
|
|
<< /*IsVar=*/!UsedFn << D;
|
|
|
|
S.MaybeSuggestAddingStaticToDecl(Current);
|
|
|
|
S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
|
|
<< D;
|
|
}
|
|
|
|
void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
|
|
const FunctionDecl *First = Cur->getFirstDecl();
|
|
|
|
// Suggest "static" on the function, if possible.
|
|
if (!hasAnyExplicitStorageClass(First)) {
|
|
SourceLocation DeclBegin = First->getSourceRange().getBegin();
|
|
Diag(DeclBegin, diag::note_convert_inline_to_static)
|
|
<< Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
|
|
}
|
|
}
|
|
|
|
/// Determine whether the use of this declaration is valid, and
|
|
/// emit any corresponding diagnostics.
|
|
///
|
|
/// This routine diagnoses various problems with referencing
|
|
/// declarations that can occur when using a declaration. For example,
|
|
/// it might warn if a deprecated or unavailable declaration is being
|
|
/// used, or produce an error (and return true) if a C++0x deleted
|
|
/// function is being used.
|
|
///
|
|
/// \returns true if there was an error (this declaration cannot be
|
|
/// referenced), false otherwise.
|
|
///
|
|
bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
|
|
const ObjCInterfaceDecl *UnknownObjCClass,
|
|
bool ObjCPropertyAccess,
|
|
bool AvoidPartialAvailabilityChecks,
|
|
ObjCInterfaceDecl *ClassReceiver) {
|
|
SourceLocation Loc = Locs.front();
|
|
if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
|
|
// If there were any diagnostics suppressed by template argument deduction,
|
|
// emit them now.
|
|
auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
|
|
if (Pos != SuppressedDiagnostics.end()) {
|
|
for (const PartialDiagnosticAt &Suppressed : Pos->second)
|
|
Diag(Suppressed.first, Suppressed.second);
|
|
|
|
// Clear out the list of suppressed diagnostics, so that we don't emit
|
|
// them again for this specialization. However, we don't obsolete this
|
|
// entry from the table, because we want to avoid ever emitting these
|
|
// diagnostics again.
|
|
Pos->second.clear();
|
|
}
|
|
|
|
// C++ [basic.start.main]p3:
|
|
// The function 'main' shall not be used within a program.
|
|
if (cast<FunctionDecl>(D)->isMain())
|
|
Diag(Loc, diag::ext_main_used);
|
|
|
|
diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
|
|
}
|
|
|
|
// See if this is an auto-typed variable whose initializer we are parsing.
|
|
if (ParsingInitForAutoVars.count(D)) {
|
|
if (isa<BindingDecl>(D)) {
|
|
Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
|
|
<< D->getDeclName();
|
|
} else {
|
|
Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
|
|
<< D->getDeclName() << cast<VarDecl>(D)->getType();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// See if this is a deleted function.
|
|
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
if (FD->isDeleted()) {
|
|
auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
|
|
if (Ctor && Ctor->isInheritingConstructor())
|
|
Diag(Loc, diag::err_deleted_inherited_ctor_use)
|
|
<< Ctor->getParent()
|
|
<< Ctor->getInheritedConstructor().getConstructor()->getParent();
|
|
else
|
|
Diag(Loc, diag::err_deleted_function_use);
|
|
NoteDeletedFunction(FD);
|
|
return true;
|
|
}
|
|
|
|
// If the function has a deduced return type, and we can't deduce it,
|
|
// then we can't use it either.
|
|
if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
|
|
DeduceReturnType(FD, Loc))
|
|
return true;
|
|
|
|
if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD))
|
|
return true;
|
|
}
|
|
|
|
if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
|
|
// Lambdas are only default-constructible or assignable in C++2a onwards.
|
|
if (MD->getParent()->isLambda() &&
|
|
((isa<CXXConstructorDecl>(MD) &&
|
|
cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
|
|
MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
|
|
Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
|
|
<< !isa<CXXConstructorDecl>(MD);
|
|
}
|
|
}
|
|
|
|
auto getReferencedObjCProp = [](const NamedDecl *D) ->
|
|
const ObjCPropertyDecl * {
|
|
if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
|
|
return MD->findPropertyDecl();
|
|
return nullptr;
|
|
};
|
|
if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
|
|
if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
|
|
return true;
|
|
} else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
|
|
return true;
|
|
}
|
|
|
|
// [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
|
|
// Only the variables omp_in and omp_out are allowed in the combiner.
|
|
// Only the variables omp_priv and omp_orig are allowed in the
|
|
// initializer-clause.
|
|
auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
|
|
if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
|
|
isa<VarDecl>(D)) {
|
|
Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
|
|
<< getCurFunction()->HasOMPDeclareReductionCombiner;
|
|
Diag(D->getLocation(), diag::note_entity_declared_at) << D;
|
|
return true;
|
|
}
|
|
|
|
// [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
|
|
// List-items in map clauses on this construct may only refer to the declared
|
|
// variable var and entities that could be referenced by a procedure defined
|
|
// at the same location
|
|
auto *DMD = dyn_cast<OMPDeclareMapperDecl>(CurContext);
|
|
if (LangOpts.OpenMP && DMD && !CurContext->containsDecl(D) &&
|
|
isa<VarDecl>(D)) {
|
|
Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
|
|
<< DMD->getVarName().getAsString();
|
|
Diag(D->getLocation(), diag::note_entity_declared_at) << D;
|
|
return true;
|
|
}
|
|
|
|
DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
|
|
AvoidPartialAvailabilityChecks, ClassReceiver);
|
|
|
|
DiagnoseUnusedOfDecl(*this, D, Loc);
|
|
|
|
diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
|
|
|
|
return false;
|
|
}
|
|
|
|
/// DiagnoseSentinelCalls - This routine checks whether a call or
|
|
/// message-send is to a declaration with the sentinel attribute, and
|
|
/// if so, it checks that the requirements of the sentinel are
|
|
/// satisfied.
|
|
void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
|
|
ArrayRef<Expr *> Args) {
|
|
const SentinelAttr *attr = D->getAttr<SentinelAttr>();
|
|
if (!attr)
|
|
return;
|
|
|
|
// The number of formal parameters of the declaration.
|
|
unsigned numFormalParams;
|
|
|
|
// The kind of declaration. This is also an index into a %select in
|
|
// the diagnostic.
|
|
enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
|
|
|
|
if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
|
|
numFormalParams = MD->param_size();
|
|
calleeType = CT_Method;
|
|
} else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
numFormalParams = FD->param_size();
|
|
calleeType = CT_Function;
|
|
} else if (isa<VarDecl>(D)) {
|
|
QualType type = cast<ValueDecl>(D)->getType();
|
|
const FunctionType *fn = nullptr;
|
|
if (const PointerType *ptr = type->getAs<PointerType>()) {
|
|
fn = ptr->getPointeeType()->getAs<FunctionType>();
|
|
if (!fn) return;
|
|
calleeType = CT_Function;
|
|
} else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
|
|
fn = ptr->getPointeeType()->castAs<FunctionType>();
|
|
calleeType = CT_Block;
|
|
} else {
|
|
return;
|
|
}
|
|
|
|
if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
|
|
numFormalParams = proto->getNumParams();
|
|
} else {
|
|
numFormalParams = 0;
|
|
}
|
|
} else {
|
|
return;
|
|
}
|
|
|
|
// "nullPos" is the number of formal parameters at the end which
|
|
// effectively count as part of the variadic arguments. This is
|
|
// useful if you would prefer to not have *any* formal parameters,
|
|
// but the language forces you to have at least one.
|
|
unsigned nullPos = attr->getNullPos();
|
|
assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
|
|
numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
|
|
|
|
// The number of arguments which should follow the sentinel.
|
|
unsigned numArgsAfterSentinel = attr->getSentinel();
|
|
|
|
// If there aren't enough arguments for all the formal parameters,
|
|
// the sentinel, and the args after the sentinel, complain.
|
|
if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
|
|
Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
|
|
Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
|
|
return;
|
|
}
|
|
|
|
// Otherwise, find the sentinel expression.
|
|
Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
|
|
if (!sentinelExpr) return;
|
|
if (sentinelExpr->isValueDependent()) return;
|
|
if (Context.isSentinelNullExpr(sentinelExpr)) return;
|
|
|
|
// Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr',
|
|
// or 'NULL' if those are actually defined in the context. Only use
|
|
// 'nil' for ObjC methods, where it's much more likely that the
|
|
// variadic arguments form a list of object pointers.
|
|
SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc());
|
|
std::string NullValue;
|
|
if (calleeType == CT_Method && PP.isMacroDefined("nil"))
|
|
NullValue = "nil";
|
|
else if (getLangOpts().CPlusPlus11)
|
|
NullValue = "nullptr";
|
|
else if (PP.isMacroDefined("NULL"))
|
|
NullValue = "NULL";
|
|
else
|
|
NullValue = "(void*) 0";
|
|
|
|
if (MissingNilLoc.isInvalid())
|
|
Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
|
|
else
|
|
Diag(MissingNilLoc, diag::warn_missing_sentinel)
|
|
<< int(calleeType)
|
|
<< FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
|
|
Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
|
|
}
|
|
|
|
SourceRange Sema::getExprRange(Expr *E) const {
|
|
return E ? E->getSourceRange() : SourceRange();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Standard Promotions and Conversions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
|
|
ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
|
|
// Handle any placeholder expressions which made it here.
|
|
if (E->getType()->isPlaceholderType()) {
|
|
ExprResult result = CheckPlaceholderExpr(E);
|
|
if (result.isInvalid()) return ExprError();
|
|
E = result.get();
|
|
}
|
|
|
|
QualType Ty = E->getType();
|
|
assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
|
|
|
|
if (Ty->isFunctionType()) {
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
|
|
if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
|
|
if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
|
|
return ExprError();
|
|
|
|
E = ImpCastExprToType(E, Context.getPointerType(Ty),
|
|
CK_FunctionToPointerDecay).get();
|
|
} else if (Ty->isArrayType()) {
|
|
// In C90 mode, arrays only promote to pointers if the array expression is
|
|
// an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
|
|
// type 'array of type' is converted to an expression that has type 'pointer
|
|
// to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
|
|
// that has type 'array of type' ...". The relevant change is "an lvalue"
|
|
// (C90) to "an expression" (C99).
|
|
//
|
|
// C++ 4.2p1:
|
|
// An lvalue or rvalue of type "array of N T" or "array of unknown bound of
|
|
// T" can be converted to an rvalue of type "pointer to T".
|
|
//
|
|
if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
|
|
E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
|
|
CK_ArrayToPointerDecay).get();
|
|
}
|
|
return E;
|
|
}
|
|
|
|
static void CheckForNullPointerDereference(Sema &S, Expr *E) {
|
|
// Check to see if we are dereferencing a null pointer. If so,
|
|
// and if not volatile-qualified, this is undefined behavior that the
|
|
// optimizer will delete, so warn about it. People sometimes try to use this
|
|
// to get a deterministic trap and are surprised by clang's behavior. This
|
|
// only handles the pattern "*null", which is a very syntactic check.
|
|
if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
|
|
if (UO->getOpcode() == UO_Deref &&
|
|
UO->getSubExpr()->IgnoreParenCasts()->
|
|
isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
|
|
!UO->getType().isVolatileQualified()) {
|
|
S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
|
|
S.PDiag(diag::warn_indirection_through_null)
|
|
<< UO->getSubExpr()->getSourceRange());
|
|
S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
|
|
S.PDiag(diag::note_indirection_through_null));
|
|
}
|
|
}
|
|
|
|
static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
|
|
SourceLocation AssignLoc,
|
|
const Expr* RHS) {
|
|
const ObjCIvarDecl *IV = OIRE->getDecl();
|
|
if (!IV)
|
|
return;
|
|
|
|
DeclarationName MemberName = IV->getDeclName();
|
|
IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
|
|
if (!Member || !Member->isStr("isa"))
|
|
return;
|
|
|
|
const Expr *Base = OIRE->getBase();
|
|
QualType BaseType = Base->getType();
|
|
if (OIRE->isArrow())
|
|
BaseType = BaseType->getPointeeType();
|
|
if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
|
|
if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
|
|
ObjCInterfaceDecl *ClassDeclared = nullptr;
|
|
ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
|
|
if (!ClassDeclared->getSuperClass()
|
|
&& (*ClassDeclared->ivar_begin()) == IV) {
|
|
if (RHS) {
|
|
NamedDecl *ObjectSetClass =
|
|
S.LookupSingleName(S.TUScope,
|
|
&S.Context.Idents.get("object_setClass"),
|
|
SourceLocation(), S.LookupOrdinaryName);
|
|
if (ObjectSetClass) {
|
|
SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
|
|
S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
|
|
<< FixItHint::CreateInsertion(OIRE->getBeginLoc(),
|
|
"object_setClass(")
|
|
<< FixItHint::CreateReplacement(
|
|
SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
|
|
<< FixItHint::CreateInsertion(RHSLocEnd, ")");
|
|
}
|
|
else
|
|
S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
|
|
} else {
|
|
NamedDecl *ObjectGetClass =
|
|
S.LookupSingleName(S.TUScope,
|
|
&S.Context.Idents.get("object_getClass"),
|
|
SourceLocation(), S.LookupOrdinaryName);
|
|
if (ObjectGetClass)
|
|
S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
|
|
<< FixItHint::CreateInsertion(OIRE->getBeginLoc(),
|
|
"object_getClass(")
|
|
<< FixItHint::CreateReplacement(
|
|
SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
|
|
else
|
|
S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
|
|
}
|
|
S.Diag(IV->getLocation(), diag::note_ivar_decl);
|
|
}
|
|
}
|
|
}
|
|
|
|
ExprResult Sema::DefaultLvalueConversion(Expr *E) {
|
|
// Handle any placeholder expressions which made it here.
|
|
if (E->getType()->isPlaceholderType()) {
|
|
ExprResult result = CheckPlaceholderExpr(E);
|
|
if (result.isInvalid()) return ExprError();
|
|
E = result.get();
|
|
}
|
|
|
|
// C++ [conv.lval]p1:
|
|
// A glvalue of a non-function, non-array type T can be
|
|
// converted to a prvalue.
|
|
if (!E->isGLValue()) return E;
|
|
|
|
QualType T = E->getType();
|
|
assert(!T.isNull() && "r-value conversion on typeless expression?");
|
|
|
|
// We don't want to throw lvalue-to-rvalue casts on top of
|
|
// expressions of certain types in C++.
|
|
if (getLangOpts().CPlusPlus &&
|
|
(E->getType() == Context.OverloadTy ||
|
|
T->isDependentType() ||
|
|
T->isRecordType()))
|
|
return E;
|
|
|
|
// The C standard is actually really unclear on this point, and
|
|
// DR106 tells us what the result should be but not why. It's
|
|
// generally best to say that void types just doesn't undergo
|
|
// lvalue-to-rvalue at all. Note that expressions of unqualified
|
|
// 'void' type are never l-values, but qualified void can be.
|
|
if (T->isVoidType())
|
|
return E;
|
|
|
|
// OpenCL usually rejects direct accesses to values of 'half' type.
|
|
if (getLangOpts().OpenCL && !getOpenCLOptions().isEnabled("cl_khr_fp16") &&
|
|
T->isHalfType()) {
|
|
Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
|
|
<< 0 << T;
|
|
return ExprError();
|
|
}
|
|
|
|
CheckForNullPointerDereference(*this, E);
|
|
if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
|
|
NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
|
|
&Context.Idents.get("object_getClass"),
|
|
SourceLocation(), LookupOrdinaryName);
|
|
if (ObjectGetClass)
|
|
Diag(E->getExprLoc(), diag::warn_objc_isa_use)
|
|
<< FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
|
|
<< FixItHint::CreateReplacement(
|
|
SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
|
|
else
|
|
Diag(E->getExprLoc(), diag::warn_objc_isa_use);
|
|
}
|
|
else if (const ObjCIvarRefExpr *OIRE =
|
|
dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
|
|
DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
|
|
|
|
// C++ [conv.lval]p1:
|
|
// [...] If T is a non-class type, the type of the prvalue is the
|
|
// cv-unqualified version of T. Otherwise, the type of the
|
|
// rvalue is T.
|
|
//
|
|
// C99 6.3.2.1p2:
|
|
// If the lvalue has qualified type, the value has the unqualified
|
|
// version of the type of the lvalue; otherwise, the value has the
|
|
// type of the lvalue.
|
|
if (T.hasQualifiers())
|
|
T = T.getUnqualifiedType();
|
|
|
|
// Under the MS ABI, lock down the inheritance model now.
|
|
if (T->isMemberPointerType() &&
|
|
Context.getTargetInfo().getCXXABI().isMicrosoft())
|
|
(void)isCompleteType(E->getExprLoc(), T);
|
|
|
|
UpdateMarkingForLValueToRValue(E);
|
|
|
|
// Loading a __weak object implicitly retains the value, so we need a cleanup to
|
|
// balance that.
|
|
if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
|
|
Cleanup.setExprNeedsCleanups(true);
|
|
|
|
ExprResult Res = ImplicitCastExpr::Create(Context, T, CK_LValueToRValue, E,
|
|
nullptr, VK_RValue);
|
|
|
|
// C11 6.3.2.1p2:
|
|
// ... if the lvalue has atomic type, the value has the non-atomic version
|
|
// of the type of the lvalue ...
|
|
if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
|
|
T = Atomic->getValueType().getUnqualifiedType();
|
|
Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
|
|
nullptr, VK_RValue);
|
|
}
|
|
|
|
return Res;
|
|
}
|
|
|
|
ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
|
|
ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
|
|
if (Res.isInvalid())
|
|
return ExprError();
|
|
Res = DefaultLvalueConversion(Res.get());
|
|
if (Res.isInvalid())
|
|
return ExprError();
|
|
return Res;
|
|
}
|
|
|
|
/// CallExprUnaryConversions - a special case of an unary conversion
|
|
/// performed on a function designator of a call expression.
|
|
ExprResult Sema::CallExprUnaryConversions(Expr *E) {
|
|
QualType Ty = E->getType();
|
|
ExprResult Res = E;
|
|
// Only do implicit cast for a function type, but not for a pointer
|
|
// to function type.
|
|
if (Ty->isFunctionType()) {
|
|
Res = ImpCastExprToType(E, Context.getPointerType(Ty),
|
|
CK_FunctionToPointerDecay).get();
|
|
if (Res.isInvalid())
|
|
return ExprError();
|
|
}
|
|
Res = DefaultLvalueConversion(Res.get());
|
|
if (Res.isInvalid())
|
|
return ExprError();
|
|
return Res.get();
|
|
}
|
|
|
|
/// UsualUnaryConversions - Performs various conversions that are common to most
|
|
/// operators (C99 6.3). The conversions of array and function types are
|
|
/// sometimes suppressed. For example, the array->pointer conversion doesn't
|
|
/// apply if the array is an argument to the sizeof or address (&) operators.
|
|
/// In these instances, this routine should *not* be called.
|
|
ExprResult Sema::UsualUnaryConversions(Expr *E) {
|
|
// First, convert to an r-value.
|
|
ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
|
|
if (Res.isInvalid())
|
|
return ExprError();
|
|
E = Res.get();
|
|
|
|
QualType Ty = E->getType();
|
|
assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
|
|
|
|
// Half FP have to be promoted to float unless it is natively supported
|
|
if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
|
|
return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
|
|
|
|
// Try to perform integral promotions if the object has a theoretically
|
|
// promotable type.
|
|
if (Ty->isIntegralOrUnscopedEnumerationType()) {
|
|
// C99 6.3.1.1p2:
|
|
//
|
|
// The following may be used in an expression wherever an int or
|
|
// unsigned int may be used:
|
|
// - an object or expression with an integer type whose integer
|
|
// conversion rank is less than or equal to the rank of int
|
|
// and unsigned int.
|
|
// - A bit-field of type _Bool, int, signed int, or unsigned int.
|
|
//
|
|
// If an int can represent all values of the original type, the
|
|
// value is converted to an int; otherwise, it is converted to an
|
|
// unsigned int. These are called the integer promotions. All
|
|
// other types are unchanged by the integer promotions.
|
|
|
|
QualType PTy = Context.isPromotableBitField(E);
|
|
if (!PTy.isNull()) {
|
|
E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
|
|
return E;
|
|
}
|
|
if (Ty->isPromotableIntegerType()) {
|
|
QualType PT = Context.getPromotedIntegerType(Ty);
|
|
E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
|
|
return E;
|
|
}
|
|
}
|
|
return E;
|
|
}
|
|
|
|
/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
|
|
/// do not have a prototype. Arguments that have type float or __fp16
|
|
/// are promoted to double. All other argument types are converted by
|
|
/// UsualUnaryConversions().
|
|
ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
|
|
QualType Ty = E->getType();
|
|
assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
|
|
|
|
ExprResult Res = UsualUnaryConversions(E);
|
|
if (Res.isInvalid())
|
|
return ExprError();
|
|
E = Res.get();
|
|
|
|
// If this is a 'float' or '__fp16' (CVR qualified or typedef)
|
|
// promote to double.
|
|
// Note that default argument promotion applies only to float (and
|
|
// half/fp16); it does not apply to _Float16.
|
|
const BuiltinType *BTy = Ty->getAs<BuiltinType>();
|
|
if (BTy && (BTy->getKind() == BuiltinType::Half ||
|
|
BTy->getKind() == BuiltinType::Float)) {
|
|
if (getLangOpts().OpenCL &&
|
|
!getOpenCLOptions().isEnabled("cl_khr_fp64")) {
|
|
if (BTy->getKind() == BuiltinType::Half) {
|
|
E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
|
|
}
|
|
} else {
|
|
E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
|
|
}
|
|
}
|
|
|
|
// C++ performs lvalue-to-rvalue conversion as a default argument
|
|
// promotion, even on class types, but note:
|
|
// C++11 [conv.lval]p2:
|
|
// When an lvalue-to-rvalue conversion occurs in an unevaluated
|
|
// operand or a subexpression thereof the value contained in the
|
|
// referenced object is not accessed. Otherwise, if the glvalue
|
|
// has a class type, the conversion copy-initializes a temporary
|
|
// of type T from the glvalue and the result of the conversion
|
|
// is a prvalue for the temporary.
|
|
// FIXME: add some way to gate this entire thing for correctness in
|
|
// potentially potentially evaluated contexts.
|
|
if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
|
|
ExprResult Temp = PerformCopyInitialization(
|
|
InitializedEntity::InitializeTemporary(E->getType()),
|
|
E->getExprLoc(), E);
|
|
if (Temp.isInvalid())
|
|
return ExprError();
|
|
E = Temp.get();
|
|
}
|
|
|
|
return E;
|
|
}
|
|
|
|
/// Determine the degree of POD-ness for an expression.
|
|
/// Incomplete types are considered POD, since this check can be performed
|
|
/// when we're in an unevaluated context.
|
|
Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
|
|
if (Ty->isIncompleteType()) {
|
|
// C++11 [expr.call]p7:
|
|
// After these conversions, if the argument does not have arithmetic,
|
|
// enumeration, pointer, pointer to member, or class type, the program
|
|
// is ill-formed.
|
|
//
|
|
// Since we've already performed array-to-pointer and function-to-pointer
|
|
// decay, the only such type in C++ is cv void. This also handles
|
|
// initializer lists as variadic arguments.
|
|
if (Ty->isVoidType())
|
|
return VAK_Invalid;
|
|
|
|
if (Ty->isObjCObjectType())
|
|
return VAK_Invalid;
|
|
return VAK_Valid;
|
|
}
|
|
|
|
if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
|
|
return VAK_Invalid;
|
|
|
|
if (Ty.isCXX98PODType(Context))
|
|
return VAK_Valid;
|
|
|
|
// C++11 [expr.call]p7:
|
|
// Passing a potentially-evaluated argument of class type (Clause 9)
|
|
// having a non-trivial copy constructor, a non-trivial move constructor,
|
|
// or a non-trivial destructor, with no corresponding parameter,
|
|
// is conditionally-supported with implementation-defined semantics.
|
|
if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
|
|
if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
|
|
if (!Record->hasNonTrivialCopyConstructor() &&
|
|
!Record->hasNonTrivialMoveConstructor() &&
|
|
!Record->hasNonTrivialDestructor())
|
|
return VAK_ValidInCXX11;
|
|
|
|
if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
|
|
return VAK_Valid;
|
|
|
|
if (Ty->isObjCObjectType())
|
|
return VAK_Invalid;
|
|
|
|
if (getLangOpts().MSVCCompat)
|
|
return VAK_MSVCUndefined;
|
|
|
|
// FIXME: In C++11, these cases are conditionally-supported, meaning we're
|
|
// permitted to reject them. We should consider doing so.
|
|
return VAK_Undefined;
|
|
}
|
|
|
|
void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
|
|
// Don't allow one to pass an Objective-C interface to a vararg.
|
|
const QualType &Ty = E->getType();
|
|
VarArgKind VAK = isValidVarArgType(Ty);
|
|
|
|
// Complain about passing non-POD types through varargs.
|
|
switch (VAK) {
|
|
case VAK_ValidInCXX11:
|
|
DiagRuntimeBehavior(
|
|
E->getBeginLoc(), nullptr,
|
|
PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
|
|
LLVM_FALLTHROUGH;
|
|
case VAK_Valid:
|
|
if (Ty->isRecordType()) {
|
|
// This is unlikely to be what the user intended. If the class has a
|
|
// 'c_str' member function, the user probably meant to call that.
|
|
DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
|
|
PDiag(diag::warn_pass_class_arg_to_vararg)
|
|
<< Ty << CT << hasCStrMethod(E) << ".c_str()");
|
|
}
|
|
break;
|
|
|
|
case VAK_Undefined:
|
|
case VAK_MSVCUndefined:
|
|
DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
|
|
PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
|
|
<< getLangOpts().CPlusPlus11 << Ty << CT);
|
|
break;
|
|
|
|
case VAK_Invalid:
|
|
if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
|
|
Diag(E->getBeginLoc(),
|
|
diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
|
|
<< Ty << CT;
|
|
else if (Ty->isObjCObjectType())
|
|
DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
|
|
PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
|
|
<< Ty << CT);
|
|
else
|
|
Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
|
|
<< isa<InitListExpr>(E) << Ty << CT;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
|
|
/// will create a trap if the resulting type is not a POD type.
|
|
ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
|
|
FunctionDecl *FDecl) {
|
|
if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
|
|
// Strip the unbridged-cast placeholder expression off, if applicable.
|
|
if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
|
|
(CT == VariadicMethod ||
|
|
(FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
|
|
E = stripARCUnbridgedCast(E);
|
|
|
|
// Otherwise, do normal placeholder checking.
|
|
} else {
|
|
ExprResult ExprRes = CheckPlaceholderExpr(E);
|
|
if (ExprRes.isInvalid())
|
|
return ExprError();
|
|
E = ExprRes.get();
|
|
}
|
|
}
|
|
|
|
ExprResult ExprRes = DefaultArgumentPromotion(E);
|
|
if (ExprRes.isInvalid())
|
|
return ExprError();
|
|
E = ExprRes.get();
|
|
|
|
// Diagnostics regarding non-POD argument types are
|
|
// emitted along with format string checking in Sema::CheckFunctionCall().
|
|
if (isValidVarArgType(E->getType()) == VAK_Undefined) {
|
|
// Turn this into a trap.
|
|
CXXScopeSpec SS;
|
|
SourceLocation TemplateKWLoc;
|
|
UnqualifiedId Name;
|
|
Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
|
|
E->getBeginLoc());
|
|
ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
|
|
/*HasTrailingLParen=*/true,
|
|
/*IsAddressOfOperand=*/false);
|
|
if (TrapFn.isInvalid())
|
|
return ExprError();
|
|
|
|
ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(),
|
|
None, E->getEndLoc());
|
|
if (Call.isInvalid())
|
|
return ExprError();
|
|
|
|
ExprResult Comma =
|
|
ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
|
|
if (Comma.isInvalid())
|
|
return ExprError();
|
|
return Comma.get();
|
|
}
|
|
|
|
if (!getLangOpts().CPlusPlus &&
|
|
RequireCompleteType(E->getExprLoc(), E->getType(),
|
|
diag::err_call_incomplete_argument))
|
|
return ExprError();
|
|
|
|
return E;
|
|
}
|
|
|
|
/// Converts an integer to complex float type. Helper function of
|
|
/// UsualArithmeticConversions()
|
|
///
|
|
/// \return false if the integer expression is an integer type and is
|
|
/// successfully converted to the complex type.
|
|
static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
|
|
ExprResult &ComplexExpr,
|
|
QualType IntTy,
|
|
QualType ComplexTy,
|
|
bool SkipCast) {
|
|
if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
|
|
if (SkipCast) return false;
|
|
if (IntTy->isIntegerType()) {
|
|
QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
|
|
IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
|
|
IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
|
|
CK_FloatingRealToComplex);
|
|
} else {
|
|
assert(IntTy->isComplexIntegerType());
|
|
IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
|
|
CK_IntegralComplexToFloatingComplex);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Handle arithmetic conversion with complex types. Helper function of
|
|
/// UsualArithmeticConversions()
|
|
static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
|
|
ExprResult &RHS, QualType LHSType,
|
|
QualType RHSType,
|
|
bool IsCompAssign) {
|
|
// if we have an integer operand, the result is the complex type.
|
|
if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
|
|
/*skipCast*/false))
|
|
return LHSType;
|
|
if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
|
|
/*skipCast*/IsCompAssign))
|
|
return RHSType;
|
|
|
|
// This handles complex/complex, complex/float, or float/complex.
|
|
// When both operands are complex, the shorter operand is converted to the
|
|
// type of the longer, and that is the type of the result. This corresponds
|
|
// to what is done when combining two real floating-point operands.
|
|
// The fun begins when size promotion occur across type domains.
|
|
// From H&S 6.3.4: When one operand is complex and the other is a real
|
|
// floating-point type, the less precise type is converted, within it's
|
|
// real or complex domain, to the precision of the other type. For example,
|
|
// when combining a "long double" with a "double _Complex", the
|
|
// "double _Complex" is promoted to "long double _Complex".
|
|
|
|
// Compute the rank of the two types, regardless of whether they are complex.
|
|
int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
|
|
|
|
auto *LHSComplexType = dyn_cast<ComplexType>(LHSType);
|
|
auto *RHSComplexType = dyn_cast<ComplexType>(RHSType);
|
|
QualType LHSElementType =
|
|
LHSComplexType ? LHSComplexType->getElementType() : LHSType;
|
|
QualType RHSElementType =
|
|
RHSComplexType ? RHSComplexType->getElementType() : RHSType;
|
|
|
|
QualType ResultType = S.Context.getComplexType(LHSElementType);
|
|
if (Order < 0) {
|
|
// Promote the precision of the LHS if not an assignment.
|
|
ResultType = S.Context.getComplexType(RHSElementType);
|
|
if (!IsCompAssign) {
|
|
if (LHSComplexType)
|
|
LHS =
|
|
S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast);
|
|
else
|
|
LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast);
|
|
}
|
|
} else if (Order > 0) {
|
|
// Promote the precision of the RHS.
|
|
if (RHSComplexType)
|
|
RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast);
|
|
else
|
|
RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast);
|
|
}
|
|
return ResultType;
|
|
}
|
|
|
|
/// Handle arithmetic conversion from integer to float. Helper function
|
|
/// of UsualArithmeticConversions()
|
|
static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
|
|
ExprResult &IntExpr,
|
|
QualType FloatTy, QualType IntTy,
|
|
bool ConvertFloat, bool ConvertInt) {
|
|
if (IntTy->isIntegerType()) {
|
|
if (ConvertInt)
|
|
// Convert intExpr to the lhs floating point type.
|
|
IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
|
|
CK_IntegralToFloating);
|
|
return FloatTy;
|
|
}
|
|
|
|
// Convert both sides to the appropriate complex float.
|
|
assert(IntTy->isComplexIntegerType());
|
|
QualType result = S.Context.getComplexType(FloatTy);
|
|
|
|
// _Complex int -> _Complex float
|
|
if (ConvertInt)
|
|
IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
|
|
CK_IntegralComplexToFloatingComplex);
|
|
|
|
// float -> _Complex float
|
|
if (ConvertFloat)
|
|
FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
|
|
CK_FloatingRealToComplex);
|
|
|
|
return result;
|
|
}
|
|
|
|
/// Handle arithmethic conversion with floating point types. Helper
|
|
/// function of UsualArithmeticConversions()
|
|
static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
|
|
ExprResult &RHS, QualType LHSType,
|
|
QualType RHSType, bool IsCompAssign) {
|
|
bool LHSFloat = LHSType->isRealFloatingType();
|
|
bool RHSFloat = RHSType->isRealFloatingType();
|
|
|
|
// If we have two real floating types, convert the smaller operand
|
|
// to the bigger result.
|
|
if (LHSFloat && RHSFloat) {
|
|
int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
|
|
if (order > 0) {
|
|
RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
|
|
return LHSType;
|
|
}
|
|
|
|
assert(order < 0 && "illegal float comparison");
|
|
if (!IsCompAssign)
|
|
LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
|
|
return RHSType;
|
|
}
|
|
|
|
if (LHSFloat) {
|
|
// Half FP has to be promoted to float unless it is natively supported
|
|
if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
|
|
LHSType = S.Context.FloatTy;
|
|
|
|
return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
|
|
/*convertFloat=*/!IsCompAssign,
|
|
/*convertInt=*/ true);
|
|
}
|
|
assert(RHSFloat);
|
|
return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
|
|
/*convertInt=*/ true,
|
|
/*convertFloat=*/!IsCompAssign);
|
|
}
|
|
|
|
/// Diagnose attempts to convert between __float128 and long double if
|
|
/// there is no support for such conversion. Helper function of
|
|
/// UsualArithmeticConversions().
|
|
static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
|
|
QualType RHSType) {
|
|
/* No issue converting if at least one of the types is not a floating point
|
|
type or the two types have the same rank.
|
|
*/
|
|
if (!LHSType->isFloatingType() || !RHSType->isFloatingType() ||
|
|
S.Context.getFloatingTypeOrder(LHSType, RHSType) == 0)
|
|
return false;
|
|
|
|
assert(LHSType->isFloatingType() && RHSType->isFloatingType() &&
|
|
"The remaining types must be floating point types.");
|
|
|
|
auto *LHSComplex = LHSType->getAs<ComplexType>();
|
|
auto *RHSComplex = RHSType->getAs<ComplexType>();
|
|
|
|
QualType LHSElemType = LHSComplex ?
|
|
LHSComplex->getElementType() : LHSType;
|
|
QualType RHSElemType = RHSComplex ?
|
|
RHSComplex->getElementType() : RHSType;
|
|
|
|
// No issue if the two types have the same representation
|
|
if (&S.Context.getFloatTypeSemantics(LHSElemType) ==
|
|
&S.Context.getFloatTypeSemantics(RHSElemType))
|
|
return false;
|
|
|
|
bool Float128AndLongDouble = (LHSElemType == S.Context.Float128Ty &&
|
|
RHSElemType == S.Context.LongDoubleTy);
|
|
Float128AndLongDouble |= (LHSElemType == S.Context.LongDoubleTy &&
|
|
RHSElemType == S.Context.Float128Ty);
|
|
|
|
// We've handled the situation where __float128 and long double have the same
|
|
// representation. We allow all conversions for all possible long double types
|
|
// except PPC's double double.
|
|
return Float128AndLongDouble &&
|
|
(&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
|
|
&llvm::APFloat::PPCDoubleDouble());
|
|
}
|
|
|
|
typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
|
|
|
|
namespace {
|
|
/// These helper callbacks are placed in an anonymous namespace to
|
|
/// permit their use as function template parameters.
|
|
ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
|
|
return S.ImpCastExprToType(op, toType, CK_IntegralCast);
|
|
}
|
|
|
|
ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
|
|
return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
|
|
CK_IntegralComplexCast);
|
|
}
|
|
}
|
|
|
|
/// Handle integer arithmetic conversions. Helper function of
|
|
/// UsualArithmeticConversions()
|
|
template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
|
|
static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
|
|
ExprResult &RHS, QualType LHSType,
|
|
QualType RHSType, bool IsCompAssign) {
|
|
// The rules for this case are in C99 6.3.1.8
|
|
int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
|
|
bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
|
|
bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
|
|
if (LHSSigned == RHSSigned) {
|
|
// Same signedness; use the higher-ranked type
|
|
if (order >= 0) {
|
|
RHS = (*doRHSCast)(S, RHS.get(), LHSType);
|
|
return LHSType;
|
|
} else if (!IsCompAssign)
|
|
LHS = (*doLHSCast)(S, LHS.get(), RHSType);
|
|
return RHSType;
|
|
} else if (order != (LHSSigned ? 1 : -1)) {
|
|
// The unsigned type has greater than or equal rank to the
|
|
// signed type, so use the unsigned type
|
|
if (RHSSigned) {
|
|
RHS = (*doRHSCast)(S, RHS.get(), LHSType);
|
|
return LHSType;
|
|
} else if (!IsCompAssign)
|
|
LHS = (*doLHSCast)(S, LHS.get(), RHSType);
|
|
return RHSType;
|
|
} else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
|
|
// The two types are different widths; if we are here, that
|
|
// means the signed type is larger than the unsigned type, so
|
|
// use the signed type.
|
|
if (LHSSigned) {
|
|
RHS = (*doRHSCast)(S, RHS.get(), LHSType);
|
|
return LHSType;
|
|
} else if (!IsCompAssign)
|
|
LHS = (*doLHSCast)(S, LHS.get(), RHSType);
|
|
return RHSType;
|
|
} else {
|
|
// The signed type is higher-ranked than the unsigned type,
|
|
// but isn't actually any bigger (like unsigned int and long
|
|
// on most 32-bit systems). Use the unsigned type corresponding
|
|
// to the signed type.
|
|
QualType result =
|
|
S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
|
|
RHS = (*doRHSCast)(S, RHS.get(), result);
|
|
if (!IsCompAssign)
|
|
LHS = (*doLHSCast)(S, LHS.get(), result);
|
|
return result;
|
|
}
|
|
}
|
|
|
|
/// Handle conversions with GCC complex int extension. Helper function
|
|
/// of UsualArithmeticConversions()
|
|
static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
|
|
ExprResult &RHS, QualType LHSType,
|
|
QualType RHSType,
|
|
bool IsCompAssign) {
|
|
const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
|
|
const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
|
|
|
|
if (LHSComplexInt && RHSComplexInt) {
|
|
QualType LHSEltType = LHSComplexInt->getElementType();
|
|
QualType RHSEltType = RHSComplexInt->getElementType();
|
|
QualType ScalarType =
|
|
handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
|
|
(S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
|
|
|
|
return S.Context.getComplexType(ScalarType);
|
|
}
|
|
|
|
if (LHSComplexInt) {
|
|
QualType LHSEltType = LHSComplexInt->getElementType();
|
|
QualType ScalarType =
|
|
handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
|
|
(S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
|
|
QualType ComplexType = S.Context.getComplexType(ScalarType);
|
|
RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
|
|
CK_IntegralRealToComplex);
|
|
|
|
return ComplexType;
|
|
}
|
|
|
|
assert(RHSComplexInt);
|
|
|
|
QualType RHSEltType = RHSComplexInt->getElementType();
|
|
QualType ScalarType =
|
|
handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
|
|
(S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
|
|
QualType ComplexType = S.Context.getComplexType(ScalarType);
|
|
|
|
if (!IsCompAssign)
|
|
LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
|
|
CK_IntegralRealToComplex);
|
|
return ComplexType;
|
|
}
|
|
|
|
/// Return the rank of a given fixed point or integer type. The value itself
|
|
/// doesn't matter, but the values must be increasing with proper increasing
|
|
/// rank as described in N1169 4.1.1.
|
|
static unsigned GetFixedPointRank(QualType Ty) {
|
|
const auto *BTy = Ty->getAs<BuiltinType>();
|
|
assert(BTy && "Expected a builtin type.");
|
|
|
|
switch (BTy->getKind()) {
|
|
case BuiltinType::ShortFract:
|
|
case BuiltinType::UShortFract:
|
|
case BuiltinType::SatShortFract:
|
|
case BuiltinType::SatUShortFract:
|
|
return 1;
|
|
case BuiltinType::Fract:
|
|
case BuiltinType::UFract:
|
|
case BuiltinType::SatFract:
|
|
case BuiltinType::SatUFract:
|
|
return 2;
|
|
case BuiltinType::LongFract:
|
|
case BuiltinType::ULongFract:
|
|
case BuiltinType::SatLongFract:
|
|
case BuiltinType::SatULongFract:
|
|
return 3;
|
|
case BuiltinType::ShortAccum:
|
|
case BuiltinType::UShortAccum:
|
|
case BuiltinType::SatShortAccum:
|
|
case BuiltinType::SatUShortAccum:
|
|
return 4;
|
|
case BuiltinType::Accum:
|
|
case BuiltinType::UAccum:
|
|
case BuiltinType::SatAccum:
|
|
case BuiltinType::SatUAccum:
|
|
return 5;
|
|
case BuiltinType::LongAccum:
|
|
case BuiltinType::ULongAccum:
|
|
case BuiltinType::SatLongAccum:
|
|
case BuiltinType::SatULongAccum:
|
|
return 6;
|
|
default:
|
|
if (BTy->isInteger())
|
|
return 0;
|
|
llvm_unreachable("Unexpected fixed point or integer type");
|
|
}
|
|
}
|
|
|
|
/// handleFixedPointConversion - Fixed point operations between fixed
|
|
/// point types and integers or other fixed point types do not fall under
|
|
/// usual arithmetic conversion since these conversions could result in loss
|
|
/// of precsision (N1169 4.1.4). These operations should be calculated with
|
|
/// the full precision of their result type (N1169 4.1.6.2.1).
|
|
static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
|
|
QualType RHSTy) {
|
|
assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&
|
|
"Expected at least one of the operands to be a fixed point type");
|
|
assert((LHSTy->isFixedPointOrIntegerType() ||
|
|
RHSTy->isFixedPointOrIntegerType()) &&
|
|
"Special fixed point arithmetic operation conversions are only "
|
|
"applied to ints or other fixed point types");
|
|
|
|
// If one operand has signed fixed-point type and the other operand has
|
|
// unsigned fixed-point type, then the unsigned fixed-point operand is
|
|
// converted to its corresponding signed fixed-point type and the resulting
|
|
// type is the type of the converted operand.
|
|
if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
|
|
LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
|
|
else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
|
|
RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);
|
|
|
|
// The result type is the type with the highest rank, whereby a fixed-point
|
|
// conversion rank is always greater than an integer conversion rank; if the
|
|
// type of either of the operands is a saturating fixedpoint type, the result
|
|
// type shall be the saturating fixed-point type corresponding to the type
|
|
// with the highest rank; the resulting value is converted (taking into
|
|
// account rounding and overflow) to the precision of the resulting type.
|
|
// Same ranks between signed and unsigned types are resolved earlier, so both
|
|
// types are either signed or both unsigned at this point.
|
|
unsigned LHSTyRank = GetFixedPointRank(LHSTy);
|
|
unsigned RHSTyRank = GetFixedPointRank(RHSTy);
|
|
|
|
QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
|
|
|
|
if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
|
|
ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);
|
|
|
|
return ResultTy;
|
|
}
|
|
|
|
/// UsualArithmeticConversions - Performs various conversions that are common to
|
|
/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
|
|
/// routine returns the first non-arithmetic type found. The client is
|
|
/// responsible for emitting appropriate error diagnostics.
|
|
QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
|
|
bool IsCompAssign) {
|
|
if (!IsCompAssign) {
|
|
LHS = UsualUnaryConversions(LHS.get());
|
|
if (LHS.isInvalid())
|
|
return QualType();
|
|
}
|
|
|
|
RHS = UsualUnaryConversions(RHS.get());
|
|
if (RHS.isInvalid())
|
|
return QualType();
|
|
|
|
// For conversion purposes, we ignore any qualifiers.
|
|
// For example, "const float" and "float" are equivalent.
|
|
QualType LHSType =
|
|
Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
|
|
QualType RHSType =
|
|
Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
|
|
|
|
// For conversion purposes, we ignore any atomic qualifier on the LHS.
|
|
if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
|
|
LHSType = AtomicLHS->getValueType();
|
|
|
|
// If both types are identical, no conversion is needed.
|
|
if (LHSType == RHSType)
|
|
return LHSType;
|
|
|
|
// If either side is a non-arithmetic type (e.g. a pointer), we are done.
|
|
// The caller can deal with this (e.g. pointer + int).
|
|
if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
|
|
return QualType();
|
|
|
|
// Apply unary and bitfield promotions to the LHS's type.
|
|
QualType LHSUnpromotedType = LHSType;
|
|
if (LHSType->isPromotableIntegerType())
|
|
LHSType = Context.getPromotedIntegerType(LHSType);
|
|
QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
|
|
if (!LHSBitfieldPromoteTy.isNull())
|
|
LHSType = LHSBitfieldPromoteTy;
|
|
if (LHSType != LHSUnpromotedType && !IsCompAssign)
|
|
LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
|
|
|
|
// If both types are identical, no conversion is needed.
|
|
if (LHSType == RHSType)
|
|
return LHSType;
|
|
|
|
// At this point, we have two different arithmetic types.
|
|
|
|
// Diagnose attempts to convert between __float128 and long double where
|
|
// such conversions currently can't be handled.
|
|
if (unsupportedTypeConversion(*this, LHSType, RHSType))
|
|
return QualType();
|
|
|
|
// Handle complex types first (C99 6.3.1.8p1).
|
|
if (LHSType->isComplexType() || RHSType->isComplexType())
|
|
return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
|
|
IsCompAssign);
|
|
|
|
// Now handle "real" floating types (i.e. float, double, long double).
|
|
if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
|
|
return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
|
|
IsCompAssign);
|
|
|
|
// Handle GCC complex int extension.
|
|
if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
|
|
return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
|
|
IsCompAssign);
|
|
|
|
if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
|
|
return handleFixedPointConversion(*this, LHSType, RHSType);
|
|
|
|
// Finally, we have two differing integer types.
|
|
return handleIntegerConversion<doIntegralCast, doIntegralCast>
|
|
(*this, LHS, RHS, LHSType, RHSType, IsCompAssign);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Semantic Analysis for various Expression Types
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
ExprResult
|
|
Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
|
|
SourceLocation DefaultLoc,
|
|
SourceLocation RParenLoc,
|
|
Expr *ControllingExpr,
|
|
ArrayRef<ParsedType> ArgTypes,
|
|
ArrayRef<Expr *> ArgExprs) {
|
|
unsigned NumAssocs = ArgTypes.size();
|
|
assert(NumAssocs == ArgExprs.size());
|
|
|
|
TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
|
|
for (unsigned i = 0; i < NumAssocs; ++i) {
|
|
if (ArgTypes[i])
|
|
(void) GetTypeFromParser(ArgTypes[i], &Types[i]);
|
|
else
|
|
Types[i] = nullptr;
|
|
}
|
|
|
|
ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
|
|
ControllingExpr,
|
|
llvm::makeArrayRef(Types, NumAssocs),
|
|
ArgExprs);
|
|
delete [] Types;
|
|
return ER;
|
|
}
|
|
|
|
ExprResult
|
|
Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
|
|
SourceLocation DefaultLoc,
|
|
SourceLocation RParenLoc,
|
|
Expr *ControllingExpr,
|
|
ArrayRef<TypeSourceInfo *> Types,
|
|
ArrayRef<Expr *> Exprs) {
|
|
unsigned NumAssocs = Types.size();
|
|
assert(NumAssocs == Exprs.size());
|
|
|
|
// Decay and strip qualifiers for the controlling expression type, and handle
|
|
// placeholder type replacement. See committee discussion from WG14 DR423.
|
|
{
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
*this, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr);
|
|
if (R.isInvalid())
|
|
return ExprError();
|
|
ControllingExpr = R.get();
|
|
}
|
|
|
|
// The controlling expression is an unevaluated operand, so side effects are
|
|
// likely unintended.
|
|
if (!inTemplateInstantiation() &&
|
|
ControllingExpr->HasSideEffects(Context, false))
|
|
Diag(ControllingExpr->getExprLoc(),
|
|
diag::warn_side_effects_unevaluated_context);
|
|
|
|
bool TypeErrorFound = false,
|
|
IsResultDependent = ControllingExpr->isTypeDependent(),
|
|
ContainsUnexpandedParameterPack
|
|
= ControllingExpr->containsUnexpandedParameterPack();
|
|
|
|
for (unsigned i = 0; i < NumAssocs; ++i) {
|
|
if (Exprs[i]->containsUnexpandedParameterPack())
|
|
ContainsUnexpandedParameterPack = true;
|
|
|
|
if (Types[i]) {
|
|
if (Types[i]->getType()->containsUnexpandedParameterPack())
|
|
ContainsUnexpandedParameterPack = true;
|
|
|
|
if (Types[i]->getType()->isDependentType()) {
|
|
IsResultDependent = true;
|
|
} else {
|
|
// C11 6.5.1.1p2 "The type name in a generic association shall specify a
|
|
// complete object type other than a variably modified type."
|
|
unsigned D = 0;
|
|
if (Types[i]->getType()->isIncompleteType())
|
|
D = diag::err_assoc_type_incomplete;
|
|
else if (!Types[i]->getType()->isObjectType())
|
|
D = diag::err_assoc_type_nonobject;
|
|
else if (Types[i]->getType()->isVariablyModifiedType())
|
|
D = diag::err_assoc_type_variably_modified;
|
|
|
|
if (D != 0) {
|
|
Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
|
|
<< Types[i]->getTypeLoc().getSourceRange()
|
|
<< Types[i]->getType();
|
|
TypeErrorFound = true;
|
|
}
|
|
|
|
// C11 6.5.1.1p2 "No two generic associations in the same generic
|
|
// selection shall specify compatible types."
|
|
for (unsigned j = i+1; j < NumAssocs; ++j)
|
|
if (Types[j] && !Types[j]->getType()->isDependentType() &&
|
|
Context.typesAreCompatible(Types[i]->getType(),
|
|
Types[j]->getType())) {
|
|
Diag(Types[j]->getTypeLoc().getBeginLoc(),
|
|
diag::err_assoc_compatible_types)
|
|
<< Types[j]->getTypeLoc().getSourceRange()
|
|
<< Types[j]->getType()
|
|
<< Types[i]->getType();
|
|
Diag(Types[i]->getTypeLoc().getBeginLoc(),
|
|
diag::note_compat_assoc)
|
|
<< Types[i]->getTypeLoc().getSourceRange()
|
|
<< Types[i]->getType();
|
|
TypeErrorFound = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (TypeErrorFound)
|
|
return ExprError();
|
|
|
|
// If we determined that the generic selection is result-dependent, don't
|
|
// try to compute the result expression.
|
|
if (IsResultDependent)
|
|
return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr, Types,
|
|
Exprs, DefaultLoc, RParenLoc,
|
|
ContainsUnexpandedParameterPack);
|
|
|
|
SmallVector<unsigned, 1> CompatIndices;
|
|
unsigned DefaultIndex = -1U;
|
|
for (unsigned i = 0; i < NumAssocs; ++i) {
|
|
if (!Types[i])
|
|
DefaultIndex = i;
|
|
else if (Context.typesAreCompatible(ControllingExpr->getType(),
|
|
Types[i]->getType()))
|
|
CompatIndices.push_back(i);
|
|
}
|
|
|
|
// C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
|
|
// type compatible with at most one of the types named in its generic
|
|
// association list."
|
|
if (CompatIndices.size() > 1) {
|
|
// We strip parens here because the controlling expression is typically
|
|
// parenthesized in macro definitions.
|
|
ControllingExpr = ControllingExpr->IgnoreParens();
|
|
Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_multi_match)
|
|
<< ControllingExpr->getSourceRange() << ControllingExpr->getType()
|
|
<< (unsigned)CompatIndices.size();
|
|
for (unsigned I : CompatIndices) {
|
|
Diag(Types[I]->getTypeLoc().getBeginLoc(),
|
|
diag::note_compat_assoc)
|
|
<< Types[I]->getTypeLoc().getSourceRange()
|
|
<< Types[I]->getType();
|
|
}
|
|
return ExprError();
|
|
}
|
|
|
|
// C11 6.5.1.1p2 "If a generic selection has no default generic association,
|
|
// its controlling expression shall have type compatible with exactly one of
|
|
// the types named in its generic association list."
|
|
if (DefaultIndex == -1U && CompatIndices.size() == 0) {
|
|
// We strip parens here because the controlling expression is typically
|
|
// parenthesized in macro definitions.
|
|
ControllingExpr = ControllingExpr->IgnoreParens();
|
|
Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_no_match)
|
|
<< ControllingExpr->getSourceRange() << ControllingExpr->getType();
|
|
return ExprError();
|
|
}
|
|
|
|
// C11 6.5.1.1p3 "If a generic selection has a generic association with a
|
|
// type name that is compatible with the type of the controlling expression,
|
|
// then the result expression of the generic selection is the expression
|
|
// in that generic association. Otherwise, the result expression of the
|
|
// generic selection is the expression in the default generic association."
|
|
unsigned ResultIndex =
|
|
CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
|
|
|
|
return GenericSelectionExpr::Create(
|
|
Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
|
|
ContainsUnexpandedParameterPack, ResultIndex);
|
|
}
|
|
|
|
/// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
|
|
/// location of the token and the offset of the ud-suffix within it.
|
|
static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
|
|
unsigned Offset) {
|
|
return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
|
|
S.getLangOpts());
|
|
}
|
|
|
|
/// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
|
|
/// the corresponding cooked (non-raw) literal operator, and build a call to it.
|
|
static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
|
|
IdentifierInfo *UDSuffix,
|
|
SourceLocation UDSuffixLoc,
|
|
ArrayRef<Expr*> Args,
|
|
SourceLocation LitEndLoc) {
|
|
assert(Args.size() <= 2 && "too many arguments for literal operator");
|
|
|
|
QualType ArgTy[2];
|
|
for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
|
|
ArgTy[ArgIdx] = Args[ArgIdx]->getType();
|
|
if (ArgTy[ArgIdx]->isArrayType())
|
|
ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
|
|
}
|
|
|
|
DeclarationName OpName =
|
|
S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
|
|
DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
|
|
OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
|
|
|
|
LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
|
|
if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
|
|
/*AllowRaw*/ false, /*AllowTemplate*/ false,
|
|
/*AllowStringTemplate*/ false,
|
|
/*DiagnoseMissing*/ true) == Sema::LOLR_Error)
|
|
return ExprError();
|
|
|
|
return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
|
|
}
|
|
|
|
/// ActOnStringLiteral - The specified tokens were lexed as pasted string
|
|
/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
|
|
/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
|
|
/// multiple tokens. However, the common case is that StringToks points to one
|
|
/// string.
|
|
///
|
|
ExprResult
|
|
Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
|
|
assert(!StringToks.empty() && "Must have at least one string!");
|
|
|
|
StringLiteralParser Literal(StringToks, PP);
|
|
if (Literal.hadError)
|
|
return ExprError();
|
|
|
|
SmallVector<SourceLocation, 4> StringTokLocs;
|
|
for (const Token &Tok : StringToks)
|
|
StringTokLocs.push_back(Tok.getLocation());
|
|
|
|
QualType CharTy = Context.CharTy;
|
|
StringLiteral::StringKind Kind = StringLiteral::Ascii;
|
|
if (Literal.isWide()) {
|
|
CharTy = Context.getWideCharType();
|
|
Kind = StringLiteral::Wide;
|
|
} else if (Literal.isUTF8()) {
|
|
if (getLangOpts().Char8)
|
|
CharTy = Context.Char8Ty;
|
|
Kind = StringLiteral::UTF8;
|
|
} else if (Literal.isUTF16()) {
|
|
CharTy = Context.Char16Ty;
|
|
Kind = StringLiteral::UTF16;
|
|
} else if (Literal.isUTF32()) {
|
|
CharTy = Context.Char32Ty;
|
|
Kind = StringLiteral::UTF32;
|
|
} else if (Literal.isPascal()) {
|
|
CharTy = Context.UnsignedCharTy;
|
|
}
|
|
|
|
// Warn on initializing an array of char from a u8 string literal; this
|
|
// becomes ill-formed in C++2a.
|
|
if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus2a &&
|
|
!getLangOpts().Char8 && Kind == StringLiteral::UTF8) {
|
|
Diag(StringTokLocs.front(), diag::warn_cxx2a_compat_utf8_string);
|
|
|
|
// Create removals for all 'u8' prefixes in the string literal(s). This
|
|
// ensures C++2a compatibility (but may change the program behavior when
|
|
// built by non-Clang compilers for which the execution character set is
|
|
// not always UTF-8).
|
|
auto RemovalDiag = PDiag(diag::note_cxx2a_compat_utf8_string_remove_u8);
|
|
SourceLocation RemovalDiagLoc;
|
|
for (const Token &Tok : StringToks) {
|
|
if (Tok.getKind() == tok::utf8_string_literal) {
|
|
if (RemovalDiagLoc.isInvalid())
|
|
RemovalDiagLoc = Tok.getLocation();
|
|
RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
|
|
Tok.getLocation(),
|
|
Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
|
|
getSourceManager(), getLangOpts())));
|
|
}
|
|
}
|
|
Diag(RemovalDiagLoc, RemovalDiag);
|
|
}
|
|
|
|
QualType StrTy =
|
|
Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());
|
|
|
|
// Pass &StringTokLocs[0], StringTokLocs.size() to factory!
|
|
StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
|
|
Kind, Literal.Pascal, StrTy,
|
|
&StringTokLocs[0],
|
|
StringTokLocs.size());
|
|
if (Literal.getUDSuffix().empty())
|
|
return Lit;
|
|
|
|
// We're building a user-defined literal.
|
|
IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
|
|
SourceLocation UDSuffixLoc =
|
|
getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
|
|
Literal.getUDSuffixOffset());
|
|
|
|
// Make sure we're allowed user-defined literals here.
|
|
if (!UDLScope)
|
|
return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
|
|
|
|
// C++11 [lex.ext]p5: The literal L is treated as a call of the form
|
|
// operator "" X (str, len)
|
|
QualType SizeType = Context.getSizeType();
|
|
|
|
DeclarationName OpName =
|
|
Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
|
|
DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
|
|
OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
|
|
|
|
QualType ArgTy[] = {
|
|
Context.getArrayDecayedType(StrTy), SizeType
|
|
};
|
|
|
|
LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
|
|
switch (LookupLiteralOperator(UDLScope, R, ArgTy,
|
|
/*AllowRaw*/ false, /*AllowTemplate*/ false,
|
|
/*AllowStringTemplate*/ true,
|
|
/*DiagnoseMissing*/ true)) {
|
|
|
|
case LOLR_Cooked: {
|
|
llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
|
|
IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
|
|
StringTokLocs[0]);
|
|
Expr *Args[] = { Lit, LenArg };
|
|
|
|
return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
|
|
}
|
|
|
|
case LOLR_StringTemplate: {
|
|
TemplateArgumentListInfo ExplicitArgs;
|
|
|
|
unsigned CharBits = Context.getIntWidth(CharTy);
|
|
bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
|
|
llvm::APSInt Value(CharBits, CharIsUnsigned);
|
|
|
|
TemplateArgument TypeArg(CharTy);
|
|
TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
|
|
ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
|
|
|
|
for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
|
|
Value = Lit->getCodeUnit(I);
|
|
TemplateArgument Arg(Context, Value, CharTy);
|
|
TemplateArgumentLocInfo ArgInfo;
|
|
ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
|
|
}
|
|
return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
|
|
&ExplicitArgs);
|
|
}
|
|
case LOLR_Raw:
|
|
case LOLR_Template:
|
|
case LOLR_ErrorNoDiagnostic:
|
|
llvm_unreachable("unexpected literal operator lookup result");
|
|
case LOLR_Error:
|
|
return ExprError();
|
|
}
|
|
llvm_unreachable("unexpected literal operator lookup result");
|
|
}
|
|
|
|
ExprResult
|
|
Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
|
|
SourceLocation Loc,
|
|
const CXXScopeSpec *SS) {
|
|
DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
|
|
return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
|
|
}
|
|
|
|
/// BuildDeclRefExpr - Build an expression that references a
|
|
/// declaration that does not require a closure capture.
|
|
ExprResult
|
|
Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
|
|
const DeclarationNameInfo &NameInfo,
|
|
const CXXScopeSpec *SS, NamedDecl *FoundD,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
bool RefersToCapturedVariable =
|
|
isa<VarDecl>(D) &&
|
|
NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc());
|
|
|
|
DeclRefExpr *E;
|
|
if (isa<VarTemplateSpecializationDecl>(D)) {
|
|
VarTemplateSpecializationDecl *VarSpec =
|
|
cast<VarTemplateSpecializationDecl>(D);
|
|
|
|
E = DeclRefExpr::Create(Context, SS ? SS->getWithLocInContext(Context)
|
|
: NestedNameSpecifierLoc(),
|
|
VarSpec->getTemplateKeywordLoc(), D,
|
|
RefersToCapturedVariable, NameInfo.getLoc(), Ty, VK,
|
|
FoundD, TemplateArgs);
|
|
} else {
|
|
assert(!TemplateArgs && "No template arguments for non-variable"
|
|
" template specialization references");
|
|
E = DeclRefExpr::Create(Context, SS ? SS->getWithLocInContext(Context)
|
|
: NestedNameSpecifierLoc(),
|
|
SourceLocation(), D, RefersToCapturedVariable,
|
|
NameInfo, Ty, VK, FoundD);
|
|
}
|
|
|
|
MarkDeclRefReferenced(E);
|
|
|
|
if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
|
|
Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
|
|
!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
|
|
getCurFunction()->recordUseOfWeak(E);
|
|
|
|
FieldDecl *FD = dyn_cast<FieldDecl>(D);
|
|
if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
|
|
FD = IFD->getAnonField();
|
|
if (FD) {
|
|
UnusedPrivateFields.remove(FD);
|
|
// Just in case we're building an illegal pointer-to-member.
|
|
if (FD->isBitField())
|
|
E->setObjectKind(OK_BitField);
|
|
}
|
|
|
|
// C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
|
|
// designates a bit-field.
|
|
if (auto *BD = dyn_cast<BindingDecl>(D))
|
|
if (auto *BE = BD->getBinding())
|
|
E->setObjectKind(BE->getObjectKind());
|
|
|
|
return E;
|
|
}
|
|
|
|
/// Decomposes the given name into a DeclarationNameInfo, its location, and
|
|
/// possibly a list of template arguments.
|
|
///
|
|
/// If this produces template arguments, it is permitted to call
|
|
/// DecomposeTemplateName.
|
|
///
|
|
/// This actually loses a lot of source location information for
|
|
/// non-standard name kinds; we should consider preserving that in
|
|
/// some way.
|
|
void
|
|
Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
|
|
TemplateArgumentListInfo &Buffer,
|
|
DeclarationNameInfo &NameInfo,
|
|
const TemplateArgumentListInfo *&TemplateArgs) {
|
|
if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
|
|
Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
|
|
Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
|
|
|
|
ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
|
|
Id.TemplateId->NumArgs);
|
|
translateTemplateArguments(TemplateArgsPtr, Buffer);
|
|
|
|
TemplateName TName = Id.TemplateId->Template.get();
|
|
SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
|
|
NameInfo = Context.getNameForTemplate(TName, TNameLoc);
|
|
TemplateArgs = &Buffer;
|
|
} else {
|
|
NameInfo = GetNameFromUnqualifiedId(Id);
|
|
TemplateArgs = nullptr;
|
|
}
|
|
}
|
|
|
|
static void emitEmptyLookupTypoDiagnostic(
|
|
const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
|
|
DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
|
|
unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
|
|
DeclContext *Ctx =
|
|
SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
|
|
if (!TC) {
|
|
// Emit a special diagnostic for failed member lookups.
|
|
// FIXME: computing the declaration context might fail here (?)
|
|
if (Ctx)
|
|
SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
|
|
<< SS.getRange();
|
|
else
|
|
SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
|
|
return;
|
|
}
|
|
|
|
std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
|
|
bool DroppedSpecifier =
|
|
TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
|
|
unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
|
|
? diag::note_implicit_param_decl
|
|
: diag::note_previous_decl;
|
|
if (!Ctx)
|
|
SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
|
|
SemaRef.PDiag(NoteID));
|
|
else
|
|
SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
|
|
<< Typo << Ctx << DroppedSpecifier
|
|
<< SS.getRange(),
|
|
SemaRef.PDiag(NoteID));
|
|
}
|
|
|
|
/// Diagnose an empty lookup.
|
|
///
|
|
/// \return false if new lookup candidates were found
|
|
bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
|
|
CorrectionCandidateCallback &CCC,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
ArrayRef<Expr *> Args, TypoExpr **Out) {
|
|
DeclarationName Name = R.getLookupName();
|
|
|
|
unsigned diagnostic = diag::err_undeclared_var_use;
|
|
unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
|
|
if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
|
|
Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
|
|
Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
|
|
diagnostic = diag::err_undeclared_use;
|
|
diagnostic_suggest = diag::err_undeclared_use_suggest;
|
|
}
|
|
|
|
// If the original lookup was an unqualified lookup, fake an
|
|
// unqualified lookup. This is useful when (for example) the
|
|
// original lookup would not have found something because it was a
|
|
// dependent name.
|
|
DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
|
|
while (DC) {
|
|
if (isa<CXXRecordDecl>(DC)) {
|
|
LookupQualifiedName(R, DC);
|
|
|
|
if (!R.empty()) {
|
|
// Don't give errors about ambiguities in this lookup.
|
|
R.suppressDiagnostics();
|
|
|
|
// During a default argument instantiation the CurContext points
|
|
// to a CXXMethodDecl; but we can't apply a this-> fixit inside a
|
|
// function parameter list, hence add an explicit check.
|
|
bool isDefaultArgument =
|
|
!CodeSynthesisContexts.empty() &&
|
|
CodeSynthesisContexts.back().Kind ==
|
|
CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
|
|
CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
|
|
bool isInstance = CurMethod &&
|
|
CurMethod->isInstance() &&
|
|
DC == CurMethod->getParent() && !isDefaultArgument;
|
|
|
|
// Give a code modification hint to insert 'this->'.
|
|
// TODO: fixit for inserting 'Base<T>::' in the other cases.
|
|
// Actually quite difficult!
|
|
if (getLangOpts().MSVCCompat)
|
|
diagnostic = diag::ext_found_via_dependent_bases_lookup;
|
|
if (isInstance) {
|
|
Diag(R.getNameLoc(), diagnostic) << Name
|
|
<< FixItHint::CreateInsertion(R.getNameLoc(), "this->");
|
|
CheckCXXThisCapture(R.getNameLoc());
|
|
} else {
|
|
Diag(R.getNameLoc(), diagnostic) << Name;
|
|
}
|
|
|
|
// Do we really want to note all of these?
|
|
for (NamedDecl *D : R)
|
|
Diag(D->getLocation(), diag::note_dependent_var_use);
|
|
|
|
// Return true if we are inside a default argument instantiation
|
|
// and the found name refers to an instance member function, otherwise
|
|
// the function calling DiagnoseEmptyLookup will try to create an
|
|
// implicit member call and this is wrong for default argument.
|
|
if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
|
|
Diag(R.getNameLoc(), diag::err_member_call_without_object);
|
|
return true;
|
|
}
|
|
|
|
// Tell the callee to try to recover.
|
|
return false;
|
|
}
|
|
|
|
R.clear();
|
|
}
|
|
|
|
// In Microsoft mode, if we are performing lookup from within a friend
|
|
// function definition declared at class scope then we must set
|
|
// DC to the lexical parent to be able to search into the parent
|
|
// class.
|
|
if (getLangOpts().MSVCCompat && isa<FunctionDecl>(DC) &&
|
|
cast<FunctionDecl>(DC)->getFriendObjectKind() &&
|
|
DC->getLexicalParent()->isRecord())
|
|
DC = DC->getLexicalParent();
|
|
else
|
|
DC = DC->getParent();
|
|
}
|
|
|
|
// We didn't find anything, so try to correct for a typo.
|
|
TypoCorrection Corrected;
|
|
if (S && Out) {
|
|
SourceLocation TypoLoc = R.getNameLoc();
|
|
assert(!ExplicitTemplateArgs &&
|
|
"Diagnosing an empty lookup with explicit template args!");
|
|
*Out = CorrectTypoDelayed(
|
|
R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
|
|
[=](const TypoCorrection &TC) {
|
|
emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
|
|
diagnostic, diagnostic_suggest);
|
|
},
|
|
nullptr, CTK_ErrorRecovery);
|
|
if (*Out)
|
|
return true;
|
|
} else if (S &&
|
|
(Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
|
|
S, &SS, CCC, CTK_ErrorRecovery))) {
|
|
std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
|
|
bool DroppedSpecifier =
|
|
Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
|
|
R.setLookupName(Corrected.getCorrection());
|
|
|
|
bool AcceptableWithRecovery = false;
|
|
bool AcceptableWithoutRecovery = false;
|
|
NamedDecl *ND = Corrected.getFoundDecl();
|
|
if (ND) {
|
|
if (Corrected.isOverloaded()) {
|
|
OverloadCandidateSet OCS(R.getNameLoc(),
|
|
OverloadCandidateSet::CSK_Normal);
|
|
OverloadCandidateSet::iterator Best;
|
|
for (NamedDecl *CD : Corrected) {
|
|
if (FunctionTemplateDecl *FTD =
|
|
dyn_cast<FunctionTemplateDecl>(CD))
|
|
AddTemplateOverloadCandidate(
|
|
FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
|
|
Args, OCS);
|
|
else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
|
|
if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
|
|
AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
|
|
Args, OCS);
|
|
}
|
|
switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
|
|
case OR_Success:
|
|
ND = Best->FoundDecl;
|
|
Corrected.setCorrectionDecl(ND);
|
|
break;
|
|
default:
|
|
// FIXME: Arbitrarily pick the first declaration for the note.
|
|
Corrected.setCorrectionDecl(ND);
|
|
break;
|
|
}
|
|
}
|
|
R.addDecl(ND);
|
|
if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
|
|
CXXRecordDecl *Record = nullptr;
|
|
if (Corrected.getCorrectionSpecifier()) {
|
|
const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
|
|
Record = Ty->getAsCXXRecordDecl();
|
|
}
|
|
if (!Record)
|
|
Record = cast<CXXRecordDecl>(
|
|
ND->getDeclContext()->getRedeclContext());
|
|
R.setNamingClass(Record);
|
|
}
|
|
|
|
auto *UnderlyingND = ND->getUnderlyingDecl();
|
|
AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
|
|
isa<FunctionTemplateDecl>(UnderlyingND);
|
|
// FIXME: If we ended up with a typo for a type name or
|
|
// Objective-C class name, we're in trouble because the parser
|
|
// is in the wrong place to recover. Suggest the typo
|
|
// correction, but don't make it a fix-it since we're not going
|
|
// to recover well anyway.
|
|
AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
|
|
getAsTypeTemplateDecl(UnderlyingND) ||
|
|
isa<ObjCInterfaceDecl>(UnderlyingND);
|
|
} else {
|
|
// FIXME: We found a keyword. Suggest it, but don't provide a fix-it
|
|
// because we aren't able to recover.
|
|
AcceptableWithoutRecovery = true;
|
|
}
|
|
|
|
if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
|
|
unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
|
|
? diag::note_implicit_param_decl
|
|
: diag::note_previous_decl;
|
|
if (SS.isEmpty())
|
|
diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
|
|
PDiag(NoteID), AcceptableWithRecovery);
|
|
else
|
|
diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
|
|
<< Name << computeDeclContext(SS, false)
|
|
<< DroppedSpecifier << SS.getRange(),
|
|
PDiag(NoteID), AcceptableWithRecovery);
|
|
|
|
// Tell the callee whether to try to recover.
|
|
return !AcceptableWithRecovery;
|
|
}
|
|
}
|
|
R.clear();
|
|
|
|
// Emit a special diagnostic for failed member lookups.
|
|
// FIXME: computing the declaration context might fail here (?)
|
|
if (!SS.isEmpty()) {
|
|
Diag(R.getNameLoc(), diag::err_no_member)
|
|
<< Name << computeDeclContext(SS, false)
|
|
<< SS.getRange();
|
|
return true;
|
|
}
|
|
|
|
// Give up, we can't recover.
|
|
Diag(R.getNameLoc(), diagnostic) << Name;
|
|
return true;
|
|
}
|
|
|
|
/// In Microsoft mode, if we are inside a template class whose parent class has
|
|
/// dependent base classes, and we can't resolve an unqualified identifier, then
|
|
/// assume the identifier is a member of a dependent base class. We can only
|
|
/// recover successfully in static methods, instance methods, and other contexts
|
|
/// where 'this' is available. This doesn't precisely match MSVC's
|
|
/// instantiation model, but it's close enough.
|
|
static Expr *
|
|
recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
|
|
DeclarationNameInfo &NameInfo,
|
|
SourceLocation TemplateKWLoc,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
// Only try to recover from lookup into dependent bases in static methods or
|
|
// contexts where 'this' is available.
|
|
QualType ThisType = S.getCurrentThisType();
|
|
const CXXRecordDecl *RD = nullptr;
|
|
if (!ThisType.isNull())
|
|
RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
|
|
else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
|
|
RD = MD->getParent();
|
|
if (!RD || !RD->hasAnyDependentBases())
|
|
return nullptr;
|
|
|
|
// Diagnose this as unqualified lookup into a dependent base class. If 'this'
|
|
// is available, suggest inserting 'this->' as a fixit.
|
|
SourceLocation Loc = NameInfo.getLoc();
|
|
auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
|
|
DB << NameInfo.getName() << RD;
|
|
|
|
if (!ThisType.isNull()) {
|
|
DB << FixItHint::CreateInsertion(Loc, "this->");
|
|
return CXXDependentScopeMemberExpr::Create(
|
|
Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
|
|
/*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
|
|
/*FirstQualifierInScope=*/nullptr, NameInfo, TemplateArgs);
|
|
}
|
|
|
|
// Synthesize a fake NNS that points to the derived class. This will
|
|
// perform name lookup during template instantiation.
|
|
CXXScopeSpec SS;
|
|
auto *NNS =
|
|
NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
|
|
SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
|
|
return DependentScopeDeclRefExpr::Create(
|
|
Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
|
|
TemplateArgs);
|
|
}
|
|
|
|
ExprResult
|
|
Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc, UnqualifiedId &Id,
|
|
bool HasTrailingLParen, bool IsAddressOfOperand,
|
|
CorrectionCandidateCallback *CCC,
|
|
bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
|
|
assert(!(IsAddressOfOperand && HasTrailingLParen) &&
|
|
"cannot be direct & operand and have a trailing lparen");
|
|
if (SS.isInvalid())
|
|
return ExprError();
|
|
|
|
TemplateArgumentListInfo TemplateArgsBuffer;
|
|
|
|
// Decompose the UnqualifiedId into the following data.
|
|
DeclarationNameInfo NameInfo;
|
|
const TemplateArgumentListInfo *TemplateArgs;
|
|
DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
|
|
|
|
DeclarationName Name = NameInfo.getName();
|
|
IdentifierInfo *II = Name.getAsIdentifierInfo();
|
|
SourceLocation NameLoc = NameInfo.getLoc();
|
|
|
|
if (II && II->isEditorPlaceholder()) {
|
|
// FIXME: When typed placeholders are supported we can create a typed
|
|
// placeholder expression node.
|
|
return ExprError();
|
|
}
|
|
|
|
// C++ [temp.dep.expr]p3:
|
|
// An id-expression is type-dependent if it contains:
|
|
// -- an identifier that was declared with a dependent type,
|
|
// (note: handled after lookup)
|
|
// -- a template-id that is dependent,
|
|
// (note: handled in BuildTemplateIdExpr)
|
|
// -- a conversion-function-id that specifies a dependent type,
|
|
// -- a nested-name-specifier that contains a class-name that
|
|
// names a dependent type.
|
|
// Determine whether this is a member of an unknown specialization;
|
|
// we need to handle these differently.
|
|
bool DependentID = false;
|
|
if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
|
|
Name.getCXXNameType()->isDependentType()) {
|
|
DependentID = true;
|
|
} else if (SS.isSet()) {
|
|
if (DeclContext *DC = computeDeclContext(SS, false)) {
|
|
if (RequireCompleteDeclContext(SS, DC))
|
|
return ExprError();
|
|
} else {
|
|
DependentID = true;
|
|
}
|
|
}
|
|
|
|
if (DependentID)
|
|
return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
|
|
IsAddressOfOperand, TemplateArgs);
|
|
|
|
// Perform the required lookup.
|
|
LookupResult R(*this, NameInfo,
|
|
(Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
|
|
? LookupObjCImplicitSelfParam
|
|
: LookupOrdinaryName);
|
|
if (TemplateKWLoc.isValid() || TemplateArgs) {
|
|
// Lookup the template name again to correctly establish the context in
|
|
// which it was found. This is really unfortunate as we already did the
|
|
// lookup to determine that it was a template name in the first place. If
|
|
// this becomes a performance hit, we can work harder to preserve those
|
|
// results until we get here but it's likely not worth it.
|
|
bool MemberOfUnknownSpecialization;
|
|
AssumedTemplateKind AssumedTemplate;
|
|
if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
|
|
MemberOfUnknownSpecialization, TemplateKWLoc,
|
|
&AssumedTemplate))
|
|
return ExprError();
|
|
|
|
if (MemberOfUnknownSpecialization ||
|
|
(R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
|
|
return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
|
|
IsAddressOfOperand, TemplateArgs);
|
|
} else {
|
|
bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
|
|
LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
|
|
|
|
// If the result might be in a dependent base class, this is a dependent
|
|
// id-expression.
|
|
if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
|
|
return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
|
|
IsAddressOfOperand, TemplateArgs);
|
|
|
|
// If this reference is in an Objective-C method, then we need to do
|
|
// some special Objective-C lookup, too.
|
|
if (IvarLookupFollowUp) {
|
|
ExprResult E(LookupInObjCMethod(R, S, II, true));
|
|
if (E.isInvalid())
|
|
return ExprError();
|
|
|
|
if (Expr *Ex = E.getAs<Expr>())
|
|
return Ex;
|
|
}
|
|
}
|
|
|
|
if (R.isAmbiguous())
|
|
return ExprError();
|
|
|
|
// This could be an implicitly declared function reference (legal in C90,
|
|
// extension in C99, forbidden in C++).
|
|
if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
|
|
NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
|
|
if (D) R.addDecl(D);
|
|
}
|
|
|
|
// Determine whether this name might be a candidate for
|
|
// argument-dependent lookup.
|
|
bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
|
|
|
|
if (R.empty() && !ADL) {
|
|
if (SS.isEmpty() && getLangOpts().MSVCCompat) {
|
|
if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
|
|
TemplateKWLoc, TemplateArgs))
|
|
return E;
|
|
}
|
|
|
|
// Don't diagnose an empty lookup for inline assembly.
|
|
if (IsInlineAsmIdentifier)
|
|
return ExprError();
|
|
|
|
// If this name wasn't predeclared and if this is not a function
|
|
// call, diagnose the problem.
|
|
TypoExpr *TE = nullptr;
|
|
DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
|
|
: nullptr);
|
|
DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
|
|
assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
|
|
"Typo correction callback misconfigured");
|
|
if (CCC) {
|
|
// Make sure the callback knows what the typo being diagnosed is.
|
|
CCC->setTypoName(II);
|
|
if (SS.isValid())
|
|
CCC->setTypoNNS(SS.getScopeRep());
|
|
}
|
|
// FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
|
|
// a template name, but we happen to have always already looked up the name
|
|
// before we get here if it must be a template name.
|
|
if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
|
|
None, &TE)) {
|
|
if (TE && KeywordReplacement) {
|
|
auto &State = getTypoExprState(TE);
|
|
auto BestTC = State.Consumer->getNextCorrection();
|
|
if (BestTC.isKeyword()) {
|
|
auto *II = BestTC.getCorrectionAsIdentifierInfo();
|
|
if (State.DiagHandler)
|
|
State.DiagHandler(BestTC);
|
|
KeywordReplacement->startToken();
|
|
KeywordReplacement->setKind(II->getTokenID());
|
|
KeywordReplacement->setIdentifierInfo(II);
|
|
KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
|
|
// Clean up the state associated with the TypoExpr, since it has
|
|
// now been diagnosed (without a call to CorrectDelayedTyposInExpr).
|
|
clearDelayedTypo(TE);
|
|
// Signal that a correction to a keyword was performed by returning a
|
|
// valid-but-null ExprResult.
|
|
return (Expr*)nullptr;
|
|
}
|
|
State.Consumer->resetCorrectionStream();
|
|
}
|
|
return TE ? TE : ExprError();
|
|
}
|
|
|
|
assert(!R.empty() &&
|
|
"DiagnoseEmptyLookup returned false but added no results");
|
|
|
|
// If we found an Objective-C instance variable, let
|
|
// LookupInObjCMethod build the appropriate expression to
|
|
// reference the ivar.
|
|
if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
|
|
R.clear();
|
|
ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
|
|
// In a hopelessly buggy code, Objective-C instance variable
|
|
// lookup fails and no expression will be built to reference it.
|
|
if (!E.isInvalid() && !E.get())
|
|
return ExprError();
|
|
return E;
|
|
}
|
|
}
|
|
|
|
// This is guaranteed from this point on.
|
|
assert(!R.empty() || ADL);
|
|
|
|
// Check whether this might be a C++ implicit instance member access.
|
|
// C++ [class.mfct.non-static]p3:
|
|
// When an id-expression that is not part of a class member access
|
|
// syntax and not used to form a pointer to member is used in the
|
|
// body of a non-static member function of class X, if name lookup
|
|
// resolves the name in the id-expression to a non-static non-type
|
|
// member of some class C, the id-expression is transformed into a
|
|
// class member access expression using (*this) as the
|
|
// postfix-expression to the left of the . operator.
|
|
//
|
|
// But we don't actually need to do this for '&' operands if R
|
|
// resolved to a function or overloaded function set, because the
|
|
// expression is ill-formed if it actually works out to be a
|
|
// non-static member function:
|
|
//
|
|
// C++ [expr.ref]p4:
|
|
// Otherwise, if E1.E2 refers to a non-static member function. . .
|
|
// [t]he expression can be used only as the left-hand operand of a
|
|
// member function call.
|
|
//
|
|
// There are other safeguards against such uses, but it's important
|
|
// to get this right here so that we don't end up making a
|
|
// spuriously dependent expression if we're inside a dependent
|
|
// instance method.
|
|
if (!R.empty() && (*R.begin())->isCXXClassMember()) {
|
|
bool MightBeImplicitMember;
|
|
if (!IsAddressOfOperand)
|
|
MightBeImplicitMember = true;
|
|
else if (!SS.isEmpty())
|
|
MightBeImplicitMember = false;
|
|
else if (R.isOverloadedResult())
|
|
MightBeImplicitMember = false;
|
|
else if (R.isUnresolvableResult())
|
|
MightBeImplicitMember = true;
|
|
else
|
|
MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
|
|
isa<IndirectFieldDecl>(R.getFoundDecl()) ||
|
|
isa<MSPropertyDecl>(R.getFoundDecl());
|
|
|
|
if (MightBeImplicitMember)
|
|
return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
|
|
R, TemplateArgs, S);
|
|
}
|
|
|
|
if (TemplateArgs || TemplateKWLoc.isValid()) {
|
|
|
|
// In C++1y, if this is a variable template id, then check it
|
|
// in BuildTemplateIdExpr().
|
|
// The single lookup result must be a variable template declaration.
|
|
if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
|
|
Id.TemplateId->Kind == TNK_Var_template) {
|
|
assert(R.getAsSingle<VarTemplateDecl>() &&
|
|
"There should only be one declaration found.");
|
|
}
|
|
|
|
return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
|
|
}
|
|
|
|
return BuildDeclarationNameExpr(SS, R, ADL);
|
|
}
|
|
|
|
/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
|
|
/// declaration name, generally during template instantiation.
|
|
/// There's a large number of things which don't need to be done along
|
|
/// this path.
|
|
ExprResult Sema::BuildQualifiedDeclarationNameExpr(
|
|
CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
|
|
bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
|
|
DeclContext *DC = computeDeclContext(SS, false);
|
|
if (!DC)
|
|
return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
|
|
NameInfo, /*TemplateArgs=*/nullptr);
|
|
|
|
if (RequireCompleteDeclContext(SS, DC))
|
|
return ExprError();
|
|
|
|
LookupResult R(*this, NameInfo, LookupOrdinaryName);
|
|
LookupQualifiedName(R, DC);
|
|
|
|
if (R.isAmbiguous())
|
|
return ExprError();
|
|
|
|
if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
|
|
return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
|
|
NameInfo, /*TemplateArgs=*/nullptr);
|
|
|
|
if (R.empty()) {
|
|
Diag(NameInfo.getLoc(), diag::err_no_member)
|
|
<< NameInfo.getName() << DC << SS.getRange();
|
|
return ExprError();
|
|
}
|
|
|
|
if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
|
|
// Diagnose a missing typename if this resolved unambiguously to a type in
|
|
// a dependent context. If we can recover with a type, downgrade this to
|
|
// a warning in Microsoft compatibility mode.
|
|
unsigned DiagID = diag::err_typename_missing;
|
|
if (RecoveryTSI && getLangOpts().MSVCCompat)
|
|
DiagID = diag::ext_typename_missing;
|
|
SourceLocation Loc = SS.getBeginLoc();
|
|
auto D = Diag(Loc, DiagID);
|
|
D << SS.getScopeRep() << NameInfo.getName().getAsString()
|
|
<< SourceRange(Loc, NameInfo.getEndLoc());
|
|
|
|
// Don't recover if the caller isn't expecting us to or if we're in a SFINAE
|
|
// context.
|
|
if (!RecoveryTSI)
|
|
return ExprError();
|
|
|
|
// Only issue the fixit if we're prepared to recover.
|
|
D << FixItHint::CreateInsertion(Loc, "typename ");
|
|
|
|
// Recover by pretending this was an elaborated type.
|
|
QualType Ty = Context.getTypeDeclType(TD);
|
|
TypeLocBuilder TLB;
|
|
TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
|
|
|
|
QualType ET = getElaboratedType(ETK_None, SS, Ty);
|
|
ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
|
|
QTL.setElaboratedKeywordLoc(SourceLocation());
|
|
QTL.setQualifierLoc(SS.getWithLocInContext(Context));
|
|
|
|
*RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
|
|
|
|
return ExprEmpty();
|
|
}
|
|
|
|
// Defend against this resolving to an implicit member access. We usually
|
|
// won't get here if this might be a legitimate a class member (we end up in
|
|
// BuildMemberReferenceExpr instead), but this can be valid if we're forming
|
|
// a pointer-to-member or in an unevaluated context in C++11.
|
|
if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
|
|
return BuildPossibleImplicitMemberExpr(SS,
|
|
/*TemplateKWLoc=*/SourceLocation(),
|
|
R, /*TemplateArgs=*/nullptr, S);
|
|
|
|
return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
|
|
}
|
|
|
|
/// LookupInObjCMethod - The parser has read a name in, and Sema has
|
|
/// detected that we're currently inside an ObjC method. Perform some
|
|
/// additional lookup.
|
|
///
|
|
/// Ideally, most of this would be done by lookup, but there's
|
|
/// actually quite a lot of extra work involved.
|
|
///
|
|
/// Returns a null sentinel to indicate trivial success.
|
|
ExprResult
|
|
Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
|
|
IdentifierInfo *II, bool AllowBuiltinCreation) {
|
|
SourceLocation Loc = Lookup.getNameLoc();
|
|
ObjCMethodDecl *CurMethod = getCurMethodDecl();
|
|
|
|
// Check for error condition which is already reported.
|
|
if (!CurMethod)
|
|
return ExprError();
|
|
|
|
// There are two cases to handle here. 1) scoped lookup could have failed,
|
|
// in which case we should look for an ivar. 2) scoped lookup could have
|
|
// found a decl, but that decl is outside the current instance method (i.e.
|
|
// a global variable). In these two cases, we do a lookup for an ivar with
|
|
// this name, if the lookup sucedes, we replace it our current decl.
|
|
|
|
// If we're in a class method, we don't normally want to look for
|
|
// ivars. But if we don't find anything else, and there's an
|
|
// ivar, that's an error.
|
|
bool IsClassMethod = CurMethod->isClassMethod();
|
|
|
|
bool LookForIvars;
|
|
if (Lookup.empty())
|
|
LookForIvars = true;
|
|
else if (IsClassMethod)
|
|
LookForIvars = false;
|
|
else
|
|
LookForIvars = (Lookup.isSingleResult() &&
|
|
Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
|
|
ObjCInterfaceDecl *IFace = nullptr;
|
|
if (LookForIvars) {
|
|
IFace = CurMethod->getClassInterface();
|
|
ObjCInterfaceDecl *ClassDeclared;
|
|
ObjCIvarDecl *IV = nullptr;
|
|
if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
|
|
// Diagnose using an ivar in a class method.
|
|
if (IsClassMethod)
|
|
return ExprError(Diag(Loc, diag::err_ivar_use_in_class_method)
|
|
<< IV->getDeclName());
|
|
|
|
// If we're referencing an invalid decl, just return this as a silent
|
|
// error node. The error diagnostic was already emitted on the decl.
|
|
if (IV->isInvalidDecl())
|
|
return ExprError();
|
|
|
|
// Check if referencing a field with __attribute__((deprecated)).
|
|
if (DiagnoseUseOfDecl(IV, Loc))
|
|
return ExprError();
|
|
|
|
// Diagnose the use of an ivar outside of the declaring class.
|
|
if (IV->getAccessControl() == ObjCIvarDecl::Private &&
|
|
!declaresSameEntity(ClassDeclared, IFace) &&
|
|
!getLangOpts().DebuggerSupport)
|
|
Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName();
|
|
|
|
// FIXME: This should use a new expr for a direct reference, don't
|
|
// turn this into Self->ivar, just return a BareIVarExpr or something.
|
|
IdentifierInfo &II = Context.Idents.get("self");
|
|
UnqualifiedId SelfName;
|
|
SelfName.setIdentifier(&II, SourceLocation());
|
|
SelfName.setKind(UnqualifiedIdKind::IK_ImplicitSelfParam);
|
|
CXXScopeSpec SelfScopeSpec;
|
|
SourceLocation TemplateKWLoc;
|
|
ExprResult SelfExpr =
|
|
ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName,
|
|
/*HasTrailingLParen=*/false,
|
|
/*IsAddressOfOperand=*/false);
|
|
if (SelfExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
SelfExpr = DefaultLvalueConversion(SelfExpr.get());
|
|
if (SelfExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
MarkAnyDeclReferenced(Loc, IV, true);
|
|
|
|
ObjCMethodFamily MF = CurMethod->getMethodFamily();
|
|
if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
|
|
!IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
|
|
Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
|
|
|
|
ObjCIvarRefExpr *Result = new (Context)
|
|
ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
|
|
IV->getLocation(), SelfExpr.get(), true, true);
|
|
|
|
if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
|
|
if (!isUnevaluatedContext() &&
|
|
!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
|
|
getCurFunction()->recordUseOfWeak(Result);
|
|
}
|
|
if (getLangOpts().ObjCAutoRefCount)
|
|
if (const BlockDecl *BD = CurContext->getInnermostBlockDecl())
|
|
ImplicitlyRetainedSelfLocs.push_back({Loc, BD});
|
|
|
|
return Result;
|
|
}
|
|
} else if (CurMethod->isInstanceMethod()) {
|
|
// We should warn if a local variable hides an ivar.
|
|
if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
|
|
ObjCInterfaceDecl *ClassDeclared;
|
|
if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
|
|
if (IV->getAccessControl() != ObjCIvarDecl::Private ||
|
|
declaresSameEntity(IFace, ClassDeclared))
|
|
Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
|
|
}
|
|
}
|
|
} else if (Lookup.isSingleResult() &&
|
|
Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
|
|
// If accessing a stand-alone ivar in a class method, this is an error.
|
|
if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
|
|
return ExprError(Diag(Loc, diag::err_ivar_use_in_class_method)
|
|
<< IV->getDeclName());
|
|
}
|
|
|
|
if (Lookup.empty() && II && AllowBuiltinCreation) {
|
|
// FIXME. Consolidate this with similar code in LookupName.
|
|
if (unsigned BuiltinID = II->getBuiltinID()) {
|
|
if (!(getLangOpts().CPlusPlus &&
|
|
Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
|
|
NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
|
|
S, Lookup.isForRedeclaration(),
|
|
Lookup.getNameLoc());
|
|
if (D) Lookup.addDecl(D);
|
|
}
|
|
}
|
|
}
|
|
// Sentinel value saying that we didn't do anything special.
|
|
return ExprResult((Expr *)nullptr);
|
|
}
|
|
|
|
/// Cast a base object to a member's actual type.
|
|
///
|
|
/// Logically this happens in three phases:
|
|
///
|
|
/// * First we cast from the base type to the naming class.
|
|
/// The naming class is the class into which we were looking
|
|
/// when we found the member; it's the qualifier type if a
|
|
/// qualifier was provided, and otherwise it's the base type.
|
|
///
|
|
/// * Next we cast from the naming class to the declaring class.
|
|
/// If the member we found was brought into a class's scope by
|
|
/// a using declaration, this is that class; otherwise it's
|
|
/// the class declaring the member.
|
|
///
|
|
/// * Finally we cast from the declaring class to the "true"
|
|
/// declaring class of the member. This conversion does not
|
|
/// obey access control.
|
|
ExprResult
|
|
Sema::PerformObjectMemberConversion(Expr *From,
|
|
NestedNameSpecifier *Qualifier,
|
|
NamedDecl *FoundDecl,
|
|
NamedDecl *Member) {
|
|
CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
|
|
if (!RD)
|
|
return From;
|
|
|
|
QualType DestRecordType;
|
|
QualType DestType;
|
|
QualType FromRecordType;
|
|
QualType FromType = From->getType();
|
|
bool PointerConversions = false;
|
|
if (isa<FieldDecl>(Member)) {
|
|
DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
|
|
auto FromPtrType = FromType->getAs<PointerType>();
|
|
DestRecordType = Context.getAddrSpaceQualType(
|
|
DestRecordType, FromPtrType
|
|
? FromType->getPointeeType().getAddressSpace()
|
|
: FromType.getAddressSpace());
|
|
|
|
if (FromPtrType) {
|
|
DestType = Context.getPointerType(DestRecordType);
|
|
FromRecordType = FromPtrType->getPointeeType();
|
|
PointerConversions = true;
|
|
} else {
|
|
DestType = DestRecordType;
|
|
FromRecordType = FromType;
|
|
}
|
|
} else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
|
|
if (Method->isStatic())
|
|
return From;
|
|
|
|
DestType = Method->getThisType();
|
|
DestRecordType = DestType->getPointeeType();
|
|
|
|
if (FromType->getAs<PointerType>()) {
|
|
FromRecordType = FromType->getPointeeType();
|
|
PointerConversions = true;
|
|
} else {
|
|
FromRecordType = FromType;
|
|
DestType = DestRecordType;
|
|
}
|
|
} else {
|
|
// No conversion necessary.
|
|
return From;
|
|
}
|
|
|
|
if (DestType->isDependentType() || FromType->isDependentType())
|
|
return From;
|
|
|
|
// If the unqualified types are the same, no conversion is necessary.
|
|
if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
|
|
return From;
|
|
|
|
SourceRange FromRange = From->getSourceRange();
|
|
SourceLocation FromLoc = FromRange.getBegin();
|
|
|
|
ExprValueKind VK = From->getValueKind();
|
|
|
|
// C++ [class.member.lookup]p8:
|
|
// [...] Ambiguities can often be resolved by qualifying a name with its
|
|
// class name.
|
|
//
|
|
// If the member was a qualified name and the qualified referred to a
|
|
// specific base subobject type, we'll cast to that intermediate type
|
|
// first and then to the object in which the member is declared. That allows
|
|
// one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
|
|
//
|
|
// class Base { public: int x; };
|
|
// class Derived1 : public Base { };
|
|
// class Derived2 : public Base { };
|
|
// class VeryDerived : public Derived1, public Derived2 { void f(); };
|
|
//
|
|
// void VeryDerived::f() {
|
|
// x = 17; // error: ambiguous base subobjects
|
|
// Derived1::x = 17; // okay, pick the Base subobject of Derived1
|
|
// }
|
|
if (Qualifier && Qualifier->getAsType()) {
|
|
QualType QType = QualType(Qualifier->getAsType(), 0);
|
|
assert(QType->isRecordType() && "lookup done with non-record type");
|
|
|
|
QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
|
|
|
|
// In C++98, the qualifier type doesn't actually have to be a base
|
|
// type of the object type, in which case we just ignore it.
|
|
// Otherwise build the appropriate casts.
|
|
if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
|
|
CXXCastPath BasePath;
|
|
if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
|
|
FromLoc, FromRange, &BasePath))
|
|
return ExprError();
|
|
|
|
if (PointerConversions)
|
|
QType = Context.getPointerType(QType);
|
|
From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
|
|
VK, &BasePath).get();
|
|
|
|
FromType = QType;
|
|
FromRecordType = QRecordType;
|
|
|
|
// If the qualifier type was the same as the destination type,
|
|
// we're done.
|
|
if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
|
|
return From;
|
|
}
|
|
}
|
|
|
|
bool IgnoreAccess = false;
|
|
|
|
// If we actually found the member through a using declaration, cast
|
|
// down to the using declaration's type.
|
|
//
|
|
// Pointer equality is fine here because only one declaration of a
|
|
// class ever has member declarations.
|
|
if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
|
|
assert(isa<UsingShadowDecl>(FoundDecl));
|
|
QualType URecordType = Context.getTypeDeclType(
|
|
cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
|
|
|
|
// We only need to do this if the naming-class to declaring-class
|
|
// conversion is non-trivial.
|
|
if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
|
|
assert(IsDerivedFrom(FromLoc, FromRecordType, URecordType));
|
|
CXXCastPath BasePath;
|
|
if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
|
|
FromLoc, FromRange, &BasePath))
|
|
return ExprError();
|
|
|
|
QualType UType = URecordType;
|
|
if (PointerConversions)
|
|
UType = Context.getPointerType(UType);
|
|
From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
|
|
VK, &BasePath).get();
|
|
FromType = UType;
|
|
FromRecordType = URecordType;
|
|
}
|
|
|
|
// We don't do access control for the conversion from the
|
|
// declaring class to the true declaring class.
|
|
IgnoreAccess = true;
|
|
}
|
|
|
|
CXXCastPath BasePath;
|
|
if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
|
|
FromLoc, FromRange, &BasePath,
|
|
IgnoreAccess))
|
|
return ExprError();
|
|
|
|
return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
|
|
VK, &BasePath);
|
|
}
|
|
|
|
bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
|
|
const LookupResult &R,
|
|
bool HasTrailingLParen) {
|
|
// Only when used directly as the postfix-expression of a call.
|
|
if (!HasTrailingLParen)
|
|
return false;
|
|
|
|
// Never if a scope specifier was provided.
|
|
if (SS.isSet())
|
|
return false;
|
|
|
|
// Only in C++ or ObjC++.
|
|
if (!getLangOpts().CPlusPlus)
|
|
return false;
|
|
|
|
// Turn off ADL when we find certain kinds of declarations during
|
|
// normal lookup:
|
|
for (NamedDecl *D : R) {
|
|
// C++0x [basic.lookup.argdep]p3:
|
|
// -- a declaration of a class member
|
|
// Since using decls preserve this property, we check this on the
|
|
// original decl.
|
|
if (D->isCXXClassMember())
|
|
return false;
|
|
|
|
// C++0x [basic.lookup.argdep]p3:
|
|
// -- a block-scope function declaration that is not a
|
|
// using-declaration
|
|
// NOTE: we also trigger this for function templates (in fact, we
|
|
// don't check the decl type at all, since all other decl types
|
|
// turn off ADL anyway).
|
|
if (isa<UsingShadowDecl>(D))
|
|
D = cast<UsingShadowDecl>(D)->getTargetDecl();
|
|
else if (D->getLexicalDeclContext()->isFunctionOrMethod())
|
|
return false;
|
|
|
|
// C++0x [basic.lookup.argdep]p3:
|
|
// -- a declaration that is neither a function or a function
|
|
// template
|
|
// And also for builtin functions.
|
|
if (isa<FunctionDecl>(D)) {
|
|
FunctionDecl *FDecl = cast<FunctionDecl>(D);
|
|
|
|
// But also builtin functions.
|
|
if (FDecl->getBuiltinID() && FDecl->isImplicit())
|
|
return false;
|
|
} else if (!isa<FunctionTemplateDecl>(D))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/// Diagnoses obvious problems with the use of the given declaration
|
|
/// as an expression. This is only actually called for lookups that
|
|
/// were not overloaded, and it doesn't promise that the declaration
|
|
/// will in fact be used.
|
|
static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
|
|
if (D->isInvalidDecl())
|
|
return true;
|
|
|
|
if (isa<TypedefNameDecl>(D)) {
|
|
S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
|
|
return true;
|
|
}
|
|
|
|
if (isa<ObjCInterfaceDecl>(D)) {
|
|
S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
|
|
return true;
|
|
}
|
|
|
|
if (isa<NamespaceDecl>(D)) {
|
|
S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Certain multiversion types should be treated as overloaded even when there is
|
|
// only one result.
|
|
static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
|
|
assert(R.isSingleResult() && "Expected only a single result");
|
|
const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
|
|
return FD &&
|
|
(FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
|
|
}
|
|
|
|
ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
|
|
LookupResult &R, bool NeedsADL,
|
|
bool AcceptInvalidDecl) {
|
|
// If this is a single, fully-resolved result and we don't need ADL,
|
|
// just build an ordinary singleton decl ref.
|
|
if (!NeedsADL && R.isSingleResult() &&
|
|
!R.getAsSingle<FunctionTemplateDecl>() &&
|
|
!ShouldLookupResultBeMultiVersionOverload(R))
|
|
return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
|
|
R.getRepresentativeDecl(), nullptr,
|
|
AcceptInvalidDecl);
|
|
|
|
// We only need to check the declaration if there's exactly one
|
|
// result, because in the overloaded case the results can only be
|
|
// functions and function templates.
|
|
if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
|
|
CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
|
|
return ExprError();
|
|
|
|
// Otherwise, just build an unresolved lookup expression. Suppress
|
|
// any lookup-related diagnostics; we'll hash these out later, when
|
|
// we've picked a target.
|
|
R.suppressDiagnostics();
|
|
|
|
UnresolvedLookupExpr *ULE
|
|
= UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
|
|
SS.getWithLocInContext(Context),
|
|
R.getLookupNameInfo(),
|
|
NeedsADL, R.isOverloadedResult(),
|
|
R.begin(), R.end());
|
|
|
|
return ULE;
|
|
}
|
|
|
|
static void
|
|
diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
|
|
ValueDecl *var, DeclContext *DC);
|
|
|
|
/// Complete semantic analysis for a reference to the given declaration.
|
|
ExprResult Sema::BuildDeclarationNameExpr(
|
|
const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
|
|
NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
|
|
bool AcceptInvalidDecl) {
|
|
assert(D && "Cannot refer to a NULL declaration");
|
|
assert(!isa<FunctionTemplateDecl>(D) &&
|
|
"Cannot refer unambiguously to a function template");
|
|
|
|
SourceLocation Loc = NameInfo.getLoc();
|
|
if (CheckDeclInExpr(*this, Loc, D))
|
|
return ExprError();
|
|
|
|
if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
|
|
// Specifically diagnose references to class templates that are missing
|
|
// a template argument list.
|
|
diagnoseMissingTemplateArguments(TemplateName(Template), Loc);
|
|
return ExprError();
|
|
}
|
|
|
|
// Make sure that we're referring to a value.
|
|
ValueDecl *VD = dyn_cast<ValueDecl>(D);
|
|
if (!VD) {
|
|
Diag(Loc, diag::err_ref_non_value)
|
|
<< D << SS.getRange();
|
|
Diag(D->getLocation(), diag::note_declared_at);
|
|
return ExprError();
|
|
}
|
|
|
|
// Check whether this declaration can be used. Note that we suppress
|
|
// this check when we're going to perform argument-dependent lookup
|
|
// on this function name, because this might not be the function
|
|
// that overload resolution actually selects.
|
|
if (DiagnoseUseOfDecl(VD, Loc))
|
|
return ExprError();
|
|
|
|
// Only create DeclRefExpr's for valid Decl's.
|
|
if (VD->isInvalidDecl() && !AcceptInvalidDecl)
|
|
return ExprError();
|
|
|
|
// Handle members of anonymous structs and unions. If we got here,
|
|
// and the reference is to a class member indirect field, then this
|
|
// must be the subject of a pointer-to-member expression.
|
|
if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
|
|
if (!indirectField->isCXXClassMember())
|
|
return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
|
|
indirectField);
|
|
|
|
{
|
|
QualType type = VD->getType();
|
|
if (type.isNull())
|
|
return ExprError();
|
|
if (auto *FPT = type->getAs<FunctionProtoType>()) {
|
|
// C++ [except.spec]p17:
|
|
// An exception-specification is considered to be needed when:
|
|
// - in an expression, the function is the unique lookup result or
|
|
// the selected member of a set of overloaded functions.
|
|
ResolveExceptionSpec(Loc, FPT);
|
|
type = VD->getType();
|
|
}
|
|
ExprValueKind valueKind = VK_RValue;
|
|
|
|
switch (D->getKind()) {
|
|
// Ignore all the non-ValueDecl kinds.
|
|
#define ABSTRACT_DECL(kind)
|
|
#define VALUE(type, base)
|
|
#define DECL(type, base) \
|
|
case Decl::type:
|
|
#include "clang/AST/DeclNodes.inc"
|
|
llvm_unreachable("invalid value decl kind");
|
|
|
|
// These shouldn't make it here.
|
|
case Decl::ObjCAtDefsField:
|
|
llvm_unreachable("forming non-member reference to ivar?");
|
|
|
|
// Enum constants are always r-values and never references.
|
|
// Unresolved using declarations are dependent.
|
|
case Decl::EnumConstant:
|
|
case Decl::UnresolvedUsingValue:
|
|
case Decl::OMPDeclareReduction:
|
|
case Decl::OMPDeclareMapper:
|
|
valueKind = VK_RValue;
|
|
break;
|
|
|
|
// Fields and indirect fields that got here must be for
|
|
// pointer-to-member expressions; we just call them l-values for
|
|
// internal consistency, because this subexpression doesn't really
|
|
// exist in the high-level semantics.
|
|
case Decl::Field:
|
|
case Decl::IndirectField:
|
|
case Decl::ObjCIvar:
|
|
assert(getLangOpts().CPlusPlus &&
|
|
"building reference to field in C?");
|
|
|
|
// These can't have reference type in well-formed programs, but
|
|
// for internal consistency we do this anyway.
|
|
type = type.getNonReferenceType();
|
|
valueKind = VK_LValue;
|
|
break;
|
|
|
|
// Non-type template parameters are either l-values or r-values
|
|
// depending on the type.
|
|
case Decl::NonTypeTemplateParm: {
|
|
if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
|
|
type = reftype->getPointeeType();
|
|
valueKind = VK_LValue; // even if the parameter is an r-value reference
|
|
break;
|
|
}
|
|
|
|
// For non-references, we need to strip qualifiers just in case
|
|
// the template parameter was declared as 'const int' or whatever.
|
|
valueKind = VK_RValue;
|
|
type = type.getUnqualifiedType();
|
|
break;
|
|
}
|
|
|
|
case Decl::Var:
|
|
case Decl::VarTemplateSpecialization:
|
|
case Decl::VarTemplatePartialSpecialization:
|
|
case Decl::Decomposition:
|
|
case Decl::OMPCapturedExpr:
|
|
// In C, "extern void blah;" is valid and is an r-value.
|
|
if (!getLangOpts().CPlusPlus &&
|
|
!type.hasQualifiers() &&
|
|
type->isVoidType()) {
|
|
valueKind = VK_RValue;
|
|
break;
|
|
}
|
|
LLVM_FALLTHROUGH;
|
|
|
|
case Decl::ImplicitParam:
|
|
case Decl::ParmVar: {
|
|
// These are always l-values.
|
|
valueKind = VK_LValue;
|
|
type = type.getNonReferenceType();
|
|
|
|
// FIXME: Does the addition of const really only apply in
|
|
// potentially-evaluated contexts? Since the variable isn't actually
|
|
// captured in an unevaluated context, it seems that the answer is no.
|
|
if (!isUnevaluatedContext()) {
|
|
QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
|
|
if (!CapturedType.isNull())
|
|
type = CapturedType;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case Decl::Binding: {
|
|
// These are always lvalues.
|
|
valueKind = VK_LValue;
|
|
type = type.getNonReferenceType();
|
|
// FIXME: Support lambda-capture of BindingDecls, once CWG actually
|
|
// decides how that's supposed to work.
|
|
auto *BD = cast<BindingDecl>(VD);
|
|
if (BD->getDeclContext() != CurContext) {
|
|
auto *DD = dyn_cast_or_null<VarDecl>(BD->getDecomposedDecl());
|
|
if (DD && DD->hasLocalStorage())
|
|
diagnoseUncapturableValueReference(*this, Loc, BD, CurContext);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Decl::Function: {
|
|
if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
|
|
if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
|
|
type = Context.BuiltinFnTy;
|
|
valueKind = VK_RValue;
|
|
break;
|
|
}
|
|
}
|
|
|
|
const FunctionType *fty = type->castAs<FunctionType>();
|
|
|
|
// If we're referring to a function with an __unknown_anytype
|
|
// result type, make the entire expression __unknown_anytype.
|
|
if (fty->getReturnType() == Context.UnknownAnyTy) {
|
|
type = Context.UnknownAnyTy;
|
|
valueKind = VK_RValue;
|
|
break;
|
|
}
|
|
|
|
// Functions are l-values in C++.
|
|
if (getLangOpts().CPlusPlus) {
|
|
valueKind = VK_LValue;
|
|
break;
|
|
}
|
|
|
|
// C99 DR 316 says that, if a function type comes from a
|
|
// function definition (without a prototype), that type is only
|
|
// used for checking compatibility. Therefore, when referencing
|
|
// the function, we pretend that we don't have the full function
|
|
// type.
|
|
if (!cast<FunctionDecl>(VD)->hasPrototype() &&
|
|
isa<FunctionProtoType>(fty))
|
|
type = Context.getFunctionNoProtoType(fty->getReturnType(),
|
|
fty->getExtInfo());
|
|
|
|
// Functions are r-values in C.
|
|
valueKind = VK_RValue;
|
|
break;
|
|
}
|
|
|
|
case Decl::CXXDeductionGuide:
|
|
llvm_unreachable("building reference to deduction guide");
|
|
|
|
case Decl::MSProperty:
|
|
valueKind = VK_LValue;
|
|
break;
|
|
|
|
case Decl::CXXMethod:
|
|
// If we're referring to a method with an __unknown_anytype
|
|
// result type, make the entire expression __unknown_anytype.
|
|
// This should only be possible with a type written directly.
|
|
if (const FunctionProtoType *proto
|
|
= dyn_cast<FunctionProtoType>(VD->getType()))
|
|
if (proto->getReturnType() == Context.UnknownAnyTy) {
|
|
type = Context.UnknownAnyTy;
|
|
valueKind = VK_RValue;
|
|
break;
|
|
}
|
|
|
|
// C++ methods are l-values if static, r-values if non-static.
|
|
if (cast<CXXMethodDecl>(VD)->isStatic()) {
|
|
valueKind = VK_LValue;
|
|
break;
|
|
}
|
|
LLVM_FALLTHROUGH;
|
|
|
|
case Decl::CXXConversion:
|
|
case Decl::CXXDestructor:
|
|
case Decl::CXXConstructor:
|
|
valueKind = VK_RValue;
|
|
break;
|
|
}
|
|
|
|
return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
|
|
TemplateArgs);
|
|
}
|
|
}
|
|
|
|
static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
|
|
SmallString<32> &Target) {
|
|
Target.resize(CharByteWidth * (Source.size() + 1));
|
|
char *ResultPtr = &Target[0];
|
|
const llvm::UTF8 *ErrorPtr;
|
|
bool success =
|
|
llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
|
|
(void)success;
|
|
assert(success);
|
|
Target.resize(ResultPtr - &Target[0]);
|
|
}
|
|
|
|
ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
|
|
PredefinedExpr::IdentKind IK) {
|
|
// Pick the current block, lambda, captured statement or function.
|
|
Decl *currentDecl = nullptr;
|
|
if (const BlockScopeInfo *BSI = getCurBlock())
|
|
currentDecl = BSI->TheDecl;
|
|
else if (const LambdaScopeInfo *LSI = getCurLambda())
|
|
currentDecl = LSI->CallOperator;
|
|
else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
|
|
currentDecl = CSI->TheCapturedDecl;
|
|
else
|
|
currentDecl = getCurFunctionOrMethodDecl();
|
|
|
|
if (!currentDecl) {
|
|
Diag(Loc, diag::ext_predef_outside_function);
|
|
currentDecl = Context.getTranslationUnitDecl();
|
|
}
|
|
|
|
QualType ResTy;
|
|
StringLiteral *SL = nullptr;
|
|
if (cast<DeclContext>(currentDecl)->isDependentContext())
|
|
ResTy = Context.DependentTy;
|
|
else {
|
|
// Pre-defined identifiers are of type char[x], where x is the length of
|
|
// the string.
|
|
auto Str = PredefinedExpr::ComputeName(IK, currentDecl);
|
|
unsigned Length = Str.length();
|
|
|
|
llvm::APInt LengthI(32, Length + 1);
|
|
if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) {
|
|
ResTy =
|
|
Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
|
|
SmallString<32> RawChars;
|
|
ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
|
|
Str, RawChars);
|
|
ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal,
|
|
/*IndexTypeQuals*/ 0);
|
|
SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
|
|
/*Pascal*/ false, ResTy, Loc);
|
|
} else {
|
|
ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
|
|
ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal,
|
|
/*IndexTypeQuals*/ 0);
|
|
SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
|
|
/*Pascal*/ false, ResTy, Loc);
|
|
}
|
|
}
|
|
|
|
return PredefinedExpr::Create(Context, Loc, ResTy, IK, SL);
|
|
}
|
|
|
|
ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
|
|
PredefinedExpr::IdentKind IK;
|
|
|
|
switch (Kind) {
|
|
default: llvm_unreachable("Unknown simple primary expr!");
|
|
case tok::kw___func__: IK = PredefinedExpr::Func; break; // [C99 6.4.2.2]
|
|
case tok::kw___FUNCTION__: IK = PredefinedExpr::Function; break;
|
|
case tok::kw___FUNCDNAME__: IK = PredefinedExpr::FuncDName; break; // [MS]
|
|
case tok::kw___FUNCSIG__: IK = PredefinedExpr::FuncSig; break; // [MS]
|
|
case tok::kw_L__FUNCTION__: IK = PredefinedExpr::LFunction; break; // [MS]
|
|
case tok::kw_L__FUNCSIG__: IK = PredefinedExpr::LFuncSig; break; // [MS]
|
|
case tok::kw___PRETTY_FUNCTION__: IK = PredefinedExpr::PrettyFunction; break;
|
|
}
|
|
|
|
return BuildPredefinedExpr(Loc, IK);
|
|
}
|
|
|
|
ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
|
|
SmallString<16> CharBuffer;
|
|
bool Invalid = false;
|
|
StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
|
|
if (Invalid)
|
|
return ExprError();
|
|
|
|
CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
|
|
PP, Tok.getKind());
|
|
if (Literal.hadError())
|
|
return ExprError();
|
|
|
|
QualType Ty;
|
|
if (Literal.isWide())
|
|
Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
|
|
else if (Literal.isUTF8() && getLangOpts().Char8)
|
|
Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
|
|
else if (Literal.isUTF16())
|
|
Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
|
|
else if (Literal.isUTF32())
|
|
Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
|
|
else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
|
|
Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++.
|
|
else
|
|
Ty = Context.CharTy; // 'x' -> char in C++
|
|
|
|
CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
|
|
if (Literal.isWide())
|
|
Kind = CharacterLiteral::Wide;
|
|
else if (Literal.isUTF16())
|
|
Kind = CharacterLiteral::UTF16;
|
|
else if (Literal.isUTF32())
|
|
Kind = CharacterLiteral::UTF32;
|
|
else if (Literal.isUTF8())
|
|
Kind = CharacterLiteral::UTF8;
|
|
|
|
Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
|
|
Tok.getLocation());
|
|
|
|
if (Literal.getUDSuffix().empty())
|
|
return Lit;
|
|
|
|
// We're building a user-defined literal.
|
|
IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
|
|
SourceLocation UDSuffixLoc =
|
|
getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
|
|
|
|
// Make sure we're allowed user-defined literals here.
|
|
if (!UDLScope)
|
|
return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
|
|
|
|
// C++11 [lex.ext]p6: The literal L is treated as a call of the form
|
|
// operator "" X (ch)
|
|
return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
|
|
Lit, Tok.getLocation());
|
|
}
|
|
|
|
ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
|
|
unsigned IntSize = Context.getTargetInfo().getIntWidth();
|
|
return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
|
|
Context.IntTy, Loc);
|
|
}
|
|
|
|
static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
|
|
QualType Ty, SourceLocation Loc) {
|
|
const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
|
|
|
|
using llvm::APFloat;
|
|
APFloat Val(Format);
|
|
|
|
APFloat::opStatus result = Literal.GetFloatValue(Val);
|
|
|
|
// Overflow is always an error, but underflow is only an error if
|
|
// we underflowed to zero (APFloat reports denormals as underflow).
|
|
if ((result & APFloat::opOverflow) ||
|
|
((result & APFloat::opUnderflow) && Val.isZero())) {
|
|
unsigned diagnostic;
|
|
SmallString<20> buffer;
|
|
if (result & APFloat::opOverflow) {
|
|
diagnostic = diag::warn_float_overflow;
|
|
APFloat::getLargest(Format).toString(buffer);
|
|
} else {
|
|
diagnostic = diag::warn_float_underflow;
|
|
APFloat::getSmallest(Format).toString(buffer);
|
|
}
|
|
|
|
S.Diag(Loc, diagnostic)
|
|
<< Ty
|
|
<< StringRef(buffer.data(), buffer.size());
|
|
}
|
|
|
|
bool isExact = (result == APFloat::opOK);
|
|
return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
|
|
}
|
|
|
|
bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
|
|
assert(E && "Invalid expression");
|
|
|
|
if (E->isValueDependent())
|
|
return false;
|
|
|
|
QualType QT = E->getType();
|
|
if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
|
|
Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
|
|
return true;
|
|
}
|
|
|
|
llvm::APSInt ValueAPS;
|
|
ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
|
|
|
|
if (R.isInvalid())
|
|
return true;
|
|
|
|
bool ValueIsPositive = ValueAPS.isStrictlyPositive();
|
|
if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
|
|
Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
|
|
<< ValueAPS.toString(10) << ValueIsPositive;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
|
|
// Fast path for a single digit (which is quite common). A single digit
|
|
// cannot have a trigraph, escaped newline, radix prefix, or suffix.
|
|
if (Tok.getLength() == 1) {
|
|
const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
|
|
return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
|
|
}
|
|
|
|
SmallString<128> SpellingBuffer;
|
|
// NumericLiteralParser wants to overread by one character. Add padding to
|
|
// the buffer in case the token is copied to the buffer. If getSpelling()
|
|
// returns a StringRef to the memory buffer, it should have a null char at
|
|
// the EOF, so it is also safe.
|
|
SpellingBuffer.resize(Tok.getLength() + 1);
|
|
|
|
// Get the spelling of the token, which eliminates trigraphs, etc.
|
|
bool Invalid = false;
|
|
StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
|
|
if (Invalid)
|
|
return ExprError();
|
|
|
|
NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP);
|
|
if (Literal.hadError)
|
|
return ExprError();
|
|
|
|
if (Literal.hasUDSuffix()) {
|
|
// We're building a user-defined literal.
|
|
IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
|
|
SourceLocation UDSuffixLoc =
|
|
getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
|
|
|
|
// Make sure we're allowed user-defined literals here.
|
|
if (!UDLScope)
|
|
return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
|
|
|
|
QualType CookedTy;
|
|
if (Literal.isFloatingLiteral()) {
|
|
// C++11 [lex.ext]p4: If S contains a literal operator with parameter type
|
|
// long double, the literal is treated as a call of the form
|
|
// operator "" X (f L)
|
|
CookedTy = Context.LongDoubleTy;
|
|
} else {
|
|
// C++11 [lex.ext]p3: If S contains a literal operator with parameter type
|
|
// unsigned long long, the literal is treated as a call of the form
|
|
// operator "" X (n ULL)
|
|
CookedTy = Context.UnsignedLongLongTy;
|
|
}
|
|
|
|
DeclarationName OpName =
|
|
Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
|
|
DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
|
|
OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
|
|
|
|
SourceLocation TokLoc = Tok.getLocation();
|
|
|
|
// Perform literal operator lookup to determine if we're building a raw
|
|
// literal or a cooked one.
|
|
LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
|
|
switch (LookupLiteralOperator(UDLScope, R, CookedTy,
|
|
/*AllowRaw*/ true, /*AllowTemplate*/ true,
|
|
/*AllowStringTemplate*/ false,
|
|
/*DiagnoseMissing*/ !Literal.isImaginary)) {
|
|
case LOLR_ErrorNoDiagnostic:
|
|
// Lookup failure for imaginary constants isn't fatal, there's still the
|
|
// GNU extension producing _Complex types.
|
|
break;
|
|
case LOLR_Error:
|
|
return ExprError();
|
|
case LOLR_Cooked: {
|
|
Expr *Lit;
|
|
if (Literal.isFloatingLiteral()) {
|
|
Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
|
|
} else {
|
|
llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
|
|
if (Literal.GetIntegerValue(ResultVal))
|
|
Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
|
|
<< /* Unsigned */ 1;
|
|
Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
|
|
Tok.getLocation());
|
|
}
|
|
return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
|
|
}
|
|
|
|
case LOLR_Raw: {
|
|
// C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
|
|
// literal is treated as a call of the form
|
|
// operator "" X ("n")
|
|
unsigned Length = Literal.getUDSuffixOffset();
|
|
QualType StrTy = Context.getConstantArrayType(
|
|
Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
|
|
llvm::APInt(32, Length + 1), ArrayType::Normal, 0);
|
|
Expr *Lit = StringLiteral::Create(
|
|
Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
|
|
/*Pascal*/false, StrTy, &TokLoc, 1);
|
|
return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
|
|
}
|
|
|
|
case LOLR_Template: {
|
|
// C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
|
|
// template), L is treated as a call fo the form
|
|
// operator "" X <'c1', 'c2', ... 'ck'>()
|
|
// where n is the source character sequence c1 c2 ... ck.
|
|
TemplateArgumentListInfo ExplicitArgs;
|
|
unsigned CharBits = Context.getIntWidth(Context.CharTy);
|
|
bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
|
|
llvm::APSInt Value(CharBits, CharIsUnsigned);
|
|
for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
|
|
Value = TokSpelling[I];
|
|
TemplateArgument Arg(Context, Value, Context.CharTy);
|
|
TemplateArgumentLocInfo ArgInfo;
|
|
ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
|
|
}
|
|
return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
|
|
&ExplicitArgs);
|
|
}
|
|
case LOLR_StringTemplate:
|
|
llvm_unreachable("unexpected literal operator lookup result");
|
|
}
|
|
}
|
|
|
|
Expr *Res;
|
|
|
|
if (Literal.isFixedPointLiteral()) {
|
|
QualType Ty;
|
|
|
|
if (Literal.isAccum) {
|
|
if (Literal.isHalf) {
|
|
Ty = Context.ShortAccumTy;
|
|
} else if (Literal.isLong) {
|
|
Ty = Context.LongAccumTy;
|
|
} else {
|
|
Ty = Context.AccumTy;
|
|
}
|
|
} else if (Literal.isFract) {
|
|
if (Literal.isHalf) {
|
|
Ty = Context.ShortFractTy;
|
|
} else if (Literal.isLong) {
|
|
Ty = Context.LongFractTy;
|
|
} else {
|
|
Ty = Context.FractTy;
|
|
}
|
|
}
|
|
|
|
if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);
|
|
|
|
bool isSigned = !Literal.isUnsigned;
|
|
unsigned scale = Context.getFixedPointScale(Ty);
|
|
unsigned bit_width = Context.getTypeInfo(Ty).Width;
|
|
|
|
llvm::APInt Val(bit_width, 0, isSigned);
|
|
bool Overflowed = Literal.GetFixedPointValue(Val, scale);
|
|
bool ValIsZero = Val.isNullValue() && !Overflowed;
|
|
|
|
auto MaxVal = Context.getFixedPointMax(Ty).getValue();
|
|
if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
|
|
// Clause 6.4.4 - The value of a constant shall be in the range of
|
|
// representable values for its type, with exception for constants of a
|
|
// fract type with a value of exactly 1; such a constant shall denote
|
|
// the maximal value for the type.
|
|
--Val;
|
|
else if (Val.ugt(MaxVal) || Overflowed)
|
|
Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
|
|
|
|
Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
|
|
Tok.getLocation(), scale);
|
|
} else if (Literal.isFloatingLiteral()) {
|
|
QualType Ty;
|
|
if (Literal.isHalf){
|
|
if (getOpenCLOptions().isEnabled("cl_khr_fp16"))
|
|
Ty = Context.HalfTy;
|
|
else {
|
|
Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
|
|
return ExprError();
|
|
}
|
|
} else if (Literal.isFloat)
|
|
Ty = Context.FloatTy;
|
|
else if (Literal.isLong)
|
|
Ty = Context.LongDoubleTy;
|
|
else if (Literal.isFloat16)
|
|
Ty = Context.Float16Ty;
|
|
else if (Literal.isFloat128)
|
|
Ty = Context.Float128Ty;
|
|
else
|
|
Ty = Context.DoubleTy;
|
|
|
|
Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
|
|
|
|
if (Ty == Context.DoubleTy) {
|
|
if (getLangOpts().SinglePrecisionConstants) {
|
|
const BuiltinType *BTy = Ty->getAs<BuiltinType>();
|
|
if (BTy->getKind() != BuiltinType::Float) {
|
|
Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
|
|
}
|
|
} else if (getLangOpts().OpenCL &&
|
|
!getOpenCLOptions().isEnabled("cl_khr_fp64")) {
|
|
// Impose single-precision float type when cl_khr_fp64 is not enabled.
|
|
Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
|
|
Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
|
|
}
|
|
}
|
|
} else if (!Literal.isIntegerLiteral()) {
|
|
return ExprError();
|
|
} else {
|
|
QualType Ty;
|
|
|
|
// 'long long' is a C99 or C++11 feature.
|
|
if (!getLangOpts().C99 && Literal.isLongLong) {
|
|
if (getLangOpts().CPlusPlus)
|
|
Diag(Tok.getLocation(),
|
|
getLangOpts().CPlusPlus11 ?
|
|
diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
|
|
else
|
|
Diag(Tok.getLocation(), diag::ext_c99_longlong);
|
|
}
|
|
|
|
// Get the value in the widest-possible width.
|
|
unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
|
|
llvm::APInt ResultVal(MaxWidth, 0);
|
|
|
|
if (Literal.GetIntegerValue(ResultVal)) {
|
|
// If this value didn't fit into uintmax_t, error and force to ull.
|
|
Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
|
|
<< /* Unsigned */ 1;
|
|
Ty = Context.UnsignedLongLongTy;
|
|
assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
|
|
"long long is not intmax_t?");
|
|
} else {
|
|
// If this value fits into a ULL, try to figure out what else it fits into
|
|
// according to the rules of C99 6.4.4.1p5.
|
|
|
|
// Octal, Hexadecimal, and integers with a U suffix are allowed to
|
|
// be an unsigned int.
|
|
bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
|
|
|
|
// Check from smallest to largest, picking the smallest type we can.
|
|
unsigned Width = 0;
|
|
|
|
// Microsoft specific integer suffixes are explicitly sized.
|
|
if (Literal.MicrosoftInteger) {
|
|
if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
|
|
Width = 8;
|
|
Ty = Context.CharTy;
|
|
} else {
|
|
Width = Literal.MicrosoftInteger;
|
|
Ty = Context.getIntTypeForBitwidth(Width,
|
|
/*Signed=*/!Literal.isUnsigned);
|
|
}
|
|
}
|
|
|
|
if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong) {
|
|
// Are int/unsigned possibilities?
|
|
unsigned IntSize = Context.getTargetInfo().getIntWidth();
|
|
|
|
// Does it fit in a unsigned int?
|
|
if (ResultVal.isIntN(IntSize)) {
|
|
// Does it fit in a signed int?
|
|
if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
|
|
Ty = Context.IntTy;
|
|
else if (AllowUnsigned)
|
|
Ty = Context.UnsignedIntTy;
|
|
Width = IntSize;
|
|
}
|
|
}
|
|
|
|
// Are long/unsigned long possibilities?
|
|
if (Ty.isNull() && !Literal.isLongLong) {
|
|
unsigned LongSize = Context.getTargetInfo().getLongWidth();
|
|
|
|
// Does it fit in a unsigned long?
|
|
if (ResultVal.isIntN(LongSize)) {
|
|
// Does it fit in a signed long?
|
|
if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
|
|
Ty = Context.LongTy;
|
|
else if (AllowUnsigned)
|
|
Ty = Context.UnsignedLongTy;
|
|
// Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
|
|
// is compatible.
|
|
else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
|
|
const unsigned LongLongSize =
|
|
Context.getTargetInfo().getLongLongWidth();
|
|
Diag(Tok.getLocation(),
|
|
getLangOpts().CPlusPlus
|
|
? Literal.isLong
|
|
? diag::warn_old_implicitly_unsigned_long_cxx
|
|
: /*C++98 UB*/ diag::
|
|
ext_old_implicitly_unsigned_long_cxx
|
|
: diag::warn_old_implicitly_unsigned_long)
|
|
<< (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
|
|
: /*will be ill-formed*/ 1);
|
|
Ty = Context.UnsignedLongTy;
|
|
}
|
|
Width = LongSize;
|
|
}
|
|
}
|
|
|
|
// Check long long if needed.
|
|
if (Ty.isNull()) {
|
|
unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
|
|
|
|
// Does it fit in a unsigned long long?
|
|
if (ResultVal.isIntN(LongLongSize)) {
|
|
// Does it fit in a signed long long?
|
|
// To be compatible with MSVC, hex integer literals ending with the
|
|
// LL or i64 suffix are always signed in Microsoft mode.
|
|
if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
|
|
(getLangOpts().MSVCCompat && Literal.isLongLong)))
|
|
Ty = Context.LongLongTy;
|
|
else if (AllowUnsigned)
|
|
Ty = Context.UnsignedLongLongTy;
|
|
Width = LongLongSize;
|
|
}
|
|
}
|
|
|
|
// If we still couldn't decide a type, we probably have something that
|
|
// does not fit in a signed long long, but has no U suffix.
|
|
if (Ty.isNull()) {
|
|
Diag(Tok.getLocation(), diag::ext_integer_literal_too_large_for_signed);
|
|
Ty = Context.UnsignedLongLongTy;
|
|
Width = Context.getTargetInfo().getLongLongWidth();
|
|
}
|
|
|
|
if (ResultVal.getBitWidth() != Width)
|
|
ResultVal = ResultVal.trunc(Width);
|
|
}
|
|
Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
|
|
}
|
|
|
|
// If this is an imaginary literal, create the ImaginaryLiteral wrapper.
|
|
if (Literal.isImaginary) {
|
|
Res = new (Context) ImaginaryLiteral(Res,
|
|
Context.getComplexType(Res->getType()));
|
|
|
|
Diag(Tok.getLocation(), diag::ext_imaginary_constant);
|
|
}
|
|
return Res;
|
|
}
|
|
|
|
ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
|
|
assert(E && "ActOnParenExpr() missing expr");
|
|
return new (Context) ParenExpr(L, R, E);
|
|
}
|
|
|
|
static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
|
|
SourceLocation Loc,
|
|
SourceRange ArgRange) {
|
|
// [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
|
|
// scalar or vector data type argument..."
|
|
// Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
|
|
// type (C99 6.2.5p18) or void.
|
|
if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
|
|
S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
|
|
<< T << ArgRange;
|
|
return true;
|
|
}
|
|
|
|
assert((T->isVoidType() || !T->isIncompleteType()) &&
|
|
"Scalar types should always be complete");
|
|
return false;
|
|
}
|
|
|
|
static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
|
|
SourceLocation Loc,
|
|
SourceRange ArgRange,
|
|
UnaryExprOrTypeTrait TraitKind) {
|
|
// Invalid types must be hard errors for SFINAE in C++.
|
|
if (S.LangOpts.CPlusPlus)
|
|
return true;
|
|
|
|
// C99 6.5.3.4p1:
|
|
if (T->isFunctionType() &&
|
|
(TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
|
|
TraitKind == UETT_PreferredAlignOf)) {
|
|
// sizeof(function)/alignof(function) is allowed as an extension.
|
|
S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
|
|
<< TraitKind << ArgRange;
|
|
return false;
|
|
}
|
|
|
|
// Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
|
|
// this is an error (OpenCL v1.1 s6.3.k)
|
|
if (T->isVoidType()) {
|
|
unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
|
|
: diag::ext_sizeof_alignof_void_type;
|
|
S.Diag(Loc, DiagID) << TraitKind << ArgRange;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
|
|
SourceLocation Loc,
|
|
SourceRange ArgRange,
|
|
UnaryExprOrTypeTrait TraitKind) {
|
|
// Reject sizeof(interface) and sizeof(interface<proto>) if the
|
|
// runtime doesn't allow it.
|
|
if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
|
|
S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
|
|
<< T << (TraitKind == UETT_SizeOf)
|
|
<< ArgRange;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Check whether E is a pointer from a decayed array type (the decayed
|
|
/// pointer type is equal to T) and emit a warning if it is.
|
|
static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
|
|
Expr *E) {
|
|
// Don't warn if the operation changed the type.
|
|
if (T != E->getType())
|
|
return;
|
|
|
|
// Now look for array decays.
|
|
ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
|
|
if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
|
|
return;
|
|
|
|
S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
|
|
<< ICE->getType()
|
|
<< ICE->getSubExpr()->getType();
|
|
}
|
|
|
|
/// Check the constraints on expression operands to unary type expression
|
|
/// and type traits.
|
|
///
|
|
/// Completes any types necessary and validates the constraints on the operand
|
|
/// expression. The logic mostly mirrors the type-based overload, but may modify
|
|
/// the expression as it completes the type for that expression through template
|
|
/// instantiation, etc.
|
|
bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
|
|
UnaryExprOrTypeTrait ExprKind) {
|
|
QualType ExprTy = E->getType();
|
|
assert(!ExprTy->isReferenceType());
|
|
|
|
if (ExprKind == UETT_VecStep)
|
|
return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
|
|
E->getSourceRange());
|
|
|
|
// Whitelist some types as extensions
|
|
if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
|
|
E->getSourceRange(), ExprKind))
|
|
return false;
|
|
|
|
// 'alignof' applied to an expression only requires the base element type of
|
|
// the expression to be complete. 'sizeof' requires the expression's type to
|
|
// be complete (and will attempt to complete it if it's an array of unknown
|
|
// bound).
|
|
if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
|
|
if (RequireCompleteType(E->getExprLoc(),
|
|
Context.getBaseElementType(E->getType()),
|
|
diag::err_sizeof_alignof_incomplete_type, ExprKind,
|
|
E->getSourceRange()))
|
|
return true;
|
|
} else {
|
|
if (RequireCompleteExprType(E, diag::err_sizeof_alignof_incomplete_type,
|
|
ExprKind, E->getSourceRange()))
|
|
return true;
|
|
}
|
|
|
|
// Completing the expression's type may have changed it.
|
|
ExprTy = E->getType();
|
|
assert(!ExprTy->isReferenceType());
|
|
|
|
if (ExprTy->isFunctionType()) {
|
|
Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
|
|
<< ExprKind << E->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
// The operand for sizeof and alignof is in an unevaluated expression context,
|
|
// so side effects could result in unintended consequences.
|
|
if ((ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf ||
|
|
ExprKind == UETT_PreferredAlignOf) &&
|
|
!inTemplateInstantiation() && E->HasSideEffects(Context, false))
|
|
Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
|
|
|
|
if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
|
|
E->getSourceRange(), ExprKind))
|
|
return true;
|
|
|
|
if (ExprKind == UETT_SizeOf) {
|
|
if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
|
|
if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
|
|
QualType OType = PVD->getOriginalType();
|
|
QualType Type = PVD->getType();
|
|
if (Type->isPointerType() && OType->isArrayType()) {
|
|
Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
|
|
<< Type << OType;
|
|
Diag(PVD->getLocation(), diag::note_declared_at);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
|
|
// decays into a pointer and returns an unintended result. This is most
|
|
// likely a typo for "sizeof(array) op x".
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
|
|
warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
|
|
BO->getLHS());
|
|
warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
|
|
BO->getRHS());
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Check the constraints on operands to unary expression and type
|
|
/// traits.
|
|
///
|
|
/// This will complete any types necessary, and validate the various constraints
|
|
/// on those operands.
|
|
///
|
|
/// The UsualUnaryConversions() function is *not* called by this routine.
|
|
/// C99 6.3.2.1p[2-4] all state:
|
|
/// Except when it is the operand of the sizeof operator ...
|
|
///
|
|
/// C++ [expr.sizeof]p4
|
|
/// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
|
|
/// standard conversions are not applied to the operand of sizeof.
|
|
///
|
|
/// This policy is followed for all of the unary trait expressions.
|
|
bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
|
|
SourceLocation OpLoc,
|
|
SourceRange ExprRange,
|
|
UnaryExprOrTypeTrait ExprKind) {
|
|
if (ExprType->isDependentType())
|
|
return false;
|
|
|
|
// C++ [expr.sizeof]p2:
|
|
// When applied to a reference or a reference type, the result
|
|
// is the size of the referenced type.
|
|
// C++11 [expr.alignof]p3:
|
|
// When alignof is applied to a reference type, the result
|
|
// shall be the alignment of the referenced type.
|
|
if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
|
|
ExprType = Ref->getPointeeType();
|
|
|
|
// C11 6.5.3.4/3, C++11 [expr.alignof]p3:
|
|
// When alignof or _Alignof is applied to an array type, the result
|
|
// is the alignment of the element type.
|
|
if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
|
|
ExprKind == UETT_OpenMPRequiredSimdAlign)
|
|
ExprType = Context.getBaseElementType(ExprType);
|
|
|
|
if (ExprKind == UETT_VecStep)
|
|
return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
|
|
|
|
// Whitelist some types as extensions
|
|
if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
|
|
ExprKind))
|
|
return false;
|
|
|
|
if (RequireCompleteType(OpLoc, ExprType,
|
|
diag::err_sizeof_alignof_incomplete_type,
|
|
ExprKind, ExprRange))
|
|
return true;
|
|
|
|
if (ExprType->isFunctionType()) {
|
|
Diag(OpLoc, diag::err_sizeof_alignof_function_type)
|
|
<< ExprKind << ExprRange;
|
|
return true;
|
|
}
|
|
|
|
if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
|
|
ExprKind))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
|
|
E = E->IgnoreParens();
|
|
|
|
// Cannot know anything else if the expression is dependent.
|
|
if (E->isTypeDependent())
|
|
return false;
|
|
|
|
if (E->getObjectKind() == OK_BitField) {
|
|
S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
|
|
<< 1 << E->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
ValueDecl *D = nullptr;
|
|
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
|
|
D = DRE->getDecl();
|
|
} else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
|
|
D = ME->getMemberDecl();
|
|
}
|
|
|
|
// If it's a field, require the containing struct to have a
|
|
// complete definition so that we can compute the layout.
|
|
//
|
|
// This can happen in C++11 onwards, either by naming the member
|
|
// in a way that is not transformed into a member access expression
|
|
// (in an unevaluated operand, for instance), or by naming the member
|
|
// in a trailing-return-type.
|
|
//
|
|
// For the record, since __alignof__ on expressions is a GCC
|
|
// extension, GCC seems to permit this but always gives the
|
|
// nonsensical answer 0.
|
|
//
|
|
// We don't really need the layout here --- we could instead just
|
|
// directly check for all the appropriate alignment-lowing
|
|
// attributes --- but that would require duplicating a lot of
|
|
// logic that just isn't worth duplicating for such a marginal
|
|
// use-case.
|
|
if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
|
|
// Fast path this check, since we at least know the record has a
|
|
// definition if we can find a member of it.
|
|
if (!FD->getParent()->isCompleteDefinition()) {
|
|
S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
|
|
<< E->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, if it's a field, and the field doesn't have
|
|
// reference type, then it must have a complete type (or be a
|
|
// flexible array member, which we explicitly want to
|
|
// white-list anyway), which makes the following checks trivial.
|
|
if (!FD->getType()->isReferenceType())
|
|
return false;
|
|
}
|
|
|
|
return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
|
|
}
|
|
|
|
bool Sema::CheckVecStepExpr(Expr *E) {
|
|
E = E->IgnoreParens();
|
|
|
|
// Cannot know anything else if the expression is dependent.
|
|
if (E->isTypeDependent())
|
|
return false;
|
|
|
|
return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
|
|
}
|
|
|
|
static void captureVariablyModifiedType(ASTContext &Context, QualType T,
|
|
CapturingScopeInfo *CSI) {
|
|
assert(T->isVariablyModifiedType());
|
|
assert(CSI != nullptr);
|
|
|
|
// We're going to walk down into the type and look for VLA expressions.
|
|
do {
|
|
const Type *Ty = T.getTypePtr();
|
|
switch (Ty->getTypeClass()) {
|
|
#define TYPE(Class, Base)
|
|
#define ABSTRACT_TYPE(Class, Base)
|
|
#define NON_CANONICAL_TYPE(Class, Base)
|
|
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
|
|
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
|
|
#include "clang/AST/TypeNodes.def"
|
|
T = QualType();
|
|
break;
|
|
// These types are never variably-modified.
|
|
case Type::Builtin:
|
|
case Type::Complex:
|
|
case Type::Vector:
|
|
case Type::ExtVector:
|
|
case Type::Record:
|
|
case Type::Enum:
|
|
case Type::Elaborated:
|
|
case Type::TemplateSpecialization:
|
|
case Type::ObjCObject:
|
|
case Type::ObjCInterface:
|
|
case Type::ObjCObjectPointer:
|
|
case Type::ObjCTypeParam:
|
|
case Type::Pipe:
|
|
llvm_unreachable("type class is never variably-modified!");
|
|
case Type::Adjusted:
|
|
T = cast<AdjustedType>(Ty)->getOriginalType();
|
|
break;
|
|
case Type::Decayed:
|
|
T = cast<DecayedType>(Ty)->getPointeeType();
|
|
break;
|
|
case Type::Pointer:
|
|
T = cast<PointerType>(Ty)->getPointeeType();
|
|
break;
|
|
case Type::BlockPointer:
|
|
T = cast<BlockPointerType>(Ty)->getPointeeType();
|
|
break;
|
|
case Type::LValueReference:
|
|
case Type::RValueReference:
|
|
T = cast<ReferenceType>(Ty)->getPointeeType();
|
|
break;
|
|
case Type::MemberPointer:
|
|
T = cast<MemberPointerType>(Ty)->getPointeeType();
|
|
break;
|
|
case Type::ConstantArray:
|
|
case Type::IncompleteArray:
|
|
// Losing element qualification here is fine.
|
|
T = cast<ArrayType>(Ty)->getElementType();
|
|
break;
|
|
case Type::VariableArray: {
|
|
// Losing element qualification here is fine.
|
|
const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
|
|
|
|
// Unknown size indication requires no size computation.
|
|
// Otherwise, evaluate and record it.
|
|
if (auto Size = VAT->getSizeExpr()) {
|
|
if (!CSI->isVLATypeCaptured(VAT)) {
|
|
RecordDecl *CapRecord = nullptr;
|
|
if (auto LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
|
|
CapRecord = LSI->Lambda;
|
|
} else if (auto CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
|
|
CapRecord = CRSI->TheRecordDecl;
|
|
}
|
|
if (CapRecord) {
|
|
auto ExprLoc = Size->getExprLoc();
|
|
auto SizeType = Context.getSizeType();
|
|
// Build the non-static data member.
|
|
auto Field =
|
|
FieldDecl::Create(Context, CapRecord, ExprLoc, ExprLoc,
|
|
/*Id*/ nullptr, SizeType, /*TInfo*/ nullptr,
|
|
/*BW*/ nullptr, /*Mutable*/ false,
|
|
/*InitStyle*/ ICIS_NoInit);
|
|
Field->setImplicit(true);
|
|
Field->setAccess(AS_private);
|
|
Field->setCapturedVLAType(VAT);
|
|
CapRecord->addDecl(Field);
|
|
|
|
CSI->addVLATypeCapture(ExprLoc, SizeType);
|
|
}
|
|
}
|
|
}
|
|
T = VAT->getElementType();
|
|
break;
|
|
}
|
|
case Type::FunctionProto:
|
|
case Type::FunctionNoProto:
|
|
T = cast<FunctionType>(Ty)->getReturnType();
|
|
break;
|
|
case Type::Paren:
|
|
case Type::TypeOf:
|
|
case Type::UnaryTransform:
|
|
case Type::Attributed:
|
|
case Type::SubstTemplateTypeParm:
|
|
case Type::PackExpansion:
|
|
case Type::MacroQualified:
|
|
// Keep walking after single level desugaring.
|
|
T = T.getSingleStepDesugaredType(Context);
|
|
break;
|
|
case Type::Typedef:
|
|
T = cast<TypedefType>(Ty)->desugar();
|
|
break;
|
|
case Type::Decltype:
|
|
T = cast<DecltypeType>(Ty)->desugar();
|
|
break;
|
|
case Type::Auto:
|
|
case Type::DeducedTemplateSpecialization:
|
|
T = cast<DeducedType>(Ty)->getDeducedType();
|
|
break;
|
|
case Type::TypeOfExpr:
|
|
T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
|
|
break;
|
|
case Type::Atomic:
|
|
T = cast<AtomicType>(Ty)->getValueType();
|
|
break;
|
|
}
|
|
} while (!T.isNull() && T->isVariablyModifiedType());
|
|
}
|
|
|
|
/// Build a sizeof or alignof expression given a type operand.
|
|
ExprResult
|
|
Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
|
|
SourceLocation OpLoc,
|
|
UnaryExprOrTypeTrait ExprKind,
|
|
SourceRange R) {
|
|
if (!TInfo)
|
|
return ExprError();
|
|
|
|
QualType T = TInfo->getType();
|
|
|
|
if (!T->isDependentType() &&
|
|
CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
|
|
return ExprError();
|
|
|
|
if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) {
|
|
if (auto *TT = T->getAs<TypedefType>()) {
|
|
for (auto I = FunctionScopes.rbegin(),
|
|
E = std::prev(FunctionScopes.rend());
|
|
I != E; ++I) {
|
|
auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
|
|
if (CSI == nullptr)
|
|
break;
|
|
DeclContext *DC = nullptr;
|
|
if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
|
|
DC = LSI->CallOperator;
|
|
else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
|
|
DC = CRSI->TheCapturedDecl;
|
|
else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
|
|
DC = BSI->TheDecl;
|
|
if (DC) {
|
|
if (DC->containsDecl(TT->getDecl()))
|
|
break;
|
|
captureVariablyModifiedType(Context, T, CSI);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
|
|
return new (Context) UnaryExprOrTypeTraitExpr(
|
|
ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
|
|
}
|
|
|
|
/// Build a sizeof or alignof expression given an expression
|
|
/// operand.
|
|
ExprResult
|
|
Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
|
|
UnaryExprOrTypeTrait ExprKind) {
|
|
ExprResult PE = CheckPlaceholderExpr(E);
|
|
if (PE.isInvalid())
|
|
return ExprError();
|
|
|
|
E = PE.get();
|
|
|
|
// Verify that the operand is valid.
|
|
bool isInvalid = false;
|
|
if (E->isTypeDependent()) {
|
|
// Delay type-checking for type-dependent expressions.
|
|
} else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
|
|
isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
|
|
} else if (ExprKind == UETT_VecStep) {
|
|
isInvalid = CheckVecStepExpr(E);
|
|
} else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
|
|
Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
|
|
isInvalid = true;
|
|
} else if (E->refersToBitField()) { // C99 6.5.3.4p1.
|
|
Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
|
|
isInvalid = true;
|
|
} else {
|
|
isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
|
|
}
|
|
|
|
if (isInvalid)
|
|
return ExprError();
|
|
|
|
if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
|
|
PE = TransformToPotentiallyEvaluated(E);
|
|
if (PE.isInvalid()) return ExprError();
|
|
E = PE.get();
|
|
}
|
|
|
|
// C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
|
|
return new (Context) UnaryExprOrTypeTraitExpr(
|
|
ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
|
|
}
|
|
|
|
/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
|
|
/// expr and the same for @c alignof and @c __alignof
|
|
/// Note that the ArgRange is invalid if isType is false.
|
|
ExprResult
|
|
Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
|
|
UnaryExprOrTypeTrait ExprKind, bool IsType,
|
|
void *TyOrEx, SourceRange ArgRange) {
|
|
// If error parsing type, ignore.
|
|
if (!TyOrEx) return ExprError();
|
|
|
|
if (IsType) {
|
|
TypeSourceInfo *TInfo;
|
|
(void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
|
|
return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
|
|
}
|
|
|
|
Expr *ArgEx = (Expr *)TyOrEx;
|
|
ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
|
|
return Result;
|
|
}
|
|
|
|
static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
|
|
bool IsReal) {
|
|
if (V.get()->isTypeDependent())
|
|
return S.Context.DependentTy;
|
|
|
|
// _Real and _Imag are only l-values for normal l-values.
|
|
if (V.get()->getObjectKind() != OK_Ordinary) {
|
|
V = S.DefaultLvalueConversion(V.get());
|
|
if (V.isInvalid())
|
|
return QualType();
|
|
}
|
|
|
|
// These operators return the element type of a complex type.
|
|
if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
|
|
return CT->getElementType();
|
|
|
|
// Otherwise they pass through real integer and floating point types here.
|
|
if (V.get()->getType()->isArithmeticType())
|
|
return V.get()->getType();
|
|
|
|
// Test for placeholders.
|
|
ExprResult PR = S.CheckPlaceholderExpr(V.get());
|
|
if (PR.isInvalid()) return QualType();
|
|
if (PR.get() != V.get()) {
|
|
V = PR;
|
|
return CheckRealImagOperand(S, V, Loc, IsReal);
|
|
}
|
|
|
|
// Reject anything else.
|
|
S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
|
|
<< (IsReal ? "__real" : "__imag");
|
|
return QualType();
|
|
}
|
|
|
|
|
|
|
|
ExprResult
|
|
Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
|
|
tok::TokenKind Kind, Expr *Input) {
|
|
UnaryOperatorKind Opc;
|
|
switch (Kind) {
|
|
default: llvm_unreachable("Unknown unary op!");
|
|
case tok::plusplus: Opc = UO_PostInc; break;
|
|
case tok::minusminus: Opc = UO_PostDec; break;
|
|
}
|
|
|
|
// Since this might is a postfix expression, get rid of ParenListExprs.
|
|
ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
|
|
if (Result.isInvalid()) return ExprError();
|
|
Input = Result.get();
|
|
|
|
return BuildUnaryOp(S, OpLoc, Opc, Input);
|
|
}
|
|
|
|
/// Diagnose if arithmetic on the given ObjC pointer is illegal.
|
|
///
|
|
/// \return true on error
|
|
static bool checkArithmeticOnObjCPointer(Sema &S,
|
|
SourceLocation opLoc,
|
|
Expr *op) {
|
|
assert(op->getType()->isObjCObjectPointerType());
|
|
if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
|
|
!S.LangOpts.ObjCSubscriptingLegacyRuntime)
|
|
return false;
|
|
|
|
S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
|
|
<< op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
|
|
<< op->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
|
|
auto *BaseNoParens = Base->IgnoreParens();
|
|
if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
|
|
return MSProp->getPropertyDecl()->getType()->isArrayType();
|
|
return isa<MSPropertySubscriptExpr>(BaseNoParens);
|
|
}
|
|
|
|
ExprResult
|
|
Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
|
|
Expr *idx, SourceLocation rbLoc) {
|
|
if (base && !base->getType().isNull() &&
|
|
base->getType()->isSpecificPlaceholderType(BuiltinType::OMPArraySection))
|
|
return ActOnOMPArraySectionExpr(base, lbLoc, idx, SourceLocation(),
|
|
/*Length=*/nullptr, rbLoc);
|
|
|
|
// Since this might be a postfix expression, get rid of ParenListExprs.
|
|
if (isa<ParenListExpr>(base)) {
|
|
ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
|
|
if (result.isInvalid()) return ExprError();
|
|
base = result.get();
|
|
}
|
|
|
|
// Handle any non-overload placeholder types in the base and index
|
|
// expressions. We can't handle overloads here because the other
|
|
// operand might be an overloadable type, in which case the overload
|
|
// resolution for the operator overload should get the first crack
|
|
// at the overload.
|
|
bool IsMSPropertySubscript = false;
|
|
if (base->getType()->isNonOverloadPlaceholderType()) {
|
|
IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
|
|
if (!IsMSPropertySubscript) {
|
|
ExprResult result = CheckPlaceholderExpr(base);
|
|
if (result.isInvalid())
|
|
return ExprError();
|
|
base = result.get();
|
|
}
|
|
}
|
|
if (idx->getType()->isNonOverloadPlaceholderType()) {
|
|
ExprResult result = CheckPlaceholderExpr(idx);
|
|
if (result.isInvalid()) return ExprError();
|
|
idx = result.get();
|
|
}
|
|
|
|
// Build an unanalyzed expression if either operand is type-dependent.
|
|
if (getLangOpts().CPlusPlus &&
|
|
(base->isTypeDependent() || idx->isTypeDependent())) {
|
|
return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy,
|
|
VK_LValue, OK_Ordinary, rbLoc);
|
|
}
|
|
|
|
// MSDN, property (C++)
|
|
// https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
|
|
// This attribute can also be used in the declaration of an empty array in a
|
|
// class or structure definition. For example:
|
|
// __declspec(property(get=GetX, put=PutX)) int x[];
|
|
// The above statement indicates that x[] can be used with one or more array
|
|
// indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
|
|
// and p->x[a][b] = i will be turned into p->PutX(a, b, i);
|
|
if (IsMSPropertySubscript) {
|
|
// Build MS property subscript expression if base is MS property reference
|
|
// or MS property subscript.
|
|
return new (Context) MSPropertySubscriptExpr(
|
|
base, idx, Context.PseudoObjectTy, VK_LValue, OK_Ordinary, rbLoc);
|
|
}
|
|
|
|
// Use C++ overloaded-operator rules if either operand has record
|
|
// type. The spec says to do this if either type is *overloadable*,
|
|
// but enum types can't declare subscript operators or conversion
|
|
// operators, so there's nothing interesting for overload resolution
|
|
// to do if there aren't any record types involved.
|
|
//
|
|
// ObjC pointers have their own subscripting logic that is not tied
|
|
// to overload resolution and so should not take this path.
|
|
if (getLangOpts().CPlusPlus &&
|
|
(base->getType()->isRecordType() ||
|
|
(!base->getType()->isObjCObjectPointerType() &&
|
|
idx->getType()->isRecordType()))) {
|
|
return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
|
|
}
|
|
|
|
ExprResult Res = CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
|
|
|
|
if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
|
|
CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));
|
|
|
|
return Res;
|
|
}
|
|
|
|
void Sema::CheckAddressOfNoDeref(const Expr *E) {
|
|
ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
|
|
const Expr *StrippedExpr = E->IgnoreParenImpCasts();
|
|
|
|
// For expressions like `&(*s).b`, the base is recorded and what should be
|
|
// checked.
|
|
const MemberExpr *Member = nullptr;
|
|
while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
|
|
StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
|
|
|
|
LastRecord.PossibleDerefs.erase(StrippedExpr);
|
|
}
|
|
|
|
void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
|
|
QualType ResultTy = E->getType();
|
|
ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
|
|
|
|
// Bail if the element is an array since it is not memory access.
|
|
if (isa<ArrayType>(ResultTy))
|
|
return;
|
|
|
|
if (ResultTy->hasAttr(attr::NoDeref)) {
|
|
LastRecord.PossibleDerefs.insert(E);
|
|
return;
|
|
}
|
|
|
|
// Check if the base type is a pointer to a member access of a struct
|
|
// marked with noderef.
|
|
const Expr *Base = E->getBase();
|
|
QualType BaseTy = Base->getType();
|
|
if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
|
|
// Not a pointer access
|
|
return;
|
|
|
|
const MemberExpr *Member = nullptr;
|
|
while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
|
|
Member->isArrow())
|
|
Base = Member->getBase();
|
|
|
|
if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
|
|
if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
|
|
LastRecord.PossibleDerefs.insert(E);
|
|
}
|
|
}
|
|
|
|
ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
|
|
Expr *LowerBound,
|
|
SourceLocation ColonLoc, Expr *Length,
|
|
SourceLocation RBLoc) {
|
|
if (Base->getType()->isPlaceholderType() &&
|
|
!Base->getType()->isSpecificPlaceholderType(
|
|
BuiltinType::OMPArraySection)) {
|
|
ExprResult Result = CheckPlaceholderExpr(Base);
|
|
if (Result.isInvalid())
|
|
return ExprError();
|
|
Base = Result.get();
|
|
}
|
|
if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
|
|
ExprResult Result = CheckPlaceholderExpr(LowerBound);
|
|
if (Result.isInvalid())
|
|
return ExprError();
|
|
Result = DefaultLvalueConversion(Result.get());
|
|
if (Result.isInvalid())
|
|
return ExprError();
|
|
LowerBound = Result.get();
|
|
}
|
|
if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
|
|
ExprResult Result = CheckPlaceholderExpr(Length);
|
|
if (Result.isInvalid())
|
|
return ExprError();
|
|
Result = DefaultLvalueConversion(Result.get());
|
|
if (Result.isInvalid())
|
|
return ExprError();
|
|
Length = Result.get();
|
|
}
|
|
|
|
// Build an unanalyzed expression if either operand is type-dependent.
|
|
if (Base->isTypeDependent() ||
|
|
(LowerBound &&
|
|
(LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
|
|
(Length && (Length->isTypeDependent() || Length->isValueDependent()))) {
|
|
return new (Context)
|
|
OMPArraySectionExpr(Base, LowerBound, Length, Context.DependentTy,
|
|
VK_LValue, OK_Ordinary, ColonLoc, RBLoc);
|
|
}
|
|
|
|
// Perform default conversions.
|
|
QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
|
|
QualType ResultTy;
|
|
if (OriginalTy->isAnyPointerType()) {
|
|
ResultTy = OriginalTy->getPointeeType();
|
|
} else if (OriginalTy->isArrayType()) {
|
|
ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
|
|
} else {
|
|
return ExprError(
|
|
Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
|
|
<< Base->getSourceRange());
|
|
}
|
|
// C99 6.5.2.1p1
|
|
if (LowerBound) {
|
|
auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
|
|
LowerBound);
|
|
if (Res.isInvalid())
|
|
return ExprError(Diag(LowerBound->getExprLoc(),
|
|
diag::err_omp_typecheck_section_not_integer)
|
|
<< 0 << LowerBound->getSourceRange());
|
|
LowerBound = Res.get();
|
|
|
|
if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
|
|
LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
|
|
Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
|
|
<< 0 << LowerBound->getSourceRange();
|
|
}
|
|
if (Length) {
|
|
auto Res =
|
|
PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
|
|
if (Res.isInvalid())
|
|
return ExprError(Diag(Length->getExprLoc(),
|
|
diag::err_omp_typecheck_section_not_integer)
|
|
<< 1 << Length->getSourceRange());
|
|
Length = Res.get();
|
|
|
|
if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
|
|
Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
|
|
Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
|
|
<< 1 << Length->getSourceRange();
|
|
}
|
|
|
|
// C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
|
|
// C++ [expr.sub]p1: The type "T" shall be a completely-defined object
|
|
// type. Note that functions are not objects, and that (in C99 parlance)
|
|
// incomplete types are not object types.
|
|
if (ResultTy->isFunctionType()) {
|
|
Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
|
|
<< ResultTy << Base->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
if (RequireCompleteType(Base->getExprLoc(), ResultTy,
|
|
diag::err_omp_section_incomplete_type, Base))
|
|
return ExprError();
|
|
|
|
if (LowerBound && !OriginalTy->isAnyPointerType()) {
|
|
Expr::EvalResult Result;
|
|
if (LowerBound->EvaluateAsInt(Result, Context)) {
|
|
// OpenMP 4.5, [2.4 Array Sections]
|
|
// The array section must be a subset of the original array.
|
|
llvm::APSInt LowerBoundValue = Result.Val.getInt();
|
|
if (LowerBoundValue.isNegative()) {
|
|
Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array)
|
|
<< LowerBound->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Length) {
|
|
Expr::EvalResult Result;
|
|
if (Length->EvaluateAsInt(Result, Context)) {
|
|
// OpenMP 4.5, [2.4 Array Sections]
|
|
// The length must evaluate to non-negative integers.
|
|
llvm::APSInt LengthValue = Result.Val.getInt();
|
|
if (LengthValue.isNegative()) {
|
|
Diag(Length->getExprLoc(), diag::err_omp_section_length_negative)
|
|
<< LengthValue.toString(/*Radix=*/10, /*Signed=*/true)
|
|
<< Length->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
}
|
|
} else if (ColonLoc.isValid() &&
|
|
(OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
|
|
!OriginalTy->isVariableArrayType()))) {
|
|
// OpenMP 4.5, [2.4 Array Sections]
|
|
// When the size of the array dimension is not known, the length must be
|
|
// specified explicitly.
|
|
Diag(ColonLoc, diag::err_omp_section_length_undefined)
|
|
<< (!OriginalTy.isNull() && OriginalTy->isArrayType());
|
|
return ExprError();
|
|
}
|
|
|
|
if (!Base->getType()->isSpecificPlaceholderType(
|
|
BuiltinType::OMPArraySection)) {
|
|
ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
|
|
if (Result.isInvalid())
|
|
return ExprError();
|
|
Base = Result.get();
|
|
}
|
|
return new (Context)
|
|
OMPArraySectionExpr(Base, LowerBound, Length, Context.OMPArraySectionTy,
|
|
VK_LValue, OK_Ordinary, ColonLoc, RBLoc);
|
|
}
|
|
|
|
ExprResult
|
|
Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
|
|
Expr *Idx, SourceLocation RLoc) {
|
|
Expr *LHSExp = Base;
|
|
Expr *RHSExp = Idx;
|
|
|
|
ExprValueKind VK = VK_LValue;
|
|
ExprObjectKind OK = OK_Ordinary;
|
|
|
|
// Per C++ core issue 1213, the result is an xvalue if either operand is
|
|
// a non-lvalue array, and an lvalue otherwise.
|
|
if (getLangOpts().CPlusPlus11) {
|
|
for (auto *Op : {LHSExp, RHSExp}) {
|
|
Op = Op->IgnoreImplicit();
|
|
if (Op->getType()->isArrayType() && !Op->isLValue())
|
|
VK = VK_XValue;
|
|
}
|
|
}
|
|
|
|
// Perform default conversions.
|
|
if (!LHSExp->getType()->getAs<VectorType>()) {
|
|
ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
|
|
if (Result.isInvalid())
|
|
return ExprError();
|
|
LHSExp = Result.get();
|
|
}
|
|
ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
|
|
if (Result.isInvalid())
|
|
return ExprError();
|
|
RHSExp = Result.get();
|
|
|
|
QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
|
|
|
|
// C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
|
|
// to the expression *((e1)+(e2)). This means the array "Base" may actually be
|
|
// in the subscript position. As a result, we need to derive the array base
|
|
// and index from the expression types.
|
|
Expr *BaseExpr, *IndexExpr;
|
|
QualType ResultType;
|
|
if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
|
|
BaseExpr = LHSExp;
|
|
IndexExpr = RHSExp;
|
|
ResultType = Context.DependentTy;
|
|
} else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
|
|
BaseExpr = LHSExp;
|
|
IndexExpr = RHSExp;
|
|
ResultType = PTy->getPointeeType();
|
|
} else if (const ObjCObjectPointerType *PTy =
|
|
LHSTy->getAs<ObjCObjectPointerType>()) {
|
|
BaseExpr = LHSExp;
|
|
IndexExpr = RHSExp;
|
|
|
|
// Use custom logic if this should be the pseudo-object subscript
|
|
// expression.
|
|
if (!LangOpts.isSubscriptPointerArithmetic())
|
|
return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
|
|
nullptr);
|
|
|
|
ResultType = PTy->getPointeeType();
|
|
} else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
|
|
// Handle the uncommon case of "123[Ptr]".
|
|
BaseExpr = RHSExp;
|
|
IndexExpr = LHSExp;
|
|
ResultType = PTy->getPointeeType();
|
|
} else if (const ObjCObjectPointerType *PTy =
|
|
RHSTy->getAs<ObjCObjectPointerType>()) {
|
|
// Handle the uncommon case of "123[Ptr]".
|
|
BaseExpr = RHSExp;
|
|
IndexExpr = LHSExp;
|
|
ResultType = PTy->getPointeeType();
|
|
if (!LangOpts.isSubscriptPointerArithmetic()) {
|
|
Diag(LLoc, diag::err_subscript_nonfragile_interface)
|
|
<< ResultType << BaseExpr->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
} else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
|
|
BaseExpr = LHSExp; // vectors: V[123]
|
|
IndexExpr = RHSExp;
|
|
// We apply C++ DR1213 to vector subscripting too.
|
|
if (getLangOpts().CPlusPlus11 && LHSExp->getValueKind() == VK_RValue) {
|
|
ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
|
|
if (Materialized.isInvalid())
|
|
return ExprError();
|
|
LHSExp = Materialized.get();
|
|
}
|
|
VK = LHSExp->getValueKind();
|
|
if (VK != VK_RValue)
|
|
OK = OK_VectorComponent;
|
|
|
|
ResultType = VTy->getElementType();
|
|
QualType BaseType = BaseExpr->getType();
|
|
Qualifiers BaseQuals = BaseType.getQualifiers();
|
|
Qualifiers MemberQuals = ResultType.getQualifiers();
|
|
Qualifiers Combined = BaseQuals + MemberQuals;
|
|
if (Combined != MemberQuals)
|
|
ResultType = Context.getQualifiedType(ResultType, Combined);
|
|
} else if (LHSTy->isArrayType()) {
|
|
// If we see an array that wasn't promoted by
|
|
// DefaultFunctionArrayLvalueConversion, it must be an array that
|
|
// wasn't promoted because of the C90 rule that doesn't
|
|
// allow promoting non-lvalue arrays. Warn, then
|
|
// force the promotion here.
|
|
Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
|
|
<< LHSExp->getSourceRange();
|
|
LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
|
|
CK_ArrayToPointerDecay).get();
|
|
LHSTy = LHSExp->getType();
|
|
|
|
BaseExpr = LHSExp;
|
|
IndexExpr = RHSExp;
|
|
ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
|
|
} else if (RHSTy->isArrayType()) {
|
|
// Same as previous, except for 123[f().a] case
|
|
Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
|
|
<< RHSExp->getSourceRange();
|
|
RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
|
|
CK_ArrayToPointerDecay).get();
|
|
RHSTy = RHSExp->getType();
|
|
|
|
BaseExpr = RHSExp;
|
|
IndexExpr = LHSExp;
|
|
ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
|
|
} else {
|
|
return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
|
|
<< LHSExp->getSourceRange() << RHSExp->getSourceRange());
|
|
}
|
|
// C99 6.5.2.1p1
|
|
if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
|
|
return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
|
|
<< IndexExpr->getSourceRange());
|
|
|
|
if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
|
|
IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
|
|
&& !IndexExpr->isTypeDependent())
|
|
Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
|
|
|
|
// C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
|
|
// C++ [expr.sub]p1: The type "T" shall be a completely-defined object
|
|
// type. Note that Functions are not objects, and that (in C99 parlance)
|
|
// incomplete types are not object types.
|
|
if (ResultType->isFunctionType()) {
|
|
Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
|
|
<< ResultType << BaseExpr->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
|
|
// GNU extension: subscripting on pointer to void
|
|
Diag(LLoc, diag::ext_gnu_subscript_void_type)
|
|
<< BaseExpr->getSourceRange();
|
|
|
|
// C forbids expressions of unqualified void type from being l-values.
|
|
// See IsCForbiddenLValueType.
|
|
if (!ResultType.hasQualifiers()) VK = VK_RValue;
|
|
} else if (!ResultType->isDependentType() &&
|
|
RequireCompleteType(LLoc, ResultType,
|
|
diag::err_subscript_incomplete_type, BaseExpr))
|
|
return ExprError();
|
|
|
|
assert(VK == VK_RValue || LangOpts.CPlusPlus ||
|
|
!ResultType.isCForbiddenLValueType());
|
|
|
|
return new (Context)
|
|
ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
|
|
}
|
|
|
|
bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
|
|
ParmVarDecl *Param) {
|
|
if (Param->hasUnparsedDefaultArg()) {
|
|
Diag(CallLoc,
|
|
diag::err_use_of_default_argument_to_function_declared_later) <<
|
|
FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
|
|
Diag(UnparsedDefaultArgLocs[Param],
|
|
diag::note_default_argument_declared_here);
|
|
return true;
|
|
}
|
|
|
|
if (Param->hasUninstantiatedDefaultArg()) {
|
|
Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
|
|
|
|
EnterExpressionEvaluationContext EvalContext(
|
|
*this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
|
|
|
|
// Instantiate the expression.
|
|
//
|
|
// FIXME: Pass in a correct Pattern argument, otherwise
|
|
// getTemplateInstantiationArgs uses the lexical context of FD, e.g.
|
|
//
|
|
// template<typename T>
|
|
// struct A {
|
|
// static int FooImpl();
|
|
//
|
|
// template<typename Tp>
|
|
// // bug: default argument A<T>::FooImpl() is evaluated with 2-level
|
|
// // template argument list [[T], [Tp]], should be [[Tp]].
|
|
// friend A<Tp> Foo(int a);
|
|
// };
|
|
//
|
|
// template<typename T>
|
|
// A<T> Foo(int a = A<T>::FooImpl());
|
|
MultiLevelTemplateArgumentList MutiLevelArgList
|
|
= getTemplateInstantiationArgs(FD, nullptr, /*RelativeToPrimary=*/true);
|
|
|
|
InstantiatingTemplate Inst(*this, CallLoc, Param,
|
|
MutiLevelArgList.getInnermost());
|
|
if (Inst.isInvalid())
|
|
return true;
|
|
if (Inst.isAlreadyInstantiating()) {
|
|
Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
|
|
Param->setInvalidDecl();
|
|
return true;
|
|
}
|
|
|
|
ExprResult Result;
|
|
{
|
|
// C++ [dcl.fct.default]p5:
|
|
// The names in the [default argument] expression are bound, and
|
|
// the semantic constraints are checked, at the point where the
|
|
// default argument expression appears.
|
|
ContextRAII SavedContext(*this, FD);
|
|
LocalInstantiationScope Local(*this);
|
|
Result = SubstInitializer(UninstExpr, MutiLevelArgList,
|
|
/*DirectInit*/false);
|
|
}
|
|
if (Result.isInvalid())
|
|
return true;
|
|
|
|
// Check the expression as an initializer for the parameter.
|
|
InitializedEntity Entity
|
|
= InitializedEntity::InitializeParameter(Context, Param);
|
|
InitializationKind Kind = InitializationKind::CreateCopy(
|
|
Param->getLocation(),
|
|
/*FIXME:EqualLoc*/ UninstExpr->getBeginLoc());
|
|
Expr *ResultE = Result.getAs<Expr>();
|
|
|
|
InitializationSequence InitSeq(*this, Entity, Kind, ResultE);
|
|
Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
|
|
if (Result.isInvalid())
|
|
return true;
|
|
|
|
Result =
|
|
ActOnFinishFullExpr(Result.getAs<Expr>(), Param->getOuterLocStart(),
|
|
/*DiscardedValue*/ false);
|
|
if (Result.isInvalid())
|
|
return true;
|
|
|
|
// Remember the instantiated default argument.
|
|
Param->setDefaultArg(Result.getAs<Expr>());
|
|
if (ASTMutationListener *L = getASTMutationListener()) {
|
|
L->DefaultArgumentInstantiated(Param);
|
|
}
|
|
}
|
|
|
|
// If the default argument expression is not set yet, we are building it now.
|
|
if (!Param->hasInit()) {
|
|
Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
|
|
Param->setInvalidDecl();
|
|
return true;
|
|
}
|
|
|
|
// If the default expression creates temporaries, we need to
|
|
// push them to the current stack of expression temporaries so they'll
|
|
// be properly destroyed.
|
|
// FIXME: We should really be rebuilding the default argument with new
|
|
// bound temporaries; see the comment in PR5810.
|
|
// We don't need to do that with block decls, though, because
|
|
// blocks in default argument expression can never capture anything.
|
|
if (auto Init = dyn_cast<ExprWithCleanups>(Param->getInit())) {
|
|
// Set the "needs cleanups" bit regardless of whether there are
|
|
// any explicit objects.
|
|
Cleanup.setExprNeedsCleanups(Init->cleanupsHaveSideEffects());
|
|
|
|
// Append all the objects to the cleanup list. Right now, this
|
|
// should always be a no-op, because blocks in default argument
|
|
// expressions should never be able to capture anything.
|
|
assert(!Init->getNumObjects() &&
|
|
"default argument expression has capturing blocks?");
|
|
}
|
|
|
|
// We already type-checked the argument, so we know it works.
|
|
// Just mark all of the declarations in this potentially-evaluated expression
|
|
// as being "referenced".
|
|
MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
|
|
/*SkipLocalVariables=*/true);
|
|
return false;
|
|
}
|
|
|
|
ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
|
|
FunctionDecl *FD, ParmVarDecl *Param) {
|
|
if (CheckCXXDefaultArgExpr(CallLoc, FD, Param))
|
|
return ExprError();
|
|
return CXXDefaultArgExpr::Create(Context, CallLoc, Param, CurContext);
|
|
}
|
|
|
|
Sema::VariadicCallType
|
|
Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
|
|
Expr *Fn) {
|
|
if (Proto && Proto->isVariadic()) {
|
|
if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
|
|
return VariadicConstructor;
|
|
else if (Fn && Fn->getType()->isBlockPointerType())
|
|
return VariadicBlock;
|
|
else if (FDecl) {
|
|
if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
|
|
if (Method->isInstance())
|
|
return VariadicMethod;
|
|
} else if (Fn && Fn->getType() == Context.BoundMemberTy)
|
|
return VariadicMethod;
|
|
return VariadicFunction;
|
|
}
|
|
return VariadicDoesNotApply;
|
|
}
|
|
|
|
namespace {
|
|
class FunctionCallCCC final : public FunctionCallFilterCCC {
|
|
public:
|
|
FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
|
|
unsigned NumArgs, MemberExpr *ME)
|
|
: FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
|
|
FunctionName(FuncName) {}
|
|
|
|
bool ValidateCandidate(const TypoCorrection &candidate) override {
|
|
if (!candidate.getCorrectionSpecifier() ||
|
|
candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
|
|
return false;
|
|
}
|
|
|
|
return FunctionCallFilterCCC::ValidateCandidate(candidate);
|
|
}
|
|
|
|
std::unique_ptr<CorrectionCandidateCallback> clone() override {
|
|
return llvm::make_unique<FunctionCallCCC>(*this);
|
|
}
|
|
|
|
private:
|
|
const IdentifierInfo *const FunctionName;
|
|
};
|
|
}
|
|
|
|
static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
|
|
FunctionDecl *FDecl,
|
|
ArrayRef<Expr *> Args) {
|
|
MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
|
|
DeclarationName FuncName = FDecl->getDeclName();
|
|
SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
|
|
|
|
FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
|
|
if (TypoCorrection Corrected = S.CorrectTypo(
|
|
DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
|
|
S.getScopeForContext(S.CurContext), nullptr, CCC,
|
|
Sema::CTK_ErrorRecovery)) {
|
|
if (NamedDecl *ND = Corrected.getFoundDecl()) {
|
|
if (Corrected.isOverloaded()) {
|
|
OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
|
|
OverloadCandidateSet::iterator Best;
|
|
for (NamedDecl *CD : Corrected) {
|
|
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
|
|
S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
|
|
OCS);
|
|
}
|
|
switch (OCS.BestViableFunction(S, NameLoc, Best)) {
|
|
case OR_Success:
|
|
ND = Best->FoundDecl;
|
|
Corrected.setCorrectionDecl(ND);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
ND = ND->getUnderlyingDecl();
|
|
if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
|
|
return Corrected;
|
|
}
|
|
}
|
|
return TypoCorrection();
|
|
}
|
|
|
|
/// ConvertArgumentsForCall - Converts the arguments specified in
|
|
/// Args/NumArgs to the parameter types of the function FDecl with
|
|
/// function prototype Proto. Call is the call expression itself, and
|
|
/// Fn is the function expression. For a C++ member function, this
|
|
/// routine does not attempt to convert the object argument. Returns
|
|
/// true if the call is ill-formed.
|
|
bool
|
|
Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
|
|
FunctionDecl *FDecl,
|
|
const FunctionProtoType *Proto,
|
|
ArrayRef<Expr *> Args,
|
|
SourceLocation RParenLoc,
|
|
bool IsExecConfig) {
|
|
// Bail out early if calling a builtin with custom typechecking.
|
|
if (FDecl)
|
|
if (unsigned ID = FDecl->getBuiltinID())
|
|
if (Context.BuiltinInfo.hasCustomTypechecking(ID))
|
|
return false;
|
|
|
|
// C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
|
|
// assignment, to the types of the corresponding parameter, ...
|
|
unsigned NumParams = Proto->getNumParams();
|
|
bool Invalid = false;
|
|
unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
|
|
unsigned FnKind = Fn->getType()->isBlockPointerType()
|
|
? 1 /* block */
|
|
: (IsExecConfig ? 3 /* kernel function (exec config) */
|
|
: 0 /* function */);
|
|
|
|
// If too few arguments are available (and we don't have default
|
|
// arguments for the remaining parameters), don't make the call.
|
|
if (Args.size() < NumParams) {
|
|
if (Args.size() < MinArgs) {
|
|
TypoCorrection TC;
|
|
if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
|
|
unsigned diag_id =
|
|
MinArgs == NumParams && !Proto->isVariadic()
|
|
? diag::err_typecheck_call_too_few_args_suggest
|
|
: diag::err_typecheck_call_too_few_args_at_least_suggest;
|
|
diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
|
|
<< static_cast<unsigned>(Args.size())
|
|
<< TC.getCorrectionRange());
|
|
} else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
|
|
Diag(RParenLoc,
|
|
MinArgs == NumParams && !Proto->isVariadic()
|
|
? diag::err_typecheck_call_too_few_args_one
|
|
: diag::err_typecheck_call_too_few_args_at_least_one)
|
|
<< FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
|
|
else
|
|
Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
|
|
? diag::err_typecheck_call_too_few_args
|
|
: diag::err_typecheck_call_too_few_args_at_least)
|
|
<< FnKind << MinArgs << static_cast<unsigned>(Args.size())
|
|
<< Fn->getSourceRange();
|
|
|
|
// Emit the location of the prototype.
|
|
if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
|
|
Diag(FDecl->getBeginLoc(), diag::note_callee_decl) << FDecl;
|
|
|
|
return true;
|
|
}
|
|
// We reserve space for the default arguments when we create
|
|
// the call expression, before calling ConvertArgumentsForCall.
|
|
assert((Call->getNumArgs() == NumParams) &&
|
|
"We should have reserved space for the default arguments before!");
|
|
}
|
|
|
|
// If too many are passed and not variadic, error on the extras and drop
|
|
// them.
|
|
if (Args.size() > NumParams) {
|
|
if (!Proto->isVariadic()) {
|
|
TypoCorrection TC;
|
|
if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
|
|
unsigned diag_id =
|
|
MinArgs == NumParams && !Proto->isVariadic()
|
|
? diag::err_typecheck_call_too_many_args_suggest
|
|
: diag::err_typecheck_call_too_many_args_at_most_suggest;
|
|
diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
|
|
<< static_cast<unsigned>(Args.size())
|
|
<< TC.getCorrectionRange());
|
|
} else if (NumParams == 1 && FDecl &&
|
|
FDecl->getParamDecl(0)->getDeclName())
|
|
Diag(Args[NumParams]->getBeginLoc(),
|
|
MinArgs == NumParams
|
|
? diag::err_typecheck_call_too_many_args_one
|
|
: diag::err_typecheck_call_too_many_args_at_most_one)
|
|
<< FnKind << FDecl->getParamDecl(0)
|
|
<< static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
|
|
<< SourceRange(Args[NumParams]->getBeginLoc(),
|
|
Args.back()->getEndLoc());
|
|
else
|
|
Diag(Args[NumParams]->getBeginLoc(),
|
|
MinArgs == NumParams
|
|
? diag::err_typecheck_call_too_many_args
|
|
: diag::err_typecheck_call_too_many_args_at_most)
|
|
<< FnKind << NumParams << static_cast<unsigned>(Args.size())
|
|
<< Fn->getSourceRange()
|
|
<< SourceRange(Args[NumParams]->getBeginLoc(),
|
|
Args.back()->getEndLoc());
|
|
|
|
// Emit the location of the prototype.
|
|
if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
|
|
Diag(FDecl->getBeginLoc(), diag::note_callee_decl) << FDecl;
|
|
|
|
// This deletes the extra arguments.
|
|
Call->shrinkNumArgs(NumParams);
|
|
return true;
|
|
}
|
|
}
|
|
SmallVector<Expr *, 8> AllArgs;
|
|
VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
|
|
|
|
Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args,
|
|
AllArgs, CallType);
|
|
if (Invalid)
|
|
return true;
|
|
unsigned TotalNumArgs = AllArgs.size();
|
|
for (unsigned i = 0; i < TotalNumArgs; ++i)
|
|
Call->setArg(i, AllArgs[i]);
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
|
|
const FunctionProtoType *Proto,
|
|
unsigned FirstParam, ArrayRef<Expr *> Args,
|
|
SmallVectorImpl<Expr *> &AllArgs,
|
|
VariadicCallType CallType, bool AllowExplicit,
|
|
bool IsListInitialization) {
|
|
unsigned NumParams = Proto->getNumParams();
|
|
bool Invalid = false;
|
|
size_t ArgIx = 0;
|
|
// Continue to check argument types (even if we have too few/many args).
|
|
for (unsigned i = FirstParam; i < NumParams; i++) {
|
|
QualType ProtoArgType = Proto->getParamType(i);
|
|
|
|
Expr *Arg;
|
|
ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
|
|
if (ArgIx < Args.size()) {
|
|
Arg = Args[ArgIx++];
|
|
|
|
if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
|
|
diag::err_call_incomplete_argument, Arg))
|
|
return true;
|
|
|
|
// Strip the unbridged-cast placeholder expression off, if applicable.
|
|
bool CFAudited = false;
|
|
if (Arg->getType() == Context.ARCUnbridgedCastTy &&
|
|
FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
|
|
(!Param || !Param->hasAttr<CFConsumedAttr>()))
|
|
Arg = stripARCUnbridgedCast(Arg);
|
|
else if (getLangOpts().ObjCAutoRefCount &&
|
|
FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
|
|
(!Param || !Param->hasAttr<CFConsumedAttr>()))
|
|
CFAudited = true;
|
|
|
|
if (Proto->getExtParameterInfo(i).isNoEscape())
|
|
if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
|
|
BE->getBlockDecl()->setDoesNotEscape();
|
|
|
|
InitializedEntity Entity =
|
|
Param ? InitializedEntity::InitializeParameter(Context, Param,
|
|
ProtoArgType)
|
|
: InitializedEntity::InitializeParameter(
|
|
Context, ProtoArgType, Proto->isParamConsumed(i));
|
|
|
|
// Remember that parameter belongs to a CF audited API.
|
|
if (CFAudited)
|
|
Entity.setParameterCFAudited();
|
|
|
|
ExprResult ArgE = PerformCopyInitialization(
|
|
Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
|
|
if (ArgE.isInvalid())
|
|
return true;
|
|
|
|
Arg = ArgE.getAs<Expr>();
|
|
} else {
|
|
assert(Param && "can't use default arguments without a known callee");
|
|
|
|
ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
|
|
if (ArgExpr.isInvalid())
|
|
return true;
|
|
|
|
Arg = ArgExpr.getAs<Expr>();
|
|
}
|
|
|
|
// Check for array bounds violations for each argument to the call. This
|
|
// check only triggers warnings when the argument isn't a more complex Expr
|
|
// with its own checking, such as a BinaryOperator.
|
|
CheckArrayAccess(Arg);
|
|
|
|
// Check for violations of C99 static array rules (C99 6.7.5.3p7).
|
|
CheckStaticArrayArgument(CallLoc, Param, Arg);
|
|
|
|
AllArgs.push_back(Arg);
|
|
}
|
|
|
|
// If this is a variadic call, handle args passed through "...".
|
|
if (CallType != VariadicDoesNotApply) {
|
|
// Assume that extern "C" functions with variadic arguments that
|
|
// return __unknown_anytype aren't *really* variadic.
|
|
if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
|
|
FDecl->isExternC()) {
|
|
for (Expr *A : Args.slice(ArgIx)) {
|
|
QualType paramType; // ignored
|
|
ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
|
|
Invalid |= arg.isInvalid();
|
|
AllArgs.push_back(arg.get());
|
|
}
|
|
|
|
// Otherwise do argument promotion, (C99 6.5.2.2p7).
|
|
} else {
|
|
for (Expr *A : Args.slice(ArgIx)) {
|
|
ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
|
|
Invalid |= Arg.isInvalid();
|
|
AllArgs.push_back(Arg.get());
|
|
}
|
|
}
|
|
|
|
// Check for array bounds violations.
|
|
for (Expr *A : Args.slice(ArgIx))
|
|
CheckArrayAccess(A);
|
|
}
|
|
return Invalid;
|
|
}
|
|
|
|
static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
|
|
TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
|
|
if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
|
|
TL = DTL.getOriginalLoc();
|
|
if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
|
|
S.Diag(PVD->getLocation(), diag::note_callee_static_array)
|
|
<< ATL.getLocalSourceRange();
|
|
}
|
|
|
|
/// CheckStaticArrayArgument - If the given argument corresponds to a static
|
|
/// array parameter, check that it is non-null, and that if it is formed by
|
|
/// array-to-pointer decay, the underlying array is sufficiently large.
|
|
///
|
|
/// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
|
|
/// array type derivation, then for each call to the function, the value of the
|
|
/// corresponding actual argument shall provide access to the first element of
|
|
/// an array with at least as many elements as specified by the size expression.
|
|
void
|
|
Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
|
|
ParmVarDecl *Param,
|
|
const Expr *ArgExpr) {
|
|
// Static array parameters are not supported in C++.
|
|
if (!Param || getLangOpts().CPlusPlus)
|
|
return;
|
|
|
|
QualType OrigTy = Param->getOriginalType();
|
|
|
|
const ArrayType *AT = Context.getAsArrayType(OrigTy);
|
|
if (!AT || AT->getSizeModifier() != ArrayType::Static)
|
|
return;
|
|
|
|
if (ArgExpr->isNullPointerConstant(Context,
|
|
Expr::NPC_NeverValueDependent)) {
|
|
Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
|
|
DiagnoseCalleeStaticArrayParam(*this, Param);
|
|
return;
|
|
}
|
|
|
|
const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
|
|
if (!CAT)
|
|
return;
|
|
|
|
const ConstantArrayType *ArgCAT =
|
|
Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
|
|
if (!ArgCAT)
|
|
return;
|
|
|
|
if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
|
|
ArgCAT->getElementType())) {
|
|
if (ArgCAT->getSize().ult(CAT->getSize())) {
|
|
Diag(CallLoc, diag::warn_static_array_too_small)
|
|
<< ArgExpr->getSourceRange()
|
|
<< (unsigned)ArgCAT->getSize().getZExtValue()
|
|
<< (unsigned)CAT->getSize().getZExtValue() << 0;
|
|
DiagnoseCalleeStaticArrayParam(*this, Param);
|
|
}
|
|
return;
|
|
}
|
|
|
|
Optional<CharUnits> ArgSize =
|
|
getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
|
|
Optional<CharUnits> ParmSize = getASTContext().getTypeSizeInCharsIfKnown(CAT);
|
|
if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
|
|
Diag(CallLoc, diag::warn_static_array_too_small)
|
|
<< ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
|
|
<< (unsigned)ParmSize->getQuantity() << 1;
|
|
DiagnoseCalleeStaticArrayParam(*this, Param);
|
|
}
|
|
}
|
|
|
|
/// Given a function expression of unknown-any type, try to rebuild it
|
|
/// to have a function type.
|
|
static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
|
|
|
|
/// Is the given type a placeholder that we need to lower out
|
|
/// immediately during argument processing?
|
|
static bool isPlaceholderToRemoveAsArg(QualType type) {
|
|
// Placeholders are never sugared.
|
|
const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
|
|
if (!placeholder) return false;
|
|
|
|
switch (placeholder->getKind()) {
|
|
// Ignore all the non-placeholder types.
|
|
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
|
|
case BuiltinType::Id:
|
|
#include "clang/Basic/OpenCLImageTypes.def"
|
|
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
|
|
case BuiltinType::Id:
|
|
#include "clang/Basic/OpenCLExtensionTypes.def"
|
|
#define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
|
|
#define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
|
|
#include "clang/AST/BuiltinTypes.def"
|
|
return false;
|
|
|
|
// We cannot lower out overload sets; they might validly be resolved
|
|
// by the call machinery.
|
|
case BuiltinType::Overload:
|
|
return false;
|
|
|
|
// Unbridged casts in ARC can be handled in some call positions and
|
|
// should be left in place.
|
|
case BuiltinType::ARCUnbridgedCast:
|
|
return false;
|
|
|
|
// Pseudo-objects should be converted as soon as possible.
|
|
case BuiltinType::PseudoObject:
|
|
return true;
|
|
|
|
// The debugger mode could theoretically but currently does not try
|
|
// to resolve unknown-typed arguments based on known parameter types.
|
|
case BuiltinType::UnknownAny:
|
|
return true;
|
|
|
|
// These are always invalid as call arguments and should be reported.
|
|
case BuiltinType::BoundMember:
|
|
case BuiltinType::BuiltinFn:
|
|
case BuiltinType::OMPArraySection:
|
|
return true;
|
|
|
|
}
|
|
llvm_unreachable("bad builtin type kind");
|
|
}
|
|
|
|
/// Check an argument list for placeholders that we won't try to
|
|
/// handle later.
|
|
static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
|
|
// Apply this processing to all the arguments at once instead of
|
|
// dying at the first failure.
|
|
bool hasInvalid = false;
|
|
for (size_t i = 0, e = args.size(); i != e; i++) {
|
|
if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
|
|
ExprResult result = S.CheckPlaceholderExpr(args[i]);
|
|
if (result.isInvalid()) hasInvalid = true;
|
|
else args[i] = result.get();
|
|
} else if (hasInvalid) {
|
|
(void)S.CorrectDelayedTyposInExpr(args[i]);
|
|
}
|
|
}
|
|
return hasInvalid;
|
|
}
|
|
|
|
/// If a builtin function has a pointer argument with no explicit address
|
|
/// space, then it should be able to accept a pointer to any address
|
|
/// space as input. In order to do this, we need to replace the
|
|
/// standard builtin declaration with one that uses the same address space
|
|
/// as the call.
|
|
///
|
|
/// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
|
|
/// it does not contain any pointer arguments without
|
|
/// an address space qualifer. Otherwise the rewritten
|
|
/// FunctionDecl is returned.
|
|
/// TODO: Handle pointer return types.
|
|
static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
|
|
const FunctionDecl *FDecl,
|
|
MultiExprArg ArgExprs) {
|
|
|
|
QualType DeclType = FDecl->getType();
|
|
const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
|
|
|
|
if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) ||
|
|
!FT || FT->isVariadic() || ArgExprs.size() != FT->getNumParams())
|
|
return nullptr;
|
|
|
|
bool NeedsNewDecl = false;
|
|
unsigned i = 0;
|
|
SmallVector<QualType, 8> OverloadParams;
|
|
|
|
for (QualType ParamType : FT->param_types()) {
|
|
|
|
// Convert array arguments to pointer to simplify type lookup.
|
|
ExprResult ArgRes =
|
|
Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
|
|
if (ArgRes.isInvalid())
|
|
return nullptr;
|
|
Expr *Arg = ArgRes.get();
|
|
QualType ArgType = Arg->getType();
|
|
if (!ParamType->isPointerType() ||
|
|
ParamType.getQualifiers().hasAddressSpace() ||
|
|
!ArgType->isPointerType() ||
|
|
!ArgType->getPointeeType().getQualifiers().hasAddressSpace()) {
|
|
OverloadParams.push_back(ParamType);
|
|
continue;
|
|
}
|
|
|
|
QualType PointeeType = ParamType->getPointeeType();
|
|
if (PointeeType.getQualifiers().hasAddressSpace())
|
|
continue;
|
|
|
|
NeedsNewDecl = true;
|
|
LangAS AS = ArgType->getPointeeType().getAddressSpace();
|
|
|
|
PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
|
|
OverloadParams.push_back(Context.getPointerType(PointeeType));
|
|
}
|
|
|
|
if (!NeedsNewDecl)
|
|
return nullptr;
|
|
|
|
FunctionProtoType::ExtProtoInfo EPI;
|
|
QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
|
|
OverloadParams, EPI);
|
|
DeclContext *Parent = Context.getTranslationUnitDecl();
|
|
FunctionDecl *OverloadDecl = FunctionDecl::Create(Context, Parent,
|
|
FDecl->getLocation(),
|
|
FDecl->getLocation(),
|
|
FDecl->getIdentifier(),
|
|
OverloadTy,
|
|
/*TInfo=*/nullptr,
|
|
SC_Extern, false,
|
|
/*hasPrototype=*/true);
|
|
SmallVector<ParmVarDecl*, 16> Params;
|
|
FT = cast<FunctionProtoType>(OverloadTy);
|
|
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
|
|
QualType ParamType = FT->getParamType(i);
|
|
ParmVarDecl *Parm =
|
|
ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
|
|
SourceLocation(), nullptr, ParamType,
|
|
/*TInfo=*/nullptr, SC_None, nullptr);
|
|
Parm->setScopeInfo(0, i);
|
|
Params.push_back(Parm);
|
|
}
|
|
OverloadDecl->setParams(Params);
|
|
return OverloadDecl;
|
|
}
|
|
|
|
static void checkDirectCallValidity(Sema &S, const Expr *Fn,
|
|
FunctionDecl *Callee,
|
|
MultiExprArg ArgExprs) {
|
|
// `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
|
|
// similar attributes) really don't like it when functions are called with an
|
|
// invalid number of args.
|
|
if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
|
|
/*PartialOverloading=*/false) &&
|
|
!Callee->isVariadic())
|
|
return;
|
|
if (Callee->getMinRequiredArguments() > ArgExprs.size())
|
|
return;
|
|
|
|
if (const EnableIfAttr *Attr = S.CheckEnableIf(Callee, ArgExprs, true)) {
|
|
S.Diag(Fn->getBeginLoc(),
|
|
isa<CXXMethodDecl>(Callee)
|
|
? diag::err_ovl_no_viable_member_function_in_call
|
|
: diag::err_ovl_no_viable_function_in_call)
|
|
<< Callee << Callee->getSourceRange();
|
|
S.Diag(Callee->getLocation(),
|
|
diag::note_ovl_candidate_disabled_by_function_cond_attr)
|
|
<< Attr->getCond()->getSourceRange() << Attr->getMessage();
|
|
return;
|
|
}
|
|
}
|
|
|
|
static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
|
|
const UnresolvedMemberExpr *const UME, Sema &S) {
|
|
|
|
const auto GetFunctionLevelDCIfCXXClass =
|
|
[](Sema &S) -> const CXXRecordDecl * {
|
|
const DeclContext *const DC = S.getFunctionLevelDeclContext();
|
|
if (!DC || !DC->getParent())
|
|
return nullptr;
|
|
|
|
// If the call to some member function was made from within a member
|
|
// function body 'M' return return 'M's parent.
|
|
if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
|
|
return MD->getParent()->getCanonicalDecl();
|
|
// else the call was made from within a default member initializer of a
|
|
// class, so return the class.
|
|
if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
|
|
return RD->getCanonicalDecl();
|
|
return nullptr;
|
|
};
|
|
// If our DeclContext is neither a member function nor a class (in the
|
|
// case of a lambda in a default member initializer), we can't have an
|
|
// enclosing 'this'.
|
|
|
|
const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
|
|
if (!CurParentClass)
|
|
return false;
|
|
|
|
// The naming class for implicit member functions call is the class in which
|
|
// name lookup starts.
|
|
const CXXRecordDecl *const NamingClass =
|
|
UME->getNamingClass()->getCanonicalDecl();
|
|
assert(NamingClass && "Must have naming class even for implicit access");
|
|
|
|
// If the unresolved member functions were found in a 'naming class' that is
|
|
// related (either the same or derived from) to the class that contains the
|
|
// member function that itself contained the implicit member access.
|
|
|
|
return CurParentClass == NamingClass ||
|
|
CurParentClass->isDerivedFrom(NamingClass);
|
|
}
|
|
|
|
static void
|
|
tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
|
|
Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
|
|
|
|
if (!UME)
|
|
return;
|
|
|
|
LambdaScopeInfo *const CurLSI = S.getCurLambda();
|
|
// Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
|
|
// already been captured, or if this is an implicit member function call (if
|
|
// it isn't, an attempt to capture 'this' should already have been made).
|
|
if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
|
|
!UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
|
|
return;
|
|
|
|
// Check if the naming class in which the unresolved members were found is
|
|
// related (same as or is a base of) to the enclosing class.
|
|
|
|
if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
|
|
return;
|
|
|
|
|
|
DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
|
|
// If the enclosing function is not dependent, then this lambda is
|
|
// capture ready, so if we can capture this, do so.
|
|
if (!EnclosingFunctionCtx->isDependentContext()) {
|
|
// If the current lambda and all enclosing lambdas can capture 'this' -
|
|
// then go ahead and capture 'this' (since our unresolved overload set
|
|
// contains at least one non-static member function).
|
|
if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
|
|
S.CheckCXXThisCapture(CallLoc);
|
|
} else if (S.CurContext->isDependentContext()) {
|
|
// ... since this is an implicit member reference, that might potentially
|
|
// involve a 'this' capture, mark 'this' for potential capture in
|
|
// enclosing lambdas.
|
|
if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
|
|
CurLSI->addPotentialThisCapture(CallLoc);
|
|
}
|
|
}
|
|
|
|
ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
|
|
MultiExprArg ArgExprs, SourceLocation RParenLoc,
|
|
Expr *ExecConfig) {
|
|
ExprResult Call =
|
|
BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig);
|
|
if (Call.isInvalid())
|
|
return Call;
|
|
|
|
// Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
|
|
// language modes.
|
|
if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn)) {
|
|
if (ULE->hasExplicitTemplateArgs() &&
|
|
ULE->decls_begin() == ULE->decls_end()) {
|
|
Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus2a
|
|
? diag::warn_cxx17_compat_adl_only_template_id
|
|
: diag::ext_adl_only_template_id)
|
|
<< ULE->getName();
|
|
}
|
|
}
|
|
|
|
return Call;
|
|
}
|
|
|
|
/// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
|
|
/// This provides the location of the left/right parens and a list of comma
|
|
/// locations.
|
|
ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
|
|
MultiExprArg ArgExprs, SourceLocation RParenLoc,
|
|
Expr *ExecConfig, bool IsExecConfig) {
|
|
// Since this might be a postfix expression, get rid of ParenListExprs.
|
|
ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
|
|
if (Result.isInvalid()) return ExprError();
|
|
Fn = Result.get();
|
|
|
|
if (checkArgsForPlaceholders(*this, ArgExprs))
|
|
return ExprError();
|
|
|
|
if (getLangOpts().CPlusPlus) {
|
|
// If this is a pseudo-destructor expression, build the call immediately.
|
|
if (isa<CXXPseudoDestructorExpr>(Fn)) {
|
|
if (!ArgExprs.empty()) {
|
|
// Pseudo-destructor calls should not have any arguments.
|
|
Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
|
|
<< FixItHint::CreateRemoval(
|
|
SourceRange(ArgExprs.front()->getBeginLoc(),
|
|
ArgExprs.back()->getEndLoc()));
|
|
}
|
|
|
|
return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
|
|
VK_RValue, RParenLoc);
|
|
}
|
|
if (Fn->getType() == Context.PseudoObjectTy) {
|
|
ExprResult result = CheckPlaceholderExpr(Fn);
|
|
if (result.isInvalid()) return ExprError();
|
|
Fn = result.get();
|
|
}
|
|
|
|
// Determine whether this is a dependent call inside a C++ template,
|
|
// in which case we won't do any semantic analysis now.
|
|
if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
|
|
if (ExecConfig) {
|
|
return CUDAKernelCallExpr::Create(
|
|
Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
|
|
Context.DependentTy, VK_RValue, RParenLoc);
|
|
} else {
|
|
|
|
tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
|
|
*this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
|
|
Fn->getBeginLoc());
|
|
|
|
return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
|
|
VK_RValue, RParenLoc);
|
|
}
|
|
}
|
|
|
|
// Determine whether this is a call to an object (C++ [over.call.object]).
|
|
if (Fn->getType()->isRecordType())
|
|
return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
|
|
RParenLoc);
|
|
|
|
if (Fn->getType() == Context.UnknownAnyTy) {
|
|
ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
|
|
if (result.isInvalid()) return ExprError();
|
|
Fn = result.get();
|
|
}
|
|
|
|
if (Fn->getType() == Context.BoundMemberTy) {
|
|
return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
|
|
RParenLoc);
|
|
}
|
|
}
|
|
|
|
// Check for overloaded calls. This can happen even in C due to extensions.
|
|
if (Fn->getType() == Context.OverloadTy) {
|
|
OverloadExpr::FindResult find = OverloadExpr::find(Fn);
|
|
|
|
// We aren't supposed to apply this logic if there's an '&' involved.
|
|
if (!find.HasFormOfMemberPointer) {
|
|
if (Expr::hasAnyTypeDependentArguments(ArgExprs))
|
|
return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
|
|
VK_RValue, RParenLoc);
|
|
OverloadExpr *ovl = find.Expression;
|
|
if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
|
|
return BuildOverloadedCallExpr(
|
|
Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
|
|
/*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
|
|
return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
|
|
RParenLoc);
|
|
}
|
|
}
|
|
|
|
// If we're directly calling a function, get the appropriate declaration.
|
|
if (Fn->getType() == Context.UnknownAnyTy) {
|
|
ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
|
|
if (result.isInvalid()) return ExprError();
|
|
Fn = result.get();
|
|
}
|
|
|
|
Expr *NakedFn = Fn->IgnoreParens();
|
|
|
|
bool CallingNDeclIndirectly = false;
|
|
NamedDecl *NDecl = nullptr;
|
|
if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
|
|
if (UnOp->getOpcode() == UO_AddrOf) {
|
|
CallingNDeclIndirectly = true;
|
|
NakedFn = UnOp->getSubExpr()->IgnoreParens();
|
|
}
|
|
}
|
|
|
|
if (isa<DeclRefExpr>(NakedFn)) {
|
|
NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
|
|
|
|
FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
|
|
if (FDecl && FDecl->getBuiltinID()) {
|
|
// Rewrite the function decl for this builtin by replacing parameters
|
|
// with no explicit address space with the address space of the arguments
|
|
// in ArgExprs.
|
|
if ((FDecl =
|
|
rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
|
|
NDecl = FDecl;
|
|
Fn = DeclRefExpr::Create(
|
|
Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
|
|
SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl);
|
|
}
|
|
}
|
|
} else if (isa<MemberExpr>(NakedFn))
|
|
NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
|
|
|
|
if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
|
|
if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
|
|
FD, /*Complain=*/true, Fn->getBeginLoc()))
|
|
return ExprError();
|
|
|
|
if (getLangOpts().OpenCL && checkOpenCLDisabledDecl(*FD, *Fn))
|
|
return ExprError();
|
|
|
|
checkDirectCallValidity(*this, Fn, FD, ArgExprs);
|
|
}
|
|
|
|
return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
|
|
ExecConfig, IsExecConfig);
|
|
}
|
|
|
|
/// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
|
|
///
|
|
/// __builtin_astype( value, dst type )
|
|
///
|
|
ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
|
|
SourceLocation BuiltinLoc,
|
|
SourceLocation RParenLoc) {
|
|
ExprValueKind VK = VK_RValue;
|
|
ExprObjectKind OK = OK_Ordinary;
|
|
QualType DstTy = GetTypeFromParser(ParsedDestTy);
|
|
QualType SrcTy = E->getType();
|
|
if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
|
|
return ExprError(Diag(BuiltinLoc,
|
|
diag::err_invalid_astype_of_different_size)
|
|
<< DstTy
|
|
<< SrcTy
|
|
<< E->getSourceRange());
|
|
return new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc, RParenLoc);
|
|
}
|
|
|
|
/// ActOnConvertVectorExpr - create a new convert-vector expression from the
|
|
/// provided arguments.
|
|
///
|
|
/// __builtin_convertvector( value, dst type )
|
|
///
|
|
ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
|
|
SourceLocation BuiltinLoc,
|
|
SourceLocation RParenLoc) {
|
|
TypeSourceInfo *TInfo;
|
|
GetTypeFromParser(ParsedDestTy, &TInfo);
|
|
return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
|
|
}
|
|
|
|
/// BuildResolvedCallExpr - Build a call to a resolved expression,
|
|
/// i.e. an expression not of \p OverloadTy. The expression should
|
|
/// unary-convert to an expression of function-pointer or
|
|
/// block-pointer type.
|
|
///
|
|
/// \param NDecl the declaration being called, if available
|
|
ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
|
|
SourceLocation LParenLoc,
|
|
ArrayRef<Expr *> Args,
|
|
SourceLocation RParenLoc, Expr *Config,
|
|
bool IsExecConfig, ADLCallKind UsesADL) {
|
|
FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
|
|
unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
|
|
|
|
// Functions with 'interrupt' attribute cannot be called directly.
|
|
if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) {
|
|
Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
|
|
return ExprError();
|
|
}
|
|
|
|
// Interrupt handlers don't save off the VFP regs automatically on ARM,
|
|
// so there's some risk when calling out to non-interrupt handler functions
|
|
// that the callee might not preserve them. This is easy to diagnose here,
|
|
// but can be very challenging to debug.
|
|
if (auto *Caller = getCurFunctionDecl())
|
|
if (Caller->hasAttr<ARMInterruptAttr>()) {
|
|
bool VFP = Context.getTargetInfo().hasFeature("vfp");
|
|
if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>()))
|
|
Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention);
|
|
}
|
|
|
|
// Promote the function operand.
|
|
// We special-case function promotion here because we only allow promoting
|
|
// builtin functions to function pointers in the callee of a call.
|
|
ExprResult Result;
|
|
QualType ResultTy;
|
|
if (BuiltinID &&
|
|
Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
|
|
// Extract the return type from the (builtin) function pointer type.
|
|
// FIXME Several builtins still have setType in
|
|
// Sema::CheckBuiltinFunctionCall. One should review their definitions in
|
|
// Builtins.def to ensure they are correct before removing setType calls.
|
|
QualType FnPtrTy = Context.getPointerType(FDecl->getType());
|
|
Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
|
|
ResultTy = FDecl->getCallResultType();
|
|
} else {
|
|
Result = CallExprUnaryConversions(Fn);
|
|
ResultTy = Context.BoolTy;
|
|
}
|
|
if (Result.isInvalid())
|
|
return ExprError();
|
|
Fn = Result.get();
|
|
|
|
// Check for a valid function type, but only if it is not a builtin which
|
|
// requires custom type checking. These will be handled by
|
|
// CheckBuiltinFunctionCall below just after creation of the call expression.
|
|
const FunctionType *FuncT = nullptr;
|
|
if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
|
|
retry:
|
|
if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
|
|
// C99 6.5.2.2p1 - "The expression that denotes the called function shall
|
|
// have type pointer to function".
|
|
FuncT = PT->getPointeeType()->getAs<FunctionType>();
|
|
if (!FuncT)
|
|
return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
|
|
<< Fn->getType() << Fn->getSourceRange());
|
|
} else if (const BlockPointerType *BPT =
|
|
Fn->getType()->getAs<BlockPointerType>()) {
|
|
FuncT = BPT->getPointeeType()->castAs<FunctionType>();
|
|
} else {
|
|
// Handle calls to expressions of unknown-any type.
|
|
if (Fn->getType() == Context.UnknownAnyTy) {
|
|
ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
|
|
if (rewrite.isInvalid()) return ExprError();
|
|
Fn = rewrite.get();
|
|
goto retry;
|
|
}
|
|
|
|
return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
|
|
<< Fn->getType() << Fn->getSourceRange());
|
|
}
|
|
}
|
|
|
|
// Get the number of parameters in the function prototype, if any.
|
|
// We will allocate space for max(Args.size(), NumParams) arguments
|
|
// in the call expression.
|
|
const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
|
|
unsigned NumParams = Proto ? Proto->getNumParams() : 0;
|
|
|
|
CallExpr *TheCall;
|
|
if (Config) {
|
|
assert(UsesADL == ADLCallKind::NotADL &&
|
|
"CUDAKernelCallExpr should not use ADL");
|
|
TheCall =
|
|
CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config), Args,
|
|
ResultTy, VK_RValue, RParenLoc, NumParams);
|
|
} else {
|
|
TheCall = CallExpr::Create(Context, Fn, Args, ResultTy, VK_RValue,
|
|
RParenLoc, NumParams, UsesADL);
|
|
}
|
|
|
|
if (!getLangOpts().CPlusPlus) {
|
|
// Forget about the nulled arguments since typo correction
|
|
// do not handle them well.
|
|
TheCall->shrinkNumArgs(Args.size());
|
|
// C cannot always handle TypoExpr nodes in builtin calls and direct
|
|
// function calls as their argument checking don't necessarily handle
|
|
// dependent types properly, so make sure any TypoExprs have been
|
|
// dealt with.
|
|
ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
|
|
if (!Result.isUsable()) return ExprError();
|
|
CallExpr *TheOldCall = TheCall;
|
|
TheCall = dyn_cast<CallExpr>(Result.get());
|
|
bool CorrectedTypos = TheCall != TheOldCall;
|
|
if (!TheCall) return Result;
|
|
Args = llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
|
|
|
|
// A new call expression node was created if some typos were corrected.
|
|
// However it may not have been constructed with enough storage. In this
|
|
// case, rebuild the node with enough storage. The waste of space is
|
|
// immaterial since this only happens when some typos were corrected.
|
|
if (CorrectedTypos && Args.size() < NumParams) {
|
|
if (Config)
|
|
TheCall = CUDAKernelCallExpr::Create(
|
|
Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_RValue,
|
|
RParenLoc, NumParams);
|
|
else
|
|
TheCall = CallExpr::Create(Context, Fn, Args, ResultTy, VK_RValue,
|
|
RParenLoc, NumParams, UsesADL);
|
|
}
|
|
// We can now handle the nulled arguments for the default arguments.
|
|
TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
|
|
}
|
|
|
|
// Bail out early if calling a builtin with custom type checking.
|
|
if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
|
|
return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
|
|
|
|
if (getLangOpts().CUDA) {
|
|
if (Config) {
|
|
// CUDA: Kernel calls must be to global functions
|
|
if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
|
|
return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
|
|
<< FDecl << Fn->getSourceRange());
|
|
|
|
// CUDA: Kernel function must have 'void' return type
|
|
if (!FuncT->getReturnType()->isVoidType())
|
|
return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
|
|
<< Fn->getType() << Fn->getSourceRange());
|
|
} else {
|
|
// CUDA: Calls to global functions must be configured
|
|
if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
|
|
return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
|
|
<< FDecl << Fn->getSourceRange());
|
|
}
|
|
}
|
|
|
|
// Check for a valid return type
|
|
if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall,
|
|
FDecl))
|
|
return ExprError();
|
|
|
|
// We know the result type of the call, set it.
|
|
TheCall->setType(FuncT->getCallResultType(Context));
|
|
TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
|
|
|
|
if (Proto) {
|
|
if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
|
|
IsExecConfig))
|
|
return ExprError();
|
|
} else {
|
|
assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
|
|
|
|
if (FDecl) {
|
|
// Check if we have too few/too many template arguments, based
|
|
// on our knowledge of the function definition.
|
|
const FunctionDecl *Def = nullptr;
|
|
if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
|
|
Proto = Def->getType()->getAs<FunctionProtoType>();
|
|
if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
|
|
Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
|
|
<< (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
|
|
}
|
|
|
|
// If the function we're calling isn't a function prototype, but we have
|
|
// a function prototype from a prior declaratiom, use that prototype.
|
|
if (!FDecl->hasPrototype())
|
|
Proto = FDecl->getType()->getAs<FunctionProtoType>();
|
|
}
|
|
|
|
// Promote the arguments (C99 6.5.2.2p6).
|
|
for (unsigned i = 0, e = Args.size(); i != e; i++) {
|
|
Expr *Arg = Args[i];
|
|
|
|
if (Proto && i < Proto->getNumParams()) {
|
|
InitializedEntity Entity = InitializedEntity::InitializeParameter(
|
|
Context, Proto->getParamType(i), Proto->isParamConsumed(i));
|
|
ExprResult ArgE =
|
|
PerformCopyInitialization(Entity, SourceLocation(), Arg);
|
|
if (ArgE.isInvalid())
|
|
return true;
|
|
|
|
Arg = ArgE.getAs<Expr>();
|
|
|
|
} else {
|
|
ExprResult ArgE = DefaultArgumentPromotion(Arg);
|
|
|
|
if (ArgE.isInvalid())
|
|
return true;
|
|
|
|
Arg = ArgE.getAs<Expr>();
|
|
}
|
|
|
|
if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
|
|
diag::err_call_incomplete_argument, Arg))
|
|
return ExprError();
|
|
|
|
TheCall->setArg(i, Arg);
|
|
}
|
|
}
|
|
|
|
if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
|
|
if (!Method->isStatic())
|
|
return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
|
|
<< Fn->getSourceRange());
|
|
|
|
// Check for sentinels
|
|
if (NDecl)
|
|
DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
|
|
|
|
// Do special checking on direct calls to functions.
|
|
if (FDecl) {
|
|
if (CheckFunctionCall(FDecl, TheCall, Proto))
|
|
return ExprError();
|
|
|
|
checkFortifiedBuiltinMemoryFunction(FDecl, TheCall);
|
|
|
|
if (BuiltinID)
|
|
return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
|
|
} else if (NDecl) {
|
|
if (CheckPointerCall(NDecl, TheCall, Proto))
|
|
return ExprError();
|
|
} else {
|
|
if (CheckOtherCall(TheCall, Proto))
|
|
return ExprError();
|
|
}
|
|
|
|
return MaybeBindToTemporary(TheCall);
|
|
}
|
|
|
|
ExprResult
|
|
Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
|
|
SourceLocation RParenLoc, Expr *InitExpr) {
|
|
assert(Ty && "ActOnCompoundLiteral(): missing type");
|
|
assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
|
|
|
|
TypeSourceInfo *TInfo;
|
|
QualType literalType = GetTypeFromParser(Ty, &TInfo);
|
|
if (!TInfo)
|
|
TInfo = Context.getTrivialTypeSourceInfo(literalType);
|
|
|
|
return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
|
|
}
|
|
|
|
ExprResult
|
|
Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
|
|
SourceLocation RParenLoc, Expr *LiteralExpr) {
|
|
QualType literalType = TInfo->getType();
|
|
|
|
if (literalType->isArrayType()) {
|
|
if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
|
|
diag::err_illegal_decl_array_incomplete_type,
|
|
SourceRange(LParenLoc,
|
|
LiteralExpr->getSourceRange().getEnd())))
|
|
return ExprError();
|
|
if (literalType->isVariableArrayType())
|
|
return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
|
|
<< SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
|
|
} else if (!literalType->isDependentType() &&
|
|
RequireCompleteType(LParenLoc, literalType,
|
|
diag::err_typecheck_decl_incomplete_type,
|
|
SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
|
|
return ExprError();
|
|
|
|
InitializedEntity Entity
|
|
= InitializedEntity::InitializeCompoundLiteralInit(TInfo);
|
|
InitializationKind Kind
|
|
= InitializationKind::CreateCStyleCast(LParenLoc,
|
|
SourceRange(LParenLoc, RParenLoc),
|
|
/*InitList=*/true);
|
|
InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
|
|
ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
|
|
&literalType);
|
|
if (Result.isInvalid())
|
|
return ExprError();
|
|
LiteralExpr = Result.get();
|
|
|
|
bool isFileScope = !CurContext->isFunctionOrMethod();
|
|
|
|
// In C, compound literals are l-values for some reason.
|
|
// For GCC compatibility, in C++, file-scope array compound literals with
|
|
// constant initializers are also l-values, and compound literals are
|
|
// otherwise prvalues.
|
|
//
|
|
// (GCC also treats C++ list-initialized file-scope array prvalues with
|
|
// constant initializers as l-values, but that's non-conforming, so we don't
|
|
// follow it there.)
|
|
//
|
|
// FIXME: It would be better to handle the lvalue cases as materializing and
|
|
// lifetime-extending a temporary object, but our materialized temporaries
|
|
// representation only supports lifetime extension from a variable, not "out
|
|
// of thin air".
|
|
// FIXME: For C++, we might want to instead lifetime-extend only if a pointer
|
|
// is bound to the result of applying array-to-pointer decay to the compound
|
|
// literal.
|
|
// FIXME: GCC supports compound literals of reference type, which should
|
|
// obviously have a value kind derived from the kind of reference involved.
|
|
ExprValueKind VK =
|
|
(getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
|
|
? VK_RValue
|
|
: VK_LValue;
|
|
|
|
if (isFileScope)
|
|
if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr))
|
|
for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
|
|
Expr *Init = ILE->getInit(i);
|
|
ILE->setInit(i, ConstantExpr::Create(Context, Init));
|
|
}
|
|
|
|
Expr *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
|
|
VK, LiteralExpr, isFileScope);
|
|
if (isFileScope) {
|
|
if (!LiteralExpr->isTypeDependent() &&
|
|
!LiteralExpr->isValueDependent() &&
|
|
!literalType->isDependentType()) // C99 6.5.2.5p3
|
|
if (CheckForConstantInitializer(LiteralExpr, literalType))
|
|
return ExprError();
|
|
} else if (literalType.getAddressSpace() != LangAS::opencl_private &&
|
|
literalType.getAddressSpace() != LangAS::Default) {
|
|
// Embedded-C extensions to C99 6.5.2.5:
|
|
// "If the compound literal occurs inside the body of a function, the
|
|
// type name shall not be qualified by an address-space qualifier."
|
|
Diag(LParenLoc, diag::err_compound_literal_with_address_space)
|
|
<< SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
|
|
return ExprError();
|
|
}
|
|
|
|
return MaybeBindToTemporary(E);
|
|
}
|
|
|
|
ExprResult
|
|
Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
|
|
SourceLocation RBraceLoc) {
|
|
// Immediately handle non-overload placeholders. Overloads can be
|
|
// resolved contextually, but everything else here can't.
|
|
for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
|
|
if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
|
|
ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
|
|
|
|
// Ignore failures; dropping the entire initializer list because
|
|
// of one failure would be terrible for indexing/etc.
|
|
if (result.isInvalid()) continue;
|
|
|
|
InitArgList[I] = result.get();
|
|
}
|
|
}
|
|
|
|
// Semantic analysis for initializers is done by ActOnDeclarator() and
|
|
// CheckInitializer() - it requires knowledge of the object being initialized.
|
|
|
|
InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
|
|
RBraceLoc);
|
|
E->setType(Context.VoidTy); // FIXME: just a place holder for now.
|
|
return E;
|
|
}
|
|
|
|
/// Do an explicit extend of the given block pointer if we're in ARC.
|
|
void Sema::maybeExtendBlockObject(ExprResult &E) {
|
|
assert(E.get()->getType()->isBlockPointerType());
|
|
assert(E.get()->isRValue());
|
|
|
|
// Only do this in an r-value context.
|
|
if (!getLangOpts().ObjCAutoRefCount) return;
|
|
|
|
E = ImplicitCastExpr::Create(Context, E.get()->getType(),
|
|
CK_ARCExtendBlockObject, E.get(),
|
|
/*base path*/ nullptr, VK_RValue);
|
|
Cleanup.setExprNeedsCleanups(true);
|
|
}
|
|
|
|
/// Prepare a conversion of the given expression to an ObjC object
|
|
/// pointer type.
|
|
CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
|
|
QualType type = E.get()->getType();
|
|
if (type->isObjCObjectPointerType()) {
|
|
return CK_BitCast;
|
|
} else if (type->isBlockPointerType()) {
|
|
maybeExtendBlockObject(E);
|
|
return CK_BlockPointerToObjCPointerCast;
|
|
} else {
|
|
assert(type->isPointerType());
|
|
return CK_CPointerToObjCPointerCast;
|
|
}
|
|
}
|
|
|
|
/// Prepares for a scalar cast, performing all the necessary stages
|
|
/// except the final cast and returning the kind required.
|
|
CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
|
|
// Both Src and Dest are scalar types, i.e. arithmetic or pointer.
|
|
// Also, callers should have filtered out the invalid cases with
|
|
// pointers. Everything else should be possible.
|
|
|
|
QualType SrcTy = Src.get()->getType();
|
|
if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
|
|
return CK_NoOp;
|
|
|
|
switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
|
|
case Type::STK_MemberPointer:
|
|
llvm_unreachable("member pointer type in C");
|
|
|
|
case Type::STK_CPointer:
|
|
case Type::STK_BlockPointer:
|
|
case Type::STK_ObjCObjectPointer:
|
|
switch (DestTy->getScalarTypeKind()) {
|
|
case Type::STK_CPointer: {
|
|
LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
|
|
LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
|
|
if (SrcAS != DestAS)
|
|
return CK_AddressSpaceConversion;
|
|
if (Context.hasCvrSimilarType(SrcTy, DestTy))
|
|
return CK_NoOp;
|
|
return CK_BitCast;
|
|
}
|
|
case Type::STK_BlockPointer:
|
|
return (SrcKind == Type::STK_BlockPointer
|
|
? CK_BitCast : CK_AnyPointerToBlockPointerCast);
|
|
case Type::STK_ObjCObjectPointer:
|
|
if (SrcKind == Type::STK_ObjCObjectPointer)
|
|
return CK_BitCast;
|
|
if (SrcKind == Type::STK_CPointer)
|
|
return CK_CPointerToObjCPointerCast;
|
|
maybeExtendBlockObject(Src);
|
|
return CK_BlockPointerToObjCPointerCast;
|
|
case Type::STK_Bool:
|
|
return CK_PointerToBoolean;
|
|
case Type::STK_Integral:
|
|
return CK_PointerToIntegral;
|
|
case Type::STK_Floating:
|
|
case Type::STK_FloatingComplex:
|
|
case Type::STK_IntegralComplex:
|
|
case Type::STK_MemberPointer:
|
|
case Type::STK_FixedPoint:
|
|
llvm_unreachable("illegal cast from pointer");
|
|
}
|
|
llvm_unreachable("Should have returned before this");
|
|
|
|
case Type::STK_FixedPoint:
|
|
switch (DestTy->getScalarTypeKind()) {
|
|
case Type::STK_FixedPoint:
|
|
return CK_FixedPointCast;
|
|
case Type::STK_Bool:
|
|
return CK_FixedPointToBoolean;
|
|
case Type::STK_Integral:
|
|
return CK_FixedPointToIntegral;
|
|
case Type::STK_Floating:
|
|
case Type::STK_IntegralComplex:
|
|
case Type::STK_FloatingComplex:
|
|
Diag(Src.get()->getExprLoc(),
|
|
diag::err_unimplemented_conversion_with_fixed_point_type)
|
|
<< DestTy;
|
|
return CK_IntegralCast;
|
|
case Type::STK_CPointer:
|
|
case Type::STK_ObjCObjectPointer:
|
|
case Type::STK_BlockPointer:
|
|
case Type::STK_MemberPointer:
|
|
llvm_unreachable("illegal cast to pointer type");
|
|
}
|
|
llvm_unreachable("Should have returned before this");
|
|
|
|
case Type::STK_Bool: // casting from bool is like casting from an integer
|
|
case Type::STK_Integral:
|
|
switch (DestTy->getScalarTypeKind()) {
|
|
case Type::STK_CPointer:
|
|
case Type::STK_ObjCObjectPointer:
|
|
case Type::STK_BlockPointer:
|
|
if (Src.get()->isNullPointerConstant(Context,
|
|
Expr::NPC_ValueDependentIsNull))
|
|
return CK_NullToPointer;
|
|
return CK_IntegralToPointer;
|
|
case Type::STK_Bool:
|
|
return CK_IntegralToBoolean;
|
|
case Type::STK_Integral:
|
|
return CK_IntegralCast;
|
|
case Type::STK_Floating:
|
|
return CK_IntegralToFloating;
|
|
case Type::STK_IntegralComplex:
|
|
Src = ImpCastExprToType(Src.get(),
|
|
DestTy->castAs<ComplexType>()->getElementType(),
|
|
CK_IntegralCast);
|
|
return CK_IntegralRealToComplex;
|
|
case Type::STK_FloatingComplex:
|
|
Src = ImpCastExprToType(Src.get(),
|
|
DestTy->castAs<ComplexType>()->getElementType(),
|
|
CK_IntegralToFloating);
|
|
return CK_FloatingRealToComplex;
|
|
case Type::STK_MemberPointer:
|
|
llvm_unreachable("member pointer type in C");
|
|
case Type::STK_FixedPoint:
|
|
return CK_IntegralToFixedPoint;
|
|
}
|
|
llvm_unreachable("Should have returned before this");
|
|
|
|
case Type::STK_Floating:
|
|
switch (DestTy->getScalarTypeKind()) {
|
|
case Type::STK_Floating:
|
|
return CK_FloatingCast;
|
|
case Type::STK_Bool:
|
|
return CK_FloatingToBoolean;
|
|
case Type::STK_Integral:
|
|
return CK_FloatingToIntegral;
|
|
case Type::STK_FloatingComplex:
|
|
Src = ImpCastExprToType(Src.get(),
|
|
DestTy->castAs<ComplexType>()->getElementType(),
|
|
CK_FloatingCast);
|
|
return CK_FloatingRealToComplex;
|
|
case Type::STK_IntegralComplex:
|
|
Src = ImpCastExprToType(Src.get(),
|
|
DestTy->castAs<ComplexType>()->getElementType(),
|
|
CK_FloatingToIntegral);
|
|
return CK_IntegralRealToComplex;
|
|
case Type::STK_CPointer:
|
|
case Type::STK_ObjCObjectPointer:
|
|
case Type::STK_BlockPointer:
|
|
llvm_unreachable("valid float->pointer cast?");
|
|
case Type::STK_MemberPointer:
|
|
llvm_unreachable("member pointer type in C");
|
|
case Type::STK_FixedPoint:
|
|
Diag(Src.get()->getExprLoc(),
|
|
diag::err_unimplemented_conversion_with_fixed_point_type)
|
|
<< SrcTy;
|
|
return CK_IntegralCast;
|
|
}
|
|
llvm_unreachable("Should have returned before this");
|
|
|
|
case Type::STK_FloatingComplex:
|
|
switch (DestTy->getScalarTypeKind()) {
|
|
case Type::STK_FloatingComplex:
|
|
return CK_FloatingComplexCast;
|
|
case Type::STK_IntegralComplex:
|
|
return CK_FloatingComplexToIntegralComplex;
|
|
case Type::STK_Floating: {
|
|
QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
|
|
if (Context.hasSameType(ET, DestTy))
|
|
return CK_FloatingComplexToReal;
|
|
Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
|
|
return CK_FloatingCast;
|
|
}
|
|
case Type::STK_Bool:
|
|
return CK_FloatingComplexToBoolean;
|
|
case Type::STK_Integral:
|
|
Src = ImpCastExprToType(Src.get(),
|
|
SrcTy->castAs<ComplexType>()->getElementType(),
|
|
CK_FloatingComplexToReal);
|
|
return CK_FloatingToIntegral;
|
|
case Type::STK_CPointer:
|
|
case Type::STK_ObjCObjectPointer:
|
|
case Type::STK_BlockPointer:
|
|
llvm_unreachable("valid complex float->pointer cast?");
|
|
case Type::STK_MemberPointer:
|
|
llvm_unreachable("member pointer type in C");
|
|
case Type::STK_FixedPoint:
|
|
Diag(Src.get()->getExprLoc(),
|
|
diag::err_unimplemented_conversion_with_fixed_point_type)
|
|
<< SrcTy;
|
|
return CK_IntegralCast;
|
|
}
|
|
llvm_unreachable("Should have returned before this");
|
|
|
|
case Type::STK_IntegralComplex:
|
|
switch (DestTy->getScalarTypeKind()) {
|
|
case Type::STK_FloatingComplex:
|
|
return CK_IntegralComplexToFloatingComplex;
|
|
case Type::STK_IntegralComplex:
|
|
return CK_IntegralComplexCast;
|
|
case Type::STK_Integral: {
|
|
QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
|
|
if (Context.hasSameType(ET, DestTy))
|
|
return CK_IntegralComplexToReal;
|
|
Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
|
|
return CK_IntegralCast;
|
|
}
|
|
case Type::STK_Bool:
|
|
return CK_IntegralComplexToBoolean;
|
|
case Type::STK_Floating:
|
|
Src = ImpCastExprToType(Src.get(),
|
|
SrcTy->castAs<ComplexType>()->getElementType(),
|
|
CK_IntegralComplexToReal);
|
|
return CK_IntegralToFloating;
|
|
case Type::STK_CPointer:
|
|
case Type::STK_ObjCObjectPointer:
|
|
case Type::STK_BlockPointer:
|
|
llvm_unreachable("valid complex int->pointer cast?");
|
|
case Type::STK_MemberPointer:
|
|
llvm_unreachable("member pointer type in C");
|
|
case Type::STK_FixedPoint:
|
|
Diag(Src.get()->getExprLoc(),
|
|
diag::err_unimplemented_conversion_with_fixed_point_type)
|
|
<< SrcTy;
|
|
return CK_IntegralCast;
|
|
}
|
|
llvm_unreachable("Should have returned before this");
|
|
}
|
|
|
|
llvm_unreachable("Unhandled scalar cast");
|
|
}
|
|
|
|
static bool breakDownVectorType(QualType type, uint64_t &len,
|
|
QualType &eltType) {
|
|
// Vectors are simple.
|
|
if (const VectorType *vecType = type->getAs<VectorType>()) {
|
|
len = vecType->getNumElements();
|
|
eltType = vecType->getElementType();
|
|
assert(eltType->isScalarType());
|
|
return true;
|
|
}
|
|
|
|
// We allow lax conversion to and from non-vector types, but only if
|
|
// they're real types (i.e. non-complex, non-pointer scalar types).
|
|
if (!type->isRealType()) return false;
|
|
|
|
len = 1;
|
|
eltType = type;
|
|
return true;
|
|
}
|
|
|
|
/// Are the two types lax-compatible vector types? That is, given
|
|
/// that one of them is a vector, do they have equal storage sizes,
|
|
/// where the storage size is the number of elements times the element
|
|
/// size?
|
|
///
|
|
/// This will also return false if either of the types is neither a
|
|
/// vector nor a real type.
|
|
bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
|
|
assert(destTy->isVectorType() || srcTy->isVectorType());
|
|
|
|
// Disallow lax conversions between scalars and ExtVectors (these
|
|
// conversions are allowed for other vector types because common headers
|
|
// depend on them). Most scalar OP ExtVector cases are handled by the
|
|
// splat path anyway, which does what we want (convert, not bitcast).
|
|
// What this rules out for ExtVectors is crazy things like char4*float.
|
|
if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
|
|
if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
|
|
|
|
uint64_t srcLen, destLen;
|
|
QualType srcEltTy, destEltTy;
|
|
if (!breakDownVectorType(srcTy, srcLen, srcEltTy)) return false;
|
|
if (!breakDownVectorType(destTy, destLen, destEltTy)) return false;
|
|
|
|
// ASTContext::getTypeSize will return the size rounded up to a
|
|
// power of 2, so instead of using that, we need to use the raw
|
|
// element size multiplied by the element count.
|
|
uint64_t srcEltSize = Context.getTypeSize(srcEltTy);
|
|
uint64_t destEltSize = Context.getTypeSize(destEltTy);
|
|
|
|
return (srcLen * srcEltSize == destLen * destEltSize);
|
|
}
|
|
|
|
/// Is this a legal conversion between two types, one of which is
|
|
/// known to be a vector type?
|
|
bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
|
|
assert(destTy->isVectorType() || srcTy->isVectorType());
|
|
|
|
if (!Context.getLangOpts().LaxVectorConversions)
|
|
return false;
|
|
return areLaxCompatibleVectorTypes(srcTy, destTy);
|
|
}
|
|
|
|
bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
|
|
CastKind &Kind) {
|
|
assert(VectorTy->isVectorType() && "Not a vector type!");
|
|
|
|
if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
|
|
if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
|
|
return Diag(R.getBegin(),
|
|
Ty->isVectorType() ?
|
|
diag::err_invalid_conversion_between_vectors :
|
|
diag::err_invalid_conversion_between_vector_and_integer)
|
|
<< VectorTy << Ty << R;
|
|
} else
|
|
return Diag(R.getBegin(),
|
|
diag::err_invalid_conversion_between_vector_and_scalar)
|
|
<< VectorTy << Ty << R;
|
|
|
|
Kind = CK_BitCast;
|
|
return false;
|
|
}
|
|
|
|
ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
|
|
QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
|
|
|
|
if (DestElemTy == SplattedExpr->getType())
|
|
return SplattedExpr;
|
|
|
|
assert(DestElemTy->isFloatingType() ||
|
|
DestElemTy->isIntegralOrEnumerationType());
|
|
|
|
CastKind CK;
|
|
if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
|
|
// OpenCL requires that we convert `true` boolean expressions to -1, but
|
|
// only when splatting vectors.
|
|
if (DestElemTy->isFloatingType()) {
|
|
// To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
|
|
// in two steps: boolean to signed integral, then to floating.
|
|
ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
|
|
CK_BooleanToSignedIntegral);
|
|
SplattedExpr = CastExprRes.get();
|
|
CK = CK_IntegralToFloating;
|
|
} else {
|
|
CK = CK_BooleanToSignedIntegral;
|
|
}
|
|
} else {
|
|
ExprResult CastExprRes = SplattedExpr;
|
|
CK = PrepareScalarCast(CastExprRes, DestElemTy);
|
|
if (CastExprRes.isInvalid())
|
|
return ExprError();
|
|
SplattedExpr = CastExprRes.get();
|
|
}
|
|
return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
|
|
}
|
|
|
|
ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
|
|
Expr *CastExpr, CastKind &Kind) {
|
|
assert(DestTy->isExtVectorType() && "Not an extended vector type!");
|
|
|
|
QualType SrcTy = CastExpr->getType();
|
|
|
|
// If SrcTy is a VectorType, the total size must match to explicitly cast to
|
|
// an ExtVectorType.
|
|
// In OpenCL, casts between vectors of different types are not allowed.
|
|
// (See OpenCL 6.2).
|
|
if (SrcTy->isVectorType()) {
|
|
if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) ||
|
|
(getLangOpts().OpenCL &&
|
|
!Context.hasSameUnqualifiedType(DestTy, SrcTy))) {
|
|
Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
|
|
<< DestTy << SrcTy << R;
|
|
return ExprError();
|
|
}
|
|
Kind = CK_BitCast;
|
|
return CastExpr;
|
|
}
|
|
|
|
// All non-pointer scalars can be cast to ExtVector type. The appropriate
|
|
// conversion will take place first from scalar to elt type, and then
|
|
// splat from elt type to vector.
|
|
if (SrcTy->isPointerType())
|
|
return Diag(R.getBegin(),
|
|
diag::err_invalid_conversion_between_vector_and_scalar)
|
|
<< DestTy << SrcTy << R;
|
|
|
|
Kind = CK_VectorSplat;
|
|
return prepareVectorSplat(DestTy, CastExpr);
|
|
}
|
|
|
|
ExprResult
|
|
Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
|
|
Declarator &D, ParsedType &Ty,
|
|
SourceLocation RParenLoc, Expr *CastExpr) {
|
|
assert(!D.isInvalidType() && (CastExpr != nullptr) &&
|
|
"ActOnCastExpr(): missing type or expr");
|
|
|
|
TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
|
|
if (D.isInvalidType())
|
|
return ExprError();
|
|
|
|
if (getLangOpts().CPlusPlus) {
|
|
// Check that there are no default arguments (C++ only).
|
|
CheckExtraCXXDefaultArguments(D);
|
|
} else {
|
|
// Make sure any TypoExprs have been dealt with.
|
|
ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
|
|
if (!Res.isUsable())
|
|
return ExprError();
|
|
CastExpr = Res.get();
|
|
}
|
|
|
|
checkUnusedDeclAttributes(D);
|
|
|
|
QualType castType = castTInfo->getType();
|
|
Ty = CreateParsedType(castType, castTInfo);
|
|
|
|
bool isVectorLiteral = false;
|
|
|
|
// Check for an altivec or OpenCL literal,
|
|
// i.e. all the elements are integer constants.
|
|
ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
|
|
ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
|
|
if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
|
|
&& castType->isVectorType() && (PE || PLE)) {
|
|
if (PLE && PLE->getNumExprs() == 0) {
|
|
Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
|
|
return ExprError();
|
|
}
|
|
if (PE || PLE->getNumExprs() == 1) {
|
|
Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
|
|
if (!E->getType()->isVectorType())
|
|
isVectorLiteral = true;
|
|
}
|
|
else
|
|
isVectorLiteral = true;
|
|
}
|
|
|
|
// If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
|
|
// then handle it as such.
|
|
if (isVectorLiteral)
|
|
return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
|
|
|
|
// If the Expr being casted is a ParenListExpr, handle it specially.
|
|
// This is not an AltiVec-style cast, so turn the ParenListExpr into a
|
|
// sequence of BinOp comma operators.
|
|
if (isa<ParenListExpr>(CastExpr)) {
|
|
ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
|
|
if (Result.isInvalid()) return ExprError();
|
|
CastExpr = Result.get();
|
|
}
|
|
|
|
if (getLangOpts().CPlusPlus && !castType->isVoidType() &&
|
|
!getSourceManager().isInSystemMacro(LParenLoc))
|
|
Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
|
|
|
|
CheckTollFreeBridgeCast(castType, CastExpr);
|
|
|
|
CheckObjCBridgeRelatedCast(castType, CastExpr);
|
|
|
|
DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
|
|
|
|
return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
|
|
}
|
|
|
|
ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
|
|
SourceLocation RParenLoc, Expr *E,
|
|
TypeSourceInfo *TInfo) {
|
|
assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
|
|
"Expected paren or paren list expression");
|
|
|
|
Expr **exprs;
|
|
unsigned numExprs;
|
|
Expr *subExpr;
|
|
SourceLocation LiteralLParenLoc, LiteralRParenLoc;
|
|
if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
|
|
LiteralLParenLoc = PE->getLParenLoc();
|
|
LiteralRParenLoc = PE->getRParenLoc();
|
|
exprs = PE->getExprs();
|
|
numExprs = PE->getNumExprs();
|
|
} else { // isa<ParenExpr> by assertion at function entrance
|
|
LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
|
|
LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
|
|
subExpr = cast<ParenExpr>(E)->getSubExpr();
|
|
exprs = &subExpr;
|
|
numExprs = 1;
|
|
}
|
|
|
|
QualType Ty = TInfo->getType();
|
|
assert(Ty->isVectorType() && "Expected vector type");
|
|
|
|
SmallVector<Expr *, 8> initExprs;
|
|
const VectorType *VTy = Ty->getAs<VectorType>();
|
|
unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
|
|
|
|
// '(...)' form of vector initialization in AltiVec: the number of
|
|
// initializers must be one or must match the size of the vector.
|
|
// If a single value is specified in the initializer then it will be
|
|
// replicated to all the components of the vector
|
|
if (VTy->getVectorKind() == VectorType::AltiVecVector) {
|
|
// The number of initializers must be one or must match the size of the
|
|
// vector. If a single value is specified in the initializer then it will
|
|
// be replicated to all the components of the vector
|
|
if (numExprs == 1) {
|
|
QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
|
|
ExprResult Literal = DefaultLvalueConversion(exprs[0]);
|
|
if (Literal.isInvalid())
|
|
return ExprError();
|
|
Literal = ImpCastExprToType(Literal.get(), ElemTy,
|
|
PrepareScalarCast(Literal, ElemTy));
|
|
return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
|
|
}
|
|
else if (numExprs < numElems) {
|
|
Diag(E->getExprLoc(),
|
|
diag::err_incorrect_number_of_vector_initializers);
|
|
return ExprError();
|
|
}
|
|
else
|
|
initExprs.append(exprs, exprs + numExprs);
|
|
}
|
|
else {
|
|
// For OpenCL, when the number of initializers is a single value,
|
|
// it will be replicated to all components of the vector.
|
|
if (getLangOpts().OpenCL &&
|
|
VTy->getVectorKind() == VectorType::GenericVector &&
|
|
numExprs == 1) {
|
|
QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
|
|
ExprResult Literal = DefaultLvalueConversion(exprs[0]);
|
|
if (Literal.isInvalid())
|
|
return ExprError();
|
|
Literal = ImpCastExprToType(Literal.get(), ElemTy,
|
|
PrepareScalarCast(Literal, ElemTy));
|
|
return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
|
|
}
|
|
|
|
initExprs.append(exprs, exprs + numExprs);
|
|
}
|
|
// FIXME: This means that pretty-printing the final AST will produce curly
|
|
// braces instead of the original commas.
|
|
InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
|
|
initExprs, LiteralRParenLoc);
|
|
initE->setType(Ty);
|
|
return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
|
|
}
|
|
|
|
/// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
|
|
/// the ParenListExpr into a sequence of comma binary operators.
|
|
ExprResult
|
|
Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
|
|
ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
|
|
if (!E)
|
|
return OrigExpr;
|
|
|
|
ExprResult Result(E->getExpr(0));
|
|
|
|
for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
|
|
Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
|
|
E->getExpr(i));
|
|
|
|
if (Result.isInvalid()) return ExprError();
|
|
|
|
return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
|
|
}
|
|
|
|
ExprResult Sema::ActOnParenListExpr(SourceLocation L,
|
|
SourceLocation R,
|
|
MultiExprArg Val) {
|
|
return ParenListExpr::Create(Context, L, Val, R);
|
|
}
|
|
|
|
/// Emit a specialized diagnostic when one expression is a null pointer
|
|
/// constant and the other is not a pointer. Returns true if a diagnostic is
|
|
/// emitted.
|
|
bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
|
|
SourceLocation QuestionLoc) {
|
|
Expr *NullExpr = LHSExpr;
|
|
Expr *NonPointerExpr = RHSExpr;
|
|
Expr::NullPointerConstantKind NullKind =
|
|
NullExpr->isNullPointerConstant(Context,
|
|
Expr::NPC_ValueDependentIsNotNull);
|
|
|
|
if (NullKind == Expr::NPCK_NotNull) {
|
|
NullExpr = RHSExpr;
|
|
NonPointerExpr = LHSExpr;
|
|
NullKind =
|
|
NullExpr->isNullPointerConstant(Context,
|
|
Expr::NPC_ValueDependentIsNotNull);
|
|
}
|
|
|
|
if (NullKind == Expr::NPCK_NotNull)
|
|
return false;
|
|
|
|
if (NullKind == Expr::NPCK_ZeroExpression)
|
|
return false;
|
|
|
|
if (NullKind == Expr::NPCK_ZeroLiteral) {
|
|
// In this case, check to make sure that we got here from a "NULL"
|
|
// string in the source code.
|
|
NullExpr = NullExpr->IgnoreParenImpCasts();
|
|
SourceLocation loc = NullExpr->getExprLoc();
|
|
if (!findMacroSpelling(loc, "NULL"))
|
|
return false;
|
|
}
|
|
|
|
int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
|
|
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
|
|
<< NonPointerExpr->getType() << DiagType
|
|
<< NonPointerExpr->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
/// Return false if the condition expression is valid, true otherwise.
|
|
static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
|
|
QualType CondTy = Cond->getType();
|
|
|
|
// OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
|
|
if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
|
|
S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
|
|
<< CondTy << Cond->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
// C99 6.5.15p2
|
|
if (CondTy->isScalarType()) return false;
|
|
|
|
S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
|
|
<< CondTy << Cond->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
/// Handle when one or both operands are void type.
|
|
static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
|
|
ExprResult &RHS) {
|
|
Expr *LHSExpr = LHS.get();
|
|
Expr *RHSExpr = RHS.get();
|
|
|
|
if (!LHSExpr->getType()->isVoidType())
|
|
S.Diag(RHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
|
|
<< RHSExpr->getSourceRange();
|
|
if (!RHSExpr->getType()->isVoidType())
|
|
S.Diag(LHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
|
|
<< LHSExpr->getSourceRange();
|
|
LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid);
|
|
RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid);
|
|
return S.Context.VoidTy;
|
|
}
|
|
|
|
/// Return false if the NullExpr can be promoted to PointerTy,
|
|
/// true otherwise.
|
|
static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
|
|
QualType PointerTy) {
|
|
if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
|
|
!NullExpr.get()->isNullPointerConstant(S.Context,
|
|
Expr::NPC_ValueDependentIsNull))
|
|
return true;
|
|
|
|
NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
|
|
return false;
|
|
}
|
|
|
|
/// Checks compatibility between two pointers and return the resulting
|
|
/// type.
|
|
static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
|
|
ExprResult &RHS,
|
|
SourceLocation Loc) {
|
|
QualType LHSTy = LHS.get()->getType();
|
|
QualType RHSTy = RHS.get()->getType();
|
|
|
|
if (S.Context.hasSameType(LHSTy, RHSTy)) {
|
|
// Two identical pointers types are always compatible.
|
|
return LHSTy;
|
|
}
|
|
|
|
QualType lhptee, rhptee;
|
|
|
|
// Get the pointee types.
|
|
bool IsBlockPointer = false;
|
|
if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
|
|
lhptee = LHSBTy->getPointeeType();
|
|
rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
|
|
IsBlockPointer = true;
|
|
} else {
|
|
lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
|
|
rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
|
|
}
|
|
|
|
// C99 6.5.15p6: If both operands are pointers to compatible types or to
|
|
// differently qualified versions of compatible types, the result type is
|
|
// a pointer to an appropriately qualified version of the composite
|
|
// type.
|
|
|
|
// Only CVR-qualifiers exist in the standard, and the differently-qualified
|
|
// clause doesn't make sense for our extensions. E.g. address space 2 should
|
|
// be incompatible with address space 3: they may live on different devices or
|
|
// anything.
|
|
Qualifiers lhQual = lhptee.getQualifiers();
|
|
Qualifiers rhQual = rhptee.getQualifiers();
|
|
|
|
LangAS ResultAddrSpace = LangAS::Default;
|
|
LangAS LAddrSpace = lhQual.getAddressSpace();
|
|
LangAS RAddrSpace = rhQual.getAddressSpace();
|
|
|
|
// OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
|
|
// spaces is disallowed.
|
|
if (lhQual.isAddressSpaceSupersetOf(rhQual))
|
|
ResultAddrSpace = LAddrSpace;
|
|
else if (rhQual.isAddressSpaceSupersetOf(lhQual))
|
|
ResultAddrSpace = RAddrSpace;
|
|
else {
|
|
S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
|
|
<< LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
|
|
<< RHS.get()->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
|
|
auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
|
|
lhQual.removeCVRQualifiers();
|
|
rhQual.removeCVRQualifiers();
|
|
|
|
// OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
|
|
// (C99 6.7.3) for address spaces. We assume that the check should behave in
|
|
// the same manner as it's defined for CVR qualifiers, so for OpenCL two
|
|
// qual types are compatible iff
|
|
// * corresponded types are compatible
|
|
// * CVR qualifiers are equal
|
|
// * address spaces are equal
|
|
// Thus for conditional operator we merge CVR and address space unqualified
|
|
// pointees and if there is a composite type we return a pointer to it with
|
|
// merged qualifiers.
|
|
LHSCastKind =
|
|
LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
|
|
RHSCastKind =
|
|
RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
|
|
lhQual.removeAddressSpace();
|
|
rhQual.removeAddressSpace();
|
|
|
|
lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
|
|
rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
|
|
|
|
QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
|
|
|
|
if (CompositeTy.isNull()) {
|
|
// In this situation, we assume void* type. No especially good
|
|
// reason, but this is what gcc does, and we do have to pick
|
|
// to get a consistent AST.
|
|
QualType incompatTy;
|
|
incompatTy = S.Context.getPointerType(
|
|
S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
|
|
LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind);
|
|
RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind);
|
|
|
|
// FIXME: For OpenCL the warning emission and cast to void* leaves a room
|
|
// for casts between types with incompatible address space qualifiers.
|
|
// For the following code the compiler produces casts between global and
|
|
// local address spaces of the corresponded innermost pointees:
|
|
// local int *global *a;
|
|
// global int *global *b;
|
|
// a = (0 ? a : b); // see C99 6.5.16.1.p1.
|
|
S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
|
|
<< LHSTy << RHSTy << LHS.get()->getSourceRange()
|
|
<< RHS.get()->getSourceRange();
|
|
|
|
return incompatTy;
|
|
}
|
|
|
|
// The pointer types are compatible.
|
|
// In case of OpenCL ResultTy should have the address space qualifier
|
|
// which is a superset of address spaces of both the 2nd and the 3rd
|
|
// operands of the conditional operator.
|
|
QualType ResultTy = [&, ResultAddrSpace]() {
|
|
if (S.getLangOpts().OpenCL) {
|
|
Qualifiers CompositeQuals = CompositeTy.getQualifiers();
|
|
CompositeQuals.setAddressSpace(ResultAddrSpace);
|
|
return S.Context
|
|
.getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals)
|
|
.withCVRQualifiers(MergedCVRQual);
|
|
}
|
|
return CompositeTy.withCVRQualifiers(MergedCVRQual);
|
|
}();
|
|
if (IsBlockPointer)
|
|
ResultTy = S.Context.getBlockPointerType(ResultTy);
|
|
else
|
|
ResultTy = S.Context.getPointerType(ResultTy);
|
|
|
|
LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
|
|
RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
|
|
return ResultTy;
|
|
}
|
|
|
|
/// Return the resulting type when the operands are both block pointers.
|
|
static QualType checkConditionalBlockPointerCompatibility(Sema &S,
|
|
ExprResult &LHS,
|
|
ExprResult &RHS,
|
|
SourceLocation Loc) {
|
|
QualType LHSTy = LHS.get()->getType();
|
|
QualType RHSTy = RHS.get()->getType();
|
|
|
|
if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
|
|
if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
|
|
QualType destType = S.Context.getPointerType(S.Context.VoidTy);
|
|
LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
|
|
RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
|
|
return destType;
|
|
}
|
|
S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
|
|
<< LHSTy << RHSTy << LHS.get()->getSourceRange()
|
|
<< RHS.get()->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// We have 2 block pointer types.
|
|
return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
|
|
}
|
|
|
|
/// Return the resulting type when the operands are both pointers.
|
|
static QualType
|
|
checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
|
|
ExprResult &RHS,
|
|
SourceLocation Loc) {
|
|
// get the pointer types
|
|
QualType LHSTy = LHS.get()->getType();
|
|
QualType RHSTy = RHS.get()->getType();
|
|
|
|
// get the "pointed to" types
|
|
QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
|
|
QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
|
|
|
|
// ignore qualifiers on void (C99 6.5.15p3, clause 6)
|
|
if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
|
|
// Figure out necessary qualifiers (C99 6.5.15p6)
|
|
QualType destPointee
|
|
= S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
|
|
QualType destType = S.Context.getPointerType(destPointee);
|
|
// Add qualifiers if necessary.
|
|
LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
|
|
// Promote to void*.
|
|
RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
|
|
return destType;
|
|
}
|
|
if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
|
|
QualType destPointee
|
|
= S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
|
|
QualType destType = S.Context.getPointerType(destPointee);
|
|
// Add qualifiers if necessary.
|
|
RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
|
|
// Promote to void*.
|
|
LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
|
|
return destType;
|
|
}
|
|
|
|
return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
|
|
}
|
|
|
|
/// Return false if the first expression is not an integer and the second
|
|
/// expression is not a pointer, true otherwise.
|
|
static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
|
|
Expr* PointerExpr, SourceLocation Loc,
|
|
bool IsIntFirstExpr) {
|
|
if (!PointerExpr->getType()->isPointerType() ||
|
|
!Int.get()->getType()->isIntegerType())
|
|
return false;
|
|
|
|
Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
|
|
Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
|
|
|
|
S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
|
|
<< Expr1->getType() << Expr2->getType()
|
|
<< Expr1->getSourceRange() << Expr2->getSourceRange();
|
|
Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
|
|
CK_IntegralToPointer);
|
|
return true;
|
|
}
|
|
|
|
/// Simple conversion between integer and floating point types.
|
|
///
|
|
/// Used when handling the OpenCL conditional operator where the
|
|
/// condition is a vector while the other operands are scalar.
|
|
///
|
|
/// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
|
|
/// types are either integer or floating type. Between the two
|
|
/// operands, the type with the higher rank is defined as the "result
|
|
/// type". The other operand needs to be promoted to the same type. No
|
|
/// other type promotion is allowed. We cannot use
|
|
/// UsualArithmeticConversions() for this purpose, since it always
|
|
/// promotes promotable types.
|
|
static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
|
|
ExprResult &RHS,
|
|
SourceLocation QuestionLoc) {
|
|
LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
|
|
if (LHS.isInvalid())
|
|
return QualType();
|
|
RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
|
|
if (RHS.isInvalid())
|
|
return QualType();
|
|
|
|
// For conversion purposes, we ignore any qualifiers.
|
|
// For example, "const float" and "float" are equivalent.
|
|
QualType LHSType =
|
|
S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
|
|
QualType RHSType =
|
|
S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
|
|
|
|
if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
|
|
S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
|
|
<< LHSType << LHS.get()->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
|
|
S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
|
|
<< RHSType << RHS.get()->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// If both types are identical, no conversion is needed.
|
|
if (LHSType == RHSType)
|
|
return LHSType;
|
|
|
|
// Now handle "real" floating types (i.e. float, double, long double).
|
|
if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
|
|
return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
|
|
/*IsCompAssign = */ false);
|
|
|
|
// Finally, we have two differing integer types.
|
|
return handleIntegerConversion<doIntegralCast, doIntegralCast>
|
|
(S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
|
|
}
|
|
|
|
/// Convert scalar operands to a vector that matches the
|
|
/// condition in length.
|
|
///
|
|
/// Used when handling the OpenCL conditional operator where the
|
|
/// condition is a vector while the other operands are scalar.
|
|
///
|
|
/// We first compute the "result type" for the scalar operands
|
|
/// according to OpenCL v1.1 s6.3.i. Both operands are then converted
|
|
/// into a vector of that type where the length matches the condition
|
|
/// vector type. s6.11.6 requires that the element types of the result
|
|
/// and the condition must have the same number of bits.
|
|
static QualType
|
|
OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
|
|
QualType CondTy, SourceLocation QuestionLoc) {
|
|
QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
|
|
if (ResTy.isNull()) return QualType();
|
|
|
|
const VectorType *CV = CondTy->getAs<VectorType>();
|
|
assert(CV);
|
|
|
|
// Determine the vector result type
|
|
unsigned NumElements = CV->getNumElements();
|
|
QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
|
|
|
|
// Ensure that all types have the same number of bits
|
|
if (S.Context.getTypeSize(CV->getElementType())
|
|
!= S.Context.getTypeSize(ResTy)) {
|
|
// Since VectorTy is created internally, it does not pretty print
|
|
// with an OpenCL name. Instead, we just print a description.
|
|
std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
|
|
SmallString<64> Str;
|
|
llvm::raw_svector_ostream OS(Str);
|
|
OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
|
|
S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
|
|
<< CondTy << OS.str();
|
|
return QualType();
|
|
}
|
|
|
|
// Convert operands to the vector result type
|
|
LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
|
|
RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
|
|
|
|
return VectorTy;
|
|
}
|
|
|
|
/// Return false if this is a valid OpenCL condition vector
|
|
static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
|
|
SourceLocation QuestionLoc) {
|
|
// OpenCL v1.1 s6.11.6 says the elements of the vector must be of
|
|
// integral type.
|
|
const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
|
|
assert(CondTy);
|
|
QualType EleTy = CondTy->getElementType();
|
|
if (EleTy->isIntegerType()) return false;
|
|
|
|
S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
|
|
<< Cond->getType() << Cond->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
/// Return false if the vector condition type and the vector
|
|
/// result type are compatible.
|
|
///
|
|
/// OpenCL v1.1 s6.11.6 requires that both vector types have the same
|
|
/// number of elements, and their element types have the same number
|
|
/// of bits.
|
|
static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
|
|
SourceLocation QuestionLoc) {
|
|
const VectorType *CV = CondTy->getAs<VectorType>();
|
|
const VectorType *RV = VecResTy->getAs<VectorType>();
|
|
assert(CV && RV);
|
|
|
|
if (CV->getNumElements() != RV->getNumElements()) {
|
|
S.Diag(QuestionLoc, diag::err_conditional_vector_size)
|
|
<< CondTy << VecResTy;
|
|
return true;
|
|
}
|
|
|
|
QualType CVE = CV->getElementType();
|
|
QualType RVE = RV->getElementType();
|
|
|
|
if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
|
|
S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
|
|
<< CondTy << VecResTy;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Return the resulting type for the conditional operator in
|
|
/// OpenCL (aka "ternary selection operator", OpenCL v1.1
|
|
/// s6.3.i) when the condition is a vector type.
|
|
static QualType
|
|
OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
|
|
ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation QuestionLoc) {
|
|
Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
|
|
if (Cond.isInvalid())
|
|
return QualType();
|
|
QualType CondTy = Cond.get()->getType();
|
|
|
|
if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
|
|
return QualType();
|
|
|
|
// If either operand is a vector then find the vector type of the
|
|
// result as specified in OpenCL v1.1 s6.3.i.
|
|
if (LHS.get()->getType()->isVectorType() ||
|
|
RHS.get()->getType()->isVectorType()) {
|
|
QualType VecResTy = S.CheckVectorOperands(LHS, RHS, QuestionLoc,
|
|
/*isCompAssign*/false,
|
|
/*AllowBothBool*/true,
|
|
/*AllowBoolConversions*/false);
|
|
if (VecResTy.isNull()) return QualType();
|
|
// The result type must match the condition type as specified in
|
|
// OpenCL v1.1 s6.11.6.
|
|
if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
|
|
return QualType();
|
|
return VecResTy;
|
|
}
|
|
|
|
// Both operands are scalar.
|
|
return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
|
|
}
|
|
|
|
/// Return true if the Expr is block type
|
|
static bool checkBlockType(Sema &S, const Expr *E) {
|
|
if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
|
|
QualType Ty = CE->getCallee()->getType();
|
|
if (Ty->isBlockPointerType()) {
|
|
S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
|
|
/// In that case, LHS = cond.
|
|
/// C99 6.5.15
|
|
QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
|
|
ExprResult &RHS, ExprValueKind &VK,
|
|
ExprObjectKind &OK,
|
|
SourceLocation QuestionLoc) {
|
|
|
|
ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
|
|
if (!LHSResult.isUsable()) return QualType();
|
|
LHS = LHSResult;
|
|
|
|
ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
|
|
if (!RHSResult.isUsable()) return QualType();
|
|
RHS = RHSResult;
|
|
|
|
// C++ is sufficiently different to merit its own checker.
|
|
if (getLangOpts().CPlusPlus)
|
|
return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
|
|
|
|
VK = VK_RValue;
|
|
OK = OK_Ordinary;
|
|
|
|
// The OpenCL operator with a vector condition is sufficiently
|
|
// different to merit its own checker.
|
|
if (getLangOpts().OpenCL && Cond.get()->getType()->isVectorType())
|
|
return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
|
|
|
|
// First, check the condition.
|
|
Cond = UsualUnaryConversions(Cond.get());
|
|
if (Cond.isInvalid())
|
|
return QualType();
|
|
if (checkCondition(*this, Cond.get(), QuestionLoc))
|
|
return QualType();
|
|
|
|
// Now check the two expressions.
|
|
if (LHS.get()->getType()->isVectorType() ||
|
|
RHS.get()->getType()->isVectorType())
|
|
return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
|
|
/*AllowBothBool*/true,
|
|
/*AllowBoolConversions*/false);
|
|
|
|
QualType ResTy = UsualArithmeticConversions(LHS, RHS);
|
|
if (LHS.isInvalid() || RHS.isInvalid())
|
|
return QualType();
|
|
|
|
QualType LHSTy = LHS.get()->getType();
|
|
QualType RHSTy = RHS.get()->getType();
|
|
|
|
// Diagnose attempts to convert between __float128 and long double where
|
|
// such conversions currently can't be handled.
|
|
if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
|
|
Diag(QuestionLoc,
|
|
diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
|
|
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
|
|
// selection operator (?:).
|
|
if (getLangOpts().OpenCL &&
|
|
(checkBlockType(*this, LHS.get()) | checkBlockType(*this, RHS.get()))) {
|
|
return QualType();
|
|
}
|
|
|
|
// If both operands have arithmetic type, do the usual arithmetic conversions
|
|
// to find a common type: C99 6.5.15p3,5.
|
|
if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
|
|
LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
|
|
RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
|
|
|
|
return ResTy;
|
|
}
|
|
|
|
// If both operands are the same structure or union type, the result is that
|
|
// type.
|
|
if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
|
|
if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
|
|
if (LHSRT->getDecl() == RHSRT->getDecl())
|
|
// "If both the operands have structure or union type, the result has
|
|
// that type." This implies that CV qualifiers are dropped.
|
|
return LHSTy.getUnqualifiedType();
|
|
// FIXME: Type of conditional expression must be complete in C mode.
|
|
}
|
|
|
|
// C99 6.5.15p5: "If both operands have void type, the result has void type."
|
|
// The following || allows only one side to be void (a GCC-ism).
|
|
if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
|
|
return checkConditionalVoidType(*this, LHS, RHS);
|
|
}
|
|
|
|
// C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
|
|
// the type of the other operand."
|
|
if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
|
|
if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
|
|
|
|
// All objective-c pointer type analysis is done here.
|
|
QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
|
|
QuestionLoc);
|
|
if (LHS.isInvalid() || RHS.isInvalid())
|
|
return QualType();
|
|
if (!compositeType.isNull())
|
|
return compositeType;
|
|
|
|
|
|
// Handle block pointer types.
|
|
if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
|
|
return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
|
|
QuestionLoc);
|
|
|
|
// Check constraints for C object pointers types (C99 6.5.15p3,6).
|
|
if (LHSTy->isPointerType() && RHSTy->isPointerType())
|
|
return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
|
|
QuestionLoc);
|
|
|
|
// GCC compatibility: soften pointer/integer mismatch. Note that
|
|
// null pointers have been filtered out by this point.
|
|
if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
|
|
/*isIntFirstExpr=*/true))
|
|
return RHSTy;
|
|
if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
|
|
/*isIntFirstExpr=*/false))
|
|
return LHSTy;
|
|
|
|
// Emit a better diagnostic if one of the expressions is a null pointer
|
|
// constant and the other is not a pointer type. In this case, the user most
|
|
// likely forgot to take the address of the other expression.
|
|
if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
|
|
return QualType();
|
|
|
|
// Otherwise, the operands are not compatible.
|
|
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
|
|
<< LHSTy << RHSTy << LHS.get()->getSourceRange()
|
|
<< RHS.get()->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
/// FindCompositeObjCPointerType - Helper method to find composite type of
|
|
/// two objective-c pointer types of the two input expressions.
|
|
QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation QuestionLoc) {
|
|
QualType LHSTy = LHS.get()->getType();
|
|
QualType RHSTy = RHS.get()->getType();
|
|
|
|
// Handle things like Class and struct objc_class*. Here we case the result
|
|
// to the pseudo-builtin, because that will be implicitly cast back to the
|
|
// redefinition type if an attempt is made to access its fields.
|
|
if (LHSTy->isObjCClassType() &&
|
|
(Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
|
|
RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
|
|
return LHSTy;
|
|
}
|
|
if (RHSTy->isObjCClassType() &&
|
|
(Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
|
|
LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
|
|
return RHSTy;
|
|
}
|
|
// And the same for struct objc_object* / id
|
|
if (LHSTy->isObjCIdType() &&
|
|
(Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
|
|
RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
|
|
return LHSTy;
|
|
}
|
|
if (RHSTy->isObjCIdType() &&
|
|
(Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
|
|
LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
|
|
return RHSTy;
|
|
}
|
|
// And the same for struct objc_selector* / SEL
|
|
if (Context.isObjCSelType(LHSTy) &&
|
|
(Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
|
|
RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
|
|
return LHSTy;
|
|
}
|
|
if (Context.isObjCSelType(RHSTy) &&
|
|
(Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
|
|
LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
|
|
return RHSTy;
|
|
}
|
|
// Check constraints for Objective-C object pointers types.
|
|
if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
|
|
|
|
if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
|
|
// Two identical object pointer types are always compatible.
|
|
return LHSTy;
|
|
}
|
|
const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
|
|
const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
|
|
QualType compositeType = LHSTy;
|
|
|
|
// If both operands are interfaces and either operand can be
|
|
// assigned to the other, use that type as the composite
|
|
// type. This allows
|
|
// xxx ? (A*) a : (B*) b
|
|
// where B is a subclass of A.
|
|
//
|
|
// Additionally, as for assignment, if either type is 'id'
|
|
// allow silent coercion. Finally, if the types are
|
|
// incompatible then make sure to use 'id' as the composite
|
|
// type so the result is acceptable for sending messages to.
|
|
|
|
// FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
|
|
// It could return the composite type.
|
|
if (!(compositeType =
|
|
Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
|
|
// Nothing more to do.
|
|
} else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
|
|
compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
|
|
} else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
|
|
compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
|
|
} else if ((LHSTy->isObjCQualifiedIdType() ||
|
|
RHSTy->isObjCQualifiedIdType()) &&
|
|
Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
|
|
// Need to handle "id<xx>" explicitly.
|
|
// GCC allows qualified id and any Objective-C type to devolve to
|
|
// id. Currently localizing to here until clear this should be
|
|
// part of ObjCQualifiedIdTypesAreCompatible.
|
|
compositeType = Context.getObjCIdType();
|
|
} else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
|
|
compositeType = Context.getObjCIdType();
|
|
} else {
|
|
Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
|
|
<< LHSTy << RHSTy
|
|
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
|
QualType incompatTy = Context.getObjCIdType();
|
|
LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
|
|
RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
|
|
return incompatTy;
|
|
}
|
|
// The object pointer types are compatible.
|
|
LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
|
|
RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
|
|
return compositeType;
|
|
}
|
|
// Check Objective-C object pointer types and 'void *'
|
|
if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
|
|
if (getLangOpts().ObjCAutoRefCount) {
|
|
// ARC forbids the implicit conversion of object pointers to 'void *',
|
|
// so these types are not compatible.
|
|
Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
|
|
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
|
LHS = RHS = true;
|
|
return QualType();
|
|
}
|
|
QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
|
|
QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
|
|
QualType destPointee
|
|
= Context.getQualifiedType(lhptee, rhptee.getQualifiers());
|
|
QualType destType = Context.getPointerType(destPointee);
|
|
// Add qualifiers if necessary.
|
|
LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
|
|
// Promote to void*.
|
|
RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
|
|
return destType;
|
|
}
|
|
if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
|
|
if (getLangOpts().ObjCAutoRefCount) {
|
|
// ARC forbids the implicit conversion of object pointers to 'void *',
|
|
// so these types are not compatible.
|
|
Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
|
|
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
|
LHS = RHS = true;
|
|
return QualType();
|
|
}
|
|
QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
|
|
QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
|
|
QualType destPointee
|
|
= Context.getQualifiedType(rhptee, lhptee.getQualifiers());
|
|
QualType destType = Context.getPointerType(destPointee);
|
|
// Add qualifiers if necessary.
|
|
RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
|
|
// Promote to void*.
|
|
LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
|
|
return destType;
|
|
}
|
|
return QualType();
|
|
}
|
|
|
|
/// SuggestParentheses - Emit a note with a fixit hint that wraps
|
|
/// ParenRange in parentheses.
|
|
static void SuggestParentheses(Sema &Self, SourceLocation Loc,
|
|
const PartialDiagnostic &Note,
|
|
SourceRange ParenRange) {
|
|
SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
|
|
if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
|
|
EndLoc.isValid()) {
|
|
Self.Diag(Loc, Note)
|
|
<< FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
|
|
<< FixItHint::CreateInsertion(EndLoc, ")");
|
|
} else {
|
|
// We can't display the parentheses, so just show the bare note.
|
|
Self.Diag(Loc, Note) << ParenRange;
|
|
}
|
|
}
|
|
|
|
static bool IsArithmeticOp(BinaryOperatorKind Opc) {
|
|
return BinaryOperator::isAdditiveOp(Opc) ||
|
|
BinaryOperator::isMultiplicativeOp(Opc) ||
|
|
BinaryOperator::isShiftOp(Opc);
|
|
}
|
|
|
|
/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
|
|
/// expression, either using a built-in or overloaded operator,
|
|
/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
|
|
/// expression.
|
|
static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
|
|
Expr **RHSExprs) {
|
|
// Don't strip parenthesis: we should not warn if E is in parenthesis.
|
|
E = E->IgnoreImpCasts();
|
|
E = E->IgnoreConversionOperator();
|
|
E = E->IgnoreImpCasts();
|
|
if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
|
|
E = MTE->GetTemporaryExpr();
|
|
E = E->IgnoreImpCasts();
|
|
}
|
|
|
|
// Built-in binary operator.
|
|
if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
|
|
if (IsArithmeticOp(OP->getOpcode())) {
|
|
*Opcode = OP->getOpcode();
|
|
*RHSExprs = OP->getRHS();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Overloaded operator.
|
|
if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
|
|
if (Call->getNumArgs() != 2)
|
|
return false;
|
|
|
|
// Make sure this is really a binary operator that is safe to pass into
|
|
// BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
|
|
OverloadedOperatorKind OO = Call->getOperator();
|
|
if (OO < OO_Plus || OO > OO_Arrow ||
|
|
OO == OO_PlusPlus || OO == OO_MinusMinus)
|
|
return false;
|
|
|
|
BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
|
|
if (IsArithmeticOp(OpKind)) {
|
|
*Opcode = OpKind;
|
|
*RHSExprs = Call->getArg(1);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
|
|
/// or is a logical expression such as (x==y) which has int type, but is
|
|
/// commonly interpreted as boolean.
|
|
static bool ExprLooksBoolean(Expr *E) {
|
|
E = E->IgnoreParenImpCasts();
|
|
|
|
if (E->getType()->isBooleanType())
|
|
return true;
|
|
if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
|
|
return OP->isComparisonOp() || OP->isLogicalOp();
|
|
if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
|
|
return OP->getOpcode() == UO_LNot;
|
|
if (E->getType()->isPointerType())
|
|
return true;
|
|
// FIXME: What about overloaded operator calls returning "unspecified boolean
|
|
// type"s (commonly pointer-to-members)?
|
|
|
|
return false;
|
|
}
|
|
|
|
/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
|
|
/// and binary operator are mixed in a way that suggests the programmer assumed
|
|
/// the conditional operator has higher precedence, for example:
|
|
/// "int x = a + someBinaryCondition ? 1 : 2".
|
|
static void DiagnoseConditionalPrecedence(Sema &Self,
|
|
SourceLocation OpLoc,
|
|
Expr *Condition,
|
|
Expr *LHSExpr,
|
|
Expr *RHSExpr) {
|
|
BinaryOperatorKind CondOpcode;
|
|
Expr *CondRHS;
|
|
|
|
if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
|
|
return;
|
|
if (!ExprLooksBoolean(CondRHS))
|
|
return;
|
|
|
|
// The condition is an arithmetic binary expression, with a right-
|
|
// hand side that looks boolean, so warn.
|
|
|
|
Self.Diag(OpLoc, diag::warn_precedence_conditional)
|
|
<< Condition->getSourceRange()
|
|
<< BinaryOperator::getOpcodeStr(CondOpcode);
|
|
|
|
SuggestParentheses(
|
|
Self, OpLoc,
|
|
Self.PDiag(diag::note_precedence_silence)
|
|
<< BinaryOperator::getOpcodeStr(CondOpcode),
|
|
SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
|
|
|
|
SuggestParentheses(Self, OpLoc,
|
|
Self.PDiag(diag::note_precedence_conditional_first),
|
|
SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
|
|
}
|
|
|
|
/// Compute the nullability of a conditional expression.
|
|
static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
|
|
QualType LHSTy, QualType RHSTy,
|
|
ASTContext &Ctx) {
|
|
if (!ResTy->isAnyPointerType())
|
|
return ResTy;
|
|
|
|
auto GetNullability = [&Ctx](QualType Ty) {
|
|
Optional<NullabilityKind> Kind = Ty->getNullability(Ctx);
|
|
if (Kind)
|
|
return *Kind;
|
|
return NullabilityKind::Unspecified;
|
|
};
|
|
|
|
auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
|
|
NullabilityKind MergedKind;
|
|
|
|
// Compute nullability of a binary conditional expression.
|
|
if (IsBin) {
|
|
if (LHSKind == NullabilityKind::NonNull)
|
|
MergedKind = NullabilityKind::NonNull;
|
|
else
|
|
MergedKind = RHSKind;
|
|
// Compute nullability of a normal conditional expression.
|
|
} else {
|
|
if (LHSKind == NullabilityKind::Nullable ||
|
|
RHSKind == NullabilityKind::Nullable)
|
|
MergedKind = NullabilityKind::Nullable;
|
|
else if (LHSKind == NullabilityKind::NonNull)
|
|
MergedKind = RHSKind;
|
|
else if (RHSKind == NullabilityKind::NonNull)
|
|
MergedKind = LHSKind;
|
|
else
|
|
MergedKind = NullabilityKind::Unspecified;
|
|
}
|
|
|
|
// Return if ResTy already has the correct nullability.
|
|
if (GetNullability(ResTy) == MergedKind)
|
|
return ResTy;
|
|
|
|
// Strip all nullability from ResTy.
|
|
while (ResTy->getNullability(Ctx))
|
|
ResTy = ResTy.getSingleStepDesugaredType(Ctx);
|
|
|
|
// Create a new AttributedType with the new nullability kind.
|
|
auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind);
|
|
return Ctx.getAttributedType(NewAttr, ResTy, ResTy);
|
|
}
|
|
|
|
/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
|
|
/// in the case of a the GNU conditional expr extension.
|
|
ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
|
|
SourceLocation ColonLoc,
|
|
Expr *CondExpr, Expr *LHSExpr,
|
|
Expr *RHSExpr) {
|
|
if (!getLangOpts().CPlusPlus) {
|
|
// C cannot handle TypoExpr nodes in the condition because it
|
|
// doesn't handle dependent types properly, so make sure any TypoExprs have
|
|
// been dealt with before checking the operands.
|
|
ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
|
|
ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
|
|
ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
|
|
|
|
if (!CondResult.isUsable())
|
|
return ExprError();
|
|
|
|
if (LHSExpr) {
|
|
if (!LHSResult.isUsable())
|
|
return ExprError();
|
|
}
|
|
|
|
if (!RHSResult.isUsable())
|
|
return ExprError();
|
|
|
|
CondExpr = CondResult.get();
|
|
LHSExpr = LHSResult.get();
|
|
RHSExpr = RHSResult.get();
|
|
}
|
|
|
|
// If this is the gnu "x ?: y" extension, analyze the types as though the LHS
|
|
// was the condition.
|
|
OpaqueValueExpr *opaqueValue = nullptr;
|
|
Expr *commonExpr = nullptr;
|
|
if (!LHSExpr) {
|
|
commonExpr = CondExpr;
|
|
// Lower out placeholder types first. This is important so that we don't
|
|
// try to capture a placeholder. This happens in few cases in C++; such
|
|
// as Objective-C++'s dictionary subscripting syntax.
|
|
if (commonExpr->hasPlaceholderType()) {
|
|
ExprResult result = CheckPlaceholderExpr(commonExpr);
|
|
if (!result.isUsable()) return ExprError();
|
|
commonExpr = result.get();
|
|
}
|
|
// We usually want to apply unary conversions *before* saving, except
|
|
// in the special case of a C++ l-value conditional.
|
|
if (!(getLangOpts().CPlusPlus
|
|
&& !commonExpr->isTypeDependent()
|
|
&& commonExpr->getValueKind() == RHSExpr->getValueKind()
|
|
&& commonExpr->isGLValue()
|
|
&& commonExpr->isOrdinaryOrBitFieldObject()
|
|
&& RHSExpr->isOrdinaryOrBitFieldObject()
|
|
&& Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
|
|
ExprResult commonRes = UsualUnaryConversions(commonExpr);
|
|
if (commonRes.isInvalid())
|
|
return ExprError();
|
|
commonExpr = commonRes.get();
|
|
}
|
|
|
|
// If the common expression is a class or array prvalue, materialize it
|
|
// so that we can safely refer to it multiple times.
|
|
if (commonExpr->isRValue() && (commonExpr->getType()->isRecordType() ||
|
|
commonExpr->getType()->isArrayType())) {
|
|
ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr);
|
|
if (MatExpr.isInvalid())
|
|
return ExprError();
|
|
commonExpr = MatExpr.get();
|
|
}
|
|
|
|
opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
|
|
commonExpr->getType(),
|
|
commonExpr->getValueKind(),
|
|
commonExpr->getObjectKind(),
|
|
commonExpr);
|
|
LHSExpr = CondExpr = opaqueValue;
|
|
}
|
|
|
|
QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
|
|
ExprValueKind VK = VK_RValue;
|
|
ExprObjectKind OK = OK_Ordinary;
|
|
ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
|
|
QualType result = CheckConditionalOperands(Cond, LHS, RHS,
|
|
VK, OK, QuestionLoc);
|
|
if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
|
|
RHS.isInvalid())
|
|
return ExprError();
|
|
|
|
DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
|
|
RHS.get());
|
|
|
|
CheckBoolLikeConversion(Cond.get(), QuestionLoc);
|
|
|
|
result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
|
|
Context);
|
|
|
|
if (!commonExpr)
|
|
return new (Context)
|
|
ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
|
|
RHS.get(), result, VK, OK);
|
|
|
|
return new (Context) BinaryConditionalOperator(
|
|
commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
|
|
ColonLoc, result, VK, OK);
|
|
}
|
|
|
|
// checkPointerTypesForAssignment - This is a very tricky routine (despite
|
|
// being closely modeled after the C99 spec:-). The odd characteristic of this
|
|
// routine is it effectively iqnores the qualifiers on the top level pointee.
|
|
// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
|
|
// FIXME: add a couple examples in this comment.
|
|
static Sema::AssignConvertType
|
|
checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
|
|
assert(LHSType.isCanonical() && "LHS not canonicalized!");
|
|
assert(RHSType.isCanonical() && "RHS not canonicalized!");
|
|
|
|
// get the "pointed to" type (ignoring qualifiers at the top level)
|
|
const Type *lhptee, *rhptee;
|
|
Qualifiers lhq, rhq;
|
|
std::tie(lhptee, lhq) =
|
|
cast<PointerType>(LHSType)->getPointeeType().split().asPair();
|
|
std::tie(rhptee, rhq) =
|
|
cast<PointerType>(RHSType)->getPointeeType().split().asPair();
|
|
|
|
Sema::AssignConvertType ConvTy = Sema::Compatible;
|
|
|
|
// C99 6.5.16.1p1: This following citation is common to constraints
|
|
// 3 & 4 (below). ...and the type *pointed to* by the left has all the
|
|
// qualifiers of the type *pointed to* by the right;
|
|
|
|
// As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
|
|
if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
|
|
lhq.compatiblyIncludesObjCLifetime(rhq)) {
|
|
// Ignore lifetime for further calculation.
|
|
lhq.removeObjCLifetime();
|
|
rhq.removeObjCLifetime();
|
|
}
|
|
|
|
if (!lhq.compatiblyIncludes(rhq)) {
|
|
// Treat address-space mismatches as fatal.
|
|
if (!lhq.isAddressSpaceSupersetOf(rhq))
|
|
return Sema::IncompatiblePointerDiscardsQualifiers;
|
|
|
|
// It's okay to add or remove GC or lifetime qualifiers when converting to
|
|
// and from void*.
|
|
else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
|
|
.compatiblyIncludes(
|
|
rhq.withoutObjCGCAttr().withoutObjCLifetime())
|
|
&& (lhptee->isVoidType() || rhptee->isVoidType()))
|
|
; // keep old
|
|
|
|
// Treat lifetime mismatches as fatal.
|
|
else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
|
|
ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
|
|
|
|
// For GCC/MS compatibility, other qualifier mismatches are treated
|
|
// as still compatible in C.
|
|
else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
|
|
}
|
|
|
|
// C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
|
|
// incomplete type and the other is a pointer to a qualified or unqualified
|
|
// version of void...
|
|
if (lhptee->isVoidType()) {
|
|
if (rhptee->isIncompleteOrObjectType())
|
|
return ConvTy;
|
|
|
|
// As an extension, we allow cast to/from void* to function pointer.
|
|
assert(rhptee->isFunctionType());
|
|
return Sema::FunctionVoidPointer;
|
|
}
|
|
|
|
if (rhptee->isVoidType()) {
|
|
if (lhptee->isIncompleteOrObjectType())
|
|
return ConvTy;
|
|
|
|
// As an extension, we allow cast to/from void* to function pointer.
|
|
assert(lhptee->isFunctionType());
|
|
return Sema::FunctionVoidPointer;
|
|
}
|
|
|
|
// C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
|
|
// unqualified versions of compatible types, ...
|
|
QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
|
|
if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
|
|
// Check if the pointee types are compatible ignoring the sign.
|
|
// We explicitly check for char so that we catch "char" vs
|
|
// "unsigned char" on systems where "char" is unsigned.
|
|
if (lhptee->isCharType())
|
|
ltrans = S.Context.UnsignedCharTy;
|
|
else if (lhptee->hasSignedIntegerRepresentation())
|
|
ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
|
|
|
|
if (rhptee->isCharType())
|
|
rtrans = S.Context.UnsignedCharTy;
|
|
else if (rhptee->hasSignedIntegerRepresentation())
|
|
rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
|
|
|
|
if (ltrans == rtrans) {
|
|
// Types are compatible ignoring the sign. Qualifier incompatibility
|
|
// takes priority over sign incompatibility because the sign
|
|
// warning can be disabled.
|
|
if (ConvTy != Sema::Compatible)
|
|
return ConvTy;
|
|
|
|
return Sema::IncompatiblePointerSign;
|
|
}
|
|
|
|
// If we are a multi-level pointer, it's possible that our issue is simply
|
|
// one of qualification - e.g. char ** -> const char ** is not allowed. If
|
|
// the eventual target type is the same and the pointers have the same
|
|
// level of indirection, this must be the issue.
|
|
if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
|
|
do {
|
|
std::tie(lhptee, lhq) =
|
|
cast<PointerType>(lhptee)->getPointeeType().split().asPair();
|
|
std::tie(rhptee, rhq) =
|
|
cast<PointerType>(rhptee)->getPointeeType().split().asPair();
|
|
|
|
// Inconsistent address spaces at this point is invalid, even if the
|
|
// address spaces would be compatible.
|
|
// FIXME: This doesn't catch address space mismatches for pointers of
|
|
// different nesting levels, like:
|
|
// __local int *** a;
|
|
// int ** b = a;
|
|
// It's not clear how to actually determine when such pointers are
|
|
// invalidly incompatible.
|
|
if (lhq.getAddressSpace() != rhq.getAddressSpace())
|
|
return Sema::IncompatibleNestedPointerAddressSpaceMismatch;
|
|
|
|
} while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
|
|
|
|
if (lhptee == rhptee)
|
|
return Sema::IncompatibleNestedPointerQualifiers;
|
|
}
|
|
|
|
// General pointer incompatibility takes priority over qualifiers.
|
|
return Sema::IncompatiblePointer;
|
|
}
|
|
if (!S.getLangOpts().CPlusPlus &&
|
|
S.IsFunctionConversion(ltrans, rtrans, ltrans))
|
|
return Sema::IncompatiblePointer;
|
|
return ConvTy;
|
|
}
|
|
|
|
/// checkBlockPointerTypesForAssignment - This routine determines whether two
|
|
/// block pointer types are compatible or whether a block and normal pointer
|
|
/// are compatible. It is more restrict than comparing two function pointer
|
|
// types.
|
|
static Sema::AssignConvertType
|
|
checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
|
|
QualType RHSType) {
|
|
assert(LHSType.isCanonical() && "LHS not canonicalized!");
|
|
assert(RHSType.isCanonical() && "RHS not canonicalized!");
|
|
|
|
QualType lhptee, rhptee;
|
|
|
|
// get the "pointed to" type (ignoring qualifiers at the top level)
|
|
lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
|
|
rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
|
|
|
|
// In C++, the types have to match exactly.
|
|
if (S.getLangOpts().CPlusPlus)
|
|
return Sema::IncompatibleBlockPointer;
|
|
|
|
Sema::AssignConvertType ConvTy = Sema::Compatible;
|
|
|
|
// For blocks we enforce that qualifiers are identical.
|
|
Qualifiers LQuals = lhptee.getLocalQualifiers();
|
|
Qualifiers RQuals = rhptee.getLocalQualifiers();
|
|
if (S.getLangOpts().OpenCL) {
|
|
LQuals.removeAddressSpace();
|
|
RQuals.removeAddressSpace();
|
|
}
|
|
if (LQuals != RQuals)
|
|
ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
|
|
|
|
// FIXME: OpenCL doesn't define the exact compile time semantics for a block
|
|
// assignment.
|
|
// The current behavior is similar to C++ lambdas. A block might be
|
|
// assigned to a variable iff its return type and parameters are compatible
|
|
// (C99 6.2.7) with the corresponding return type and parameters of the LHS of
|
|
// an assignment. Presumably it should behave in way that a function pointer
|
|
// assignment does in C, so for each parameter and return type:
|
|
// * CVR and address space of LHS should be a superset of CVR and address
|
|
// space of RHS.
|
|
// * unqualified types should be compatible.
|
|
if (S.getLangOpts().OpenCL) {
|
|
if (!S.Context.typesAreBlockPointerCompatible(
|
|
S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals),
|
|
S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals)))
|
|
return Sema::IncompatibleBlockPointer;
|
|
} else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
|
|
return Sema::IncompatibleBlockPointer;
|
|
|
|
return ConvTy;
|
|
}
|
|
|
|
/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
|
|
/// for assignment compatibility.
|
|
static Sema::AssignConvertType
|
|
checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
|
|
QualType RHSType) {
|
|
assert(LHSType.isCanonical() && "LHS was not canonicalized!");
|
|
assert(RHSType.isCanonical() && "RHS was not canonicalized!");
|
|
|
|
if (LHSType->isObjCBuiltinType()) {
|
|
// Class is not compatible with ObjC object pointers.
|
|
if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
|
|
!RHSType->isObjCQualifiedClassType())
|
|
return Sema::IncompatiblePointer;
|
|
return Sema::Compatible;
|
|
}
|
|
if (RHSType->isObjCBuiltinType()) {
|
|
if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
|
|
!LHSType->isObjCQualifiedClassType())
|
|
return Sema::IncompatiblePointer;
|
|
return Sema::Compatible;
|
|
}
|
|
QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
|
|
QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
|
|
|
|
if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
|
|
// make an exception for id<P>
|
|
!LHSType->isObjCQualifiedIdType())
|
|
return Sema::CompatiblePointerDiscardsQualifiers;
|
|
|
|
if (S.Context.typesAreCompatible(LHSType, RHSType))
|
|
return Sema::Compatible;
|
|
if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
|
|
return Sema::IncompatibleObjCQualifiedId;
|
|
return Sema::IncompatiblePointer;
|
|
}
|
|
|
|
Sema::AssignConvertType
|
|
Sema::CheckAssignmentConstraints(SourceLocation Loc,
|
|
QualType LHSType, QualType RHSType) {
|
|
// Fake up an opaque expression. We don't actually care about what
|
|
// cast operations are required, so if CheckAssignmentConstraints
|
|
// adds casts to this they'll be wasted, but fortunately that doesn't
|
|
// usually happen on valid code.
|
|
OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
|
|
ExprResult RHSPtr = &RHSExpr;
|
|
CastKind K;
|
|
|
|
return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
|
|
}
|
|
|
|
/// This helper function returns true if QT is a vector type that has element
|
|
/// type ElementType.
|
|
static bool isVector(QualType QT, QualType ElementType) {
|
|
if (const VectorType *VT = QT->getAs<VectorType>())
|
|
return VT->getElementType() == ElementType;
|
|
return false;
|
|
}
|
|
|
|
/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
|
|
/// has code to accommodate several GCC extensions when type checking
|
|
/// pointers. Here are some objectionable examples that GCC considers warnings:
|
|
///
|
|
/// int a, *pint;
|
|
/// short *pshort;
|
|
/// struct foo *pfoo;
|
|
///
|
|
/// pint = pshort; // warning: assignment from incompatible pointer type
|
|
/// a = pint; // warning: assignment makes integer from pointer without a cast
|
|
/// pint = a; // warning: assignment makes pointer from integer without a cast
|
|
/// pint = pfoo; // warning: assignment from incompatible pointer type
|
|
///
|
|
/// As a result, the code for dealing with pointers is more complex than the
|
|
/// C99 spec dictates.
|
|
///
|
|
/// Sets 'Kind' for any result kind except Incompatible.
|
|
Sema::AssignConvertType
|
|
Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
|
|
CastKind &Kind, bool ConvertRHS) {
|
|
QualType RHSType = RHS.get()->getType();
|
|
QualType OrigLHSType = LHSType;
|
|
|
|
// Get canonical types. We're not formatting these types, just comparing
|
|
// them.
|
|
LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
|
|
RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
|
|
|
|
// Common case: no conversion required.
|
|
if (LHSType == RHSType) {
|
|
Kind = CK_NoOp;
|
|
return Compatible;
|
|
}
|
|
|
|
// If we have an atomic type, try a non-atomic assignment, then just add an
|
|
// atomic qualification step.
|
|
if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
|
|
Sema::AssignConvertType result =
|
|
CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
|
|
if (result != Compatible)
|
|
return result;
|
|
if (Kind != CK_NoOp && ConvertRHS)
|
|
RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
|
|
Kind = CK_NonAtomicToAtomic;
|
|
return Compatible;
|
|
}
|
|
|
|
// If the left-hand side is a reference type, then we are in a
|
|
// (rare!) case where we've allowed the use of references in C,
|
|
// e.g., as a parameter type in a built-in function. In this case,
|
|
// just make sure that the type referenced is compatible with the
|
|
// right-hand side type. The caller is responsible for adjusting
|
|
// LHSType so that the resulting expression does not have reference
|
|
// type.
|
|
if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
|
|
if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
|
|
Kind = CK_LValueBitCast;
|
|
return Compatible;
|
|
}
|
|
return Incompatible;
|
|
}
|
|
|
|
// Allow scalar to ExtVector assignments, and assignments of an ExtVector type
|
|
// to the same ExtVector type.
|
|
if (LHSType->isExtVectorType()) {
|
|
if (RHSType->isExtVectorType())
|
|
return Incompatible;
|
|
if (RHSType->isArithmeticType()) {
|
|
// CK_VectorSplat does T -> vector T, so first cast to the element type.
|
|
if (ConvertRHS)
|
|
RHS = prepareVectorSplat(LHSType, RHS.get());
|
|
Kind = CK_VectorSplat;
|
|
return Compatible;
|
|
}
|
|
}
|
|
|
|
// Conversions to or from vector type.
|
|
if (LHSType->isVectorType() || RHSType->isVectorType()) {
|
|
if (LHSType->isVectorType() && RHSType->isVectorType()) {
|
|
// Allow assignments of an AltiVec vector type to an equivalent GCC
|
|
// vector type and vice versa
|
|
if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
|
|
Kind = CK_BitCast;
|
|
return Compatible;
|
|
}
|
|
|
|
// If we are allowing lax vector conversions, and LHS and RHS are both
|
|
// vectors, the total size only needs to be the same. This is a bitcast;
|
|
// no bits are changed but the result type is different.
|
|
if (isLaxVectorConversion(RHSType, LHSType)) {
|
|
Kind = CK_BitCast;
|
|
return IncompatibleVectors;
|
|
}
|
|
}
|
|
|
|
// When the RHS comes from another lax conversion (e.g. binops between
|
|
// scalars and vectors) the result is canonicalized as a vector. When the
|
|
// LHS is also a vector, the lax is allowed by the condition above. Handle
|
|
// the case where LHS is a scalar.
|
|
if (LHSType->isScalarType()) {
|
|
const VectorType *VecType = RHSType->getAs<VectorType>();
|
|
if (VecType && VecType->getNumElements() == 1 &&
|
|
isLaxVectorConversion(RHSType, LHSType)) {
|
|
ExprResult *VecExpr = &RHS;
|
|
*VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
|
|
Kind = CK_BitCast;
|
|
return Compatible;
|
|
}
|
|
}
|
|
|
|
return Incompatible;
|
|
}
|
|
|
|
// Diagnose attempts to convert between __float128 and long double where
|
|
// such conversions currently can't be handled.
|
|
if (unsupportedTypeConversion(*this, LHSType, RHSType))
|
|
return Incompatible;
|
|
|
|
// Disallow assigning a _Complex to a real type in C++ mode since it simply
|
|
// discards the imaginary part.
|
|
if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
|
|
!LHSType->getAs<ComplexType>())
|
|
return Incompatible;
|
|
|
|
// Arithmetic conversions.
|
|
if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
|
|
!(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
|
|
if (ConvertRHS)
|
|
Kind = PrepareScalarCast(RHS, LHSType);
|
|
return Compatible;
|
|
}
|
|
|
|
// Conversions to normal pointers.
|
|
if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
|
|
// U* -> T*
|
|
if (isa<PointerType>(RHSType)) {
|
|
LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
|
|
LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
|
|
if (AddrSpaceL != AddrSpaceR)
|
|
Kind = CK_AddressSpaceConversion;
|
|
else if (Context.hasCvrSimilarType(RHSType, LHSType))
|
|
Kind = CK_NoOp;
|
|
else
|
|
Kind = CK_BitCast;
|
|
return checkPointerTypesForAssignment(*this, LHSType, RHSType);
|
|
}
|
|
|
|
// int -> T*
|
|
if (RHSType->isIntegerType()) {
|
|
Kind = CK_IntegralToPointer; // FIXME: null?
|
|
return IntToPointer;
|
|
}
|
|
|
|
// C pointers are not compatible with ObjC object pointers,
|
|
// with two exceptions:
|
|
if (isa<ObjCObjectPointerType>(RHSType)) {
|
|
// - conversions to void*
|
|
if (LHSPointer->getPointeeType()->isVoidType()) {
|
|
Kind = CK_BitCast;
|
|
return Compatible;
|
|
}
|
|
|
|
// - conversions from 'Class' to the redefinition type
|
|
if (RHSType->isObjCClassType() &&
|
|
Context.hasSameType(LHSType,
|
|
Context.getObjCClassRedefinitionType())) {
|
|
Kind = CK_BitCast;
|
|
return Compatible;
|
|
}
|
|
|
|
Kind = CK_BitCast;
|
|
return IncompatiblePointer;
|
|
}
|
|
|
|
// U^ -> void*
|
|
if (RHSType->getAs<BlockPointerType>()) {
|
|
if (LHSPointer->getPointeeType()->isVoidType()) {
|
|
LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
|
|
LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
|
|
->getPointeeType()
|
|
.getAddressSpace();
|
|
Kind =
|
|
AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
|
|
return Compatible;
|
|
}
|
|
}
|
|
|
|
return Incompatible;
|
|
}
|
|
|
|
// Conversions to block pointers.
|
|
if (isa<BlockPointerType>(LHSType)) {
|
|
// U^ -> T^
|
|
if (RHSType->isBlockPointerType()) {
|
|
LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
|
|
->getPointeeType()
|
|
.getAddressSpace();
|
|
LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
|
|
->getPointeeType()
|
|
.getAddressSpace();
|
|
Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
|
|
return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
|
|
}
|
|
|
|
// int or null -> T^
|
|
if (RHSType->isIntegerType()) {
|
|
Kind = CK_IntegralToPointer; // FIXME: null
|
|
return IntToBlockPointer;
|
|
}
|
|
|
|
// id -> T^
|
|
if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
|
|
Kind = CK_AnyPointerToBlockPointerCast;
|
|
return Compatible;
|
|
}
|
|
|
|
// void* -> T^
|
|
if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
|
|
if (RHSPT->getPointeeType()->isVoidType()) {
|
|
Kind = CK_AnyPointerToBlockPointerCast;
|
|
return Compatible;
|
|
}
|
|
|
|
return Incompatible;
|
|
}
|
|
|
|
// Conversions to Objective-C pointers.
|
|
if (isa<ObjCObjectPointerType>(LHSType)) {
|
|
// A* -> B*
|
|
if (RHSType->isObjCObjectPointerType()) {
|
|
Kind = CK_BitCast;
|
|
Sema::AssignConvertType result =
|
|
checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
|
|
if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
|
|
result == Compatible &&
|
|
!CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
|
|
result = IncompatibleObjCWeakRef;
|
|
return result;
|
|
}
|
|
|
|
// int or null -> A*
|
|
if (RHSType->isIntegerType()) {
|
|
Kind = CK_IntegralToPointer; // FIXME: null
|
|
return IntToPointer;
|
|
}
|
|
|
|
// In general, C pointers are not compatible with ObjC object pointers,
|
|
// with two exceptions:
|
|
if (isa<PointerType>(RHSType)) {
|
|
Kind = CK_CPointerToObjCPointerCast;
|
|
|
|
// - conversions from 'void*'
|
|
if (RHSType->isVoidPointerType()) {
|
|
return Compatible;
|
|
}
|
|
|
|
// - conversions to 'Class' from its redefinition type
|
|
if (LHSType->isObjCClassType() &&
|
|
Context.hasSameType(RHSType,
|
|
Context.getObjCClassRedefinitionType())) {
|
|
return Compatible;
|
|
}
|
|
|
|
return IncompatiblePointer;
|
|
}
|
|
|
|
// Only under strict condition T^ is compatible with an Objective-C pointer.
|
|
if (RHSType->isBlockPointerType() &&
|
|
LHSType->isBlockCompatibleObjCPointerType(Context)) {
|
|
if (ConvertRHS)
|
|
maybeExtendBlockObject(RHS);
|
|
Kind = CK_BlockPointerToObjCPointerCast;
|
|
return Compatible;
|
|
}
|
|
|
|
return Incompatible;
|
|
}
|
|
|
|
// Conversions from pointers that are not covered by the above.
|
|
if (isa<PointerType>(RHSType)) {
|
|
// T* -> _Bool
|
|
if (LHSType == Context.BoolTy) {
|
|
Kind = CK_PointerToBoolean;
|
|
return Compatible;
|
|
}
|
|
|
|
// T* -> int
|
|
if (LHSType->isIntegerType()) {
|
|
Kind = CK_PointerToIntegral;
|
|
return PointerToInt;
|
|
}
|
|
|
|
return Incompatible;
|
|
}
|
|
|
|
// Conversions from Objective-C pointers that are not covered by the above.
|
|
if (isa<ObjCObjectPointerType>(RHSType)) {
|
|
// T* -> _Bool
|
|
if (LHSType == Context.BoolTy) {
|
|
Kind = CK_PointerToBoolean;
|
|
return Compatible;
|
|
}
|
|
|
|
// T* -> int
|
|
if (LHSType->isIntegerType()) {
|
|
Kind = CK_PointerToIntegral;
|
|
return PointerToInt;
|
|
}
|
|
|
|
return Incompatible;
|
|
}
|
|
|
|
// struct A -> struct B
|
|
if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
|
|
if (Context.typesAreCompatible(LHSType, RHSType)) {
|
|
Kind = CK_NoOp;
|
|
return Compatible;
|
|
}
|
|
}
|
|
|
|
if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
|
|
Kind = CK_IntToOCLSampler;
|
|
return Compatible;
|
|
}
|
|
|
|
return Incompatible;
|
|
}
|
|
|
|
/// Constructs a transparent union from an expression that is
|
|
/// used to initialize the transparent union.
|
|
static void ConstructTransparentUnion(Sema &S, ASTContext &C,
|
|
ExprResult &EResult, QualType UnionType,
|
|
FieldDecl *Field) {
|
|
// Build an initializer list that designates the appropriate member
|
|
// of the transparent union.
|
|
Expr *E = EResult.get();
|
|
InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
|
|
E, SourceLocation());
|
|
Initializer->setType(UnionType);
|
|
Initializer->setInitializedFieldInUnion(Field);
|
|
|
|
// Build a compound literal constructing a value of the transparent
|
|
// union type from this initializer list.
|
|
TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
|
|
EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
|
|
VK_RValue, Initializer, false);
|
|
}
|
|
|
|
Sema::AssignConvertType
|
|
Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
|
|
ExprResult &RHS) {
|
|
QualType RHSType = RHS.get()->getType();
|
|
|
|
// If the ArgType is a Union type, we want to handle a potential
|
|
// transparent_union GCC extension.
|
|
const RecordType *UT = ArgType->getAsUnionType();
|
|
if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
|
|
return Incompatible;
|
|
|
|
// The field to initialize within the transparent union.
|
|
RecordDecl *UD = UT->getDecl();
|
|
FieldDecl *InitField = nullptr;
|
|
// It's compatible if the expression matches any of the fields.
|
|
for (auto *it : UD->fields()) {
|
|
if (it->getType()->isPointerType()) {
|
|
// If the transparent union contains a pointer type, we allow:
|
|
// 1) void pointer
|
|
// 2) null pointer constant
|
|
if (RHSType->isPointerType())
|
|
if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
|
|
RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
|
|
InitField = it;
|
|
break;
|
|
}
|
|
|
|
if (RHS.get()->isNullPointerConstant(Context,
|
|
Expr::NPC_ValueDependentIsNull)) {
|
|
RHS = ImpCastExprToType(RHS.get(), it->getType(),
|
|
CK_NullToPointer);
|
|
InitField = it;
|
|
break;
|
|
}
|
|
}
|
|
|
|
CastKind Kind;
|
|
if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
|
|
== Compatible) {
|
|
RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
|
|
InitField = it;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!InitField)
|
|
return Incompatible;
|
|
|
|
ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
|
|
return Compatible;
|
|
}
|
|
|
|
Sema::AssignConvertType
|
|
Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
|
|
bool Diagnose,
|
|
bool DiagnoseCFAudited,
|
|
bool ConvertRHS) {
|
|
// We need to be able to tell the caller whether we diagnosed a problem, if
|
|
// they ask us to issue diagnostics.
|
|
assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");
|
|
|
|
// If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
|
|
// we can't avoid *all* modifications at the moment, so we need some somewhere
|
|
// to put the updated value.
|
|
ExprResult LocalRHS = CallerRHS;
|
|
ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
|
|
|
|
if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
|
|
if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
|
|
if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
|
|
!LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
|
|
Diag(RHS.get()->getExprLoc(),
|
|
diag::warn_noderef_to_dereferenceable_pointer)
|
|
<< RHS.get()->getSourceRange();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (getLangOpts().CPlusPlus) {
|
|
if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
|
|
// C++ 5.17p3: If the left operand is not of class type, the
|
|
// expression is implicitly converted (C++ 4) to the
|
|
// cv-unqualified type of the left operand.
|
|
QualType RHSType = RHS.get()->getType();
|
|
if (Diagnose) {
|
|
RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
|
|
AA_Assigning);
|
|
} else {
|
|
ImplicitConversionSequence ICS =
|
|
TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
|
|
/*SuppressUserConversions=*/false,
|
|
/*AllowExplicit=*/false,
|
|
/*InOverloadResolution=*/false,
|
|
/*CStyle=*/false,
|
|
/*AllowObjCWritebackConversion=*/false);
|
|
if (ICS.isFailure())
|
|
return Incompatible;
|
|
RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
|
|
ICS, AA_Assigning);
|
|
}
|
|
if (RHS.isInvalid())
|
|
return Incompatible;
|
|
Sema::AssignConvertType result = Compatible;
|
|
if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
|
|
!CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
|
|
result = IncompatibleObjCWeakRef;
|
|
return result;
|
|
}
|
|
|
|
// FIXME: Currently, we fall through and treat C++ classes like C
|
|
// structures.
|
|
// FIXME: We also fall through for atomics; not sure what should
|
|
// happen there, though.
|
|
} else if (RHS.get()->getType() == Context.OverloadTy) {
|
|
// As a set of extensions to C, we support overloading on functions. These
|
|
// functions need to be resolved here.
|
|
DeclAccessPair DAP;
|
|
if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
|
|
RHS.get(), LHSType, /*Complain=*/false, DAP))
|
|
RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
|
|
else
|
|
return Incompatible;
|
|
}
|
|
|
|
// C99 6.5.16.1p1: the left operand is a pointer and the right is
|
|
// a null pointer constant.
|
|
if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
|
|
LHSType->isBlockPointerType()) &&
|
|
RHS.get()->isNullPointerConstant(Context,
|
|
Expr::NPC_ValueDependentIsNull)) {
|
|
if (Diagnose || ConvertRHS) {
|
|
CastKind Kind;
|
|
CXXCastPath Path;
|
|
CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
|
|
/*IgnoreBaseAccess=*/false, Diagnose);
|
|
if (ConvertRHS)
|
|
RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_RValue, &Path);
|
|
}
|
|
return Compatible;
|
|
}
|
|
|
|
// OpenCL queue_t type assignment.
|
|
if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
|
|
Context, Expr::NPC_ValueDependentIsNull)) {
|
|
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
|
|
return Compatible;
|
|
}
|
|
|
|
// This check seems unnatural, however it is necessary to ensure the proper
|
|
// conversion of functions/arrays. If the conversion were done for all
|
|
// DeclExpr's (created by ActOnIdExpression), it would mess up the unary
|
|
// expressions that suppress this implicit conversion (&, sizeof).
|
|
//
|
|
// Suppress this for references: C++ 8.5.3p5.
|
|
if (!LHSType->isReferenceType()) {
|
|
// FIXME: We potentially allocate here even if ConvertRHS is false.
|
|
RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
|
|
if (RHS.isInvalid())
|
|
return Incompatible;
|
|
}
|
|
CastKind Kind;
|
|
Sema::AssignConvertType result =
|
|
CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
|
|
|
|
// C99 6.5.16.1p2: The value of the right operand is converted to the
|
|
// type of the assignment expression.
|
|
// CheckAssignmentConstraints allows the left-hand side to be a reference,
|
|
// so that we can use references in built-in functions even in C.
|
|
// The getNonReferenceType() call makes sure that the resulting expression
|
|
// does not have reference type.
|
|
if (result != Incompatible && RHS.get()->getType() != LHSType) {
|
|
QualType Ty = LHSType.getNonLValueExprType(Context);
|
|
Expr *E = RHS.get();
|
|
|
|
// Check for various Objective-C errors. If we are not reporting
|
|
// diagnostics and just checking for errors, e.g., during overload
|
|
// resolution, return Incompatible to indicate the failure.
|
|
if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
|
|
CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
|
|
Diagnose, DiagnoseCFAudited) != ACR_okay) {
|
|
if (!Diagnose)
|
|
return Incompatible;
|
|
}
|
|
if (getLangOpts().ObjC &&
|
|
(CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType,
|
|
E->getType(), E, Diagnose) ||
|
|
ConversionToObjCStringLiteralCheck(LHSType, E, Diagnose))) {
|
|
if (!Diagnose)
|
|
return Incompatible;
|
|
// Replace the expression with a corrected version and continue so we
|
|
// can find further errors.
|
|
RHS = E;
|
|
return Compatible;
|
|
}
|
|
|
|
if (ConvertRHS)
|
|
RHS = ImpCastExprToType(E, Ty, Kind);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
namespace {
|
|
/// The original operand to an operator, prior to the application of the usual
|
|
/// arithmetic conversions and converting the arguments of a builtin operator
|
|
/// candidate.
|
|
struct OriginalOperand {
|
|
explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
|
|
if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op))
|
|
Op = MTE->GetTemporaryExpr();
|
|
if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op))
|
|
Op = BTE->getSubExpr();
|
|
if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) {
|
|
Orig = ICE->getSubExprAsWritten();
|
|
Conversion = ICE->getConversionFunction();
|
|
}
|
|
}
|
|
|
|
QualType getType() const { return Orig->getType(); }
|
|
|
|
Expr *Orig;
|
|
NamedDecl *Conversion;
|
|
};
|
|
}
|
|
|
|
QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
|
|
ExprResult &RHS) {
|
|
OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
|
|
|
|
Diag(Loc, diag::err_typecheck_invalid_operands)
|
|
<< OrigLHS.getType() << OrigRHS.getType()
|
|
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
|
|
|
// If a user-defined conversion was applied to either of the operands prior
|
|
// to applying the built-in operator rules, tell the user about it.
|
|
if (OrigLHS.Conversion) {
|
|
Diag(OrigLHS.Conversion->getLocation(),
|
|
diag::note_typecheck_invalid_operands_converted)
|
|
<< 0 << LHS.get()->getType();
|
|
}
|
|
if (OrigRHS.Conversion) {
|
|
Diag(OrigRHS.Conversion->getLocation(),
|
|
diag::note_typecheck_invalid_operands_converted)
|
|
<< 1 << RHS.get()->getType();
|
|
}
|
|
|
|
return QualType();
|
|
}
|
|
|
|
// Diagnose cases where a scalar was implicitly converted to a vector and
|
|
// diagnose the underlying types. Otherwise, diagnose the error
|
|
// as invalid vector logical operands for non-C++ cases.
|
|
QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
|
|
ExprResult &RHS) {
|
|
QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
|
|
QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
|
|
|
|
bool LHSNatVec = LHSType->isVectorType();
|
|
bool RHSNatVec = RHSType->isVectorType();
|
|
|
|
if (!(LHSNatVec && RHSNatVec)) {
|
|
Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
|
|
Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
|
|
Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
|
|
<< 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
|
|
<< Vector->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
|
|
<< 1 << LHSType << RHSType << LHS.get()->getSourceRange()
|
|
<< RHS.get()->getSourceRange();
|
|
|
|
return QualType();
|
|
}
|
|
|
|
/// Try to convert a value of non-vector type to a vector type by converting
|
|
/// the type to the element type of the vector and then performing a splat.
|
|
/// If the language is OpenCL, we only use conversions that promote scalar
|
|
/// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
|
|
/// for float->int.
|
|
///
|
|
/// OpenCL V2.0 6.2.6.p2:
|
|
/// An error shall occur if any scalar operand type has greater rank
|
|
/// than the type of the vector element.
|
|
///
|
|
/// \param scalar - if non-null, actually perform the conversions
|
|
/// \return true if the operation fails (but without diagnosing the failure)
|
|
static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
|
|
QualType scalarTy,
|
|
QualType vectorEltTy,
|
|
QualType vectorTy,
|
|
unsigned &DiagID) {
|
|
// The conversion to apply to the scalar before splatting it,
|
|
// if necessary.
|
|
CastKind scalarCast = CK_NoOp;
|
|
|
|
if (vectorEltTy->isIntegralType(S.Context)) {
|
|
if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
|
|
(scalarTy->isIntegerType() &&
|
|
S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) {
|
|
DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
|
|
return true;
|
|
}
|
|
if (!scalarTy->isIntegralType(S.Context))
|
|
return true;
|
|
scalarCast = CK_IntegralCast;
|
|
} else if (vectorEltTy->isRealFloatingType()) {
|
|
if (scalarTy->isRealFloatingType()) {
|
|
if (S.getLangOpts().OpenCL &&
|
|
S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) {
|
|
DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
|
|
return true;
|
|
}
|
|
scalarCast = CK_FloatingCast;
|
|
}
|
|
else if (scalarTy->isIntegralType(S.Context))
|
|
scalarCast = CK_IntegralToFloating;
|
|
else
|
|
return true;
|
|
} else {
|
|
return true;
|
|
}
|
|
|
|
// Adjust scalar if desired.
|
|
if (scalar) {
|
|
if (scalarCast != CK_NoOp)
|
|
*scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
|
|
*scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Convert vector E to a vector with the same number of elements but different
|
|
/// element type.
|
|
static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
|
|
const auto *VecTy = E->getType()->getAs<VectorType>();
|
|
assert(VecTy && "Expression E must be a vector");
|
|
QualType NewVecTy = S.Context.getVectorType(ElementType,
|
|
VecTy->getNumElements(),
|
|
VecTy->getVectorKind());
|
|
|
|
// Look through the implicit cast. Return the subexpression if its type is
|
|
// NewVecTy.
|
|
if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
|
|
if (ICE->getSubExpr()->getType() == NewVecTy)
|
|
return ICE->getSubExpr();
|
|
|
|
auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
|
|
return S.ImpCastExprToType(E, NewVecTy, Cast);
|
|
}
|
|
|
|
/// Test if a (constant) integer Int can be casted to another integer type
|
|
/// IntTy without losing precision.
|
|
static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
|
|
QualType OtherIntTy) {
|
|
QualType IntTy = Int->get()->getType().getUnqualifiedType();
|
|
|
|
// Reject cases where the value of the Int is unknown as that would
|
|
// possibly cause truncation, but accept cases where the scalar can be
|
|
// demoted without loss of precision.
|
|
Expr::EvalResult EVResult;
|
|
bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
|
|
int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy);
|
|
bool IntSigned = IntTy->hasSignedIntegerRepresentation();
|
|
bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
|
|
|
|
if (CstInt) {
|
|
// If the scalar is constant and is of a higher order and has more active
|
|
// bits that the vector element type, reject it.
|
|
llvm::APSInt Result = EVResult.Val.getInt();
|
|
unsigned NumBits = IntSigned
|
|
? (Result.isNegative() ? Result.getMinSignedBits()
|
|
: Result.getActiveBits())
|
|
: Result.getActiveBits();
|
|
if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits)
|
|
return true;
|
|
|
|
// If the signedness of the scalar type and the vector element type
|
|
// differs and the number of bits is greater than that of the vector
|
|
// element reject it.
|
|
return (IntSigned != OtherIntSigned &&
|
|
NumBits > S.Context.getIntWidth(OtherIntTy));
|
|
}
|
|
|
|
// Reject cases where the value of the scalar is not constant and it's
|
|
// order is greater than that of the vector element type.
|
|
return (Order < 0);
|
|
}
|
|
|
|
/// Test if a (constant) integer Int can be casted to floating point type
|
|
/// FloatTy without losing precision.
|
|
static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
|
|
QualType FloatTy) {
|
|
QualType IntTy = Int->get()->getType().getUnqualifiedType();
|
|
|
|
// Determine if the integer constant can be expressed as a floating point
|
|
// number of the appropriate type.
|
|
Expr::EvalResult EVResult;
|
|
bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
|
|
|
|
uint64_t Bits = 0;
|
|
if (CstInt) {
|
|
// Reject constants that would be truncated if they were converted to
|
|
// the floating point type. Test by simple to/from conversion.
|
|
// FIXME: Ideally the conversion to an APFloat and from an APFloat
|
|
// could be avoided if there was a convertFromAPInt method
|
|
// which could signal back if implicit truncation occurred.
|
|
llvm::APSInt Result = EVResult.Val.getInt();
|
|
llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy));
|
|
Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(),
|
|
llvm::APFloat::rmTowardZero);
|
|
llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy),
|
|
!IntTy->hasSignedIntegerRepresentation());
|
|
bool Ignored = false;
|
|
Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven,
|
|
&Ignored);
|
|
if (Result != ConvertBack)
|
|
return true;
|
|
} else {
|
|
// Reject types that cannot be fully encoded into the mantissa of
|
|
// the float.
|
|
Bits = S.Context.getTypeSize(IntTy);
|
|
unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
|
|
S.Context.getFloatTypeSemantics(FloatTy));
|
|
if (Bits > FloatPrec)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Attempt to convert and splat Scalar into a vector whose types matches
|
|
/// Vector following GCC conversion rules. The rule is that implicit
|
|
/// conversion can occur when Scalar can be casted to match Vector's element
|
|
/// type without causing truncation of Scalar.
|
|
static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
|
|
ExprResult *Vector) {
|
|
QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
|
|
QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
|
|
const VectorType *VT = VectorTy->getAs<VectorType>();
|
|
|
|
assert(!isa<ExtVectorType>(VT) &&
|
|
"ExtVectorTypes should not be handled here!");
|
|
|
|
QualType VectorEltTy = VT->getElementType();
|
|
|
|
// Reject cases where the vector element type or the scalar element type are
|
|
// not integral or floating point types.
|
|
if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
|
|
return true;
|
|
|
|
// The conversion to apply to the scalar before splatting it,
|
|
// if necessary.
|
|
CastKind ScalarCast = CK_NoOp;
|
|
|
|
// Accept cases where the vector elements are integers and the scalar is
|
|
// an integer.
|
|
// FIXME: Notionally if the scalar was a floating point value with a precise
|
|
// integral representation, we could cast it to an appropriate integer
|
|
// type and then perform the rest of the checks here. GCC will perform
|
|
// this conversion in some cases as determined by the input language.
|
|
// We should accept it on a language independent basis.
|
|
if (VectorEltTy->isIntegralType(S.Context) &&
|
|
ScalarTy->isIntegralType(S.Context) &&
|
|
S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) {
|
|
|
|
if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy))
|
|
return true;
|
|
|
|
ScalarCast = CK_IntegralCast;
|
|
} else if (VectorEltTy->isRealFloatingType()) {
|
|
if (ScalarTy->isRealFloatingType()) {
|
|
|
|
// Reject cases where the scalar type is not a constant and has a higher
|
|
// Order than the vector element type.
|
|
llvm::APFloat Result(0.0);
|
|
bool CstScalar = Scalar->get()->EvaluateAsFloat(Result, S.Context);
|
|
int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy);
|
|
if (!CstScalar && Order < 0)
|
|
return true;
|
|
|
|
// If the scalar cannot be safely casted to the vector element type,
|
|
// reject it.
|
|
if (CstScalar) {
|
|
bool Truncated = false;
|
|
Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy),
|
|
llvm::APFloat::rmNearestTiesToEven, &Truncated);
|
|
if (Truncated)
|
|
return true;
|
|
}
|
|
|
|
ScalarCast = CK_FloatingCast;
|
|
} else if (ScalarTy->isIntegralType(S.Context)) {
|
|
if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy))
|
|
return true;
|
|
|
|
ScalarCast = CK_IntegralToFloating;
|
|
} else
|
|
return true;
|
|
}
|
|
|
|
// Adjust scalar if desired.
|
|
if (Scalar) {
|
|
if (ScalarCast != CK_NoOp)
|
|
*Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast);
|
|
*Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation Loc, bool IsCompAssign,
|
|
bool AllowBothBool,
|
|
bool AllowBoolConversions) {
|
|
if (!IsCompAssign) {
|
|
LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
|
|
if (LHS.isInvalid())
|
|
return QualType();
|
|
}
|
|
RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
|
|
if (RHS.isInvalid())
|
|
return QualType();
|
|
|
|
// For conversion purposes, we ignore any qualifiers.
|
|
// For example, "const float" and "float" are equivalent.
|
|
QualType LHSType = LHS.get()->getType().getUnqualifiedType();
|
|
QualType RHSType = RHS.get()->getType().getUnqualifiedType();
|
|
|
|
const VectorType *LHSVecType = LHSType->getAs<VectorType>();
|
|
const VectorType *RHSVecType = RHSType->getAs<VectorType>();
|
|
assert(LHSVecType || RHSVecType);
|
|
|
|
// AltiVec-style "vector bool op vector bool" combinations are allowed
|
|
// for some operators but not others.
|
|
if (!AllowBothBool &&
|
|
LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
|
|
RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool)
|
|
return InvalidOperands(Loc, LHS, RHS);
|
|
|
|
// If the vector types are identical, return.
|
|
if (Context.hasSameType(LHSType, RHSType))
|
|
return LHSType;
|
|
|
|
// If we have compatible AltiVec and GCC vector types, use the AltiVec type.
|
|
if (LHSVecType && RHSVecType &&
|
|
Context.areCompatibleVectorTypes(LHSType, RHSType)) {
|
|
if (isa<ExtVectorType>(LHSVecType)) {
|
|
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
|
|
return LHSType;
|
|
}
|
|
|
|
if (!IsCompAssign)
|
|
LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
|
|
return RHSType;
|
|
}
|
|
|
|
// AllowBoolConversions says that bool and non-bool AltiVec vectors
|
|
// can be mixed, with the result being the non-bool type. The non-bool
|
|
// operand must have integer element type.
|
|
if (AllowBoolConversions && LHSVecType && RHSVecType &&
|
|
LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
|
|
(Context.getTypeSize(LHSVecType->getElementType()) ==
|
|
Context.getTypeSize(RHSVecType->getElementType()))) {
|
|
if (LHSVecType->getVectorKind() == VectorType::AltiVecVector &&
|
|
LHSVecType->getElementType()->isIntegerType() &&
|
|
RHSVecType->getVectorKind() == VectorType::AltiVecBool) {
|
|
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
|
|
return LHSType;
|
|
}
|
|
if (!IsCompAssign &&
|
|
LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
|
|
RHSVecType->getVectorKind() == VectorType::AltiVecVector &&
|
|
RHSVecType->getElementType()->isIntegerType()) {
|
|
LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
|
|
return RHSType;
|
|
}
|
|
}
|
|
|
|
// If there's a vector type and a scalar, try to convert the scalar to
|
|
// the vector element type and splat.
|
|
unsigned DiagID = diag::err_typecheck_vector_not_convertable;
|
|
if (!RHSVecType) {
|
|
if (isa<ExtVectorType>(LHSVecType)) {
|
|
if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
|
|
LHSVecType->getElementType(), LHSType,
|
|
DiagID))
|
|
return LHSType;
|
|
} else {
|
|
if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
|
|
return LHSType;
|
|
}
|
|
}
|
|
if (!LHSVecType) {
|
|
if (isa<ExtVectorType>(RHSVecType)) {
|
|
if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
|
|
LHSType, RHSVecType->getElementType(),
|
|
RHSType, DiagID))
|
|
return RHSType;
|
|
} else {
|
|
if (LHS.get()->getValueKind() == VK_LValue ||
|
|
!tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
|
|
return RHSType;
|
|
}
|
|
}
|
|
|
|
// FIXME: The code below also handles conversion between vectors and
|
|
// non-scalars, we should break this down into fine grained specific checks
|
|
// and emit proper diagnostics.
|
|
QualType VecType = LHSVecType ? LHSType : RHSType;
|
|
const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
|
|
QualType OtherType = LHSVecType ? RHSType : LHSType;
|
|
ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
|
|
if (isLaxVectorConversion(OtherType, VecType)) {
|
|
// If we're allowing lax vector conversions, only the total (data) size
|
|
// needs to be the same. For non compound assignment, if one of the types is
|
|
// scalar, the result is always the vector type.
|
|
if (!IsCompAssign) {
|
|
*OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
|
|
return VecType;
|
|
// In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
|
|
// any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
|
|
// type. Note that this is already done by non-compound assignments in
|
|
// CheckAssignmentConstraints. If it's a scalar type, only bitcast for
|
|
// <1 x T> -> T. The result is also a vector type.
|
|
} else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
|
|
(OtherType->isScalarType() && VT->getNumElements() == 1)) {
|
|
ExprResult *RHSExpr = &RHS;
|
|
*RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
|
|
return VecType;
|
|
}
|
|
}
|
|
|
|
// Okay, the expression is invalid.
|
|
|
|
// If there's a non-vector, non-real operand, diagnose that.
|
|
if ((!RHSVecType && !RHSType->isRealType()) ||
|
|
(!LHSVecType && !LHSType->isRealType())) {
|
|
Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
|
|
<< LHSType << RHSType
|
|
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// OpenCL V1.1 6.2.6.p1:
|
|
// If the operands are of more than one vector type, then an error shall
|
|
// occur. Implicit conversions between vector types are not permitted, per
|
|
// section 6.2.1.
|
|
if (getLangOpts().OpenCL &&
|
|
RHSVecType && isa<ExtVectorType>(RHSVecType) &&
|
|
LHSVecType && isa<ExtVectorType>(LHSVecType)) {
|
|
Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
|
|
<< RHSType;
|
|
return QualType();
|
|
}
|
|
|
|
|
|
// If there is a vector type that is not a ExtVector and a scalar, we reach
|
|
// this point if scalar could not be converted to the vector's element type
|
|
// without truncation.
|
|
if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) ||
|
|
(LHSVecType && !isa<ExtVectorType>(LHSVecType))) {
|
|
QualType Scalar = LHSVecType ? RHSType : LHSType;
|
|
QualType Vector = LHSVecType ? LHSType : RHSType;
|
|
unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
|
|
Diag(Loc,
|
|
diag::err_typecheck_vector_not_convertable_implict_truncation)
|
|
<< ScalarOrVector << Scalar << Vector;
|
|
|
|
return QualType();
|
|
}
|
|
|
|
// Otherwise, use the generic diagnostic.
|
|
Diag(Loc, DiagID)
|
|
<< LHSType << RHSType
|
|
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// checkArithmeticNull - Detect when a NULL constant is used improperly in an
|
|
// expression. These are mainly cases where the null pointer is used as an
|
|
// integer instead of a pointer.
|
|
static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation Loc, bool IsCompare) {
|
|
// The canonical way to check for a GNU null is with isNullPointerConstant,
|
|
// but we use a bit of a hack here for speed; this is a relatively
|
|
// hot path, and isNullPointerConstant is slow.
|
|
bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
|
|
bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
|
|
|
|
QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
|
|
|
|
// Avoid analyzing cases where the result will either be invalid (and
|
|
// diagnosed as such) or entirely valid and not something to warn about.
|
|
if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
|
|
NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
|
|
return;
|
|
|
|
// Comparison operations would not make sense with a null pointer no matter
|
|
// what the other expression is.
|
|
if (!IsCompare) {
|
|
S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
|
|
<< (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
|
|
<< (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
|
|
return;
|
|
}
|
|
|
|
// The rest of the operations only make sense with a null pointer
|
|
// if the other expression is a pointer.
|
|
if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
|
|
NonNullType->canDecayToPointerType())
|
|
return;
|
|
|
|
S.Diag(Loc, diag::warn_null_in_comparison_operation)
|
|
<< LHSNull /* LHS is NULL */ << NonNullType
|
|
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
|
}
|
|
|
|
static void DiagnoseDivisionSizeofPointer(Sema &S, Expr *LHS, Expr *RHS,
|
|
SourceLocation Loc) {
|
|
const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS);
|
|
const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS);
|
|
if (!LUE || !RUE)
|
|
return;
|
|
if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
|
|
RUE->getKind() != UETT_SizeOf)
|
|
return;
|
|
|
|
QualType LHSTy = LUE->getArgumentExpr()->IgnoreParens()->getType();
|
|
QualType RHSTy;
|
|
|
|
if (RUE->isArgumentType())
|
|
RHSTy = RUE->getArgumentType();
|
|
else
|
|
RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
|
|
|
|
if (!LHSTy->isPointerType() || RHSTy->isPointerType())
|
|
return;
|
|
if (LHSTy->getPointeeType() != RHSTy)
|
|
return;
|
|
|
|
S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
|
|
}
|
|
|
|
static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
|
|
ExprResult &RHS,
|
|
SourceLocation Loc, bool IsDiv) {
|
|
// Check for division/remainder by zero.
|
|
Expr::EvalResult RHSValue;
|
|
if (!RHS.get()->isValueDependent() &&
|
|
RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
|
|
RHSValue.Val.getInt() == 0)
|
|
S.DiagRuntimeBehavior(Loc, RHS.get(),
|
|
S.PDiag(diag::warn_remainder_division_by_zero)
|
|
<< IsDiv << RHS.get()->getSourceRange());
|
|
}
|
|
|
|
QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation Loc,
|
|
bool IsCompAssign, bool IsDiv) {
|
|
checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
|
|
|
|
if (LHS.get()->getType()->isVectorType() ||
|
|
RHS.get()->getType()->isVectorType())
|
|
return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
|
|
/*AllowBothBool*/getLangOpts().AltiVec,
|
|
/*AllowBoolConversions*/false);
|
|
|
|
QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
|
|
if (LHS.isInvalid() || RHS.isInvalid())
|
|
return QualType();
|
|
|
|
|
|
if (compType.isNull() || !compType->isArithmeticType())
|
|
return InvalidOperands(Loc, LHS, RHS);
|
|
if (IsDiv) {
|
|
DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
|
|
DiagnoseDivisionSizeofPointer(*this, LHS.get(), RHS.get(), Loc);
|
|
}
|
|
return compType;
|
|
}
|
|
|
|
QualType Sema::CheckRemainderOperands(
|
|
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
|
|
checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
|
|
|
|
if (LHS.get()->getType()->isVectorType() ||
|
|
RHS.get()->getType()->isVectorType()) {
|
|
if (LHS.get()->getType()->hasIntegerRepresentation() &&
|
|
RHS.get()->getType()->hasIntegerRepresentation())
|
|
return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
|
|
/*AllowBothBool*/getLangOpts().AltiVec,
|
|
/*AllowBoolConversions*/false);
|
|
return InvalidOperands(Loc, LHS, RHS);
|
|
}
|
|
|
|
QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
|
|
if (LHS.isInvalid() || RHS.isInvalid())
|
|
return QualType();
|
|
|
|
if (compType.isNull() || !compType->isIntegerType())
|
|
return InvalidOperands(Loc, LHS, RHS);
|
|
DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
|
|
return compType;
|
|
}
|
|
|
|
/// Diagnose invalid arithmetic on two void pointers.
|
|
static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
|
|
Expr *LHSExpr, Expr *RHSExpr) {
|
|
S.Diag(Loc, S.getLangOpts().CPlusPlus
|
|
? diag::err_typecheck_pointer_arith_void_type
|
|
: diag::ext_gnu_void_ptr)
|
|
<< 1 /* two pointers */ << LHSExpr->getSourceRange()
|
|
<< RHSExpr->getSourceRange();
|
|
}
|
|
|
|
/// Diagnose invalid arithmetic on a void pointer.
|
|
static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
|
|
Expr *Pointer) {
|
|
S.Diag(Loc, S.getLangOpts().CPlusPlus
|
|
? diag::err_typecheck_pointer_arith_void_type
|
|
: diag::ext_gnu_void_ptr)
|
|
<< 0 /* one pointer */ << Pointer->getSourceRange();
|
|
}
|
|
|
|
/// Diagnose invalid arithmetic on a null pointer.
|
|
///
|
|
/// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
|
|
/// idiom, which we recognize as a GNU extension.
|
|
///
|
|
static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
|
|
Expr *Pointer, bool IsGNUIdiom) {
|
|
if (IsGNUIdiom)
|
|
S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
|
|
<< Pointer->getSourceRange();
|
|
else
|
|
S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
|
|
<< S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
|
|
}
|
|
|
|
/// Diagnose invalid arithmetic on two function pointers.
|
|
static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
|
|
Expr *LHS, Expr *RHS) {
|
|
assert(LHS->getType()->isAnyPointerType());
|
|
assert(RHS->getType()->isAnyPointerType());
|
|
S.Diag(Loc, S.getLangOpts().CPlusPlus
|
|
? diag::err_typecheck_pointer_arith_function_type
|
|
: diag::ext_gnu_ptr_func_arith)
|
|
<< 1 /* two pointers */ << LHS->getType()->getPointeeType()
|
|
// We only show the second type if it differs from the first.
|
|
<< (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
|
|
RHS->getType())
|
|
<< RHS->getType()->getPointeeType()
|
|
<< LHS->getSourceRange() << RHS->getSourceRange();
|
|
}
|
|
|
|
/// Diagnose invalid arithmetic on a function pointer.
|
|
static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
|
|
Expr *Pointer) {
|
|
assert(Pointer->getType()->isAnyPointerType());
|
|
S.Diag(Loc, S.getLangOpts().CPlusPlus
|
|
? diag::err_typecheck_pointer_arith_function_type
|
|
: diag::ext_gnu_ptr_func_arith)
|
|
<< 0 /* one pointer */ << Pointer->getType()->getPointeeType()
|
|
<< 0 /* one pointer, so only one type */
|
|
<< Pointer->getSourceRange();
|
|
}
|
|
|
|
/// Emit error if Operand is incomplete pointer type
|
|
///
|
|
/// \returns True if pointer has incomplete type
|
|
static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
|
|
Expr *Operand) {
|
|
QualType ResType = Operand->getType();
|
|
if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
|
|
ResType = ResAtomicType->getValueType();
|
|
|
|
assert(ResType->isAnyPointerType() && !ResType->isDependentType());
|
|
QualType PointeeTy = ResType->getPointeeType();
|
|
return S.RequireCompleteType(Loc, PointeeTy,
|
|
diag::err_typecheck_arithmetic_incomplete_type,
|
|
PointeeTy, Operand->getSourceRange());
|
|
}
|
|
|
|
/// Check the validity of an arithmetic pointer operand.
|
|
///
|
|
/// If the operand has pointer type, this code will check for pointer types
|
|
/// which are invalid in arithmetic operations. These will be diagnosed
|
|
/// appropriately, including whether or not the use is supported as an
|
|
/// extension.
|
|
///
|
|
/// \returns True when the operand is valid to use (even if as an extension).
|
|
static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
|
|
Expr *Operand) {
|
|
QualType ResType = Operand->getType();
|
|
if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
|
|
ResType = ResAtomicType->getValueType();
|
|
|
|
if (!ResType->isAnyPointerType()) return true;
|
|
|
|
QualType PointeeTy = ResType->getPointeeType();
|
|
if (PointeeTy->isVoidType()) {
|
|
diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
|
|
return !S.getLangOpts().CPlusPlus;
|
|
}
|
|
if (PointeeTy->isFunctionType()) {
|
|
diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
|
|
return !S.getLangOpts().CPlusPlus;
|
|
}
|
|
|
|
if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Check the validity of a binary arithmetic operation w.r.t. pointer
|
|
/// operands.
|
|
///
|
|
/// This routine will diagnose any invalid arithmetic on pointer operands much
|
|
/// like \see checkArithmeticOpPointerOperand. However, it has special logic
|
|
/// for emitting a single diagnostic even for operations where both LHS and RHS
|
|
/// are (potentially problematic) pointers.
|
|
///
|
|
/// \returns True when the operand is valid to use (even if as an extension).
|
|
static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
|
|
Expr *LHSExpr, Expr *RHSExpr) {
|
|
bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
|
|
bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
|
|
if (!isLHSPointer && !isRHSPointer) return true;
|
|
|
|
QualType LHSPointeeTy, RHSPointeeTy;
|
|
if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
|
|
if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
|
|
|
|
// if both are pointers check if operation is valid wrt address spaces
|
|
if (S.getLangOpts().OpenCL && isLHSPointer && isRHSPointer) {
|
|
const PointerType *lhsPtr = LHSExpr->getType()->getAs<PointerType>();
|
|
const PointerType *rhsPtr = RHSExpr->getType()->getAs<PointerType>();
|
|
if (!lhsPtr->isAddressSpaceOverlapping(*rhsPtr)) {
|
|
S.Diag(Loc,
|
|
diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
|
|
<< LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
|
|
<< LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Check for arithmetic on pointers to incomplete types.
|
|
bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
|
|
bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
|
|
if (isLHSVoidPtr || isRHSVoidPtr) {
|
|
if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
|
|
else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
|
|
else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
|
|
|
|
return !S.getLangOpts().CPlusPlus;
|
|
}
|
|
|
|
bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
|
|
bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
|
|
if (isLHSFuncPtr || isRHSFuncPtr) {
|
|
if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
|
|
else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
|
|
RHSExpr);
|
|
else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
|
|
|
|
return !S.getLangOpts().CPlusPlus;
|
|
}
|
|
|
|
if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
|
|
return false;
|
|
if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
|
|
/// literal.
|
|
static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
|
|
Expr *LHSExpr, Expr *RHSExpr) {
|
|
StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
|
|
Expr* IndexExpr = RHSExpr;
|
|
if (!StrExpr) {
|
|
StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
|
|
IndexExpr = LHSExpr;
|
|
}
|
|
|
|
bool IsStringPlusInt = StrExpr &&
|
|
IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
|
|
if (!IsStringPlusInt || IndexExpr->isValueDependent())
|
|
return;
|
|
|
|
SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
|
|
Self.Diag(OpLoc, diag::warn_string_plus_int)
|
|
<< DiagRange << IndexExpr->IgnoreImpCasts()->getType();
|
|
|
|
// Only print a fixit for "str" + int, not for int + "str".
|
|
if (IndexExpr == RHSExpr) {
|
|
SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
|
|
Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
|
|
<< FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
|
|
<< FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
|
|
<< FixItHint::CreateInsertion(EndLoc, "]");
|
|
} else
|
|
Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
|
|
}
|
|
|
|
/// Emit a warning when adding a char literal to a string.
|
|
static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
|
|
Expr *LHSExpr, Expr *RHSExpr) {
|
|
const Expr *StringRefExpr = LHSExpr;
|
|
const CharacterLiteral *CharExpr =
|
|
dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
|
|
|
|
if (!CharExpr) {
|
|
CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
|
|
StringRefExpr = RHSExpr;
|
|
}
|
|
|
|
if (!CharExpr || !StringRefExpr)
|
|
return;
|
|
|
|
const QualType StringType = StringRefExpr->getType();
|
|
|
|
// Return if not a PointerType.
|
|
if (!StringType->isAnyPointerType())
|
|
return;
|
|
|
|
// Return if not a CharacterType.
|
|
if (!StringType->getPointeeType()->isAnyCharacterType())
|
|
return;
|
|
|
|
ASTContext &Ctx = Self.getASTContext();
|
|
SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
|
|
|
|
const QualType CharType = CharExpr->getType();
|
|
if (!CharType->isAnyCharacterType() &&
|
|
CharType->isIntegerType() &&
|
|
llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
|
|
Self.Diag(OpLoc, diag::warn_string_plus_char)
|
|
<< DiagRange << Ctx.CharTy;
|
|
} else {
|
|
Self.Diag(OpLoc, diag::warn_string_plus_char)
|
|
<< DiagRange << CharExpr->getType();
|
|
}
|
|
|
|
// Only print a fixit for str + char, not for char + str.
|
|
if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
|
|
SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
|
|
Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
|
|
<< FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
|
|
<< FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
|
|
<< FixItHint::CreateInsertion(EndLoc, "]");
|
|
} else {
|
|
Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
|
|
}
|
|
}
|
|
|
|
/// Emit error when two pointers are incompatible.
|
|
static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
|
|
Expr *LHSExpr, Expr *RHSExpr) {
|
|
assert(LHSExpr->getType()->isAnyPointerType());
|
|
assert(RHSExpr->getType()->isAnyPointerType());
|
|
S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
|
|
<< LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
|
|
<< RHSExpr->getSourceRange();
|
|
}
|
|
|
|
// C99 6.5.6
|
|
QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation Loc, BinaryOperatorKind Opc,
|
|
QualType* CompLHSTy) {
|
|
checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
|
|
|
|
if (LHS.get()->getType()->isVectorType() ||
|
|
RHS.get()->getType()->isVectorType()) {
|
|
QualType compType = CheckVectorOperands(
|
|
LHS, RHS, Loc, CompLHSTy,
|
|
/*AllowBothBool*/getLangOpts().AltiVec,
|
|
/*AllowBoolConversions*/getLangOpts().ZVector);
|
|
if (CompLHSTy) *CompLHSTy = compType;
|
|
return compType;
|
|
}
|
|
|
|
QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
|
|
if (LHS.isInvalid() || RHS.isInvalid())
|
|
return QualType();
|
|
|
|
// Diagnose "string literal" '+' int and string '+' "char literal".
|
|
if (Opc == BO_Add) {
|
|
diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
|
|
diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
|
|
}
|
|
|
|
// handle the common case first (both operands are arithmetic).
|
|
if (!compType.isNull() && compType->isArithmeticType()) {
|
|
if (CompLHSTy) *CompLHSTy = compType;
|
|
return compType;
|
|
}
|
|
|
|
// Type-checking. Ultimately the pointer's going to be in PExp;
|
|
// note that we bias towards the LHS being the pointer.
|
|
Expr *PExp = LHS.get(), *IExp = RHS.get();
|
|
|
|
bool isObjCPointer;
|
|
if (PExp->getType()->isPointerType()) {
|
|
isObjCPointer = false;
|
|
} else if (PExp->getType()->isObjCObjectPointerType()) {
|
|
isObjCPointer = true;
|
|
} else {
|
|
std::swap(PExp, IExp);
|
|
if (PExp->getType()->isPointerType()) {
|
|
isObjCPointer = false;
|
|
} else if (PExp->getType()->isObjCObjectPointerType()) {
|
|
isObjCPointer = true;
|
|
} else {
|
|
return InvalidOperands(Loc, LHS, RHS);
|
|
}
|
|
}
|
|
assert(PExp->getType()->isAnyPointerType());
|
|
|
|
if (!IExp->getType()->isIntegerType())
|
|
return InvalidOperands(Loc, LHS, RHS);
|
|
|
|
// Adding to a null pointer results in undefined behavior.
|
|
if (PExp->IgnoreParenCasts()->isNullPointerConstant(
|
|
Context, Expr::NPC_ValueDependentIsNotNull)) {
|
|
// In C++ adding zero to a null pointer is defined.
|
|
Expr::EvalResult KnownVal;
|
|
if (!getLangOpts().CPlusPlus ||
|
|
(!IExp->isValueDependent() &&
|
|
(!IExp->EvaluateAsInt(KnownVal, Context) ||
|
|
KnownVal.Val.getInt() != 0))) {
|
|
// Check the conditions to see if this is the 'p = nullptr + n' idiom.
|
|
bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
|
|
Context, BO_Add, PExp, IExp);
|
|
diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom);
|
|
}
|
|
}
|
|
|
|
if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
|
|
return QualType();
|
|
|
|
if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
|
|
return QualType();
|
|
|
|
// Check array bounds for pointer arithemtic
|
|
CheckArrayAccess(PExp, IExp);
|
|
|
|
if (CompLHSTy) {
|
|
QualType LHSTy = Context.isPromotableBitField(LHS.get());
|
|
if (LHSTy.isNull()) {
|
|
LHSTy = LHS.get()->getType();
|
|
if (LHSTy->isPromotableIntegerType())
|
|
LHSTy = Context.getPromotedIntegerType(LHSTy);
|
|
}
|
|
*CompLHSTy = LHSTy;
|
|
}
|
|
|
|
return PExp->getType();
|
|
}
|
|
|
|
// C99 6.5.6
|
|
QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation Loc,
|
|
QualType* CompLHSTy) {
|
|
checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
|
|
|
|
if (LHS.get()->getType()->isVectorType() ||
|
|
RHS.get()->getType()->isVectorType()) {
|
|
QualType compType = CheckVectorOperands(
|
|
LHS, RHS, Loc, CompLHSTy,
|
|
/*AllowBothBool*/getLangOpts().AltiVec,
|
|
/*AllowBoolConversions*/getLangOpts().ZVector);
|
|
if (CompLHSTy) *CompLHSTy = compType;
|
|
return compType;
|
|
}
|
|
|
|
QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
|
|
if (LHS.isInvalid() || RHS.isInvalid())
|
|
return QualType();
|
|
|
|
// Enforce type constraints: C99 6.5.6p3.
|
|
|
|
// Handle the common case first (both operands are arithmetic).
|
|
if (!compType.isNull() && compType->isArithmeticType()) {
|
|
if (CompLHSTy) *CompLHSTy = compType;
|
|
return compType;
|
|
}
|
|
|
|
// Either ptr - int or ptr - ptr.
|
|
if (LHS.get()->getType()->isAnyPointerType()) {
|
|
QualType lpointee = LHS.get()->getType()->getPointeeType();
|
|
|
|
// Diagnose bad cases where we step over interface counts.
|
|
if (LHS.get()->getType()->isObjCObjectPointerType() &&
|
|
checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
|
|
return QualType();
|
|
|
|
// The result type of a pointer-int computation is the pointer type.
|
|
if (RHS.get()->getType()->isIntegerType()) {
|
|
// Subtracting from a null pointer should produce a warning.
|
|
// The last argument to the diagnose call says this doesn't match the
|
|
// GNU int-to-pointer idiom.
|
|
if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context,
|
|
Expr::NPC_ValueDependentIsNotNull)) {
|
|
// In C++ adding zero to a null pointer is defined.
|
|
Expr::EvalResult KnownVal;
|
|
if (!getLangOpts().CPlusPlus ||
|
|
(!RHS.get()->isValueDependent() &&
|
|
(!RHS.get()->EvaluateAsInt(KnownVal, Context) ||
|
|
KnownVal.Val.getInt() != 0))) {
|
|
diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false);
|
|
}
|
|
}
|
|
|
|
if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
|
|
return QualType();
|
|
|
|
// Check array bounds for pointer arithemtic
|
|
CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
|
|
/*AllowOnePastEnd*/true, /*IndexNegated*/true);
|
|
|
|
if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
|
|
return LHS.get()->getType();
|
|
}
|
|
|
|
// Handle pointer-pointer subtractions.
|
|
if (const PointerType *RHSPTy
|
|
= RHS.get()->getType()->getAs<PointerType>()) {
|
|
QualType rpointee = RHSPTy->getPointeeType();
|
|
|
|
if (getLangOpts().CPlusPlus) {
|
|
// Pointee types must be the same: C++ [expr.add]
|
|
if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
|
|
diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
|
|
}
|
|
} else {
|
|
// Pointee types must be compatible C99 6.5.6p3
|
|
if (!Context.typesAreCompatible(
|
|
Context.getCanonicalType(lpointee).getUnqualifiedType(),
|
|
Context.getCanonicalType(rpointee).getUnqualifiedType())) {
|
|
diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
|
|
return QualType();
|
|
}
|
|
}
|
|
|
|
if (!checkArithmeticBinOpPointerOperands(*this, Loc,
|
|
LHS.get(), RHS.get()))
|
|
return QualType();
|
|
|
|
// FIXME: Add warnings for nullptr - ptr.
|
|
|
|
// The pointee type may have zero size. As an extension, a structure or
|
|
// union may have zero size or an array may have zero length. In this
|
|
// case subtraction does not make sense.
|
|
if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
|
|
CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
|
|
if (ElementSize.isZero()) {
|
|
Diag(Loc,diag::warn_sub_ptr_zero_size_types)
|
|
<< rpointee.getUnqualifiedType()
|
|
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
|
}
|
|
}
|
|
|
|
if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
|
|
return Context.getPointerDiffType();
|
|
}
|
|
}
|
|
|
|
return InvalidOperands(Loc, LHS, RHS);
|
|
}
|
|
|
|
static bool isScopedEnumerationType(QualType T) {
|
|
if (const EnumType *ET = T->getAs<EnumType>())
|
|
return ET->getDecl()->isScoped();
|
|
return false;
|
|
}
|
|
|
|
static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation Loc, BinaryOperatorKind Opc,
|
|
QualType LHSType) {
|
|
// OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
|
|
// so skip remaining warnings as we don't want to modify values within Sema.
|
|
if (S.getLangOpts().OpenCL)
|
|
return;
|
|
|
|
// Check right/shifter operand
|
|
Expr::EvalResult RHSResult;
|
|
if (RHS.get()->isValueDependent() ||
|
|
!RHS.get()->EvaluateAsInt(RHSResult, S.Context))
|
|
return;
|
|
llvm::APSInt Right = RHSResult.Val.getInt();
|
|
|
|
if (Right.isNegative()) {
|
|
S.DiagRuntimeBehavior(Loc, RHS.get(),
|
|
S.PDiag(diag::warn_shift_negative)
|
|
<< RHS.get()->getSourceRange());
|
|
return;
|
|
}
|
|
llvm::APInt LeftBits(Right.getBitWidth(),
|
|
S.Context.getTypeSize(LHS.get()->getType()));
|
|
if (Right.uge(LeftBits)) {
|
|
S.DiagRuntimeBehavior(Loc, RHS.get(),
|
|
S.PDiag(diag::warn_shift_gt_typewidth)
|
|
<< RHS.get()->getSourceRange());
|
|
return;
|
|
}
|
|
if (Opc != BO_Shl)
|
|
return;
|
|
|
|
// When left shifting an ICE which is signed, we can check for overflow which
|
|
// according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
|
|
// integers have defined behavior modulo one more than the maximum value
|
|
// representable in the result type, so never warn for those.
|
|
Expr::EvalResult LHSResult;
|
|
if (LHS.get()->isValueDependent() ||
|
|
LHSType->hasUnsignedIntegerRepresentation() ||
|
|
!LHS.get()->EvaluateAsInt(LHSResult, S.Context))
|
|
return;
|
|
llvm::APSInt Left = LHSResult.Val.getInt();
|
|
|
|
// If LHS does not have a signed type and non-negative value
|
|
// then, the behavior is undefined. Warn about it.
|
|
if (Left.isNegative() && !S.getLangOpts().isSignedOverflowDefined()) {
|
|
S.DiagRuntimeBehavior(Loc, LHS.get(),
|
|
S.PDiag(diag::warn_shift_lhs_negative)
|
|
<< LHS.get()->getSourceRange());
|
|
return;
|
|
}
|
|
|
|
llvm::APInt ResultBits =
|
|
static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
|
|
if (LeftBits.uge(ResultBits))
|
|
return;
|
|
llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
|
|
Result = Result.shl(Right);
|
|
|
|
// Print the bit representation of the signed integer as an unsigned
|
|
// hexadecimal number.
|
|
SmallString<40> HexResult;
|
|
Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
|
|
|
|
// If we are only missing a sign bit, this is less likely to result in actual
|
|
// bugs -- if the result is cast back to an unsigned type, it will have the
|
|
// expected value. Thus we place this behind a different warning that can be
|
|
// turned off separately if needed.
|
|
if (LeftBits == ResultBits - 1) {
|
|
S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
|
|
<< HexResult << LHSType
|
|
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
|
|
<< HexResult.str() << Result.getMinSignedBits() << LHSType
|
|
<< Left.getBitWidth() << LHS.get()->getSourceRange()
|
|
<< RHS.get()->getSourceRange();
|
|
}
|
|
|
|
/// Return the resulting type when a vector is shifted
|
|
/// by a scalar or vector shift amount.
|
|
static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation Loc, bool IsCompAssign) {
|
|
// OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
|
|
if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
|
|
!LHS.get()->getType()->isVectorType()) {
|
|
S.Diag(Loc, diag::err_shift_rhs_only_vector)
|
|
<< RHS.get()->getType() << LHS.get()->getType()
|
|
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
if (!IsCompAssign) {
|
|
LHS = S.UsualUnaryConversions(LHS.get());
|
|
if (LHS.isInvalid()) return QualType();
|
|
}
|
|
|
|
RHS = S.UsualUnaryConversions(RHS.get());
|
|
if (RHS.isInvalid()) return QualType();
|
|
|
|
QualType LHSType = LHS.get()->getType();
|
|
// Note that LHS might be a scalar because the routine calls not only in
|
|
// OpenCL case.
|
|
const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
|
|
QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
|
|
|
|
// Note that RHS might not be a vector.
|
|
QualType RHSType = RHS.get()->getType();
|
|
const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
|
|
QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
|
|
|
|
// The operands need to be integers.
|
|
if (!LHSEleType->isIntegerType()) {
|
|
S.Diag(Loc, diag::err_typecheck_expect_int)
|
|
<< LHS.get()->getType() << LHS.get()->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
if (!RHSEleType->isIntegerType()) {
|
|
S.Diag(Loc, diag::err_typecheck_expect_int)
|
|
<< RHS.get()->getType() << RHS.get()->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
if (!LHSVecTy) {
|
|
assert(RHSVecTy);
|
|
if (IsCompAssign)
|
|
return RHSType;
|
|
if (LHSEleType != RHSEleType) {
|
|
LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
|
|
LHSEleType = RHSEleType;
|
|
}
|
|
QualType VecTy =
|
|
S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
|
|
LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
|
|
LHSType = VecTy;
|
|
} else if (RHSVecTy) {
|
|
// OpenCL v1.1 s6.3.j says that for vector types, the operators
|
|
// are applied component-wise. So if RHS is a vector, then ensure
|
|
// that the number of elements is the same as LHS...
|
|
if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
|
|
S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
|
|
<< LHS.get()->getType() << RHS.get()->getType()
|
|
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
|
return QualType();
|
|
}
|
|
if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
|
|
const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
|
|
const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
|
|
if (LHSBT != RHSBT &&
|
|
S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
|
|
S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
|
|
<< LHS.get()->getType() << RHS.get()->getType()
|
|
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
|
}
|
|
}
|
|
} else {
|
|
// ...else expand RHS to match the number of elements in LHS.
|
|
QualType VecTy =
|
|
S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
|
|
RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
|
|
}
|
|
|
|
return LHSType;
|
|
}
|
|
|
|
// C99 6.5.7
|
|
QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation Loc, BinaryOperatorKind Opc,
|
|
bool IsCompAssign) {
|
|
checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
|
|
|
|
// Vector shifts promote their scalar inputs to vector type.
|
|
if (LHS.get()->getType()->isVectorType() ||
|
|
RHS.get()->getType()->isVectorType()) {
|
|
if (LangOpts.ZVector) {
|
|
// The shift operators for the z vector extensions work basically
|
|
// like general shifts, except that neither the LHS nor the RHS is
|
|
// allowed to be a "vector bool".
|
|
if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
|
|
if (LHSVecType->getVectorKind() == VectorType::AltiVecBool)
|
|
return InvalidOperands(Loc, LHS, RHS);
|
|
if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
|
|
if (RHSVecType->getVectorKind() == VectorType::AltiVecBool)
|
|
return InvalidOperands(Loc, LHS, RHS);
|
|
}
|
|
return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
|
|
}
|
|
|
|
// Shifts don't perform usual arithmetic conversions, they just do integer
|
|
// promotions on each operand. C99 6.5.7p3
|
|
|
|
// For the LHS, do usual unary conversions, but then reset them away
|
|
// if this is a compound assignment.
|
|
ExprResult OldLHS = LHS;
|
|
LHS = UsualUnaryConversions(LHS.get());
|
|
if (LHS.isInvalid())
|
|
return QualType();
|
|
QualType LHSType = LHS.get()->getType();
|
|
if (IsCompAssign) LHS = OldLHS;
|
|
|
|
// The RHS is simpler.
|
|
RHS = UsualUnaryConversions(RHS.get());
|
|
if (RHS.isInvalid())
|
|
return QualType();
|
|
QualType RHSType = RHS.get()->getType();
|
|
|
|
// C99 6.5.7p2: Each of the operands shall have integer type.
|
|
if (!LHSType->hasIntegerRepresentation() ||
|
|
!RHSType->hasIntegerRepresentation())
|
|
return InvalidOperands(Loc, LHS, RHS);
|
|
|
|
// C++0x: Don't allow scoped enums. FIXME: Use something better than
|
|
// hasIntegerRepresentation() above instead of this.
|
|
if (isScopedEnumerationType(LHSType) ||
|
|
isScopedEnumerationType(RHSType)) {
|
|
return InvalidOperands(Loc, LHS, RHS);
|
|
}
|
|
// Sanity-check shift operands
|
|
DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
|
|
|
|
// "The type of the result is that of the promoted left operand."
|
|
return LHSType;
|
|
}
|
|
|
|
/// If two different enums are compared, raise a warning.
|
|
static void checkEnumComparison(Sema &S, SourceLocation Loc, Expr *LHS,
|
|
Expr *RHS) {
|
|
QualType LHSStrippedType = LHS->IgnoreParenImpCasts()->getType();
|
|
QualType RHSStrippedType = RHS->IgnoreParenImpCasts()->getType();
|
|
|
|
const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
|
|
if (!LHSEnumType)
|
|
return;
|
|
const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
|
|
if (!RHSEnumType)
|
|
return;
|
|
|
|
// Ignore anonymous enums.
|
|
if (!LHSEnumType->getDecl()->getIdentifier() &&
|
|
!LHSEnumType->getDecl()->getTypedefNameForAnonDecl())
|
|
return;
|
|
if (!RHSEnumType->getDecl()->getIdentifier() &&
|
|
!RHSEnumType->getDecl()->getTypedefNameForAnonDecl())
|
|
return;
|
|
|
|
if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
|
|
return;
|
|
|
|
S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
|
|
<< LHSStrippedType << RHSStrippedType
|
|
<< LHS->getSourceRange() << RHS->getSourceRange();
|
|
}
|
|
|
|
/// Diagnose bad pointer comparisons.
|
|
static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
|
|
ExprResult &LHS, ExprResult &RHS,
|
|
bool IsError) {
|
|
S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
|
|
: diag::ext_typecheck_comparison_of_distinct_pointers)
|
|
<< LHS.get()->getType() << RHS.get()->getType()
|
|
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
|
}
|
|
|
|
/// Returns false if the pointers are converted to a composite type,
|
|
/// true otherwise.
|
|
static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
|
|
ExprResult &LHS, ExprResult &RHS) {
|
|
// C++ [expr.rel]p2:
|
|
// [...] Pointer conversions (4.10) and qualification
|
|
// conversions (4.4) are performed on pointer operands (or on
|
|
// a pointer operand and a null pointer constant) to bring
|
|
// them to their composite pointer type. [...]
|
|
//
|
|
// C++ [expr.eq]p1 uses the same notion for (in)equality
|
|
// comparisons of pointers.
|
|
|
|
QualType LHSType = LHS.get()->getType();
|
|
QualType RHSType = RHS.get()->getType();
|
|
assert(LHSType->isPointerType() || RHSType->isPointerType() ||
|
|
LHSType->isMemberPointerType() || RHSType->isMemberPointerType());
|
|
|
|
QualType T = S.FindCompositePointerType(Loc, LHS, RHS);
|
|
if (T.isNull()) {
|
|
if ((LHSType->isPointerType() || LHSType->isMemberPointerType()) &&
|
|
(RHSType->isPointerType() || RHSType->isMemberPointerType()))
|
|
diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
|
|
else
|
|
S.InvalidOperands(Loc, LHS, RHS);
|
|
return true;
|
|
}
|
|
|
|
LHS = S.ImpCastExprToType(LHS.get(), T, CK_BitCast);
|
|
RHS = S.ImpCastExprToType(RHS.get(), T, CK_BitCast);
|
|
return false;
|
|
}
|
|
|
|
static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
|
|
ExprResult &LHS,
|
|
ExprResult &RHS,
|
|
bool IsError) {
|
|
S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
|
|
: diag::ext_typecheck_comparison_of_fptr_to_void)
|
|
<< LHS.get()->getType() << RHS.get()->getType()
|
|
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
|
}
|
|
|
|
static bool isObjCObjectLiteral(ExprResult &E) {
|
|
switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
|
|
case Stmt::ObjCArrayLiteralClass:
|
|
case Stmt::ObjCDictionaryLiteralClass:
|
|
case Stmt::ObjCStringLiteralClass:
|
|
case Stmt::ObjCBoxedExprClass:
|
|
return true;
|
|
default:
|
|
// Note that ObjCBoolLiteral is NOT an object literal!
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
|
|
const ObjCObjectPointerType *Type =
|
|
LHS->getType()->getAs<ObjCObjectPointerType>();
|
|
|
|
// If this is not actually an Objective-C object, bail out.
|
|
if (!Type)
|
|
return false;
|
|
|
|
// Get the LHS object's interface type.
|
|
QualType InterfaceType = Type->getPointeeType();
|
|
|
|
// If the RHS isn't an Objective-C object, bail out.
|
|
if (!RHS->getType()->isObjCObjectPointerType())
|
|
return false;
|
|
|
|
// Try to find the -isEqual: method.
|
|
Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
|
|
ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
|
|
InterfaceType,
|
|
/*instance=*/true);
|
|
if (!Method) {
|
|
if (Type->isObjCIdType()) {
|
|
// For 'id', just check the global pool.
|
|
Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
|
|
/*receiverId=*/true);
|
|
} else {
|
|
// Check protocols.
|
|
Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
|
|
/*instance=*/true);
|
|
}
|
|
}
|
|
|
|
if (!Method)
|
|
return false;
|
|
|
|
QualType T = Method->parameters()[0]->getType();
|
|
if (!T->isObjCObjectPointerType())
|
|
return false;
|
|
|
|
QualType R = Method->getReturnType();
|
|
if (!R->isScalarType())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
|
|
FromE = FromE->IgnoreParenImpCasts();
|
|
switch (FromE->getStmtClass()) {
|
|
default:
|
|
break;
|
|
case Stmt::ObjCStringLiteralClass:
|
|
// "string literal"
|
|
return LK_String;
|
|
case Stmt::ObjCArrayLiteralClass:
|
|
// "array literal"
|
|
return LK_Array;
|
|
case Stmt::ObjCDictionaryLiteralClass:
|
|
// "dictionary literal"
|
|
return LK_Dictionary;
|
|
case Stmt::BlockExprClass:
|
|
return LK_Block;
|
|
case Stmt::ObjCBoxedExprClass: {
|
|
Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
|
|
switch (Inner->getStmtClass()) {
|
|
case Stmt::IntegerLiteralClass:
|
|
case Stmt::FloatingLiteralClass:
|
|
case Stmt::CharacterLiteralClass:
|
|
case Stmt::ObjCBoolLiteralExprClass:
|
|
case Stmt::CXXBoolLiteralExprClass:
|
|
// "numeric literal"
|
|
return LK_Numeric;
|
|
case Stmt::ImplicitCastExprClass: {
|
|
CastKind CK = cast<CastExpr>(Inner)->getCastKind();
|
|
// Boolean literals can be represented by implicit casts.
|
|
if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
|
|
return LK_Numeric;
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
return LK_Boxed;
|
|
}
|
|
}
|
|
return LK_None;
|
|
}
|
|
|
|
static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
|
|
ExprResult &LHS, ExprResult &RHS,
|
|
BinaryOperator::Opcode Opc){
|
|
Expr *Literal;
|
|
Expr *Other;
|
|
if (isObjCObjectLiteral(LHS)) {
|
|
Literal = LHS.get();
|
|
Other = RHS.get();
|
|
} else {
|
|
Literal = RHS.get();
|
|
Other = LHS.get();
|
|
}
|
|
|
|
// Don't warn on comparisons against nil.
|
|
Other = Other->IgnoreParenCasts();
|
|
if (Other->isNullPointerConstant(S.getASTContext(),
|
|
Expr::NPC_ValueDependentIsNotNull))
|
|
return;
|
|
|
|
// This should be kept in sync with warn_objc_literal_comparison.
|
|
// LK_String should always be after the other literals, since it has its own
|
|
// warning flag.
|
|
Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
|
|
assert(LiteralKind != Sema::LK_Block);
|
|
if (LiteralKind == Sema::LK_None) {
|
|
llvm_unreachable("Unknown Objective-C object literal kind");
|
|
}
|
|
|
|
if (LiteralKind == Sema::LK_String)
|
|
S.Diag(Loc, diag::warn_objc_string_literal_comparison)
|
|
<< Literal->getSourceRange();
|
|
else
|
|
S.Diag(Loc, diag::warn_objc_literal_comparison)
|
|
<< LiteralKind << Literal->getSourceRange();
|
|
|
|
if (BinaryOperator::isEqualityOp(Opc) &&
|
|
hasIsEqualMethod(S, LHS.get(), RHS.get())) {
|
|
SourceLocation Start = LHS.get()->getBeginLoc();
|
|
SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc());
|
|
CharSourceRange OpRange =
|
|
CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
|
|
|
|
S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
|
|
<< FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
|
|
<< FixItHint::CreateReplacement(OpRange, " isEqual:")
|
|
<< FixItHint::CreateInsertion(End, "]");
|
|
}
|
|
}
|
|
|
|
/// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
|
|
static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
|
|
ExprResult &RHS, SourceLocation Loc,
|
|
BinaryOperatorKind Opc) {
|
|
// Check that left hand side is !something.
|
|
UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
|
|
if (!UO || UO->getOpcode() != UO_LNot) return;
|
|
|
|
// Only check if the right hand side is non-bool arithmetic type.
|
|
if (RHS.get()->isKnownToHaveBooleanValue()) return;
|
|
|
|
// Make sure that the something in !something is not bool.
|
|
Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
|
|
if (SubExpr->isKnownToHaveBooleanValue()) return;
|
|
|
|
// Emit warning.
|
|
bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
|
|
S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
|
|
<< Loc << IsBitwiseOp;
|
|
|
|
// First note suggest !(x < y)
|
|
SourceLocation FirstOpen = SubExpr->getBeginLoc();
|
|
SourceLocation FirstClose = RHS.get()->getEndLoc();
|
|
FirstClose = S.getLocForEndOfToken(FirstClose);
|
|
if (FirstClose.isInvalid())
|
|
FirstOpen = SourceLocation();
|
|
S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
|
|
<< IsBitwiseOp
|
|
<< FixItHint::CreateInsertion(FirstOpen, "(")
|
|
<< FixItHint::CreateInsertion(FirstClose, ")");
|
|
|
|
// Second note suggests (!x) < y
|
|
SourceLocation SecondOpen = LHS.get()->getBeginLoc();
|
|
SourceLocation SecondClose = LHS.get()->getEndLoc();
|
|
SecondClose = S.getLocForEndOfToken(SecondClose);
|
|
if (SecondClose.isInvalid())
|
|
SecondOpen = SourceLocation();
|
|
S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
|
|
<< FixItHint::CreateInsertion(SecondOpen, "(")
|
|
<< FixItHint::CreateInsertion(SecondClose, ")");
|
|
}
|
|
|
|
// Get the decl for a simple expression: a reference to a variable,
|
|
// an implicit C++ field reference, or an implicit ObjC ivar reference.
|
|
static ValueDecl *getCompareDecl(Expr *E) {
|
|
if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E))
|
|
return DR->getDecl();
|
|
if (ObjCIvarRefExpr *Ivar = dyn_cast<ObjCIvarRefExpr>(E)) {
|
|
if (Ivar->isFreeIvar())
|
|
return Ivar->getDecl();
|
|
}
|
|
if (MemberExpr *Mem = dyn_cast<MemberExpr>(E)) {
|
|
if (Mem->isImplicitAccess())
|
|
return Mem->getMemberDecl();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Diagnose some forms of syntactically-obvious tautological comparison.
|
|
static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
|
|
Expr *LHS, Expr *RHS,
|
|
BinaryOperatorKind Opc) {
|
|
Expr *LHSStripped = LHS->IgnoreParenImpCasts();
|
|
Expr *RHSStripped = RHS->IgnoreParenImpCasts();
|
|
|
|
QualType LHSType = LHS->getType();
|
|
QualType RHSType = RHS->getType();
|
|
if (LHSType->hasFloatingRepresentation() ||
|
|
(LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
|
|
LHS->getBeginLoc().isMacroID() || RHS->getBeginLoc().isMacroID() ||
|
|
S.inTemplateInstantiation())
|
|
return;
|
|
|
|
// Comparisons between two array types are ill-formed for operator<=>, so
|
|
// we shouldn't emit any additional warnings about it.
|
|
if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
|
|
return;
|
|
|
|
// For non-floating point types, check for self-comparisons of the form
|
|
// x == x, x != x, x < x, etc. These always evaluate to a constant, and
|
|
// often indicate logic errors in the program.
|
|
//
|
|
// NOTE: Don't warn about comparison expressions resulting from macro
|
|
// expansion. Also don't warn about comparisons which are only self
|
|
// comparisons within a template instantiation. The warnings should catch
|
|
// obvious cases in the definition of the template anyways. The idea is to
|
|
// warn when the typed comparison operator will always evaluate to the same
|
|
// result.
|
|
ValueDecl *DL = getCompareDecl(LHSStripped);
|
|
ValueDecl *DR = getCompareDecl(RHSStripped);
|
|
if (DL && DR && declaresSameEntity(DL, DR)) {
|
|
StringRef Result;
|
|
switch (Opc) {
|
|
case BO_EQ: case BO_LE: case BO_GE:
|
|
Result = "true";
|
|
break;
|
|
case BO_NE: case BO_LT: case BO_GT:
|
|
Result = "false";
|
|
break;
|
|
case BO_Cmp:
|
|
Result = "'std::strong_ordering::equal'";
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
S.DiagRuntimeBehavior(Loc, nullptr,
|
|
S.PDiag(diag::warn_comparison_always)
|
|
<< 0 /*self-comparison*/ << !Result.empty()
|
|
<< Result);
|
|
} else if (DL && DR &&
|
|
DL->getType()->isArrayType() && DR->getType()->isArrayType() &&
|
|
!DL->isWeak() && !DR->isWeak()) {
|
|
// What is it always going to evaluate to?
|
|
StringRef Result;
|
|
switch(Opc) {
|
|
case BO_EQ: // e.g. array1 == array2
|
|
Result = "false";
|
|
break;
|
|
case BO_NE: // e.g. array1 != array2
|
|
Result = "true";
|
|
break;
|
|
default: // e.g. array1 <= array2
|
|
// The best we can say is 'a constant'
|
|
break;
|
|
}
|
|
S.DiagRuntimeBehavior(Loc, nullptr,
|
|
S.PDiag(diag::warn_comparison_always)
|
|
<< 1 /*array comparison*/
|
|
<< !Result.empty() << Result);
|
|
}
|
|
|
|
if (isa<CastExpr>(LHSStripped))
|
|
LHSStripped = LHSStripped->IgnoreParenCasts();
|
|
if (isa<CastExpr>(RHSStripped))
|
|
RHSStripped = RHSStripped->IgnoreParenCasts();
|
|
|
|
// Warn about comparisons against a string constant (unless the other
|
|
// operand is null); the user probably wants strcmp.
|
|
Expr *LiteralString = nullptr;
|
|
Expr *LiteralStringStripped = nullptr;
|
|
if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
|
|
!RHSStripped->isNullPointerConstant(S.Context,
|
|
Expr::NPC_ValueDependentIsNull)) {
|
|
LiteralString = LHS;
|
|
LiteralStringStripped = LHSStripped;
|
|
} else if ((isa<StringLiteral>(RHSStripped) ||
|
|
isa<ObjCEncodeExpr>(RHSStripped)) &&
|
|
!LHSStripped->isNullPointerConstant(S.Context,
|
|
Expr::NPC_ValueDependentIsNull)) {
|
|
LiteralString = RHS;
|
|
LiteralStringStripped = RHSStripped;
|
|
}
|
|
|
|
if (LiteralString) {
|
|
S.DiagRuntimeBehavior(Loc, nullptr,
|
|
S.PDiag(diag::warn_stringcompare)
|
|
<< isa<ObjCEncodeExpr>(LiteralStringStripped)
|
|
<< LiteralString->getSourceRange());
|
|
}
|
|
}
|
|
|
|
static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
|
|
switch (CK) {
|
|
default: {
|
|
#ifndef NDEBUG
|
|
llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
|
|
<< "\n";
|
|
#endif
|
|
llvm_unreachable("unhandled cast kind");
|
|
}
|
|
case CK_UserDefinedConversion:
|
|
return ICK_Identity;
|
|
case CK_LValueToRValue:
|
|
return ICK_Lvalue_To_Rvalue;
|
|
case CK_ArrayToPointerDecay:
|
|
return ICK_Array_To_Pointer;
|
|
case CK_FunctionToPointerDecay:
|
|
return ICK_Function_To_Pointer;
|
|
case CK_IntegralCast:
|
|
return ICK_Integral_Conversion;
|
|
case CK_FloatingCast:
|
|
return ICK_Floating_Conversion;
|
|
case CK_IntegralToFloating:
|
|
case CK_FloatingToIntegral:
|
|
return ICK_Floating_Integral;
|
|
case CK_IntegralComplexCast:
|
|
case CK_FloatingComplexCast:
|
|
case CK_FloatingComplexToIntegralComplex:
|
|
case CK_IntegralComplexToFloatingComplex:
|
|
return ICK_Complex_Conversion;
|
|
case CK_FloatingComplexToReal:
|
|
case CK_FloatingRealToComplex:
|
|
case CK_IntegralComplexToReal:
|
|
case CK_IntegralRealToComplex:
|
|
return ICK_Complex_Real;
|
|
}
|
|
}
|
|
|
|
static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
|
|
QualType FromType,
|
|
SourceLocation Loc) {
|
|
// Check for a narrowing implicit conversion.
|
|
StandardConversionSequence SCS;
|
|
SCS.setAsIdentityConversion();
|
|
SCS.setToType(0, FromType);
|
|
SCS.setToType(1, ToType);
|
|
if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
|
|
SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());
|
|
|
|
APValue PreNarrowingValue;
|
|
QualType PreNarrowingType;
|
|
switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue,
|
|
PreNarrowingType,
|
|
/*IgnoreFloatToIntegralConversion*/ true)) {
|
|
case NK_Dependent_Narrowing:
|
|
// Implicit conversion to a narrower type, but the expression is
|
|
// value-dependent so we can't tell whether it's actually narrowing.
|
|
case NK_Not_Narrowing:
|
|
return false;
|
|
|
|
case NK_Constant_Narrowing:
|
|
// Implicit conversion to a narrower type, and the value is not a constant
|
|
// expression.
|
|
S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
|
|
<< /*Constant*/ 1
|
|
<< PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
|
|
return true;
|
|
|
|
case NK_Variable_Narrowing:
|
|
// Implicit conversion to a narrower type, and the value is not a constant
|
|
// expression.
|
|
case NK_Type_Narrowing:
|
|
S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
|
|
<< /*Constant*/ 0 << FromType << ToType;
|
|
// TODO: It's not a constant expression, but what if the user intended it
|
|
// to be? Can we produce notes to help them figure out why it isn't?
|
|
return true;
|
|
}
|
|
llvm_unreachable("unhandled case in switch");
|
|
}
|
|
|
|
static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
|
|
ExprResult &LHS,
|
|
ExprResult &RHS,
|
|
SourceLocation Loc) {
|
|
using CCT = ComparisonCategoryType;
|
|
|
|
QualType LHSType = LHS.get()->getType();
|
|
QualType RHSType = RHS.get()->getType();
|
|
// Dig out the original argument type and expression before implicit casts
|
|
// were applied. These are the types/expressions we need to check the
|
|
// [expr.spaceship] requirements against.
|
|
ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
|
|
ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
|
|
QualType LHSStrippedType = LHSStripped.get()->getType();
|
|
QualType RHSStrippedType = RHSStripped.get()->getType();
|
|
|
|
// C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
|
|
// other is not, the program is ill-formed.
|
|
if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
|
|
S.InvalidOperands(Loc, LHSStripped, RHSStripped);
|
|
return QualType();
|
|
}
|
|
|
|
int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
|
|
RHSStrippedType->isEnumeralType();
|
|
if (NumEnumArgs == 1) {
|
|
bool LHSIsEnum = LHSStrippedType->isEnumeralType();
|
|
QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
|
|
if (OtherTy->hasFloatingRepresentation()) {
|
|
S.InvalidOperands(Loc, LHSStripped, RHSStripped);
|
|
return QualType();
|
|
}
|
|
}
|
|
if (NumEnumArgs == 2) {
|
|
// C++2a [expr.spaceship]p5: If both operands have the same enumeration
|
|
// type E, the operator yields the result of converting the operands
|
|
// to the underlying type of E and applying <=> to the converted operands.
|
|
if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
|
|
S.InvalidOperands(Loc, LHS, RHS);
|
|
return QualType();
|
|
}
|
|
QualType IntType =
|
|
LHSStrippedType->getAs<EnumType>()->getDecl()->getIntegerType();
|
|
assert(IntType->isArithmeticType());
|
|
|
|
// We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
|
|
// promote the boolean type, and all other promotable integer types, to
|
|
// avoid this.
|
|
if (IntType->isPromotableIntegerType())
|
|
IntType = S.Context.getPromotedIntegerType(IntType);
|
|
|
|
LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast);
|
|
RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast);
|
|
LHSType = RHSType = IntType;
|
|
}
|
|
|
|
// C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
|
|
// usual arithmetic conversions are applied to the operands.
|
|
QualType Type = S.UsualArithmeticConversions(LHS, RHS);
|
|
if (LHS.isInvalid() || RHS.isInvalid())
|
|
return QualType();
|
|
if (Type.isNull())
|
|
return S.InvalidOperands(Loc, LHS, RHS);
|
|
assert(Type->isArithmeticType() || Type->isEnumeralType());
|
|
|
|
bool HasNarrowing = checkThreeWayNarrowingConversion(
|
|
S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
|
|
HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
|
|
RHS.get()->getBeginLoc());
|
|
if (HasNarrowing)
|
|
return QualType();
|
|
|
|
assert(!Type.isNull() && "composite type for <=> has not been set");
|
|
|
|
auto TypeKind = [&]() {
|
|
if (const ComplexType *CT = Type->getAs<ComplexType>()) {
|
|
if (CT->getElementType()->hasFloatingRepresentation())
|
|
return CCT::WeakEquality;
|
|
return CCT::StrongEquality;
|
|
}
|
|
if (Type->isIntegralOrEnumerationType())
|
|
return CCT::StrongOrdering;
|
|
if (Type->hasFloatingRepresentation())
|
|
return CCT::PartialOrdering;
|
|
llvm_unreachable("other types are unimplemented");
|
|
}();
|
|
|
|
return S.CheckComparisonCategoryType(TypeKind, Loc);
|
|
}
|
|
|
|
static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
|
|
ExprResult &RHS,
|
|
SourceLocation Loc,
|
|
BinaryOperatorKind Opc) {
|
|
if (Opc == BO_Cmp)
|
|
return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
|
|
|
|
// C99 6.5.8p3 / C99 6.5.9p4
|
|
QualType Type = S.UsualArithmeticConversions(LHS, RHS);
|
|
if (LHS.isInvalid() || RHS.isInvalid())
|
|
return QualType();
|
|
if (Type.isNull())
|
|
return S.InvalidOperands(Loc, LHS, RHS);
|
|
assert(Type->isArithmeticType() || Type->isEnumeralType());
|
|
|
|
checkEnumComparison(S, Loc, LHS.get(), RHS.get());
|
|
|
|
if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
|
|
return S.InvalidOperands(Loc, LHS, RHS);
|
|
|
|
// Check for comparisons of floating point operands using != and ==.
|
|
if (Type->hasFloatingRepresentation() && BinaryOperator::isEqualityOp(Opc))
|
|
S.CheckFloatComparison(Loc, LHS.get(), RHS.get());
|
|
|
|
// The result of comparisons is 'bool' in C++, 'int' in C.
|
|
return S.Context.getLogicalOperationType();
|
|
}
|
|
|
|
// C99 6.5.8, C++ [expr.rel]
|
|
QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation Loc,
|
|
BinaryOperatorKind Opc) {
|
|
bool IsRelational = BinaryOperator::isRelationalOp(Opc);
|
|
bool IsThreeWay = Opc == BO_Cmp;
|
|
auto IsAnyPointerType = [](ExprResult E) {
|
|
QualType Ty = E.get()->getType();
|
|
return Ty->isPointerType() || Ty->isMemberPointerType();
|
|
};
|
|
|
|
// C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
|
|
// type, array-to-pointer, ..., conversions are performed on both operands to
|
|
// bring them to their composite type.
|
|
// Otherwise, all comparisons expect an rvalue, so convert to rvalue before
|
|
// any type-related checks.
|
|
if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
|
|
LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
|
|
if (LHS.isInvalid())
|
|
return QualType();
|
|
RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
|
|
if (RHS.isInvalid())
|
|
return QualType();
|
|
} else {
|
|
LHS = DefaultLvalueConversion(LHS.get());
|
|
if (LHS.isInvalid())
|
|
return QualType();
|
|
RHS = DefaultLvalueConversion(RHS.get());
|
|
if (RHS.isInvalid())
|
|
return QualType();
|
|
}
|
|
|
|
checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
|
|
|
|
// Handle vector comparisons separately.
|
|
if (LHS.get()->getType()->isVectorType() ||
|
|
RHS.get()->getType()->isVectorType())
|
|
return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
|
|
|
|
diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
|
|
diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
|
|
|
|
QualType LHSType = LHS.get()->getType();
|
|
QualType RHSType = RHS.get()->getType();
|
|
if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
|
|
(RHSType->isArithmeticType() || RHSType->isEnumeralType()))
|
|
return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc);
|
|
|
|
const Expr::NullPointerConstantKind LHSNullKind =
|
|
LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
|
|
const Expr::NullPointerConstantKind RHSNullKind =
|
|
RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
|
|
bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
|
|
bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
|
|
|
|
auto computeResultTy = [&]() {
|
|
if (Opc != BO_Cmp)
|
|
return Context.getLogicalOperationType();
|
|
assert(getLangOpts().CPlusPlus);
|
|
assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()));
|
|
|
|
QualType CompositeTy = LHS.get()->getType();
|
|
assert(!CompositeTy->isReferenceType());
|
|
|
|
auto buildResultTy = [&](ComparisonCategoryType Kind) {
|
|
return CheckComparisonCategoryType(Kind, Loc);
|
|
};
|
|
|
|
// C++2a [expr.spaceship]p7: If the composite pointer type is a function
|
|
// pointer type, a pointer-to-member type, or std::nullptr_t, the
|
|
// result is of type std::strong_equality
|
|
if (CompositeTy->isFunctionPointerType() ||
|
|
CompositeTy->isMemberPointerType() || CompositeTy->isNullPtrType())
|
|
// FIXME: consider making the function pointer case produce
|
|
// strong_ordering not strong_equality, per P0946R0-Jax18 discussion
|
|
// and direction polls
|
|
return buildResultTy(ComparisonCategoryType::StrongEquality);
|
|
|
|
// C++2a [expr.spaceship]p8: If the composite pointer type is an object
|
|
// pointer type, p <=> q is of type std::strong_ordering.
|
|
if (CompositeTy->isPointerType()) {
|
|
// P0946R0: Comparisons between a null pointer constant and an object
|
|
// pointer result in std::strong_equality
|
|
if (LHSIsNull != RHSIsNull)
|
|
return buildResultTy(ComparisonCategoryType::StrongEquality);
|
|
return buildResultTy(ComparisonCategoryType::StrongOrdering);
|
|
}
|
|
// C++2a [expr.spaceship]p9: Otherwise, the program is ill-formed.
|
|
// TODO: Extend support for operator<=> to ObjC types.
|
|
return InvalidOperands(Loc, LHS, RHS);
|
|
};
|
|
|
|
|
|
if (!IsRelational && LHSIsNull != RHSIsNull) {
|
|
bool IsEquality = Opc == BO_EQ;
|
|
if (RHSIsNull)
|
|
DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
|
|
RHS.get()->getSourceRange());
|
|
else
|
|
DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
|
|
LHS.get()->getSourceRange());
|
|
}
|
|
|
|
if ((LHSType->isIntegerType() && !LHSIsNull) ||
|
|
(RHSType->isIntegerType() && !RHSIsNull)) {
|
|
// Skip normal pointer conversion checks in this case; we have better
|
|
// diagnostics for this below.
|
|
} else if (getLangOpts().CPlusPlus) {
|
|
// Equality comparison of a function pointer to a void pointer is invalid,
|
|
// but we allow it as an extension.
|
|
// FIXME: If we really want to allow this, should it be part of composite
|
|
// pointer type computation so it works in conditionals too?
|
|
if (!IsRelational &&
|
|
((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
|
|
(RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
|
|
// This is a gcc extension compatibility comparison.
|
|
// In a SFINAE context, we treat this as a hard error to maintain
|
|
// conformance with the C++ standard.
|
|
diagnoseFunctionPointerToVoidComparison(
|
|
*this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
|
|
|
|
if (isSFINAEContext())
|
|
return QualType();
|
|
|
|
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
|
|
return computeResultTy();
|
|
}
|
|
|
|
// C++ [expr.eq]p2:
|
|
// If at least one operand is a pointer [...] bring them to their
|
|
// composite pointer type.
|
|
// C++ [expr.spaceship]p6
|
|
// If at least one of the operands is of pointer type, [...] bring them
|
|
// to their composite pointer type.
|
|
// C++ [expr.rel]p2:
|
|
// If both operands are pointers, [...] bring them to their composite
|
|
// pointer type.
|
|
if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
|
|
(IsRelational ? 2 : 1) &&
|
|
(!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
|
|
RHSType->isObjCObjectPointerType()))) {
|
|
if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
|
|
return QualType();
|
|
return computeResultTy();
|
|
}
|
|
} else if (LHSType->isPointerType() &&
|
|
RHSType->isPointerType()) { // C99 6.5.8p2
|
|
// All of the following pointer-related warnings are GCC extensions, except
|
|
// when handling null pointer constants.
|
|
QualType LCanPointeeTy =
|
|
LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
|
|
QualType RCanPointeeTy =
|
|
RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
|
|
|
|
// C99 6.5.9p2 and C99 6.5.8p2
|
|
if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
|
|
RCanPointeeTy.getUnqualifiedType())) {
|
|
// Valid unless a relational comparison of function pointers
|
|
if (IsRelational && LCanPointeeTy->isFunctionType()) {
|
|
Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
|
|
<< LHSType << RHSType << LHS.get()->getSourceRange()
|
|
<< RHS.get()->getSourceRange();
|
|
}
|
|
} else if (!IsRelational &&
|
|
(LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
|
|
// Valid unless comparison between non-null pointer and function pointer
|
|
if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
|
|
&& !LHSIsNull && !RHSIsNull)
|
|
diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
|
|
/*isError*/false);
|
|
} else {
|
|
// Invalid
|
|
diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
|
|
}
|
|
if (LCanPointeeTy != RCanPointeeTy) {
|
|
// Treat NULL constant as a special case in OpenCL.
|
|
if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
|
|
const PointerType *LHSPtr = LHSType->getAs<PointerType>();
|
|
if (!LHSPtr->isAddressSpaceOverlapping(*RHSType->getAs<PointerType>())) {
|
|
Diag(Loc,
|
|
diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
|
|
<< LHSType << RHSType << 0 /* comparison */
|
|
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
|
}
|
|
}
|
|
LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
|
|
LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
|
|
CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
|
|
: CK_BitCast;
|
|
if (LHSIsNull && !RHSIsNull)
|
|
LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
|
|
else
|
|
RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
|
|
}
|
|
return computeResultTy();
|
|
}
|
|
|
|
if (getLangOpts().CPlusPlus) {
|
|
// C++ [expr.eq]p4:
|
|
// Two operands of type std::nullptr_t or one operand of type
|
|
// std::nullptr_t and the other a null pointer constant compare equal.
|
|
if (!IsRelational && LHSIsNull && RHSIsNull) {
|
|
if (LHSType->isNullPtrType()) {
|
|
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
|
|
return computeResultTy();
|
|
}
|
|
if (RHSType->isNullPtrType()) {
|
|
LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
|
|
return computeResultTy();
|
|
}
|
|
}
|
|
|
|
// Comparison of Objective-C pointers and block pointers against nullptr_t.
|
|
// These aren't covered by the composite pointer type rules.
|
|
if (!IsRelational && RHSType->isNullPtrType() &&
|
|
(LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
|
|
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
|
|
return computeResultTy();
|
|
}
|
|
if (!IsRelational && LHSType->isNullPtrType() &&
|
|
(RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
|
|
LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
|
|
return computeResultTy();
|
|
}
|
|
|
|
if (IsRelational &&
|
|
((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
|
|
(RHSType->isNullPtrType() && LHSType->isPointerType()))) {
|
|
// HACK: Relational comparison of nullptr_t against a pointer type is
|
|
// invalid per DR583, but we allow it within std::less<> and friends,
|
|
// since otherwise common uses of it break.
|
|
// FIXME: Consider removing this hack once LWG fixes std::less<> and
|
|
// friends to have std::nullptr_t overload candidates.
|
|
DeclContext *DC = CurContext;
|
|
if (isa<FunctionDecl>(DC))
|
|
DC = DC->getParent();
|
|
if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
|
|
if (CTSD->isInStdNamespace() &&
|
|
llvm::StringSwitch<bool>(CTSD->getName())
|
|
.Cases("less", "less_equal", "greater", "greater_equal", true)
|
|
.Default(false)) {
|
|
if (RHSType->isNullPtrType())
|
|
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
|
|
else
|
|
LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
|
|
return computeResultTy();
|
|
}
|
|
}
|
|
}
|
|
|
|
// C++ [expr.eq]p2:
|
|
// If at least one operand is a pointer to member, [...] bring them to
|
|
// their composite pointer type.
|
|
if (!IsRelational &&
|
|
(LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
|
|
if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
|
|
return QualType();
|
|
else
|
|
return computeResultTy();
|
|
}
|
|
}
|
|
|
|
// Handle block pointer types.
|
|
if (!IsRelational && LHSType->isBlockPointerType() &&
|
|
RHSType->isBlockPointerType()) {
|
|
QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
|
|
QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
|
|
|
|
if (!LHSIsNull && !RHSIsNull &&
|
|
!Context.typesAreCompatible(lpointee, rpointee)) {
|
|
Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
|
|
<< LHSType << RHSType << LHS.get()->getSourceRange()
|
|
<< RHS.get()->getSourceRange();
|
|
}
|
|
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
|
|
return computeResultTy();
|
|
}
|
|
|
|
// Allow block pointers to be compared with null pointer constants.
|
|
if (!IsRelational
|
|
&& ((LHSType->isBlockPointerType() && RHSType->isPointerType())
|
|
|| (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
|
|
if (!LHSIsNull && !RHSIsNull) {
|
|
if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
|
|
->getPointeeType()->isVoidType())
|
|
|| (LHSType->isPointerType() && LHSType->castAs<PointerType>()
|
|
->getPointeeType()->isVoidType())))
|
|
Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
|
|
<< LHSType << RHSType << LHS.get()->getSourceRange()
|
|
<< RHS.get()->getSourceRange();
|
|
}
|
|
if (LHSIsNull && !RHSIsNull)
|
|
LHS = ImpCastExprToType(LHS.get(), RHSType,
|
|
RHSType->isPointerType() ? CK_BitCast
|
|
: CK_AnyPointerToBlockPointerCast);
|
|
else
|
|
RHS = ImpCastExprToType(RHS.get(), LHSType,
|
|
LHSType->isPointerType() ? CK_BitCast
|
|
: CK_AnyPointerToBlockPointerCast);
|
|
return computeResultTy();
|
|
}
|
|
|
|
if (LHSType->isObjCObjectPointerType() ||
|
|
RHSType->isObjCObjectPointerType()) {
|
|
const PointerType *LPT = LHSType->getAs<PointerType>();
|
|
const PointerType *RPT = RHSType->getAs<PointerType>();
|
|
if (LPT || RPT) {
|
|
bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
|
|
bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
|
|
|
|
if (!LPtrToVoid && !RPtrToVoid &&
|
|
!Context.typesAreCompatible(LHSType, RHSType)) {
|
|
diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
|
|
/*isError*/false);
|
|
}
|
|
if (LHSIsNull && !RHSIsNull) {
|
|
Expr *E = LHS.get();
|
|
if (getLangOpts().ObjCAutoRefCount)
|
|
CheckObjCConversion(SourceRange(), RHSType, E,
|
|
CCK_ImplicitConversion);
|
|
LHS = ImpCastExprToType(E, RHSType,
|
|
RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
|
|
}
|
|
else {
|
|
Expr *E = RHS.get();
|
|
if (getLangOpts().ObjCAutoRefCount)
|
|
CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion,
|
|
/*Diagnose=*/true,
|
|
/*DiagnoseCFAudited=*/false, Opc);
|
|
RHS = ImpCastExprToType(E, LHSType,
|
|
LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
|
|
}
|
|
return computeResultTy();
|
|
}
|
|
if (LHSType->isObjCObjectPointerType() &&
|
|
RHSType->isObjCObjectPointerType()) {
|
|
if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
|
|
diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
|
|
/*isError*/false);
|
|
if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
|
|
diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
|
|
|
|
if (LHSIsNull && !RHSIsNull)
|
|
LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
|
|
else
|
|
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
|
|
return computeResultTy();
|
|
}
|
|
|
|
if (!IsRelational && LHSType->isBlockPointerType() &&
|
|
RHSType->isBlockCompatibleObjCPointerType(Context)) {
|
|
LHS = ImpCastExprToType(LHS.get(), RHSType,
|
|
CK_BlockPointerToObjCPointerCast);
|
|
return computeResultTy();
|
|
} else if (!IsRelational &&
|
|
LHSType->isBlockCompatibleObjCPointerType(Context) &&
|
|
RHSType->isBlockPointerType()) {
|
|
RHS = ImpCastExprToType(RHS.get(), LHSType,
|
|
CK_BlockPointerToObjCPointerCast);
|
|
return computeResultTy();
|
|
}
|
|
}
|
|
if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
|
|
(LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
|
|
unsigned DiagID = 0;
|
|
bool isError = false;
|
|
if (LangOpts.DebuggerSupport) {
|
|
// Under a debugger, allow the comparison of pointers to integers,
|
|
// since users tend to want to compare addresses.
|
|
} else if ((LHSIsNull && LHSType->isIntegerType()) ||
|
|
(RHSIsNull && RHSType->isIntegerType())) {
|
|
if (IsRelational) {
|
|
isError = getLangOpts().CPlusPlus;
|
|
DiagID =
|
|
isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
|
|
: diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
|
|
}
|
|
} else if (getLangOpts().CPlusPlus) {
|
|
DiagID = diag::err_typecheck_comparison_of_pointer_integer;
|
|
isError = true;
|
|
} else if (IsRelational)
|
|
DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
|
|
else
|
|
DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
|
|
|
|
if (DiagID) {
|
|
Diag(Loc, DiagID)
|
|
<< LHSType << RHSType << LHS.get()->getSourceRange()
|
|
<< RHS.get()->getSourceRange();
|
|
if (isError)
|
|
return QualType();
|
|
}
|
|
|
|
if (LHSType->isIntegerType())
|
|
LHS = ImpCastExprToType(LHS.get(), RHSType,
|
|
LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
|
|
else
|
|
RHS = ImpCastExprToType(RHS.get(), LHSType,
|
|
RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
|
|
return computeResultTy();
|
|
}
|
|
|
|
// Handle block pointers.
|
|
if (!IsRelational && RHSIsNull
|
|
&& LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
|
|
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
|
|
return computeResultTy();
|
|
}
|
|
if (!IsRelational && LHSIsNull
|
|
&& LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
|
|
LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
|
|
return computeResultTy();
|
|
}
|
|
|
|
if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) {
|
|
if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
|
|
return computeResultTy();
|
|
}
|
|
|
|
if (LHSType->isQueueT() && RHSType->isQueueT()) {
|
|
return computeResultTy();
|
|
}
|
|
|
|
if (LHSIsNull && RHSType->isQueueT()) {
|
|
LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
|
|
return computeResultTy();
|
|
}
|
|
|
|
if (LHSType->isQueueT() && RHSIsNull) {
|
|
RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
|
|
return computeResultTy();
|
|
}
|
|
}
|
|
|
|
return InvalidOperands(Loc, LHS, RHS);
|
|
}
|
|
|
|
// Return a signed ext_vector_type that is of identical size and number of
|
|
// elements. For floating point vectors, return an integer type of identical
|
|
// size and number of elements. In the non ext_vector_type case, search from
|
|
// the largest type to the smallest type to avoid cases where long long == long,
|
|
// where long gets picked over long long.
|
|
QualType Sema::GetSignedVectorType(QualType V) {
|
|
const VectorType *VTy = V->getAs<VectorType>();
|
|
unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
|
|
|
|
if (isa<ExtVectorType>(VTy)) {
|
|
if (TypeSize == Context.getTypeSize(Context.CharTy))
|
|
return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
|
|
else if (TypeSize == Context.getTypeSize(Context.ShortTy))
|
|
return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
|
|
else if (TypeSize == Context.getTypeSize(Context.IntTy))
|
|
return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
|
|
else if (TypeSize == Context.getTypeSize(Context.LongTy))
|
|
return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
|
|
assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
|
|
"Unhandled vector element size in vector compare");
|
|
return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
|
|
}
|
|
|
|
if (TypeSize == Context.getTypeSize(Context.LongLongTy))
|
|
return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(),
|
|
VectorType::GenericVector);
|
|
else if (TypeSize == Context.getTypeSize(Context.LongTy))
|
|
return Context.getVectorType(Context.LongTy, VTy->getNumElements(),
|
|
VectorType::GenericVector);
|
|
else if (TypeSize == Context.getTypeSize(Context.IntTy))
|
|
return Context.getVectorType(Context.IntTy, VTy->getNumElements(),
|
|
VectorType::GenericVector);
|
|
else if (TypeSize == Context.getTypeSize(Context.ShortTy))
|
|
return Context.getVectorType(Context.ShortTy, VTy->getNumElements(),
|
|
VectorType::GenericVector);
|
|
assert(TypeSize == Context.getTypeSize(Context.CharTy) &&
|
|
"Unhandled vector element size in vector compare");
|
|
return Context.getVectorType(Context.CharTy, VTy->getNumElements(),
|
|
VectorType::GenericVector);
|
|
}
|
|
|
|
/// CheckVectorCompareOperands - vector comparisons are a clang extension that
|
|
/// operates on extended vector types. Instead of producing an IntTy result,
|
|
/// like a scalar comparison, a vector comparison produces a vector of integer
|
|
/// types.
|
|
QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation Loc,
|
|
BinaryOperatorKind Opc) {
|
|
// Check to make sure we're operating on vectors of the same type and width,
|
|
// Allowing one side to be a scalar of element type.
|
|
QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false,
|
|
/*AllowBothBool*/true,
|
|
/*AllowBoolConversions*/getLangOpts().ZVector);
|
|
if (vType.isNull())
|
|
return vType;
|
|
|
|
QualType LHSType = LHS.get()->getType();
|
|
|
|
// If AltiVec, the comparison results in a numeric type, i.e.
|
|
// bool for C++, int for C
|
|
if (getLangOpts().AltiVec &&
|
|
vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
|
|
return Context.getLogicalOperationType();
|
|
|
|
// For non-floating point types, check for self-comparisons of the form
|
|
// x == x, x != x, x < x, etc. These always evaluate to a constant, and
|
|
// often indicate logic errors in the program.
|
|
diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
|
|
|
|
// Check for comparisons of floating point operands using != and ==.
|
|
if (BinaryOperator::isEqualityOp(Opc) &&
|
|
LHSType->hasFloatingRepresentation()) {
|
|
assert(RHS.get()->getType()->hasFloatingRepresentation());
|
|
CheckFloatComparison(Loc, LHS.get(), RHS.get());
|
|
}
|
|
|
|
// Return a signed type for the vector.
|
|
return GetSignedVectorType(vType);
|
|
}
|
|
|
|
QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation Loc) {
|
|
// Ensure that either both operands are of the same vector type, or
|
|
// one operand is of a vector type and the other is of its element type.
|
|
QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
|
|
/*AllowBothBool*/true,
|
|
/*AllowBoolConversions*/false);
|
|
if (vType.isNull())
|
|
return InvalidOperands(Loc, LHS, RHS);
|
|
if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 &&
|
|
vType->hasFloatingRepresentation())
|
|
return InvalidOperands(Loc, LHS, RHS);
|
|
// FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
|
|
// usage of the logical operators && and || with vectors in C. This
|
|
// check could be notionally dropped.
|
|
if (!getLangOpts().CPlusPlus &&
|
|
!(isa<ExtVectorType>(vType->getAs<VectorType>())))
|
|
return InvalidLogicalVectorOperands(Loc, LHS, RHS);
|
|
|
|
return GetSignedVectorType(LHS.get()->getType());
|
|
}
|
|
|
|
inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation Loc,
|
|
BinaryOperatorKind Opc) {
|
|
checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
|
|
|
|
bool IsCompAssign =
|
|
Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
|
|
|
|
if (LHS.get()->getType()->isVectorType() ||
|
|
RHS.get()->getType()->isVectorType()) {
|
|
if (LHS.get()->getType()->hasIntegerRepresentation() &&
|
|
RHS.get()->getType()->hasIntegerRepresentation())
|
|
return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
|
|
/*AllowBothBool*/true,
|
|
/*AllowBoolConversions*/getLangOpts().ZVector);
|
|
return InvalidOperands(Loc, LHS, RHS);
|
|
}
|
|
|
|
if (Opc == BO_And)
|
|
diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
|
|
|
|
ExprResult LHSResult = LHS, RHSResult = RHS;
|
|
QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
|
|
IsCompAssign);
|
|
if (LHSResult.isInvalid() || RHSResult.isInvalid())
|
|
return QualType();
|
|
LHS = LHSResult.get();
|
|
RHS = RHSResult.get();
|
|
|
|
if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
|
|
return compType;
|
|
return InvalidOperands(Loc, LHS, RHS);
|
|
}
|
|
|
|
// C99 6.5.[13,14]
|
|
inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation Loc,
|
|
BinaryOperatorKind Opc) {
|
|
// Check vector operands differently.
|
|
if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
|
|
return CheckVectorLogicalOperands(LHS, RHS, Loc);
|
|
|
|
// Diagnose cases where the user write a logical and/or but probably meant a
|
|
// bitwise one. We do this when the LHS is a non-bool integer and the RHS
|
|
// is a constant.
|
|
if (LHS.get()->getType()->isIntegerType() &&
|
|
!LHS.get()->getType()->isBooleanType() &&
|
|
RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
|
|
// Don't warn in macros or template instantiations.
|
|
!Loc.isMacroID() && !inTemplateInstantiation()) {
|
|
// If the RHS can be constant folded, and if it constant folds to something
|
|
// that isn't 0 or 1 (which indicate a potential logical operation that
|
|
// happened to fold to true/false) then warn.
|
|
// Parens on the RHS are ignored.
|
|
Expr::EvalResult EVResult;
|
|
if (RHS.get()->EvaluateAsInt(EVResult, Context)) {
|
|
llvm::APSInt Result = EVResult.Val.getInt();
|
|
if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
|
|
!RHS.get()->getExprLoc().isMacroID()) ||
|
|
(Result != 0 && Result != 1)) {
|
|
Diag(Loc, diag::warn_logical_instead_of_bitwise)
|
|
<< RHS.get()->getSourceRange()
|
|
<< (Opc == BO_LAnd ? "&&" : "||");
|
|
// Suggest replacing the logical operator with the bitwise version
|
|
Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
|
|
<< (Opc == BO_LAnd ? "&" : "|")
|
|
<< FixItHint::CreateReplacement(SourceRange(
|
|
Loc, getLocForEndOfToken(Loc)),
|
|
Opc == BO_LAnd ? "&" : "|");
|
|
if (Opc == BO_LAnd)
|
|
// Suggest replacing "Foo() && kNonZero" with "Foo()"
|
|
Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
|
|
<< FixItHint::CreateRemoval(
|
|
SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
|
|
RHS.get()->getEndLoc()));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!Context.getLangOpts().CPlusPlus) {
|
|
// OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
|
|
// not operate on the built-in scalar and vector float types.
|
|
if (Context.getLangOpts().OpenCL &&
|
|
Context.getLangOpts().OpenCLVersion < 120) {
|
|
if (LHS.get()->getType()->isFloatingType() ||
|
|
RHS.get()->getType()->isFloatingType())
|
|
return InvalidOperands(Loc, LHS, RHS);
|
|
}
|
|
|
|
LHS = UsualUnaryConversions(LHS.get());
|
|
if (LHS.isInvalid())
|
|
return QualType();
|
|
|
|
RHS = UsualUnaryConversions(RHS.get());
|
|
if (RHS.isInvalid())
|
|
return QualType();
|
|
|
|
if (!LHS.get()->getType()->isScalarType() ||
|
|
!RHS.get()->getType()->isScalarType())
|
|
return InvalidOperands(Loc, LHS, RHS);
|
|
|
|
return Context.IntTy;
|
|
}
|
|
|
|
// The following is safe because we only use this method for
|
|
// non-overloadable operands.
|
|
|
|
// C++ [expr.log.and]p1
|
|
// C++ [expr.log.or]p1
|
|
// The operands are both contextually converted to type bool.
|
|
ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
|
|
if (LHSRes.isInvalid())
|
|
return InvalidOperands(Loc, LHS, RHS);
|
|
LHS = LHSRes;
|
|
|
|
ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
|
|
if (RHSRes.isInvalid())
|
|
return InvalidOperands(Loc, LHS, RHS);
|
|
RHS = RHSRes;
|
|
|
|
// C++ [expr.log.and]p2
|
|
// C++ [expr.log.or]p2
|
|
// The result is a bool.
|
|
return Context.BoolTy;
|
|
}
|
|
|
|
static bool IsReadonlyMessage(Expr *E, Sema &S) {
|
|
const MemberExpr *ME = dyn_cast<MemberExpr>(E);
|
|
if (!ME) return false;
|
|
if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
|
|
ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
|
|
ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
|
|
if (!Base) return false;
|
|
return Base->getMethodDecl() != nullptr;
|
|
}
|
|
|
|
/// Is the given expression (which must be 'const') a reference to a
|
|
/// variable which was originally non-const, but which has become
|
|
/// 'const' due to being captured within a block?
|
|
enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
|
|
static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
|
|
assert(E->isLValue() && E->getType().isConstQualified());
|
|
E = E->IgnoreParens();
|
|
|
|
// Must be a reference to a declaration from an enclosing scope.
|
|
DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
|
|
if (!DRE) return NCCK_None;
|
|
if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
|
|
|
|
// The declaration must be a variable which is not declared 'const'.
|
|
VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
|
|
if (!var) return NCCK_None;
|
|
if (var->getType().isConstQualified()) return NCCK_None;
|
|
assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
|
|
|
|
// Decide whether the first capture was for a block or a lambda.
|
|
DeclContext *DC = S.CurContext, *Prev = nullptr;
|
|
// Decide whether the first capture was for a block or a lambda.
|
|
while (DC) {
|
|
// For init-capture, it is possible that the variable belongs to the
|
|
// template pattern of the current context.
|
|
if (auto *FD = dyn_cast<FunctionDecl>(DC))
|
|
if (var->isInitCapture() &&
|
|
FD->getTemplateInstantiationPattern() == var->getDeclContext())
|
|
break;
|
|
if (DC == var->getDeclContext())
|
|
break;
|
|
Prev = DC;
|
|
DC = DC->getParent();
|
|
}
|
|
// Unless we have an init-capture, we've gone one step too far.
|
|
if (!var->isInitCapture())
|
|
DC = Prev;
|
|
return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
|
|
}
|
|
|
|
static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
|
|
Ty = Ty.getNonReferenceType();
|
|
if (IsDereference && Ty->isPointerType())
|
|
Ty = Ty->getPointeeType();
|
|
return !Ty.isConstQualified();
|
|
}
|
|
|
|
// Update err_typecheck_assign_const and note_typecheck_assign_const
|
|
// when this enum is changed.
|
|
enum {
|
|
ConstFunction,
|
|
ConstVariable,
|
|
ConstMember,
|
|
ConstMethod,
|
|
NestedConstMember,
|
|
ConstUnknown, // Keep as last element
|
|
};
|
|
|
|
/// Emit the "read-only variable not assignable" error and print notes to give
|
|
/// more information about why the variable is not assignable, such as pointing
|
|
/// to the declaration of a const variable, showing that a method is const, or
|
|
/// that the function is returning a const reference.
|
|
static void DiagnoseConstAssignment(Sema &S, const Expr *E,
|
|
SourceLocation Loc) {
|
|
SourceRange ExprRange = E->getSourceRange();
|
|
|
|
// Only emit one error on the first const found. All other consts will emit
|
|
// a note to the error.
|
|
bool DiagnosticEmitted = false;
|
|
|
|
// Track if the current expression is the result of a dereference, and if the
|
|
// next checked expression is the result of a dereference.
|
|
bool IsDereference = false;
|
|
bool NextIsDereference = false;
|
|
|
|
// Loop to process MemberExpr chains.
|
|
while (true) {
|
|
IsDereference = NextIsDereference;
|
|
|
|
E = E->IgnoreImplicit()->IgnoreParenImpCasts();
|
|
if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
|
|
NextIsDereference = ME->isArrow();
|
|
const ValueDecl *VD = ME->getMemberDecl();
|
|
if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
|
|
// Mutable fields can be modified even if the class is const.
|
|
if (Field->isMutable()) {
|
|
assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
|
|
break;
|
|
}
|
|
|
|
if (!IsTypeModifiable(Field->getType(), IsDereference)) {
|
|
if (!DiagnosticEmitted) {
|
|
S.Diag(Loc, diag::err_typecheck_assign_const)
|
|
<< ExprRange << ConstMember << false /*static*/ << Field
|
|
<< Field->getType();
|
|
DiagnosticEmitted = true;
|
|
}
|
|
S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
|
|
<< ConstMember << false /*static*/ << Field << Field->getType()
|
|
<< Field->getSourceRange();
|
|
}
|
|
E = ME->getBase();
|
|
continue;
|
|
} else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
|
|
if (VDecl->getType().isConstQualified()) {
|
|
if (!DiagnosticEmitted) {
|
|
S.Diag(Loc, diag::err_typecheck_assign_const)
|
|
<< ExprRange << ConstMember << true /*static*/ << VDecl
|
|
<< VDecl->getType();
|
|
DiagnosticEmitted = true;
|
|
}
|
|
S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
|
|
<< ConstMember << true /*static*/ << VDecl << VDecl->getType()
|
|
<< VDecl->getSourceRange();
|
|
}
|
|
// Static fields do not inherit constness from parents.
|
|
break;
|
|
}
|
|
break; // End MemberExpr
|
|
} else if (const ArraySubscriptExpr *ASE =
|
|
dyn_cast<ArraySubscriptExpr>(E)) {
|
|
E = ASE->getBase()->IgnoreParenImpCasts();
|
|
continue;
|
|
} else if (const ExtVectorElementExpr *EVE =
|
|
dyn_cast<ExtVectorElementExpr>(E)) {
|
|
E = EVE->getBase()->IgnoreParenImpCasts();
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
|
|
// Function calls
|
|
const FunctionDecl *FD = CE->getDirectCallee();
|
|
if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
|
|
if (!DiagnosticEmitted) {
|
|
S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
|
|
<< ConstFunction << FD;
|
|
DiagnosticEmitted = true;
|
|
}
|
|
S.Diag(FD->getReturnTypeSourceRange().getBegin(),
|
|
diag::note_typecheck_assign_const)
|
|
<< ConstFunction << FD << FD->getReturnType()
|
|
<< FD->getReturnTypeSourceRange();
|
|
}
|
|
} else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
|
|
// Point to variable declaration.
|
|
if (const ValueDecl *VD = DRE->getDecl()) {
|
|
if (!IsTypeModifiable(VD->getType(), IsDereference)) {
|
|
if (!DiagnosticEmitted) {
|
|
S.Diag(Loc, diag::err_typecheck_assign_const)
|
|
<< ExprRange << ConstVariable << VD << VD->getType();
|
|
DiagnosticEmitted = true;
|
|
}
|
|
S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
|
|
<< ConstVariable << VD << VD->getType() << VD->getSourceRange();
|
|
}
|
|
}
|
|
} else if (isa<CXXThisExpr>(E)) {
|
|
if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
|
|
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
|
|
if (MD->isConst()) {
|
|
if (!DiagnosticEmitted) {
|
|
S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
|
|
<< ConstMethod << MD;
|
|
DiagnosticEmitted = true;
|
|
}
|
|
S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
|
|
<< ConstMethod << MD << MD->getSourceRange();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (DiagnosticEmitted)
|
|
return;
|
|
|
|
// Can't determine a more specific message, so display the generic error.
|
|
S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
|
|
}
|
|
|
|
enum OriginalExprKind {
|
|
OEK_Variable,
|
|
OEK_Member,
|
|
OEK_LValue
|
|
};
|
|
|
|
static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
|
|
const RecordType *Ty,
|
|
SourceLocation Loc, SourceRange Range,
|
|
OriginalExprKind OEK,
|
|
bool &DiagnosticEmitted) {
|
|
std::vector<const RecordType *> RecordTypeList;
|
|
RecordTypeList.push_back(Ty);
|
|
unsigned NextToCheckIndex = 0;
|
|
// We walk the record hierarchy breadth-first to ensure that we print
|
|
// diagnostics in field nesting order.
|
|
while (RecordTypeList.size() > NextToCheckIndex) {
|
|
bool IsNested = NextToCheckIndex > 0;
|
|
for (const FieldDecl *Field :
|
|
RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
|
|
// First, check every field for constness.
|
|
QualType FieldTy = Field->getType();
|
|
if (FieldTy.isConstQualified()) {
|
|
if (!DiagnosticEmitted) {
|
|
S.Diag(Loc, diag::err_typecheck_assign_const)
|
|
<< Range << NestedConstMember << OEK << VD
|
|
<< IsNested << Field;
|
|
DiagnosticEmitted = true;
|
|
}
|
|
S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
|
|
<< NestedConstMember << IsNested << Field
|
|
<< FieldTy << Field->getSourceRange();
|
|
}
|
|
|
|
// Then we append it to the list to check next in order.
|
|
FieldTy = FieldTy.getCanonicalType();
|
|
if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
|
|
if (llvm::find(RecordTypeList, FieldRecTy) == RecordTypeList.end())
|
|
RecordTypeList.push_back(FieldRecTy);
|
|
}
|
|
}
|
|
++NextToCheckIndex;
|
|
}
|
|
}
|
|
|
|
/// Emit an error for the case where a record we are trying to assign to has a
|
|
/// const-qualified field somewhere in its hierarchy.
|
|
static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
|
|
SourceLocation Loc) {
|
|
QualType Ty = E->getType();
|
|
assert(Ty->isRecordType() && "lvalue was not record?");
|
|
SourceRange Range = E->getSourceRange();
|
|
const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
|
|
bool DiagEmitted = false;
|
|
|
|
if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
|
|
DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc,
|
|
Range, OEK_Member, DiagEmitted);
|
|
else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
|
|
DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc,
|
|
Range, OEK_Variable, DiagEmitted);
|
|
else
|
|
DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc,
|
|
Range, OEK_LValue, DiagEmitted);
|
|
if (!DiagEmitted)
|
|
DiagnoseConstAssignment(S, E, Loc);
|
|
}
|
|
|
|
/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
|
|
/// emit an error and return true. If so, return false.
|
|
static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
|
|
assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
|
|
|
|
S.CheckShadowingDeclModification(E, Loc);
|
|
|
|
SourceLocation OrigLoc = Loc;
|
|
Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
|
|
&Loc);
|
|
if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
|
|
IsLV = Expr::MLV_InvalidMessageExpression;
|
|
if (IsLV == Expr::MLV_Valid)
|
|
return false;
|
|
|
|
unsigned DiagID = 0;
|
|
bool NeedType = false;
|
|
switch (IsLV) { // C99 6.5.16p2
|
|
case Expr::MLV_ConstQualified:
|
|
// Use a specialized diagnostic when we're assigning to an object
|
|
// from an enclosing function or block.
|
|
if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
|
|
if (NCCK == NCCK_Block)
|
|
DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
|
|
else
|
|
DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
|
|
break;
|
|
}
|
|
|
|
// In ARC, use some specialized diagnostics for occasions where we
|
|
// infer 'const'. These are always pseudo-strong variables.
|
|
if (S.getLangOpts().ObjCAutoRefCount) {
|
|
DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
|
|
if (declRef && isa<VarDecl>(declRef->getDecl())) {
|
|
VarDecl *var = cast<VarDecl>(declRef->getDecl());
|
|
|
|
// Use the normal diagnostic if it's pseudo-__strong but the
|
|
// user actually wrote 'const'.
|
|
if (var->isARCPseudoStrong() &&
|
|
(!var->getTypeSourceInfo() ||
|
|
!var->getTypeSourceInfo()->getType().isConstQualified())) {
|
|
// There are three pseudo-strong cases:
|
|
// - self
|
|
ObjCMethodDecl *method = S.getCurMethodDecl();
|
|
if (method && var == method->getSelfDecl()) {
|
|
DiagID = method->isClassMethod()
|
|
? diag::err_typecheck_arc_assign_self_class_method
|
|
: diag::err_typecheck_arc_assign_self;
|
|
|
|
// - Objective-C externally_retained attribute.
|
|
} else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
|
|
isa<ParmVarDecl>(var)) {
|
|
DiagID = diag::err_typecheck_arc_assign_externally_retained;
|
|
|
|
// - fast enumeration variables
|
|
} else {
|
|
DiagID = diag::err_typecheck_arr_assign_enumeration;
|
|
}
|
|
|
|
SourceRange Assign;
|
|
if (Loc != OrigLoc)
|
|
Assign = SourceRange(OrigLoc, OrigLoc);
|
|
S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
|
|
// We need to preserve the AST regardless, so migration tool
|
|
// can do its job.
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If none of the special cases above are triggered, then this is a
|
|
// simple const assignment.
|
|
if (DiagID == 0) {
|
|
DiagnoseConstAssignment(S, E, Loc);
|
|
return true;
|
|
}
|
|
|
|
break;
|
|
case Expr::MLV_ConstAddrSpace:
|
|
DiagnoseConstAssignment(S, E, Loc);
|
|
return true;
|
|
case Expr::MLV_ConstQualifiedField:
|
|
DiagnoseRecursiveConstFields(S, E, Loc);
|
|
return true;
|
|
case Expr::MLV_ArrayType:
|
|
case Expr::MLV_ArrayTemporary:
|
|
DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
|
|
NeedType = true;
|
|
break;
|
|
case Expr::MLV_NotObjectType:
|
|
DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
|
|
NeedType = true;
|
|
break;
|
|
case Expr::MLV_LValueCast:
|
|
DiagID = diag::err_typecheck_lvalue_casts_not_supported;
|
|
break;
|
|
case Expr::MLV_Valid:
|
|
llvm_unreachable("did not take early return for MLV_Valid");
|
|
case Expr::MLV_InvalidExpression:
|
|
case Expr::MLV_MemberFunction:
|
|
case Expr::MLV_ClassTemporary:
|
|
DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
|
|
break;
|
|
case Expr::MLV_IncompleteType:
|
|
case Expr::MLV_IncompleteVoidType:
|
|
return S.RequireCompleteType(Loc, E->getType(),
|
|
diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
|
|
case Expr::MLV_DuplicateVectorComponents:
|
|
DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
|
|
break;
|
|
case Expr::MLV_NoSetterProperty:
|
|
llvm_unreachable("readonly properties should be processed differently");
|
|
case Expr::MLV_InvalidMessageExpression:
|
|
DiagID = diag::err_readonly_message_assignment;
|
|
break;
|
|
case Expr::MLV_SubObjCPropertySetting:
|
|
DiagID = diag::err_no_subobject_property_setting;
|
|
break;
|
|
}
|
|
|
|
SourceRange Assign;
|
|
if (Loc != OrigLoc)
|
|
Assign = SourceRange(OrigLoc, OrigLoc);
|
|
if (NeedType)
|
|
S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
|
|
else
|
|
S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
|
|
return true;
|
|
}
|
|
|
|
static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
|
|
SourceLocation Loc,
|
|
Sema &Sema) {
|
|
if (Sema.inTemplateInstantiation())
|
|
return;
|
|
if (Sema.isUnevaluatedContext())
|
|
return;
|
|
if (Loc.isInvalid() || Loc.isMacroID())
|
|
return;
|
|
if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
|
|
return;
|
|
|
|
// C / C++ fields
|
|
MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
|
|
MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
|
|
if (ML && MR) {
|
|
if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase())))
|
|
return;
|
|
const ValueDecl *LHSDecl =
|
|
cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
|
|
const ValueDecl *RHSDecl =
|
|
cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
|
|
if (LHSDecl != RHSDecl)
|
|
return;
|
|
if (LHSDecl->getType().isVolatileQualified())
|
|
return;
|
|
if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
|
|
if (RefTy->getPointeeType().isVolatileQualified())
|
|
return;
|
|
|
|
Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
|
|
}
|
|
|
|
// Objective-C instance variables
|
|
ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
|
|
ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
|
|
if (OL && OR && OL->getDecl() == OR->getDecl()) {
|
|
DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
|
|
DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
|
|
if (RL && RR && RL->getDecl() == RR->getDecl())
|
|
Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
|
|
}
|
|
}
|
|
|
|
// C99 6.5.16.1
|
|
QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
|
|
SourceLocation Loc,
|
|
QualType CompoundType) {
|
|
assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
|
|
|
|
// Verify that LHS is a modifiable lvalue, and emit error if not.
|
|
if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
|
|
return QualType();
|
|
|
|
QualType LHSType = LHSExpr->getType();
|
|
QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
|
|
CompoundType;
|
|
// OpenCL v1.2 s6.1.1.1 p2:
|
|
// The half data type can only be used to declare a pointer to a buffer that
|
|
// contains half values
|
|
if (getLangOpts().OpenCL && !getOpenCLOptions().isEnabled("cl_khr_fp16") &&
|
|
LHSType->isHalfType()) {
|
|
Diag(Loc, diag::err_opencl_half_load_store) << 1
|
|
<< LHSType.getUnqualifiedType();
|
|
return QualType();
|
|
}
|
|
|
|
AssignConvertType ConvTy;
|
|
if (CompoundType.isNull()) {
|
|
Expr *RHSCheck = RHS.get();
|
|
|
|
CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
|
|
|
|
QualType LHSTy(LHSType);
|
|
ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
|
|
if (RHS.isInvalid())
|
|
return QualType();
|
|
// Special case of NSObject attributes on c-style pointer types.
|
|
if (ConvTy == IncompatiblePointer &&
|
|
((Context.isObjCNSObjectType(LHSType) &&
|
|
RHSType->isObjCObjectPointerType()) ||
|
|
(Context.isObjCNSObjectType(RHSType) &&
|
|
LHSType->isObjCObjectPointerType())))
|
|
ConvTy = Compatible;
|
|
|
|
if (ConvTy == Compatible &&
|
|
LHSType->isObjCObjectType())
|
|
Diag(Loc, diag::err_objc_object_assignment)
|
|
<< LHSType;
|
|
|
|
// If the RHS is a unary plus or minus, check to see if they = and + are
|
|
// right next to each other. If so, the user may have typo'd "x =+ 4"
|
|
// instead of "x += 4".
|
|
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
|
|
RHSCheck = ICE->getSubExpr();
|
|
if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
|
|
if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
|
|
Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
|
|
// Only if the two operators are exactly adjacent.
|
|
Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
|
|
// And there is a space or other character before the subexpr of the
|
|
// unary +/-. We don't want to warn on "x=-1".
|
|
Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() &&
|
|
UO->getSubExpr()->getBeginLoc().isFileID()) {
|
|
Diag(Loc, diag::warn_not_compound_assign)
|
|
<< (UO->getOpcode() == UO_Plus ? "+" : "-")
|
|
<< SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
|
|
}
|
|
}
|
|
|
|
if (ConvTy == Compatible) {
|
|
if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
|
|
// Warn about retain cycles where a block captures the LHS, but
|
|
// not if the LHS is a simple variable into which the block is
|
|
// being stored...unless that variable can be captured by reference!
|
|
const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
|
|
const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
|
|
if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
|
|
checkRetainCycles(LHSExpr, RHS.get());
|
|
}
|
|
|
|
if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
|
|
LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
|
|
// It is safe to assign a weak reference into a strong variable.
|
|
// Although this code can still have problems:
|
|
// id x = self.weakProp;
|
|
// id y = self.weakProp;
|
|
// we do not warn to warn spuriously when 'x' and 'y' are on separate
|
|
// paths through the function. This should be revisited if
|
|
// -Wrepeated-use-of-weak is made flow-sensitive.
|
|
// For ObjCWeak only, we do not warn if the assign is to a non-weak
|
|
// variable, which will be valid for the current autorelease scope.
|
|
if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
|
|
RHS.get()->getBeginLoc()))
|
|
getCurFunction()->markSafeWeakUse(RHS.get());
|
|
|
|
} else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
|
|
checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
|
|
}
|
|
}
|
|
} else {
|
|
// Compound assignment "x += y"
|
|
ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
|
|
}
|
|
|
|
if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
|
|
RHS.get(), AA_Assigning))
|
|
return QualType();
|
|
|
|
CheckForNullPointerDereference(*this, LHSExpr);
|
|
|
|
// C99 6.5.16p3: The type of an assignment expression is the type of the
|
|
// left operand unless the left operand has qualified type, in which case
|
|
// it is the unqualified version of the type of the left operand.
|
|
// C99 6.5.16.1p2: In simple assignment, the value of the right operand
|
|
// is converted to the type of the assignment expression (above).
|
|
// C++ 5.17p1: the type of the assignment expression is that of its left
|
|
// operand.
|
|
return (getLangOpts().CPlusPlus
|
|
? LHSType : LHSType.getUnqualifiedType());
|
|
}
|
|
|
|
// Only ignore explicit casts to void.
|
|
static bool IgnoreCommaOperand(const Expr *E) {
|
|
E = E->IgnoreParens();
|
|
|
|
if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
|
|
if (CE->getCastKind() == CK_ToVoid) {
|
|
return true;
|
|
}
|
|
|
|
// static_cast<void> on a dependent type will not show up as CK_ToVoid.
|
|
if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
|
|
CE->getSubExpr()->getType()->isDependentType()) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Look for instances where it is likely the comma operator is confused with
|
|
// another operator. There is a whitelist of acceptable expressions for the
|
|
// left hand side of the comma operator, otherwise emit a warning.
|
|
void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
|
|
// No warnings in macros
|
|
if (Loc.isMacroID())
|
|
return;
|
|
|
|
// Don't warn in template instantiations.
|
|
if (inTemplateInstantiation())
|
|
return;
|
|
|
|
// Scope isn't fine-grained enough to whitelist the specific cases, so
|
|
// instead, skip more than needed, then call back into here with the
|
|
// CommaVisitor in SemaStmt.cpp.
|
|
// The whitelisted locations are the initialization and increment portions
|
|
// of a for loop. The additional checks are on the condition of
|
|
// if statements, do/while loops, and for loops.
|
|
// Differences in scope flags for C89 mode requires the extra logic.
|
|
const unsigned ForIncrementFlags =
|
|
getLangOpts().C99 || getLangOpts().CPlusPlus
|
|
? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
|
|
: Scope::ContinueScope | Scope::BreakScope;
|
|
const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
|
|
const unsigned ScopeFlags = getCurScope()->getFlags();
|
|
if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
|
|
(ScopeFlags & ForInitFlags) == ForInitFlags)
|
|
return;
|
|
|
|
// If there are multiple comma operators used together, get the RHS of the
|
|
// of the comma operator as the LHS.
|
|
while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
|
|
if (BO->getOpcode() != BO_Comma)
|
|
break;
|
|
LHS = BO->getRHS();
|
|
}
|
|
|
|
// Only allow some expressions on LHS to not warn.
|
|
if (IgnoreCommaOperand(LHS))
|
|
return;
|
|
|
|
Diag(Loc, diag::warn_comma_operator);
|
|
Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
|
|
<< LHS->getSourceRange()
|
|
<< FixItHint::CreateInsertion(LHS->getBeginLoc(),
|
|
LangOpts.CPlusPlus ? "static_cast<void>("
|
|
: "(void)(")
|
|
<< FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
|
|
")");
|
|
}
|
|
|
|
// C99 6.5.17
|
|
static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation Loc) {
|
|
LHS = S.CheckPlaceholderExpr(LHS.get());
|
|
RHS = S.CheckPlaceholderExpr(RHS.get());
|
|
if (LHS.isInvalid() || RHS.isInvalid())
|
|
return QualType();
|
|
|
|
// C's comma performs lvalue conversion (C99 6.3.2.1) on both its
|
|
// operands, but not unary promotions.
|
|
// C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
|
|
|
|
// So we treat the LHS as a ignored value, and in C++ we allow the
|
|
// containing site to determine what should be done with the RHS.
|
|
LHS = S.IgnoredValueConversions(LHS.get());
|
|
if (LHS.isInvalid())
|
|
return QualType();
|
|
|
|
S.DiagnoseUnusedExprResult(LHS.get());
|
|
|
|
if (!S.getLangOpts().CPlusPlus) {
|
|
RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
|
|
if (RHS.isInvalid())
|
|
return QualType();
|
|
if (!RHS.get()->getType()->isVoidType())
|
|
S.RequireCompleteType(Loc, RHS.get()->getType(),
|
|
diag::err_incomplete_type);
|
|
}
|
|
|
|
if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
|
|
S.DiagnoseCommaOperator(LHS.get(), Loc);
|
|
|
|
return RHS.get()->getType();
|
|
}
|
|
|
|
/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
|
|
/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
|
|
static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
|
|
ExprValueKind &VK,
|
|
ExprObjectKind &OK,
|
|
SourceLocation OpLoc,
|
|
bool IsInc, bool IsPrefix) {
|
|
if (Op->isTypeDependent())
|
|
return S.Context.DependentTy;
|
|
|
|
QualType ResType = Op->getType();
|
|
// Atomic types can be used for increment / decrement where the non-atomic
|
|
// versions can, so ignore the _Atomic() specifier for the purpose of
|
|
// checking.
|
|
if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
|
|
ResType = ResAtomicType->getValueType();
|
|
|
|
assert(!ResType.isNull() && "no type for increment/decrement expression");
|
|
|
|
if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
|
|
// Decrement of bool is not allowed.
|
|
if (!IsInc) {
|
|
S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
// Increment of bool sets it to true, but is deprecated.
|
|
S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
|
|
: diag::warn_increment_bool)
|
|
<< Op->getSourceRange();
|
|
} else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
|
|
// Error on enum increments and decrements in C++ mode
|
|
S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
|
|
return QualType();
|
|
} else if (ResType->isRealType()) {
|
|
// OK!
|
|
} else if (ResType->isPointerType()) {
|
|
// C99 6.5.2.4p2, 6.5.6p2
|
|
if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
|
|
return QualType();
|
|
} else if (ResType->isObjCObjectPointerType()) {
|
|
// On modern runtimes, ObjC pointer arithmetic is forbidden.
|
|
// Otherwise, we just need a complete type.
|
|
if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
|
|
checkArithmeticOnObjCPointer(S, OpLoc, Op))
|
|
return QualType();
|
|
} else if (ResType->isAnyComplexType()) {
|
|
// C99 does not support ++/-- on complex types, we allow as an extension.
|
|
S.Diag(OpLoc, diag::ext_integer_increment_complex)
|
|
<< ResType << Op->getSourceRange();
|
|
} else if (ResType->isPlaceholderType()) {
|
|
ExprResult PR = S.CheckPlaceholderExpr(Op);
|
|
if (PR.isInvalid()) return QualType();
|
|
return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
|
|
IsInc, IsPrefix);
|
|
} else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
|
|
// OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
|
|
} else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
|
|
(ResType->getAs<VectorType>()->getVectorKind() !=
|
|
VectorType::AltiVecBool)) {
|
|
// The z vector extensions allow ++ and -- for non-bool vectors.
|
|
} else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
|
|
ResType->getAs<VectorType>()->getElementType()->isIntegerType()) {
|
|
// OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
|
|
} else {
|
|
S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
|
|
<< ResType << int(IsInc) << Op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
// At this point, we know we have a real, complex or pointer type.
|
|
// Now make sure the operand is a modifiable lvalue.
|
|
if (CheckForModifiableLvalue(Op, OpLoc, S))
|
|
return QualType();
|
|
// In C++, a prefix increment is the same type as the operand. Otherwise
|
|
// (in C or with postfix), the increment is the unqualified type of the
|
|
// operand.
|
|
if (IsPrefix && S.getLangOpts().CPlusPlus) {
|
|
VK = VK_LValue;
|
|
OK = Op->getObjectKind();
|
|
return ResType;
|
|
} else {
|
|
VK = VK_RValue;
|
|
return ResType.getUnqualifiedType();
|
|
}
|
|
}
|
|
|
|
|
|
/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
|
|
/// This routine allows us to typecheck complex/recursive expressions
|
|
/// where the declaration is needed for type checking. We only need to
|
|
/// handle cases when the expression references a function designator
|
|
/// or is an lvalue. Here are some examples:
|
|
/// - &(x) => x
|
|
/// - &*****f => f for f a function designator.
|
|
/// - &s.xx => s
|
|
/// - &s.zz[1].yy -> s, if zz is an array
|
|
/// - *(x + 1) -> x, if x is an array
|
|
/// - &"123"[2] -> 0
|
|
/// - & __real__ x -> x
|
|
static ValueDecl *getPrimaryDecl(Expr *E) {
|
|
switch (E->getStmtClass()) {
|
|
case Stmt::DeclRefExprClass:
|
|
return cast<DeclRefExpr>(E)->getDecl();
|
|
case Stmt::MemberExprClass:
|
|
// If this is an arrow operator, the address is an offset from
|
|
// the base's value, so the object the base refers to is
|
|
// irrelevant.
|
|
if (cast<MemberExpr>(E)->isArrow())
|
|
return nullptr;
|
|
// Otherwise, the expression refers to a part of the base
|
|
return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
|
|
case Stmt::ArraySubscriptExprClass: {
|
|
// FIXME: This code shouldn't be necessary! We should catch the implicit
|
|
// promotion of register arrays earlier.
|
|
Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
|
|
if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
|
|
if (ICE->getSubExpr()->getType()->isArrayType())
|
|
return getPrimaryDecl(ICE->getSubExpr());
|
|
}
|
|
return nullptr;
|
|
}
|
|
case Stmt::UnaryOperatorClass: {
|
|
UnaryOperator *UO = cast<UnaryOperator>(E);
|
|
|
|
switch(UO->getOpcode()) {
|
|
case UO_Real:
|
|
case UO_Imag:
|
|
case UO_Extension:
|
|
return getPrimaryDecl(UO->getSubExpr());
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
case Stmt::ParenExprClass:
|
|
return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
|
|
case Stmt::ImplicitCastExprClass:
|
|
// If the result of an implicit cast is an l-value, we care about
|
|
// the sub-expression; otherwise, the result here doesn't matter.
|
|
return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
enum {
|
|
AO_Bit_Field = 0,
|
|
AO_Vector_Element = 1,
|
|
AO_Property_Expansion = 2,
|
|
AO_Register_Variable = 3,
|
|
AO_No_Error = 4
|
|
};
|
|
}
|
|
/// Diagnose invalid operand for address of operations.
|
|
///
|
|
/// \param Type The type of operand which cannot have its address taken.
|
|
static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
|
|
Expr *E, unsigned Type) {
|
|
S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
|
|
}
|
|
|
|
/// CheckAddressOfOperand - The operand of & must be either a function
|
|
/// designator or an lvalue designating an object. If it is an lvalue, the
|
|
/// object cannot be declared with storage class register or be a bit field.
|
|
/// Note: The usual conversions are *not* applied to the operand of the &
|
|
/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
|
|
/// In C++, the operand might be an overloaded function name, in which case
|
|
/// we allow the '&' but retain the overloaded-function type.
|
|
QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
|
|
if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
|
|
if (PTy->getKind() == BuiltinType::Overload) {
|
|
Expr *E = OrigOp.get()->IgnoreParens();
|
|
if (!isa<OverloadExpr>(E)) {
|
|
assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
|
|
Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
|
|
<< OrigOp.get()->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
OverloadExpr *Ovl = cast<OverloadExpr>(E);
|
|
if (isa<UnresolvedMemberExpr>(Ovl))
|
|
if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
|
|
Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
|
|
<< OrigOp.get()->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
return Context.OverloadTy;
|
|
}
|
|
|
|
if (PTy->getKind() == BuiltinType::UnknownAny)
|
|
return Context.UnknownAnyTy;
|
|
|
|
if (PTy->getKind() == BuiltinType::BoundMember) {
|
|
Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
|
|
<< OrigOp.get()->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
OrigOp = CheckPlaceholderExpr(OrigOp.get());
|
|
if (OrigOp.isInvalid()) return QualType();
|
|
}
|
|
|
|
if (OrigOp.get()->isTypeDependent())
|
|
return Context.DependentTy;
|
|
|
|
assert(!OrigOp.get()->getType()->isPlaceholderType());
|
|
|
|
// Make sure to ignore parentheses in subsequent checks
|
|
Expr *op = OrigOp.get()->IgnoreParens();
|
|
|
|
// In OpenCL captures for blocks called as lambda functions
|
|
// are located in the private address space. Blocks used in
|
|
// enqueue_kernel can be located in a different address space
|
|
// depending on a vendor implementation. Thus preventing
|
|
// taking an address of the capture to avoid invalid AS casts.
|
|
if (LangOpts.OpenCL) {
|
|
auto* VarRef = dyn_cast<DeclRefExpr>(op);
|
|
if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
|
|
Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
|
|
return QualType();
|
|
}
|
|
}
|
|
|
|
if (getLangOpts().C99) {
|
|
// Implement C99-only parts of addressof rules.
|
|
if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
|
|
if (uOp->getOpcode() == UO_Deref)
|
|
// Per C99 6.5.3.2, the address of a deref always returns a valid result
|
|
// (assuming the deref expression is valid).
|
|
return uOp->getSubExpr()->getType();
|
|
}
|
|
// Technically, there should be a check for array subscript
|
|
// expressions here, but the result of one is always an lvalue anyway.
|
|
}
|
|
ValueDecl *dcl = getPrimaryDecl(op);
|
|
|
|
if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
|
|
if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
|
|
op->getBeginLoc()))
|
|
return QualType();
|
|
|
|
Expr::LValueClassification lval = op->ClassifyLValue(Context);
|
|
unsigned AddressOfError = AO_No_Error;
|
|
|
|
if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
|
|
bool sfinae = (bool)isSFINAEContext();
|
|
Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
|
|
: diag::ext_typecheck_addrof_temporary)
|
|
<< op->getType() << op->getSourceRange();
|
|
if (sfinae)
|
|
return QualType();
|
|
// Materialize the temporary as an lvalue so that we can take its address.
|
|
OrigOp = op =
|
|
CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
|
|
} else if (isa<ObjCSelectorExpr>(op)) {
|
|
return Context.getPointerType(op->getType());
|
|
} else if (lval == Expr::LV_MemberFunction) {
|
|
// If it's an instance method, make a member pointer.
|
|
// The expression must have exactly the form &A::foo.
|
|
|
|
// If the underlying expression isn't a decl ref, give up.
|
|
if (!isa<DeclRefExpr>(op)) {
|
|
Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
|
|
<< OrigOp.get()->getSourceRange();
|
|
return QualType();
|
|
}
|
|
DeclRefExpr *DRE = cast<DeclRefExpr>(op);
|
|
CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
|
|
|
|
// The id-expression was parenthesized.
|
|
if (OrigOp.get() != DRE) {
|
|
Diag(OpLoc, diag::err_parens_pointer_member_function)
|
|
<< OrigOp.get()->getSourceRange();
|
|
|
|
// The method was named without a qualifier.
|
|
} else if (!DRE->getQualifier()) {
|
|
if (MD->getParent()->getName().empty())
|
|
Diag(OpLoc, diag::err_unqualified_pointer_member_function)
|
|
<< op->getSourceRange();
|
|
else {
|
|
SmallString<32> Str;
|
|
StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
|
|
Diag(OpLoc, diag::err_unqualified_pointer_member_function)
|
|
<< op->getSourceRange()
|
|
<< FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
|
|
}
|
|
}
|
|
|
|
// Taking the address of a dtor is illegal per C++ [class.dtor]p2.
|
|
if (isa<CXXDestructorDecl>(MD))
|
|
Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
|
|
|
|
QualType MPTy = Context.getMemberPointerType(
|
|
op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
|
|
// Under the MS ABI, lock down the inheritance model now.
|
|
if (Context.getTargetInfo().getCXXABI().isMicrosoft())
|
|
(void)isCompleteType(OpLoc, MPTy);
|
|
return MPTy;
|
|
} else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
|
|
// C99 6.5.3.2p1
|
|
// The operand must be either an l-value or a function designator
|
|
if (!op->getType()->isFunctionType()) {
|
|
// Use a special diagnostic for loads from property references.
|
|
if (isa<PseudoObjectExpr>(op)) {
|
|
AddressOfError = AO_Property_Expansion;
|
|
} else {
|
|
Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
|
|
<< op->getType() << op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
}
|
|
} else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
|
|
// The operand cannot be a bit-field
|
|
AddressOfError = AO_Bit_Field;
|
|
} else if (op->getObjectKind() == OK_VectorComponent) {
|
|
// The operand cannot be an element of a vector
|
|
AddressOfError = AO_Vector_Element;
|
|
} else if (dcl) { // C99 6.5.3.2p1
|
|
// We have an lvalue with a decl. Make sure the decl is not declared
|
|
// with the register storage-class specifier.
|
|
if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
|
|
// in C++ it is not error to take address of a register
|
|
// variable (c++03 7.1.1P3)
|
|
if (vd->getStorageClass() == SC_Register &&
|
|
!getLangOpts().CPlusPlus) {
|
|
AddressOfError = AO_Register_Variable;
|
|
}
|
|
} else if (isa<MSPropertyDecl>(dcl)) {
|
|
AddressOfError = AO_Property_Expansion;
|
|
} else if (isa<FunctionTemplateDecl>(dcl)) {
|
|
return Context.OverloadTy;
|
|
} else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
|
|
// Okay: we can take the address of a field.
|
|
// Could be a pointer to member, though, if there is an explicit
|
|
// scope qualifier for the class.
|
|
if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
|
|
DeclContext *Ctx = dcl->getDeclContext();
|
|
if (Ctx && Ctx->isRecord()) {
|
|
if (dcl->getType()->isReferenceType()) {
|
|
Diag(OpLoc,
|
|
diag::err_cannot_form_pointer_to_member_of_reference_type)
|
|
<< dcl->getDeclName() << dcl->getType();
|
|
return QualType();
|
|
}
|
|
|
|
while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
|
|
Ctx = Ctx->getParent();
|
|
|
|
QualType MPTy = Context.getMemberPointerType(
|
|
op->getType(),
|
|
Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
|
|
// Under the MS ABI, lock down the inheritance model now.
|
|
if (Context.getTargetInfo().getCXXABI().isMicrosoft())
|
|
(void)isCompleteType(OpLoc, MPTy);
|
|
return MPTy;
|
|
}
|
|
}
|
|
} else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl) &&
|
|
!isa<BindingDecl>(dcl))
|
|
llvm_unreachable("Unknown/unexpected decl type");
|
|
}
|
|
|
|
if (AddressOfError != AO_No_Error) {
|
|
diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
|
|
return QualType();
|
|
}
|
|
|
|
if (lval == Expr::LV_IncompleteVoidType) {
|
|
// Taking the address of a void variable is technically illegal, but we
|
|
// allow it in cases which are otherwise valid.
|
|
// Example: "extern void x; void* y = &x;".
|
|
Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
|
|
}
|
|
|
|
// If the operand has type "type", the result has type "pointer to type".
|
|
if (op->getType()->isObjCObjectType())
|
|
return Context.getObjCObjectPointerType(op->getType());
|
|
|
|
CheckAddressOfPackedMember(op);
|
|
|
|
return Context.getPointerType(op->getType());
|
|
}
|
|
|
|
static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
|
|
const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
|
|
if (!DRE)
|
|
return;
|
|
const Decl *D = DRE->getDecl();
|
|
if (!D)
|
|
return;
|
|
const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
|
|
if (!Param)
|
|
return;
|
|
if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
|
|
if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
|
|
return;
|
|
if (FunctionScopeInfo *FD = S.getCurFunction())
|
|
if (!FD->ModifiedNonNullParams.count(Param))
|
|
FD->ModifiedNonNullParams.insert(Param);
|
|
}
|
|
|
|
/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
|
|
static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
|
|
SourceLocation OpLoc) {
|
|
if (Op->isTypeDependent())
|
|
return S.Context.DependentTy;
|
|
|
|
ExprResult ConvResult = S.UsualUnaryConversions(Op);
|
|
if (ConvResult.isInvalid())
|
|
return QualType();
|
|
Op = ConvResult.get();
|
|
QualType OpTy = Op->getType();
|
|
QualType Result;
|
|
|
|
if (isa<CXXReinterpretCastExpr>(Op)) {
|
|
QualType OpOrigType = Op->IgnoreParenCasts()->getType();
|
|
S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
|
|
Op->getSourceRange());
|
|
}
|
|
|
|
if (const PointerType *PT = OpTy->getAs<PointerType>())
|
|
{
|
|
Result = PT->getPointeeType();
|
|
}
|
|
else if (const ObjCObjectPointerType *OPT =
|
|
OpTy->getAs<ObjCObjectPointerType>())
|
|
Result = OPT->getPointeeType();
|
|
else {
|
|
ExprResult PR = S.CheckPlaceholderExpr(Op);
|
|
if (PR.isInvalid()) return QualType();
|
|
if (PR.get() != Op)
|
|
return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
|
|
}
|
|
|
|
if (Result.isNull()) {
|
|
S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
|
|
<< OpTy << Op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// Note that per both C89 and C99, indirection is always legal, even if Result
|
|
// is an incomplete type or void. It would be possible to warn about
|
|
// dereferencing a void pointer, but it's completely well-defined, and such a
|
|
// warning is unlikely to catch any mistakes. In C++, indirection is not valid
|
|
// for pointers to 'void' but is fine for any other pointer type:
|
|
//
|
|
// C++ [expr.unary.op]p1:
|
|
// [...] the expression to which [the unary * operator] is applied shall
|
|
// be a pointer to an object type, or a pointer to a function type
|
|
if (S.getLangOpts().CPlusPlus && Result->isVoidType())
|
|
S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
|
|
<< OpTy << Op->getSourceRange();
|
|
|
|
// Dereferences are usually l-values...
|
|
VK = VK_LValue;
|
|
|
|
// ...except that certain expressions are never l-values in C.
|
|
if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
|
|
VK = VK_RValue;
|
|
|
|
return Result;
|
|
}
|
|
|
|
BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
|
|
BinaryOperatorKind Opc;
|
|
switch (Kind) {
|
|
default: llvm_unreachable("Unknown binop!");
|
|
case tok::periodstar: Opc = BO_PtrMemD; break;
|
|
case tok::arrowstar: Opc = BO_PtrMemI; break;
|
|
case tok::star: Opc = BO_Mul; break;
|
|
case tok::slash: Opc = BO_Div; break;
|
|
case tok::percent: Opc = BO_Rem; break;
|
|
case tok::plus: Opc = BO_Add; break;
|
|
case tok::minus: Opc = BO_Sub; break;
|
|
case tok::lessless: Opc = BO_Shl; break;
|
|
case tok::greatergreater: Opc = BO_Shr; break;
|
|
case tok::lessequal: Opc = BO_LE; break;
|
|
case tok::less: Opc = BO_LT; break;
|
|
case tok::greaterequal: Opc = BO_GE; break;
|
|
case tok::greater: Opc = BO_GT; break;
|
|
case tok::exclaimequal: Opc = BO_NE; break;
|
|
case tok::equalequal: Opc = BO_EQ; break;
|
|
case tok::spaceship: Opc = BO_Cmp; break;
|
|
case tok::amp: Opc = BO_And; break;
|
|
case tok::caret: Opc = BO_Xor; break;
|
|
case tok::pipe: Opc = BO_Or; break;
|
|
case tok::ampamp: Opc = BO_LAnd; break;
|
|
case tok::pipepipe: Opc = BO_LOr; break;
|
|
case tok::equal: Opc = BO_Assign; break;
|
|
case tok::starequal: Opc = BO_MulAssign; break;
|
|
case tok::slashequal: Opc = BO_DivAssign; break;
|
|
case tok::percentequal: Opc = BO_RemAssign; break;
|
|
case tok::plusequal: Opc = BO_AddAssign; break;
|
|
case tok::minusequal: Opc = BO_SubAssign; break;
|
|
case tok::lesslessequal: Opc = BO_ShlAssign; break;
|
|
case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
|
|
case tok::ampequal: Opc = BO_AndAssign; break;
|
|
case tok::caretequal: Opc = BO_XorAssign; break;
|
|
case tok::pipeequal: Opc = BO_OrAssign; break;
|
|
case tok::comma: Opc = BO_Comma; break;
|
|
}
|
|
return Opc;
|
|
}
|
|
|
|
static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
|
|
tok::TokenKind Kind) {
|
|
UnaryOperatorKind Opc;
|
|
switch (Kind) {
|
|
default: llvm_unreachable("Unknown unary op!");
|
|
case tok::plusplus: Opc = UO_PreInc; break;
|
|
case tok::minusminus: Opc = UO_PreDec; break;
|
|
case tok::amp: Opc = UO_AddrOf; break;
|
|
case tok::star: Opc = UO_Deref; break;
|
|
case tok::plus: Opc = UO_Plus; break;
|
|
case tok::minus: Opc = UO_Minus; break;
|
|
case tok::tilde: Opc = UO_Not; break;
|
|
case tok::exclaim: Opc = UO_LNot; break;
|
|
case tok::kw___real: Opc = UO_Real; break;
|
|
case tok::kw___imag: Opc = UO_Imag; break;
|
|
case tok::kw___extension__: Opc = UO_Extension; break;
|
|
}
|
|
return Opc;
|
|
}
|
|
|
|
/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
|
|
/// This warning suppressed in the event of macro expansions.
|
|
static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
|
|
SourceLocation OpLoc, bool IsBuiltin) {
|
|
if (S.inTemplateInstantiation())
|
|
return;
|
|
if (S.isUnevaluatedContext())
|
|
return;
|
|
if (OpLoc.isInvalid() || OpLoc.isMacroID())
|
|
return;
|
|
LHSExpr = LHSExpr->IgnoreParenImpCasts();
|
|
RHSExpr = RHSExpr->IgnoreParenImpCasts();
|
|
const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
|
|
const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
|
|
if (!LHSDeclRef || !RHSDeclRef ||
|
|
LHSDeclRef->getLocation().isMacroID() ||
|
|
RHSDeclRef->getLocation().isMacroID())
|
|
return;
|
|
const ValueDecl *LHSDecl =
|
|
cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
|
|
const ValueDecl *RHSDecl =
|
|
cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
|
|
if (LHSDecl != RHSDecl)
|
|
return;
|
|
if (LHSDecl->getType().isVolatileQualified())
|
|
return;
|
|
if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
|
|
if (RefTy->getPointeeType().isVolatileQualified())
|
|
return;
|
|
|
|
S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
|
|
: diag::warn_self_assignment_overloaded)
|
|
<< LHSDeclRef->getType() << LHSExpr->getSourceRange()
|
|
<< RHSExpr->getSourceRange();
|
|
}
|
|
|
|
/// Check if a bitwise-& is performed on an Objective-C pointer. This
|
|
/// is usually indicative of introspection within the Objective-C pointer.
|
|
static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
|
|
SourceLocation OpLoc) {
|
|
if (!S.getLangOpts().ObjC)
|
|
return;
|
|
|
|
const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
|
|
const Expr *LHS = L.get();
|
|
const Expr *RHS = R.get();
|
|
|
|
if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
|
|
ObjCPointerExpr = LHS;
|
|
OtherExpr = RHS;
|
|
}
|
|
else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
|
|
ObjCPointerExpr = RHS;
|
|
OtherExpr = LHS;
|
|
}
|
|
|
|
// This warning is deliberately made very specific to reduce false
|
|
// positives with logic that uses '&' for hashing. This logic mainly
|
|
// looks for code trying to introspect into tagged pointers, which
|
|
// code should generally never do.
|
|
if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
|
|
unsigned Diag = diag::warn_objc_pointer_masking;
|
|
// Determine if we are introspecting the result of performSelectorXXX.
|
|
const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
|
|
// Special case messages to -performSelector and friends, which
|
|
// can return non-pointer values boxed in a pointer value.
|
|
// Some clients may wish to silence warnings in this subcase.
|
|
if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
|
|
Selector S = ME->getSelector();
|
|
StringRef SelArg0 = S.getNameForSlot(0);
|
|
if (SelArg0.startswith("performSelector"))
|
|
Diag = diag::warn_objc_pointer_masking_performSelector;
|
|
}
|
|
|
|
S.Diag(OpLoc, Diag)
|
|
<< ObjCPointerExpr->getSourceRange();
|
|
}
|
|
}
|
|
|
|
static NamedDecl *getDeclFromExpr(Expr *E) {
|
|
if (!E)
|
|
return nullptr;
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(E))
|
|
return DRE->getDecl();
|
|
if (auto *ME = dyn_cast<MemberExpr>(E))
|
|
return ME->getMemberDecl();
|
|
if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
|
|
return IRE->getDecl();
|
|
return nullptr;
|
|
}
|
|
|
|
// This helper function promotes a binary operator's operands (which are of a
|
|
// half vector type) to a vector of floats and then truncates the result to
|
|
// a vector of either half or short.
|
|
static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
|
|
BinaryOperatorKind Opc, QualType ResultTy,
|
|
ExprValueKind VK, ExprObjectKind OK,
|
|
bool IsCompAssign, SourceLocation OpLoc,
|
|
FPOptions FPFeatures) {
|
|
auto &Context = S.getASTContext();
|
|
assert((isVector(ResultTy, Context.HalfTy) ||
|
|
isVector(ResultTy, Context.ShortTy)) &&
|
|
"Result must be a vector of half or short");
|
|
assert(isVector(LHS.get()->getType(), Context.HalfTy) &&
|
|
isVector(RHS.get()->getType(), Context.HalfTy) &&
|
|
"both operands expected to be a half vector");
|
|
|
|
RHS = convertVector(RHS.get(), Context.FloatTy, S);
|
|
QualType BinOpResTy = RHS.get()->getType();
|
|
|
|
// If Opc is a comparison, ResultType is a vector of shorts. In that case,
|
|
// change BinOpResTy to a vector of ints.
|
|
if (isVector(ResultTy, Context.ShortTy))
|
|
BinOpResTy = S.GetSignedVectorType(BinOpResTy);
|
|
|
|
if (IsCompAssign)
|
|
return new (Context) CompoundAssignOperator(
|
|
LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, BinOpResTy, BinOpResTy,
|
|
OpLoc, FPFeatures);
|
|
|
|
LHS = convertVector(LHS.get(), Context.FloatTy, S);
|
|
auto *BO = new (Context) BinaryOperator(LHS.get(), RHS.get(), Opc, BinOpResTy,
|
|
VK, OK, OpLoc, FPFeatures);
|
|
return convertVector(BO, ResultTy->getAs<VectorType>()->getElementType(), S);
|
|
}
|
|
|
|
static std::pair<ExprResult, ExprResult>
|
|
CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
|
|
Expr *RHSExpr) {
|
|
ExprResult LHS = LHSExpr, RHS = RHSExpr;
|
|
if (!S.getLangOpts().CPlusPlus) {
|
|
// C cannot handle TypoExpr nodes on either side of a binop because it
|
|
// doesn't handle dependent types properly, so make sure any TypoExprs have
|
|
// been dealt with before checking the operands.
|
|
LHS = S.CorrectDelayedTyposInExpr(LHS);
|
|
RHS = S.CorrectDelayedTyposInExpr(RHS, [Opc, LHS](Expr *E) {
|
|
if (Opc != BO_Assign)
|
|
return ExprResult(E);
|
|
// Avoid correcting the RHS to the same Expr as the LHS.
|
|
Decl *D = getDeclFromExpr(E);
|
|
return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
|
|
});
|
|
}
|
|
return std::make_pair(LHS, RHS);
|
|
}
|
|
|
|
/// Returns true if conversion between vectors of halfs and vectors of floats
|
|
/// is needed.
|
|
static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
|
|
QualType SrcType) {
|
|
return OpRequiresConversion && !Ctx.getLangOpts().NativeHalfType &&
|
|
!Ctx.getTargetInfo().useFP16ConversionIntrinsics() &&
|
|
isVector(SrcType, Ctx.HalfTy);
|
|
}
|
|
|
|
/// CreateBuiltinBinOp - Creates a new built-in binary operation with
|
|
/// operator @p Opc at location @c TokLoc. This routine only supports
|
|
/// built-in operations; ActOnBinOp handles overloaded operators.
|
|
ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
|
|
BinaryOperatorKind Opc,
|
|
Expr *LHSExpr, Expr *RHSExpr) {
|
|
if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
|
|
// The syntax only allows initializer lists on the RHS of assignment,
|
|
// so we don't need to worry about accepting invalid code for
|
|
// non-assignment operators.
|
|
// C++11 5.17p9:
|
|
// The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
|
|
// of x = {} is x = T().
|
|
InitializationKind Kind = InitializationKind::CreateDirectList(
|
|
RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
|
|
InitializedEntity Entity =
|
|
InitializedEntity::InitializeTemporary(LHSExpr->getType());
|
|
InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
|
|
ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
|
|
if (Init.isInvalid())
|
|
return Init;
|
|
RHSExpr = Init.get();
|
|
}
|
|
|
|
ExprResult LHS = LHSExpr, RHS = RHSExpr;
|
|
QualType ResultTy; // Result type of the binary operator.
|
|
// The following two variables are used for compound assignment operators
|
|
QualType CompLHSTy; // Type of LHS after promotions for computation
|
|
QualType CompResultTy; // Type of computation result
|
|
ExprValueKind VK = VK_RValue;
|
|
ExprObjectKind OK = OK_Ordinary;
|
|
bool ConvertHalfVec = false;
|
|
|
|
std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
|
|
if (!LHS.isUsable() || !RHS.isUsable())
|
|
return ExprError();
|
|
|
|
if (getLangOpts().OpenCL) {
|
|
QualType LHSTy = LHSExpr->getType();
|
|
QualType RHSTy = RHSExpr->getType();
|
|
// OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
|
|
// the ATOMIC_VAR_INIT macro.
|
|
if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
|
|
SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
|
|
if (BO_Assign == Opc)
|
|
Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
|
|
else
|
|
ResultTy = InvalidOperands(OpLoc, LHS, RHS);
|
|
return ExprError();
|
|
}
|
|
|
|
// OpenCL special types - image, sampler, pipe, and blocks are to be used
|
|
// only with a builtin functions and therefore should be disallowed here.
|
|
if (LHSTy->isImageType() || RHSTy->isImageType() ||
|
|
LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
|
|
LHSTy->isPipeType() || RHSTy->isPipeType() ||
|
|
LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
|
|
ResultTy = InvalidOperands(OpLoc, LHS, RHS);
|
|
return ExprError();
|
|
}
|
|
}
|
|
|
|
// Diagnose operations on the unsupported types for OpenMP device compilation.
|
|
if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice) {
|
|
if (Opc != BO_Assign && Opc != BO_Comma) {
|
|
checkOpenMPDeviceExpr(LHSExpr);
|
|
checkOpenMPDeviceExpr(RHSExpr);
|
|
}
|
|
}
|
|
|
|
switch (Opc) {
|
|
case BO_Assign:
|
|
ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
|
|
if (getLangOpts().CPlusPlus &&
|
|
LHS.get()->getObjectKind() != OK_ObjCProperty) {
|
|
VK = LHS.get()->getValueKind();
|
|
OK = LHS.get()->getObjectKind();
|
|
}
|
|
if (!ResultTy.isNull()) {
|
|
DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
|
|
DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
|
|
|
|
// Avoid copying a block to the heap if the block is assigned to a local
|
|
// auto variable that is declared in the same scope as the block. This
|
|
// optimization is unsafe if the local variable is declared in an outer
|
|
// scope. For example:
|
|
//
|
|
// BlockTy b;
|
|
// {
|
|
// b = ^{...};
|
|
// }
|
|
// // It is unsafe to invoke the block here if it wasn't copied to the
|
|
// // heap.
|
|
// b();
|
|
|
|
if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens()))
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
|
|
if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
|
|
if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
|
|
BE->getBlockDecl()->setCanAvoidCopyToHeap();
|
|
}
|
|
RecordModifiableNonNullParam(*this, LHS.get());
|
|
break;
|
|
case BO_PtrMemD:
|
|
case BO_PtrMemI:
|
|
ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
|
|
Opc == BO_PtrMemI);
|
|
break;
|
|
case BO_Mul:
|
|
case BO_Div:
|
|
ConvertHalfVec = true;
|
|
ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
|
|
Opc == BO_Div);
|
|
break;
|
|
case BO_Rem:
|
|
ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
|
|
break;
|
|
case BO_Add:
|
|
ConvertHalfVec = true;
|
|
ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
|
|
break;
|
|
case BO_Sub:
|
|
ConvertHalfVec = true;
|
|
ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
|
|
break;
|
|
case BO_Shl:
|
|
case BO_Shr:
|
|
ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
|
|
break;
|
|
case BO_LE:
|
|
case BO_LT:
|
|
case BO_GE:
|
|
case BO_GT:
|
|
ConvertHalfVec = true;
|
|
ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
|
|
break;
|
|
case BO_EQ:
|
|
case BO_NE:
|
|
ConvertHalfVec = true;
|
|
ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
|
|
break;
|
|
case BO_Cmp:
|
|
ConvertHalfVec = true;
|
|
ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
|
|
assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl());
|
|
break;
|
|
case BO_And:
|
|
checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
|
|
LLVM_FALLTHROUGH;
|
|
case BO_Xor:
|
|
case BO_Or:
|
|
ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
|
|
break;
|
|
case BO_LAnd:
|
|
case BO_LOr:
|
|
ConvertHalfVec = true;
|
|
ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
|
|
break;
|
|
case BO_MulAssign:
|
|
case BO_DivAssign:
|
|
ConvertHalfVec = true;
|
|
CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
|
|
Opc == BO_DivAssign);
|
|
CompLHSTy = CompResultTy;
|
|
if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
|
|
ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
|
|
break;
|
|
case BO_RemAssign:
|
|
CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
|
|
CompLHSTy = CompResultTy;
|
|
if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
|
|
ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
|
|
break;
|
|
case BO_AddAssign:
|
|
ConvertHalfVec = true;
|
|
CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
|
|
if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
|
|
ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
|
|
break;
|
|
case BO_SubAssign:
|
|
ConvertHalfVec = true;
|
|
CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
|
|
if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
|
|
ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
|
|
break;
|
|
case BO_ShlAssign:
|
|
case BO_ShrAssign:
|
|
CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
|
|
CompLHSTy = CompResultTy;
|
|
if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
|
|
ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
|
|
break;
|
|
case BO_AndAssign:
|
|
case BO_OrAssign: // fallthrough
|
|
DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
|
|
LLVM_FALLTHROUGH;
|
|
case BO_XorAssign:
|
|
CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
|
|
CompLHSTy = CompResultTy;
|
|
if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
|
|
ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
|
|
break;
|
|
case BO_Comma:
|
|
ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
|
|
if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
|
|
VK = RHS.get()->getValueKind();
|
|
OK = RHS.get()->getObjectKind();
|
|
}
|
|
break;
|
|
}
|
|
if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
|
|
return ExprError();
|
|
|
|
// Some of the binary operations require promoting operands of half vector to
|
|
// float vectors and truncating the result back to half vector. For now, we do
|
|
// this only when HalfArgsAndReturn is set (that is, when the target is arm or
|
|
// arm64).
|
|
assert(isVector(RHS.get()->getType(), Context.HalfTy) ==
|
|
isVector(LHS.get()->getType(), Context.HalfTy) &&
|
|
"both sides are half vectors or neither sides are");
|
|
ConvertHalfVec = needsConversionOfHalfVec(ConvertHalfVec, Context,
|
|
LHS.get()->getType());
|
|
|
|
// Check for array bounds violations for both sides of the BinaryOperator
|
|
CheckArrayAccess(LHS.get());
|
|
CheckArrayAccess(RHS.get());
|
|
|
|
if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
|
|
NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
|
|
&Context.Idents.get("object_setClass"),
|
|
SourceLocation(), LookupOrdinaryName);
|
|
if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
|
|
SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc());
|
|
Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
|
|
<< FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
|
|
"object_setClass(")
|
|
<< FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
|
|
",")
|
|
<< FixItHint::CreateInsertion(RHSLocEnd, ")");
|
|
}
|
|
else
|
|
Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
|
|
}
|
|
else if (const ObjCIvarRefExpr *OIRE =
|
|
dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
|
|
DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
|
|
|
|
// Opc is not a compound assignment if CompResultTy is null.
|
|
if (CompResultTy.isNull()) {
|
|
if (ConvertHalfVec)
|
|
return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false,
|
|
OpLoc, FPFeatures);
|
|
return new (Context) BinaryOperator(LHS.get(), RHS.get(), Opc, ResultTy, VK,
|
|
OK, OpLoc, FPFeatures);
|
|
}
|
|
|
|
// Handle compound assignments.
|
|
if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
|
|
OK_ObjCProperty) {
|
|
VK = VK_LValue;
|
|
OK = LHS.get()->getObjectKind();
|
|
}
|
|
|
|
if (ConvertHalfVec)
|
|
return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true,
|
|
OpLoc, FPFeatures);
|
|
|
|
return new (Context) CompoundAssignOperator(
|
|
LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, CompLHSTy, CompResultTy,
|
|
OpLoc, FPFeatures);
|
|
}
|
|
|
|
/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
|
|
/// operators are mixed in a way that suggests that the programmer forgot that
|
|
/// comparison operators have higher precedence. The most typical example of
|
|
/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
|
|
static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
|
|
SourceLocation OpLoc, Expr *LHSExpr,
|
|
Expr *RHSExpr) {
|
|
BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
|
|
BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
|
|
|
|
// Check that one of the sides is a comparison operator and the other isn't.
|
|
bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
|
|
bool isRightComp = RHSBO && RHSBO->isComparisonOp();
|
|
if (isLeftComp == isRightComp)
|
|
return;
|
|
|
|
// Bitwise operations are sometimes used as eager logical ops.
|
|
// Don't diagnose this.
|
|
bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
|
|
bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
|
|
if (isLeftBitwise || isRightBitwise)
|
|
return;
|
|
|
|
SourceRange DiagRange = isLeftComp
|
|
? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
|
|
: SourceRange(OpLoc, RHSExpr->getEndLoc());
|
|
StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
|
|
SourceRange ParensRange =
|
|
isLeftComp
|
|
? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
|
|
: SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
|
|
|
|
Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
|
|
<< DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
|
|
SuggestParentheses(Self, OpLoc,
|
|
Self.PDiag(diag::note_precedence_silence) << OpStr,
|
|
(isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
|
|
SuggestParentheses(Self, OpLoc,
|
|
Self.PDiag(diag::note_precedence_bitwise_first)
|
|
<< BinaryOperator::getOpcodeStr(Opc),
|
|
ParensRange);
|
|
}
|
|
|
|
/// It accepts a '&&' expr that is inside a '||' one.
|
|
/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
|
|
/// in parentheses.
|
|
static void
|
|
EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
|
|
BinaryOperator *Bop) {
|
|
assert(Bop->getOpcode() == BO_LAnd);
|
|
Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
|
|
<< Bop->getSourceRange() << OpLoc;
|
|
SuggestParentheses(Self, Bop->getOperatorLoc(),
|
|
Self.PDiag(diag::note_precedence_silence)
|
|
<< Bop->getOpcodeStr(),
|
|
Bop->getSourceRange());
|
|
}
|
|
|
|
/// Returns true if the given expression can be evaluated as a constant
|
|
/// 'true'.
|
|
static bool EvaluatesAsTrue(Sema &S, Expr *E) {
|
|
bool Res;
|
|
return !E->isValueDependent() &&
|
|
E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
|
|
}
|
|
|
|
/// Returns true if the given expression can be evaluated as a constant
|
|
/// 'false'.
|
|
static bool EvaluatesAsFalse(Sema &S, Expr *E) {
|
|
bool Res;
|
|
return !E->isValueDependent() &&
|
|
E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
|
|
}
|
|
|
|
/// Look for '&&' in the left hand of a '||' expr.
|
|
static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
|
|
Expr *LHSExpr, Expr *RHSExpr) {
|
|
if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
|
|
if (Bop->getOpcode() == BO_LAnd) {
|
|
// If it's "a && b || 0" don't warn since the precedence doesn't matter.
|
|
if (EvaluatesAsFalse(S, RHSExpr))
|
|
return;
|
|
// If it's "1 && a || b" don't warn since the precedence doesn't matter.
|
|
if (!EvaluatesAsTrue(S, Bop->getLHS()))
|
|
return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
|
|
} else if (Bop->getOpcode() == BO_LOr) {
|
|
if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
|
|
// If it's "a || b && 1 || c" we didn't warn earlier for
|
|
// "a || b && 1", but warn now.
|
|
if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
|
|
return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Look for '&&' in the right hand of a '||' expr.
|
|
static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
|
|
Expr *LHSExpr, Expr *RHSExpr) {
|
|
if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
|
|
if (Bop->getOpcode() == BO_LAnd) {
|
|
// If it's "0 || a && b" don't warn since the precedence doesn't matter.
|
|
if (EvaluatesAsFalse(S, LHSExpr))
|
|
return;
|
|
// If it's "a || b && 1" don't warn since the precedence doesn't matter.
|
|
if (!EvaluatesAsTrue(S, Bop->getRHS()))
|
|
return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Look for bitwise op in the left or right hand of a bitwise op with
|
|
/// lower precedence and emit a diagnostic together with a fixit hint that wraps
|
|
/// the '&' expression in parentheses.
|
|
static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
|
|
SourceLocation OpLoc, Expr *SubExpr) {
|
|
if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
|
|
if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
|
|
S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
|
|
<< Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
|
|
<< Bop->getSourceRange() << OpLoc;
|
|
SuggestParentheses(S, Bop->getOperatorLoc(),
|
|
S.PDiag(diag::note_precedence_silence)
|
|
<< Bop->getOpcodeStr(),
|
|
Bop->getSourceRange());
|
|
}
|
|
}
|
|
}
|
|
|
|
static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
|
|
Expr *SubExpr, StringRef Shift) {
|
|
if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
|
|
if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
|
|
StringRef Op = Bop->getOpcodeStr();
|
|
S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
|
|
<< Bop->getSourceRange() << OpLoc << Shift << Op;
|
|
SuggestParentheses(S, Bop->getOperatorLoc(),
|
|
S.PDiag(diag::note_precedence_silence) << Op,
|
|
Bop->getSourceRange());
|
|
}
|
|
}
|
|
}
|
|
|
|
static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
|
|
Expr *LHSExpr, Expr *RHSExpr) {
|
|
CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
|
|
if (!OCE)
|
|
return;
|
|
|
|
FunctionDecl *FD = OCE->getDirectCallee();
|
|
if (!FD || !FD->isOverloadedOperator())
|
|
return;
|
|
|
|
OverloadedOperatorKind Kind = FD->getOverloadedOperator();
|
|
if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
|
|
return;
|
|
|
|
S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
|
|
<< LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
|
|
<< (Kind == OO_LessLess);
|
|
SuggestParentheses(S, OCE->getOperatorLoc(),
|
|
S.PDiag(diag::note_precedence_silence)
|
|
<< (Kind == OO_LessLess ? "<<" : ">>"),
|
|
OCE->getSourceRange());
|
|
SuggestParentheses(
|
|
S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
|
|
SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
|
|
}
|
|
|
|
/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
|
|
/// precedence.
|
|
static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
|
|
SourceLocation OpLoc, Expr *LHSExpr,
|
|
Expr *RHSExpr){
|
|
// Diagnose "arg1 'bitwise' arg2 'eq' arg3".
|
|
if (BinaryOperator::isBitwiseOp(Opc))
|
|
DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
|
|
|
|
// Diagnose "arg1 & arg2 | arg3"
|
|
if ((Opc == BO_Or || Opc == BO_Xor) &&
|
|
!OpLoc.isMacroID()/* Don't warn in macros. */) {
|
|
DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
|
|
DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
|
|
}
|
|
|
|
// Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
|
|
// We don't warn for 'assert(a || b && "bad")' since this is safe.
|
|
if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
|
|
DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
|
|
DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
|
|
}
|
|
|
|
if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
|
|
|| Opc == BO_Shr) {
|
|
StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
|
|
DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
|
|
DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
|
|
}
|
|
|
|
// Warn on overloaded shift operators and comparisons, such as:
|
|
// cout << 5 == 4;
|
|
if (BinaryOperator::isComparisonOp(Opc))
|
|
DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
|
|
}
|
|
|
|
// Binary Operators. 'Tok' is the token for the operator.
|
|
ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
|
|
tok::TokenKind Kind,
|
|
Expr *LHSExpr, Expr *RHSExpr) {
|
|
BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
|
|
assert(LHSExpr && "ActOnBinOp(): missing left expression");
|
|
assert(RHSExpr && "ActOnBinOp(): missing right expression");
|
|
|
|
// Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
|
|
DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
|
|
|
|
return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
|
|
}
|
|
|
|
/// Build an overloaded binary operator expression in the given scope.
|
|
static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
|
|
BinaryOperatorKind Opc,
|
|
Expr *LHS, Expr *RHS) {
|
|
switch (Opc) {
|
|
case BO_Assign:
|
|
case BO_DivAssign:
|
|
case BO_RemAssign:
|
|
case BO_SubAssign:
|
|
case BO_AndAssign:
|
|
case BO_OrAssign:
|
|
case BO_XorAssign:
|
|
DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false);
|
|
CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Find all of the overloaded operators visible from this
|
|
// point. We perform both an operator-name lookup from the local
|
|
// scope and an argument-dependent lookup based on the types of
|
|
// the arguments.
|
|
UnresolvedSet<16> Functions;
|
|
OverloadedOperatorKind OverOp
|
|
= BinaryOperator::getOverloadedOperator(Opc);
|
|
if (Sc && OverOp != OO_None && OverOp != OO_Equal)
|
|
S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
|
|
RHS->getType(), Functions);
|
|
|
|
// Build the (potentially-overloaded, potentially-dependent)
|
|
// binary operation.
|
|
return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
|
|
}
|
|
|
|
ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
|
|
BinaryOperatorKind Opc,
|
|
Expr *LHSExpr, Expr *RHSExpr) {
|
|
ExprResult LHS, RHS;
|
|
std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
|
|
if (!LHS.isUsable() || !RHS.isUsable())
|
|
return ExprError();
|
|
LHSExpr = LHS.get();
|
|
RHSExpr = RHS.get();
|
|
|
|
// We want to end up calling one of checkPseudoObjectAssignment
|
|
// (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
|
|
// both expressions are overloadable or either is type-dependent),
|
|
// or CreateBuiltinBinOp (in any other case). We also want to get
|
|
// any placeholder types out of the way.
|
|
|
|
// Handle pseudo-objects in the LHS.
|
|
if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
|
|
// Assignments with a pseudo-object l-value need special analysis.
|
|
if (pty->getKind() == BuiltinType::PseudoObject &&
|
|
BinaryOperator::isAssignmentOp(Opc))
|
|
return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
|
|
|
|
// Don't resolve overloads if the other type is overloadable.
|
|
if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
|
|
// We can't actually test that if we still have a placeholder,
|
|
// though. Fortunately, none of the exceptions we see in that
|
|
// code below are valid when the LHS is an overload set. Note
|
|
// that an overload set can be dependently-typed, but it never
|
|
// instantiates to having an overloadable type.
|
|
ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
|
|
if (resolvedRHS.isInvalid()) return ExprError();
|
|
RHSExpr = resolvedRHS.get();
|
|
|
|
if (RHSExpr->isTypeDependent() ||
|
|
RHSExpr->getType()->isOverloadableType())
|
|
return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
|
|
}
|
|
|
|
// If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
|
|
// template, diagnose the missing 'template' keyword instead of diagnosing
|
|
// an invalid use of a bound member function.
|
|
//
|
|
// Note that "A::x < b" might be valid if 'b' has an overloadable type due
|
|
// to C++1z [over.over]/1.4, but we already checked for that case above.
|
|
if (Opc == BO_LT && inTemplateInstantiation() &&
|
|
(pty->getKind() == BuiltinType::BoundMember ||
|
|
pty->getKind() == BuiltinType::Overload)) {
|
|
auto *OE = dyn_cast<OverloadExpr>(LHSExpr);
|
|
if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
|
|
std::any_of(OE->decls_begin(), OE->decls_end(), [](NamedDecl *ND) {
|
|
return isa<FunctionTemplateDecl>(ND);
|
|
})) {
|
|
Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
|
|
: OE->getNameLoc(),
|
|
diag::err_template_kw_missing)
|
|
<< OE->getName().getAsString() << "";
|
|
return ExprError();
|
|
}
|
|
}
|
|
|
|
ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
|
|
if (LHS.isInvalid()) return ExprError();
|
|
LHSExpr = LHS.get();
|
|
}
|
|
|
|
// Handle pseudo-objects in the RHS.
|
|
if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
|
|
// An overload in the RHS can potentially be resolved by the type
|
|
// being assigned to.
|
|
if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
|
|
if (getLangOpts().CPlusPlus &&
|
|
(LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
|
|
LHSExpr->getType()->isOverloadableType()))
|
|
return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
|
|
|
|
return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
|
|
}
|
|
|
|
// Don't resolve overloads if the other type is overloadable.
|
|
if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
|
|
LHSExpr->getType()->isOverloadableType())
|
|
return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
|
|
|
|
ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
|
|
if (!resolvedRHS.isUsable()) return ExprError();
|
|
RHSExpr = resolvedRHS.get();
|
|
}
|
|
|
|
if (getLangOpts().CPlusPlus) {
|
|
// If either expression is type-dependent, always build an
|
|
// overloaded op.
|
|
if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
|
|
return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
|
|
|
|
// Otherwise, build an overloaded op if either expression has an
|
|
// overloadable type.
|
|
if (LHSExpr->getType()->isOverloadableType() ||
|
|
RHSExpr->getType()->isOverloadableType())
|
|
return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
|
|
}
|
|
|
|
// Build a built-in binary operation.
|
|
return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
|
|
}
|
|
|
|
static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
|
|
if (T.isNull() || T->isDependentType())
|
|
return false;
|
|
|
|
if (!T->isPromotableIntegerType())
|
|
return true;
|
|
|
|
return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
|
|
}
|
|
|
|
ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
|
|
UnaryOperatorKind Opc,
|
|
Expr *InputExpr) {
|
|
ExprResult Input = InputExpr;
|
|
ExprValueKind VK = VK_RValue;
|
|
ExprObjectKind OK = OK_Ordinary;
|
|
QualType resultType;
|
|
bool CanOverflow = false;
|
|
|
|
bool ConvertHalfVec = false;
|
|
if (getLangOpts().OpenCL) {
|
|
QualType Ty = InputExpr->getType();
|
|
// The only legal unary operation for atomics is '&'.
|
|
if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
|
|
// OpenCL special types - image, sampler, pipe, and blocks are to be used
|
|
// only with a builtin functions and therefore should be disallowed here.
|
|
(Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
|
|
|| Ty->isBlockPointerType())) {
|
|
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
|
|
<< InputExpr->getType()
|
|
<< Input.get()->getSourceRange());
|
|
}
|
|
}
|
|
// Diagnose operations on the unsupported types for OpenMP device compilation.
|
|
if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice) {
|
|
if (UnaryOperator::isIncrementDecrementOp(Opc) ||
|
|
UnaryOperator::isArithmeticOp(Opc))
|
|
checkOpenMPDeviceExpr(InputExpr);
|
|
}
|
|
|
|
switch (Opc) {
|
|
case UO_PreInc:
|
|
case UO_PreDec:
|
|
case UO_PostInc:
|
|
case UO_PostDec:
|
|
resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
|
|
OpLoc,
|
|
Opc == UO_PreInc ||
|
|
Opc == UO_PostInc,
|
|
Opc == UO_PreInc ||
|
|
Opc == UO_PreDec);
|
|
CanOverflow = isOverflowingIntegerType(Context, resultType);
|
|
break;
|
|
case UO_AddrOf:
|
|
resultType = CheckAddressOfOperand(Input, OpLoc);
|
|
CheckAddressOfNoDeref(InputExpr);
|
|
RecordModifiableNonNullParam(*this, InputExpr);
|
|
break;
|
|
case UO_Deref: {
|
|
Input = DefaultFunctionArrayLvalueConversion(Input.get());
|
|
if (Input.isInvalid()) return ExprError();
|
|
resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
|
|
break;
|
|
}
|
|
case UO_Plus:
|
|
case UO_Minus:
|
|
CanOverflow = Opc == UO_Minus &&
|
|
isOverflowingIntegerType(Context, Input.get()->getType());
|
|
Input = UsualUnaryConversions(Input.get());
|
|
if (Input.isInvalid()) return ExprError();
|
|
// Unary plus and minus require promoting an operand of half vector to a
|
|
// float vector and truncating the result back to a half vector. For now, we
|
|
// do this only when HalfArgsAndReturns is set (that is, when the target is
|
|
// arm or arm64).
|
|
ConvertHalfVec =
|
|
needsConversionOfHalfVec(true, Context, Input.get()->getType());
|
|
|
|
// If the operand is a half vector, promote it to a float vector.
|
|
if (ConvertHalfVec)
|
|
Input = convertVector(Input.get(), Context.FloatTy, *this);
|
|
resultType = Input.get()->getType();
|
|
if (resultType->isDependentType())
|
|
break;
|
|
if (resultType->isArithmeticType()) // C99 6.5.3.3p1
|
|
break;
|
|
else if (resultType->isVectorType() &&
|
|
// The z vector extensions don't allow + or - with bool vectors.
|
|
(!Context.getLangOpts().ZVector ||
|
|
resultType->getAs<VectorType>()->getVectorKind() !=
|
|
VectorType::AltiVecBool))
|
|
break;
|
|
else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
|
|
Opc == UO_Plus &&
|
|
resultType->isPointerType())
|
|
break;
|
|
|
|
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
|
|
<< resultType << Input.get()->getSourceRange());
|
|
|
|
case UO_Not: // bitwise complement
|
|
Input = UsualUnaryConversions(Input.get());
|
|
if (Input.isInvalid())
|
|
return ExprError();
|
|
resultType = Input.get()->getType();
|
|
|
|
if (resultType->isDependentType())
|
|
break;
|
|
// C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
|
|
if (resultType->isComplexType() || resultType->isComplexIntegerType())
|
|
// C99 does not support '~' for complex conjugation.
|
|
Diag(OpLoc, diag::ext_integer_complement_complex)
|
|
<< resultType << Input.get()->getSourceRange();
|
|
else if (resultType->hasIntegerRepresentation())
|
|
break;
|
|
else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
|
|
// OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
|
|
// on vector float types.
|
|
QualType T = resultType->getAs<ExtVectorType>()->getElementType();
|
|
if (!T->isIntegerType())
|
|
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
|
|
<< resultType << Input.get()->getSourceRange());
|
|
} else {
|
|
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
|
|
<< resultType << Input.get()->getSourceRange());
|
|
}
|
|
break;
|
|
|
|
case UO_LNot: // logical negation
|
|
// Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
|
|
Input = DefaultFunctionArrayLvalueConversion(Input.get());
|
|
if (Input.isInvalid()) return ExprError();
|
|
resultType = Input.get()->getType();
|
|
|
|
// Though we still have to promote half FP to float...
|
|
if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
|
|
Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
|
|
resultType = Context.FloatTy;
|
|
}
|
|
|
|
if (resultType->isDependentType())
|
|
break;
|
|
if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
|
|
// C99 6.5.3.3p1: ok, fallthrough;
|
|
if (Context.getLangOpts().CPlusPlus) {
|
|
// C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
|
|
// operand contextually converted to bool.
|
|
Input = ImpCastExprToType(Input.get(), Context.BoolTy,
|
|
ScalarTypeToBooleanCastKind(resultType));
|
|
} else if (Context.getLangOpts().OpenCL &&
|
|
Context.getLangOpts().OpenCLVersion < 120) {
|
|
// OpenCL v1.1 6.3.h: The logical operator not (!) does not
|
|
// operate on scalar float types.
|
|
if (!resultType->isIntegerType() && !resultType->isPointerType())
|
|
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
|
|
<< resultType << Input.get()->getSourceRange());
|
|
}
|
|
} else if (resultType->isExtVectorType()) {
|
|
if (Context.getLangOpts().OpenCL &&
|
|
Context.getLangOpts().OpenCLVersion < 120) {
|
|
// OpenCL v1.1 6.3.h: The logical operator not (!) does not
|
|
// operate on vector float types.
|
|
QualType T = resultType->getAs<ExtVectorType>()->getElementType();
|
|
if (!T->isIntegerType())
|
|
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
|
|
<< resultType << Input.get()->getSourceRange());
|
|
}
|
|
// Vector logical not returns the signed variant of the operand type.
|
|
resultType = GetSignedVectorType(resultType);
|
|
break;
|
|
} else {
|
|
// FIXME: GCC's vector extension permits the usage of '!' with a vector
|
|
// type in C++. We should allow that here too.
|
|
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
|
|
<< resultType << Input.get()->getSourceRange());
|
|
}
|
|
|
|
// LNot always has type int. C99 6.5.3.3p5.
|
|
// In C++, it's bool. C++ 5.3.1p8
|
|
resultType = Context.getLogicalOperationType();
|
|
break;
|
|
case UO_Real:
|
|
case UO_Imag:
|
|
resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
|
|
// _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
|
|
// complex l-values to ordinary l-values and all other values to r-values.
|
|
if (Input.isInvalid()) return ExprError();
|
|
if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
|
|
if (Input.get()->getValueKind() != VK_RValue &&
|
|
Input.get()->getObjectKind() == OK_Ordinary)
|
|
VK = Input.get()->getValueKind();
|
|
} else if (!getLangOpts().CPlusPlus) {
|
|
// In C, a volatile scalar is read by __imag. In C++, it is not.
|
|
Input = DefaultLvalueConversion(Input.get());
|
|
}
|
|
break;
|
|
case UO_Extension:
|
|
resultType = Input.get()->getType();
|
|
VK = Input.get()->getValueKind();
|
|
OK = Input.get()->getObjectKind();
|
|
break;
|
|
case UO_Coawait:
|
|
// It's unnecessary to represent the pass-through operator co_await in the
|
|
// AST; just return the input expression instead.
|
|
assert(!Input.get()->getType()->isDependentType() &&
|
|
"the co_await expression must be non-dependant before "
|
|
"building operator co_await");
|
|
return Input;
|
|
}
|
|
if (resultType.isNull() || Input.isInvalid())
|
|
return ExprError();
|
|
|
|
// Check for array bounds violations in the operand of the UnaryOperator,
|
|
// except for the '*' and '&' operators that have to be handled specially
|
|
// by CheckArrayAccess (as there are special cases like &array[arraysize]
|
|
// that are explicitly defined as valid by the standard).
|
|
if (Opc != UO_AddrOf && Opc != UO_Deref)
|
|
CheckArrayAccess(Input.get());
|
|
|
|
auto *UO = new (Context)
|
|
UnaryOperator(Input.get(), Opc, resultType, VK, OK, OpLoc, CanOverflow);
|
|
|
|
if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
|
|
!isa<ArrayType>(UO->getType().getDesugaredType(Context)))
|
|
ExprEvalContexts.back().PossibleDerefs.insert(UO);
|
|
|
|
// Convert the result back to a half vector.
|
|
if (ConvertHalfVec)
|
|
return convertVector(UO, Context.HalfTy, *this);
|
|
return UO;
|
|
}
|
|
|
|
/// Determine whether the given expression is a qualified member
|
|
/// access expression, of a form that could be turned into a pointer to member
|
|
/// with the address-of operator.
|
|
bool Sema::isQualifiedMemberAccess(Expr *E) {
|
|
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
|
|
if (!DRE->getQualifier())
|
|
return false;
|
|
|
|
ValueDecl *VD = DRE->getDecl();
|
|
if (!VD->isCXXClassMember())
|
|
return false;
|
|
|
|
if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
|
|
return true;
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
|
|
return Method->isInstance();
|
|
|
|
return false;
|
|
}
|
|
|
|
if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
|
|
if (!ULE->getQualifier())
|
|
return false;
|
|
|
|
for (NamedDecl *D : ULE->decls()) {
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
|
|
if (Method->isInstance())
|
|
return true;
|
|
} else {
|
|
// Overload set does not contain methods.
|
|
break;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
|
|
UnaryOperatorKind Opc, Expr *Input) {
|
|
// First things first: handle placeholders so that the
|
|
// overloaded-operator check considers the right type.
|
|
if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
|
|
// Increment and decrement of pseudo-object references.
|
|
if (pty->getKind() == BuiltinType::PseudoObject &&
|
|
UnaryOperator::isIncrementDecrementOp(Opc))
|
|
return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
|
|
|
|
// extension is always a builtin operator.
|
|
if (Opc == UO_Extension)
|
|
return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
|
|
|
|
// & gets special logic for several kinds of placeholder.
|
|
// The builtin code knows what to do.
|
|
if (Opc == UO_AddrOf &&
|
|
(pty->getKind() == BuiltinType::Overload ||
|
|
pty->getKind() == BuiltinType::UnknownAny ||
|
|
pty->getKind() == BuiltinType::BoundMember))
|
|
return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
|
|
|
|
// Anything else needs to be handled now.
|
|
ExprResult Result = CheckPlaceholderExpr(Input);
|
|
if (Result.isInvalid()) return ExprError();
|
|
Input = Result.get();
|
|
}
|
|
|
|
if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
|
|
UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
|
|
!(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
|
|
// Find all of the overloaded operators visible from this
|
|
// point. We perform both an operator-name lookup from the local
|
|
// scope and an argument-dependent lookup based on the types of
|
|
// the arguments.
|
|
UnresolvedSet<16> Functions;
|
|
OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
|
|
if (S && OverOp != OO_None)
|
|
LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
|
|
Functions);
|
|
|
|
return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
|
|
}
|
|
|
|
return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
|
|
}
|
|
|
|
// Unary Operators. 'Tok' is the token for the operator.
|
|
ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
|
|
tok::TokenKind Op, Expr *Input) {
|
|
return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
|
|
}
|
|
|
|
/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
|
|
ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
|
|
LabelDecl *TheDecl) {
|
|
TheDecl->markUsed(Context);
|
|
// Create the AST node. The address of a label always has type 'void*'.
|
|
return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
|
|
Context.getPointerType(Context.VoidTy));
|
|
}
|
|
|
|
void Sema::ActOnStartStmtExpr() {
|
|
PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
|
|
}
|
|
|
|
void Sema::ActOnStmtExprError() {
|
|
// Note that function is also called by TreeTransform when leaving a
|
|
// StmtExpr scope without rebuilding anything.
|
|
|
|
DiscardCleanupsInEvaluationContext();
|
|
PopExpressionEvaluationContext();
|
|
}
|
|
|
|
ExprResult
|
|
Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
|
|
SourceLocation RPLoc) { // "({..})"
|
|
assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
|
|
CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
|
|
|
|
if (hasAnyUnrecoverableErrorsInThisFunction())
|
|
DiscardCleanupsInEvaluationContext();
|
|
assert(!Cleanup.exprNeedsCleanups() &&
|
|
"cleanups within StmtExpr not correctly bound!");
|
|
PopExpressionEvaluationContext();
|
|
|
|
// FIXME: there are a variety of strange constraints to enforce here, for
|
|
// example, it is not possible to goto into a stmt expression apparently.
|
|
// More semantic analysis is needed.
|
|
|
|
// If there are sub-stmts in the compound stmt, take the type of the last one
|
|
// as the type of the stmtexpr.
|
|
QualType Ty = Context.VoidTy;
|
|
bool StmtExprMayBindToTemp = false;
|
|
if (!Compound->body_empty()) {
|
|
if (const auto *LastStmt = dyn_cast<ValueStmt>(Compound->body_back())) {
|
|
if (const Expr *Value = LastStmt->getExprStmt()) {
|
|
StmtExprMayBindToTemp = true;
|
|
Ty = Value->getType();
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME: Check that expression type is complete/non-abstract; statement
|
|
// expressions are not lvalues.
|
|
Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
|
|
if (StmtExprMayBindToTemp)
|
|
return MaybeBindToTemporary(ResStmtExpr);
|
|
return ResStmtExpr;
|
|
}
|
|
|
|
ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
|
|
if (ER.isInvalid())
|
|
return ExprError();
|
|
|
|
// Do function/array conversion on the last expression, but not
|
|
// lvalue-to-rvalue. However, initialize an unqualified type.
|
|
ER = DefaultFunctionArrayConversion(ER.get());
|
|
if (ER.isInvalid())
|
|
return ExprError();
|
|
Expr *E = ER.get();
|
|
|
|
if (E->isTypeDependent())
|
|
return E;
|
|
|
|
// In ARC, if the final expression ends in a consume, splice
|
|
// the consume out and bind it later. In the alternate case
|
|
// (when dealing with a retainable type), the result
|
|
// initialization will create a produce. In both cases the
|
|
// result will be +1, and we'll need to balance that out with
|
|
// a bind.
|
|
auto *Cast = dyn_cast<ImplicitCastExpr>(E);
|
|
if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
|
|
return Cast->getSubExpr();
|
|
|
|
// FIXME: Provide a better location for the initialization.
|
|
return PerformCopyInitialization(
|
|
InitializedEntity::InitializeStmtExprResult(
|
|
E->getBeginLoc(), E->getType().getUnqualifiedType()),
|
|
SourceLocation(), E);
|
|
}
|
|
|
|
ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
|
|
TypeSourceInfo *TInfo,
|
|
ArrayRef<OffsetOfComponent> Components,
|
|
SourceLocation RParenLoc) {
|
|
QualType ArgTy = TInfo->getType();
|
|
bool Dependent = ArgTy->isDependentType();
|
|
SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
|
|
|
|
// We must have at least one component that refers to the type, and the first
|
|
// one is known to be a field designator. Verify that the ArgTy represents
|
|
// a struct/union/class.
|
|
if (!Dependent && !ArgTy->isRecordType())
|
|
return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
|
|
<< ArgTy << TypeRange);
|
|
|
|
// Type must be complete per C99 7.17p3 because a declaring a variable
|
|
// with an incomplete type would be ill-formed.
|
|
if (!Dependent
|
|
&& RequireCompleteType(BuiltinLoc, ArgTy,
|
|
diag::err_offsetof_incomplete_type, TypeRange))
|
|
return ExprError();
|
|
|
|
bool DidWarnAboutNonPOD = false;
|
|
QualType CurrentType = ArgTy;
|
|
SmallVector<OffsetOfNode, 4> Comps;
|
|
SmallVector<Expr*, 4> Exprs;
|
|
for (const OffsetOfComponent &OC : Components) {
|
|
if (OC.isBrackets) {
|
|
// Offset of an array sub-field. TODO: Should we allow vector elements?
|
|
if (!CurrentType->isDependentType()) {
|
|
const ArrayType *AT = Context.getAsArrayType(CurrentType);
|
|
if(!AT)
|
|
return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
|
|
<< CurrentType);
|
|
CurrentType = AT->getElementType();
|
|
} else
|
|
CurrentType = Context.DependentTy;
|
|
|
|
ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
|
|
if (IdxRval.isInvalid())
|
|
return ExprError();
|
|
Expr *Idx = IdxRval.get();
|
|
|
|
// The expression must be an integral expression.
|
|
// FIXME: An integral constant expression?
|
|
if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
|
|
!Idx->getType()->isIntegerType())
|
|
return ExprError(
|
|
Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
|
|
<< Idx->getSourceRange());
|
|
|
|
// Record this array index.
|
|
Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
|
|
Exprs.push_back(Idx);
|
|
continue;
|
|
}
|
|
|
|
// Offset of a field.
|
|
if (CurrentType->isDependentType()) {
|
|
// We have the offset of a field, but we can't look into the dependent
|
|
// type. Just record the identifier of the field.
|
|
Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
|
|
CurrentType = Context.DependentTy;
|
|
continue;
|
|
}
|
|
|
|
// We need to have a complete type to look into.
|
|
if (RequireCompleteType(OC.LocStart, CurrentType,
|
|
diag::err_offsetof_incomplete_type))
|
|
return ExprError();
|
|
|
|
// Look for the designated field.
|
|
const RecordType *RC = CurrentType->getAs<RecordType>();
|
|
if (!RC)
|
|
return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
|
|
<< CurrentType);
|
|
RecordDecl *RD = RC->getDecl();
|
|
|
|
// C++ [lib.support.types]p5:
|
|
// The macro offsetof accepts a restricted set of type arguments in this
|
|
// International Standard. type shall be a POD structure or a POD union
|
|
// (clause 9).
|
|
// C++11 [support.types]p4:
|
|
// If type is not a standard-layout class (Clause 9), the results are
|
|
// undefined.
|
|
if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
|
|
bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
|
|
unsigned DiagID =
|
|
LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
|
|
: diag::ext_offsetof_non_pod_type;
|
|
|
|
if (!IsSafe && !DidWarnAboutNonPOD &&
|
|
DiagRuntimeBehavior(BuiltinLoc, nullptr,
|
|
PDiag(DiagID)
|
|
<< SourceRange(Components[0].LocStart, OC.LocEnd)
|
|
<< CurrentType))
|
|
DidWarnAboutNonPOD = true;
|
|
}
|
|
|
|
// Look for the field.
|
|
LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
|
|
LookupQualifiedName(R, RD);
|
|
FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
|
|
IndirectFieldDecl *IndirectMemberDecl = nullptr;
|
|
if (!MemberDecl) {
|
|
if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
|
|
MemberDecl = IndirectMemberDecl->getAnonField();
|
|
}
|
|
|
|
if (!MemberDecl)
|
|
return ExprError(Diag(BuiltinLoc, diag::err_no_member)
|
|
<< OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
|
|
OC.LocEnd));
|
|
|
|
// C99 7.17p3:
|
|
// (If the specified member is a bit-field, the behavior is undefined.)
|
|
//
|
|
// We diagnose this as an error.
|
|
if (MemberDecl->isBitField()) {
|
|
Diag(OC.LocEnd, diag::err_offsetof_bitfield)
|
|
<< MemberDecl->getDeclName()
|
|
<< SourceRange(BuiltinLoc, RParenLoc);
|
|
Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
|
|
return ExprError();
|
|
}
|
|
|
|
RecordDecl *Parent = MemberDecl->getParent();
|
|
if (IndirectMemberDecl)
|
|
Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
|
|
|
|
// If the member was found in a base class, introduce OffsetOfNodes for
|
|
// the base class indirections.
|
|
CXXBasePaths Paths;
|
|
if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
|
|
Paths)) {
|
|
if (Paths.getDetectedVirtual()) {
|
|
Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
|
|
<< MemberDecl->getDeclName()
|
|
<< SourceRange(BuiltinLoc, RParenLoc);
|
|
return ExprError();
|
|
}
|
|
|
|
CXXBasePath &Path = Paths.front();
|
|
for (const CXXBasePathElement &B : Path)
|
|
Comps.push_back(OffsetOfNode(B.Base));
|
|
}
|
|
|
|
if (IndirectMemberDecl) {
|
|
for (auto *FI : IndirectMemberDecl->chain()) {
|
|
assert(isa<FieldDecl>(FI));
|
|
Comps.push_back(OffsetOfNode(OC.LocStart,
|
|
cast<FieldDecl>(FI), OC.LocEnd));
|
|
}
|
|
} else
|
|
Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
|
|
|
|
CurrentType = MemberDecl->getType().getNonReferenceType();
|
|
}
|
|
|
|
return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
|
|
Comps, Exprs, RParenLoc);
|
|
}
|
|
|
|
ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
|
|
SourceLocation BuiltinLoc,
|
|
SourceLocation TypeLoc,
|
|
ParsedType ParsedArgTy,
|
|
ArrayRef<OffsetOfComponent> Components,
|
|
SourceLocation RParenLoc) {
|
|
|
|
TypeSourceInfo *ArgTInfo;
|
|
QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
|
|
if (ArgTy.isNull())
|
|
return ExprError();
|
|
|
|
if (!ArgTInfo)
|
|
ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
|
|
|
|
return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
|
|
}
|
|
|
|
|
|
ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
|
|
Expr *CondExpr,
|
|
Expr *LHSExpr, Expr *RHSExpr,
|
|
SourceLocation RPLoc) {
|
|
assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
|
|
|
|
ExprValueKind VK = VK_RValue;
|
|
ExprObjectKind OK = OK_Ordinary;
|
|
QualType resType;
|
|
bool ValueDependent = false;
|
|
bool CondIsTrue = false;
|
|
if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
|
|
resType = Context.DependentTy;
|
|
ValueDependent = true;
|
|
} else {
|
|
// The conditional expression is required to be a constant expression.
|
|
llvm::APSInt condEval(32);
|
|
ExprResult CondICE
|
|
= VerifyIntegerConstantExpression(CondExpr, &condEval,
|
|
diag::err_typecheck_choose_expr_requires_constant, false);
|
|
if (CondICE.isInvalid())
|
|
return ExprError();
|
|
CondExpr = CondICE.get();
|
|
CondIsTrue = condEval.getZExtValue();
|
|
|
|
// If the condition is > zero, then the AST type is the same as the LHSExpr.
|
|
Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
|
|
|
|
resType = ActiveExpr->getType();
|
|
ValueDependent = ActiveExpr->isValueDependent();
|
|
VK = ActiveExpr->getValueKind();
|
|
OK = ActiveExpr->getObjectKind();
|
|
}
|
|
|
|
return new (Context)
|
|
ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, VK, OK, RPLoc,
|
|
CondIsTrue, resType->isDependentType(), ValueDependent);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Clang Extensions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ActOnBlockStart - This callback is invoked when a block literal is started.
|
|
void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
|
|
BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
|
|
|
|
if (LangOpts.CPlusPlus) {
|
|
Decl *ManglingContextDecl;
|
|
if (MangleNumberingContext *MCtx =
|
|
getCurrentMangleNumberContext(Block->getDeclContext(),
|
|
ManglingContextDecl)) {
|
|
unsigned ManglingNumber = MCtx->getManglingNumber(Block);
|
|
Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
|
|
}
|
|
}
|
|
|
|
PushBlockScope(CurScope, Block);
|
|
CurContext->addDecl(Block);
|
|
if (CurScope)
|
|
PushDeclContext(CurScope, Block);
|
|
else
|
|
CurContext = Block;
|
|
|
|
getCurBlock()->HasImplicitReturnType = true;
|
|
|
|
// Enter a new evaluation context to insulate the block from any
|
|
// cleanups from the enclosing full-expression.
|
|
PushExpressionEvaluationContext(
|
|
ExpressionEvaluationContext::PotentiallyEvaluated);
|
|
}
|
|
|
|
void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
|
|
Scope *CurScope) {
|
|
assert(ParamInfo.getIdentifier() == nullptr &&
|
|
"block-id should have no identifier!");
|
|
assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteralContext);
|
|
BlockScopeInfo *CurBlock = getCurBlock();
|
|
|
|
TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
|
|
QualType T = Sig->getType();
|
|
|
|
// FIXME: We should allow unexpanded parameter packs here, but that would,
|
|
// in turn, make the block expression contain unexpanded parameter packs.
|
|
if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
|
|
// Drop the parameters.
|
|
FunctionProtoType::ExtProtoInfo EPI;
|
|
EPI.HasTrailingReturn = false;
|
|
EPI.TypeQuals.addConst();
|
|
T = Context.getFunctionType(Context.DependentTy, None, EPI);
|
|
Sig = Context.getTrivialTypeSourceInfo(T);
|
|
}
|
|
|
|
// GetTypeForDeclarator always produces a function type for a block
|
|
// literal signature. Furthermore, it is always a FunctionProtoType
|
|
// unless the function was written with a typedef.
|
|
assert(T->isFunctionType() &&
|
|
"GetTypeForDeclarator made a non-function block signature");
|
|
|
|
// Look for an explicit signature in that function type.
|
|
FunctionProtoTypeLoc ExplicitSignature;
|
|
|
|
if ((ExplicitSignature = Sig->getTypeLoc()
|
|
.getAsAdjusted<FunctionProtoTypeLoc>())) {
|
|
|
|
// Check whether that explicit signature was synthesized by
|
|
// GetTypeForDeclarator. If so, don't save that as part of the
|
|
// written signature.
|
|
if (ExplicitSignature.getLocalRangeBegin() ==
|
|
ExplicitSignature.getLocalRangeEnd()) {
|
|
// This would be much cheaper if we stored TypeLocs instead of
|
|
// TypeSourceInfos.
|
|
TypeLoc Result = ExplicitSignature.getReturnLoc();
|
|
unsigned Size = Result.getFullDataSize();
|
|
Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
|
|
Sig->getTypeLoc().initializeFullCopy(Result, Size);
|
|
|
|
ExplicitSignature = FunctionProtoTypeLoc();
|
|
}
|
|
}
|
|
|
|
CurBlock->TheDecl->setSignatureAsWritten(Sig);
|
|
CurBlock->FunctionType = T;
|
|
|
|
const FunctionType *Fn = T->getAs<FunctionType>();
|
|
QualType RetTy = Fn->getReturnType();
|
|
bool isVariadic =
|
|
(isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
|
|
|
|
CurBlock->TheDecl->setIsVariadic(isVariadic);
|
|
|
|
// Context.DependentTy is used as a placeholder for a missing block
|
|
// return type. TODO: what should we do with declarators like:
|
|
// ^ * { ... }
|
|
// If the answer is "apply template argument deduction"....
|
|
if (RetTy != Context.DependentTy) {
|
|
CurBlock->ReturnType = RetTy;
|
|
CurBlock->TheDecl->setBlockMissingReturnType(false);
|
|
CurBlock->HasImplicitReturnType = false;
|
|
}
|
|
|
|
// Push block parameters from the declarator if we had them.
|
|
SmallVector<ParmVarDecl*, 8> Params;
|
|
if (ExplicitSignature) {
|
|
for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
|
|
ParmVarDecl *Param = ExplicitSignature.getParam(I);
|
|
if (Param->getIdentifier() == nullptr &&
|
|
!Param->isImplicit() &&
|
|
!Param->isInvalidDecl() &&
|
|
!getLangOpts().CPlusPlus)
|
|
Diag(Param->getLocation(), diag::err_parameter_name_omitted);
|
|
Params.push_back(Param);
|
|
}
|
|
|
|
// Fake up parameter variables if we have a typedef, like
|
|
// ^ fntype { ... }
|
|
} else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
|
|
for (const auto &I : Fn->param_types()) {
|
|
ParmVarDecl *Param = BuildParmVarDeclForTypedef(
|
|
CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
|
|
Params.push_back(Param);
|
|
}
|
|
}
|
|
|
|
// Set the parameters on the block decl.
|
|
if (!Params.empty()) {
|
|
CurBlock->TheDecl->setParams(Params);
|
|
CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
|
|
/*CheckParameterNames=*/false);
|
|
}
|
|
|
|
// Finally we can process decl attributes.
|
|
ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
|
|
|
|
// Put the parameter variables in scope.
|
|
for (auto AI : CurBlock->TheDecl->parameters()) {
|
|
AI->setOwningFunction(CurBlock->TheDecl);
|
|
|
|
// If this has an identifier, add it to the scope stack.
|
|
if (AI->getIdentifier()) {
|
|
CheckShadow(CurBlock->TheScope, AI);
|
|
|
|
PushOnScopeChains(AI, CurBlock->TheScope);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// ActOnBlockError - If there is an error parsing a block, this callback
|
|
/// is invoked to pop the information about the block from the action impl.
|
|
void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
|
|
// Leave the expression-evaluation context.
|
|
DiscardCleanupsInEvaluationContext();
|
|
PopExpressionEvaluationContext();
|
|
|
|
// Pop off CurBlock, handle nested blocks.
|
|
PopDeclContext();
|
|
PopFunctionScopeInfo();
|
|
}
|
|
|
|
/// ActOnBlockStmtExpr - This is called when the body of a block statement
|
|
/// literal was successfully completed. ^(int x){...}
|
|
ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
|
|
Stmt *Body, Scope *CurScope) {
|
|
// If blocks are disabled, emit an error.
|
|
if (!LangOpts.Blocks)
|
|
Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
|
|
|
|
// Leave the expression-evaluation context.
|
|
if (hasAnyUnrecoverableErrorsInThisFunction())
|
|
DiscardCleanupsInEvaluationContext();
|
|
assert(!Cleanup.exprNeedsCleanups() &&
|
|
"cleanups within block not correctly bound!");
|
|
PopExpressionEvaluationContext();
|
|
|
|
BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
|
|
BlockDecl *BD = BSI->TheDecl;
|
|
|
|
if (BSI->HasImplicitReturnType)
|
|
deduceClosureReturnType(*BSI);
|
|
|
|
PopDeclContext();
|
|
|
|
QualType RetTy = Context.VoidTy;
|
|
if (!BSI->ReturnType.isNull())
|
|
RetTy = BSI->ReturnType;
|
|
|
|
bool NoReturn = BD->hasAttr<NoReturnAttr>();
|
|
QualType BlockTy;
|
|
|
|
// Set the captured variables on the block.
|
|
// FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
|
|
SmallVector<BlockDecl::Capture, 4> Captures;
|
|
for (Capture &Cap : BSI->Captures) {
|
|
if (Cap.isThisCapture())
|
|
continue;
|
|
BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
|
|
Cap.isNested(), Cap.getInitExpr());
|
|
Captures.push_back(NewCap);
|
|
}
|
|
BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
|
|
|
|
// If the user wrote a function type in some form, try to use that.
|
|
if (!BSI->FunctionType.isNull()) {
|
|
const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
|
|
|
|
FunctionType::ExtInfo Ext = FTy->getExtInfo();
|
|
if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
|
|
|
|
// Turn protoless block types into nullary block types.
|
|
if (isa<FunctionNoProtoType>(FTy)) {
|
|
FunctionProtoType::ExtProtoInfo EPI;
|
|
EPI.ExtInfo = Ext;
|
|
BlockTy = Context.getFunctionType(RetTy, None, EPI);
|
|
|
|
// Otherwise, if we don't need to change anything about the function type,
|
|
// preserve its sugar structure.
|
|
} else if (FTy->getReturnType() == RetTy &&
|
|
(!NoReturn || FTy->getNoReturnAttr())) {
|
|
BlockTy = BSI->FunctionType;
|
|
|
|
// Otherwise, make the minimal modifications to the function type.
|
|
} else {
|
|
const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
|
|
FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
|
|
EPI.TypeQuals = Qualifiers();
|
|
EPI.ExtInfo = Ext;
|
|
BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
|
|
}
|
|
|
|
// If we don't have a function type, just build one from nothing.
|
|
} else {
|
|
FunctionProtoType::ExtProtoInfo EPI;
|
|
EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
|
|
BlockTy = Context.getFunctionType(RetTy, None, EPI);
|
|
}
|
|
|
|
DiagnoseUnusedParameters(BD->parameters());
|
|
BlockTy = Context.getBlockPointerType(BlockTy);
|
|
|
|
// If needed, diagnose invalid gotos and switches in the block.
|
|
if (getCurFunction()->NeedsScopeChecking() &&
|
|
!PP.isCodeCompletionEnabled())
|
|
DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
|
|
|
|
BD->setBody(cast<CompoundStmt>(Body));
|
|
|
|
if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
|
|
DiagnoseUnguardedAvailabilityViolations(BD);
|
|
|
|
// Try to apply the named return value optimization. We have to check again
|
|
// if we can do this, though, because blocks keep return statements around
|
|
// to deduce an implicit return type.
|
|
if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
|
|
!BD->isDependentContext())
|
|
computeNRVO(Body, BSI);
|
|
|
|
BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy);
|
|
AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
|
|
PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
|
|
|
|
// If the block isn't obviously global, i.e. it captures anything at
|
|
// all, then we need to do a few things in the surrounding context:
|
|
if (Result->getBlockDecl()->hasCaptures()) {
|
|
// First, this expression has a new cleanup object.
|
|
ExprCleanupObjects.push_back(Result->getBlockDecl());
|
|
Cleanup.setExprNeedsCleanups(true);
|
|
|
|
// It also gets a branch-protected scope if any of the captured
|
|
// variables needs destruction.
|
|
for (const auto &CI : Result->getBlockDecl()->captures()) {
|
|
const VarDecl *var = CI.getVariable();
|
|
if (var->getType().isDestructedType() != QualType::DK_none) {
|
|
setFunctionHasBranchProtectedScope();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (getCurFunction())
|
|
getCurFunction()->addBlock(BD);
|
|
|
|
return Result;
|
|
}
|
|
|
|
ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
|
|
SourceLocation RPLoc) {
|
|
TypeSourceInfo *TInfo;
|
|
GetTypeFromParser(Ty, &TInfo);
|
|
return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
|
|
}
|
|
|
|
ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
|
|
Expr *E, TypeSourceInfo *TInfo,
|
|
SourceLocation RPLoc) {
|
|
Expr *OrigExpr = E;
|
|
bool IsMS = false;
|
|
|
|
// CUDA device code does not support varargs.
|
|
if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
|
|
if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
|
|
CUDAFunctionTarget T = IdentifyCUDATarget(F);
|
|
if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice)
|
|
return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
|
|
}
|
|
}
|
|
|
|
// NVPTX does not support va_arg expression.
|
|
if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
|
|
Context.getTargetInfo().getTriple().isNVPTX())
|
|
targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);
|
|
|
|
// It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
|
|
// as Microsoft ABI on an actual Microsoft platform, where
|
|
// __builtin_ms_va_list and __builtin_va_list are the same.)
|
|
if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
|
|
Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
|
|
QualType MSVaListType = Context.getBuiltinMSVaListType();
|
|
if (Context.hasSameType(MSVaListType, E->getType())) {
|
|
if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
|
|
return ExprError();
|
|
IsMS = true;
|
|
}
|
|
}
|
|
|
|
// Get the va_list type
|
|
QualType VaListType = Context.getBuiltinVaListType();
|
|
if (!IsMS) {
|
|
if (VaListType->isArrayType()) {
|
|
// Deal with implicit array decay; for example, on x86-64,
|
|
// va_list is an array, but it's supposed to decay to
|
|
// a pointer for va_arg.
|
|
VaListType = Context.getArrayDecayedType(VaListType);
|
|
// Make sure the input expression also decays appropriately.
|
|
ExprResult Result = UsualUnaryConversions(E);
|
|
if (Result.isInvalid())
|
|
return ExprError();
|
|
E = Result.get();
|
|
} else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
|
|
// If va_list is a record type and we are compiling in C++ mode,
|
|
// check the argument using reference binding.
|
|
InitializedEntity Entity = InitializedEntity::InitializeParameter(
|
|
Context, Context.getLValueReferenceType(VaListType), false);
|
|
ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
|
|
if (Init.isInvalid())
|
|
return ExprError();
|
|
E = Init.getAs<Expr>();
|
|
} else {
|
|
// Otherwise, the va_list argument must be an l-value because
|
|
// it is modified by va_arg.
|
|
if (!E->isTypeDependent() &&
|
|
CheckForModifiableLvalue(E, BuiltinLoc, *this))
|
|
return ExprError();
|
|
}
|
|
}
|
|
|
|
if (!IsMS && !E->isTypeDependent() &&
|
|
!Context.hasSameType(VaListType, E->getType()))
|
|
return ExprError(
|
|
Diag(E->getBeginLoc(),
|
|
diag::err_first_argument_to_va_arg_not_of_type_va_list)
|
|
<< OrigExpr->getType() << E->getSourceRange());
|
|
|
|
if (!TInfo->getType()->isDependentType()) {
|
|
if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
|
|
diag::err_second_parameter_to_va_arg_incomplete,
|
|
TInfo->getTypeLoc()))
|
|
return ExprError();
|
|
|
|
if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
|
|
TInfo->getType(),
|
|
diag::err_second_parameter_to_va_arg_abstract,
|
|
TInfo->getTypeLoc()))
|
|
return ExprError();
|
|
|
|
if (!TInfo->getType().isPODType(Context)) {
|
|
Diag(TInfo->getTypeLoc().getBeginLoc(),
|
|
TInfo->getType()->isObjCLifetimeType()
|
|
? diag::warn_second_parameter_to_va_arg_ownership_qualified
|
|
: diag::warn_second_parameter_to_va_arg_not_pod)
|
|
<< TInfo->getType()
|
|
<< TInfo->getTypeLoc().getSourceRange();
|
|
}
|
|
|
|
// Check for va_arg where arguments of the given type will be promoted
|
|
// (i.e. this va_arg is guaranteed to have undefined behavior).
|
|
QualType PromoteType;
|
|
if (TInfo->getType()->isPromotableIntegerType()) {
|
|
PromoteType = Context.getPromotedIntegerType(TInfo->getType());
|
|
if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
|
|
PromoteType = QualType();
|
|
}
|
|
if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
|
|
PromoteType = Context.DoubleTy;
|
|
if (!PromoteType.isNull())
|
|
DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
|
|
PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
|
|
<< TInfo->getType()
|
|
<< PromoteType
|
|
<< TInfo->getTypeLoc().getSourceRange());
|
|
}
|
|
|
|
QualType T = TInfo->getType().getNonLValueExprType(Context);
|
|
return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
|
|
}
|
|
|
|
ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
|
|
// The type of __null will be int or long, depending on the size of
|
|
// pointers on the target.
|
|
QualType Ty;
|
|
unsigned pw = Context.getTargetInfo().getPointerWidth(0);
|
|
if (pw == Context.getTargetInfo().getIntWidth())
|
|
Ty = Context.IntTy;
|
|
else if (pw == Context.getTargetInfo().getLongWidth())
|
|
Ty = Context.LongTy;
|
|
else if (pw == Context.getTargetInfo().getLongLongWidth())
|
|
Ty = Context.LongLongTy;
|
|
else {
|
|
llvm_unreachable("I don't know size of pointer!");
|
|
}
|
|
|
|
return new (Context) GNUNullExpr(Ty, TokenLoc);
|
|
}
|
|
|
|
ExprResult Sema::ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
|
|
SourceLocation BuiltinLoc,
|
|
SourceLocation RPLoc) {
|
|
return BuildSourceLocExpr(Kind, BuiltinLoc, RPLoc, CurContext);
|
|
}
|
|
|
|
ExprResult Sema::BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
|
|
SourceLocation BuiltinLoc,
|
|
SourceLocation RPLoc,
|
|
DeclContext *ParentContext) {
|
|
return new (Context)
|
|
SourceLocExpr(Context, Kind, BuiltinLoc, RPLoc, ParentContext);
|
|
}
|
|
|
|
bool Sema::ConversionToObjCStringLiteralCheck(QualType DstType, Expr *&Exp,
|
|
bool Diagnose) {
|
|
if (!getLangOpts().ObjC)
|
|
return false;
|
|
|
|
const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
|
|
if (!PT)
|
|
return false;
|
|
|
|
if (!PT->isObjCIdType()) {
|
|
// Check if the destination is the 'NSString' interface.
|
|
const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
|
|
if (!ID || !ID->getIdentifier()->isStr("NSString"))
|
|
return false;
|
|
}
|
|
|
|
// Ignore any parens, implicit casts (should only be
|
|
// array-to-pointer decays), and not-so-opaque values. The last is
|
|
// important for making this trigger for property assignments.
|
|
Expr *SrcExpr = Exp->IgnoreParenImpCasts();
|
|
if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
|
|
if (OV->getSourceExpr())
|
|
SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
|
|
|
|
StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
|
|
if (!SL || !SL->isAscii())
|
|
return false;
|
|
if (Diagnose) {
|
|
Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix)
|
|
<< FixItHint::CreateInsertion(SL->getBeginLoc(), "@");
|
|
Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
|
|
const Expr *SrcExpr) {
|
|
if (!DstType->isFunctionPointerType() ||
|
|
!SrcExpr->getType()->isFunctionType())
|
|
return false;
|
|
|
|
auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
|
|
if (!DRE)
|
|
return false;
|
|
|
|
auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
|
|
if (!FD)
|
|
return false;
|
|
|
|
return !S.checkAddressOfFunctionIsAvailable(FD,
|
|
/*Complain=*/true,
|
|
SrcExpr->getBeginLoc());
|
|
}
|
|
|
|
bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
|
|
SourceLocation Loc,
|
|
QualType DstType, QualType SrcType,
|
|
Expr *SrcExpr, AssignmentAction Action,
|
|
bool *Complained) {
|
|
if (Complained)
|
|
*Complained = false;
|
|
|
|
// Decode the result (notice that AST's are still created for extensions).
|
|
bool CheckInferredResultType = false;
|
|
bool isInvalid = false;
|
|
unsigned DiagKind = 0;
|
|
FixItHint Hint;
|
|
ConversionFixItGenerator ConvHints;
|
|
bool MayHaveConvFixit = false;
|
|
bool MayHaveFunctionDiff = false;
|
|
const ObjCInterfaceDecl *IFace = nullptr;
|
|
const ObjCProtocolDecl *PDecl = nullptr;
|
|
|
|
switch (ConvTy) {
|
|
case Compatible:
|
|
DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
|
|
return false;
|
|
|
|
case PointerToInt:
|
|
DiagKind = diag::ext_typecheck_convert_pointer_int;
|
|
ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
|
|
MayHaveConvFixit = true;
|
|
break;
|
|
case IntToPointer:
|
|
DiagKind = diag::ext_typecheck_convert_int_pointer;
|
|
ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
|
|
MayHaveConvFixit = true;
|
|
break;
|
|
case IncompatiblePointer:
|
|
if (Action == AA_Passing_CFAudited)
|
|
DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
|
|
else if (SrcType->isFunctionPointerType() &&
|
|
DstType->isFunctionPointerType())
|
|
DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
|
|
else
|
|
DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
|
|
|
|
CheckInferredResultType = DstType->isObjCObjectPointerType() &&
|
|
SrcType->isObjCObjectPointerType();
|
|
if (Hint.isNull() && !CheckInferredResultType) {
|
|
ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
|
|
}
|
|
else if (CheckInferredResultType) {
|
|
SrcType = SrcType.getUnqualifiedType();
|
|
DstType = DstType.getUnqualifiedType();
|
|
}
|
|
MayHaveConvFixit = true;
|
|
break;
|
|
case IncompatiblePointerSign:
|
|
DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
|
|
break;
|
|
case FunctionVoidPointer:
|
|
DiagKind = diag::ext_typecheck_convert_pointer_void_func;
|
|
break;
|
|
case IncompatiblePointerDiscardsQualifiers: {
|
|
// Perform array-to-pointer decay if necessary.
|
|
if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
|
|
|
|
Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
|
|
Qualifiers rhq = DstType->getPointeeType().getQualifiers();
|
|
if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
|
|
DiagKind = diag::err_typecheck_incompatible_address_space;
|
|
break;
|
|
|
|
} else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
|
|
DiagKind = diag::err_typecheck_incompatible_ownership;
|
|
break;
|
|
}
|
|
|
|
llvm_unreachable("unknown error case for discarding qualifiers!");
|
|
// fallthrough
|
|
}
|
|
case CompatiblePointerDiscardsQualifiers:
|
|
// If the qualifiers lost were because we were applying the
|
|
// (deprecated) C++ conversion from a string literal to a char*
|
|
// (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
|
|
// Ideally, this check would be performed in
|
|
// checkPointerTypesForAssignment. However, that would require a
|
|
// bit of refactoring (so that the second argument is an
|
|
// expression, rather than a type), which should be done as part
|
|
// of a larger effort to fix checkPointerTypesForAssignment for
|
|
// C++ semantics.
|
|
if (getLangOpts().CPlusPlus &&
|
|
IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
|
|
return false;
|
|
DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
|
|
break;
|
|
case IncompatibleNestedPointerQualifiers:
|
|
DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
|
|
break;
|
|
case IncompatibleNestedPointerAddressSpaceMismatch:
|
|
DiagKind = diag::err_typecheck_incompatible_nested_address_space;
|
|
break;
|
|
case IntToBlockPointer:
|
|
DiagKind = diag::err_int_to_block_pointer;
|
|
break;
|
|
case IncompatibleBlockPointer:
|
|
DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
|
|
break;
|
|
case IncompatibleObjCQualifiedId: {
|
|
if (SrcType->isObjCQualifiedIdType()) {
|
|
const ObjCObjectPointerType *srcOPT =
|
|
SrcType->getAs<ObjCObjectPointerType>();
|
|
for (auto *srcProto : srcOPT->quals()) {
|
|
PDecl = srcProto;
|
|
break;
|
|
}
|
|
if (const ObjCInterfaceType *IFaceT =
|
|
DstType->getAs<ObjCObjectPointerType>()->getInterfaceType())
|
|
IFace = IFaceT->getDecl();
|
|
}
|
|
else if (DstType->isObjCQualifiedIdType()) {
|
|
const ObjCObjectPointerType *dstOPT =
|
|
DstType->getAs<ObjCObjectPointerType>();
|
|
for (auto *dstProto : dstOPT->quals()) {
|
|
PDecl = dstProto;
|
|
break;
|
|
}
|
|
if (const ObjCInterfaceType *IFaceT =
|
|
SrcType->getAs<ObjCObjectPointerType>()->getInterfaceType())
|
|
IFace = IFaceT->getDecl();
|
|
}
|
|
DiagKind = diag::warn_incompatible_qualified_id;
|
|
break;
|
|
}
|
|
case IncompatibleVectors:
|
|
DiagKind = diag::warn_incompatible_vectors;
|
|
break;
|
|
case IncompatibleObjCWeakRef:
|
|
DiagKind = diag::err_arc_weak_unavailable_assign;
|
|
break;
|
|
case Incompatible:
|
|
if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
|
|
if (Complained)
|
|
*Complained = true;
|
|
return true;
|
|
}
|
|
|
|
DiagKind = diag::err_typecheck_convert_incompatible;
|
|
ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
|
|
MayHaveConvFixit = true;
|
|
isInvalid = true;
|
|
MayHaveFunctionDiff = true;
|
|
break;
|
|
}
|
|
|
|
QualType FirstType, SecondType;
|
|
switch (Action) {
|
|
case AA_Assigning:
|
|
case AA_Initializing:
|
|
// The destination type comes first.
|
|
FirstType = DstType;
|
|
SecondType = SrcType;
|
|
break;
|
|
|
|
case AA_Returning:
|
|
case AA_Passing:
|
|
case AA_Passing_CFAudited:
|
|
case AA_Converting:
|
|
case AA_Sending:
|
|
case AA_Casting:
|
|
// The source type comes first.
|
|
FirstType = SrcType;
|
|
SecondType = DstType;
|
|
break;
|
|
}
|
|
|
|
PartialDiagnostic FDiag = PDiag(DiagKind);
|
|
if (Action == AA_Passing_CFAudited)
|
|
FDiag << FirstType << SecondType << AA_Passing << SrcExpr->getSourceRange();
|
|
else
|
|
FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
|
|
|
|
// If we can fix the conversion, suggest the FixIts.
|
|
assert(ConvHints.isNull() || Hint.isNull());
|
|
if (!ConvHints.isNull()) {
|
|
for (FixItHint &H : ConvHints.Hints)
|
|
FDiag << H;
|
|
} else {
|
|
FDiag << Hint;
|
|
}
|
|
if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
|
|
|
|
if (MayHaveFunctionDiff)
|
|
HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
|
|
|
|
Diag(Loc, FDiag);
|
|
if (DiagKind == diag::warn_incompatible_qualified_id &&
|
|
PDecl && IFace && !IFace->hasDefinition())
|
|
Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
|
|
<< IFace << PDecl;
|
|
|
|
if (SecondType == Context.OverloadTy)
|
|
NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
|
|
FirstType, /*TakingAddress=*/true);
|
|
|
|
if (CheckInferredResultType)
|
|
EmitRelatedResultTypeNote(SrcExpr);
|
|
|
|
if (Action == AA_Returning && ConvTy == IncompatiblePointer)
|
|
EmitRelatedResultTypeNoteForReturn(DstType);
|
|
|
|
if (Complained)
|
|
*Complained = true;
|
|
return isInvalid;
|
|
}
|
|
|
|
ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
|
|
llvm::APSInt *Result) {
|
|
class SimpleICEDiagnoser : public VerifyICEDiagnoser {
|
|
public:
|
|
void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
|
|
S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
|
|
}
|
|
} Diagnoser;
|
|
|
|
return VerifyIntegerConstantExpression(E, Result, Diagnoser);
|
|
}
|
|
|
|
ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
|
|
llvm::APSInt *Result,
|
|
unsigned DiagID,
|
|
bool AllowFold) {
|
|
class IDDiagnoser : public VerifyICEDiagnoser {
|
|
unsigned DiagID;
|
|
|
|
public:
|
|
IDDiagnoser(unsigned DiagID)
|
|
: VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
|
|
|
|
void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
|
|
S.Diag(Loc, DiagID) << SR;
|
|
}
|
|
} Diagnoser(DiagID);
|
|
|
|
return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
|
|
}
|
|
|
|
void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
|
|
SourceRange SR) {
|
|
S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
|
|
}
|
|
|
|
ExprResult
|
|
Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
|
|
VerifyICEDiagnoser &Diagnoser,
|
|
bool AllowFold) {
|
|
SourceLocation DiagLoc = E->getBeginLoc();
|
|
|
|
if (getLangOpts().CPlusPlus11) {
|
|
// C++11 [expr.const]p5:
|
|
// If an expression of literal class type is used in a context where an
|
|
// integral constant expression is required, then that class type shall
|
|
// have a single non-explicit conversion function to an integral or
|
|
// unscoped enumeration type
|
|
ExprResult Converted;
|
|
class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
|
|
public:
|
|
CXX11ConvertDiagnoser(bool Silent)
|
|
: ICEConvertDiagnoser(/*AllowScopedEnumerations*/false,
|
|
Silent, true) {}
|
|
|
|
SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
|
|
QualType T) override {
|
|
return S.Diag(Loc, diag::err_ice_not_integral) << T;
|
|
}
|
|
|
|
SemaDiagnosticBuilder diagnoseIncomplete(
|
|
Sema &S, SourceLocation Loc, QualType T) override {
|
|
return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
|
|
}
|
|
|
|
SemaDiagnosticBuilder diagnoseExplicitConv(
|
|
Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
|
|
return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
|
|
}
|
|
|
|
SemaDiagnosticBuilder noteExplicitConv(
|
|
Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
|
|
return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
|
|
<< ConvTy->isEnumeralType() << ConvTy;
|
|
}
|
|
|
|
SemaDiagnosticBuilder diagnoseAmbiguous(
|
|
Sema &S, SourceLocation Loc, QualType T) override {
|
|
return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
|
|
}
|
|
|
|
SemaDiagnosticBuilder noteAmbiguous(
|
|
Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
|
|
return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
|
|
<< ConvTy->isEnumeralType() << ConvTy;
|
|
}
|
|
|
|
SemaDiagnosticBuilder diagnoseConversion(
|
|
Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
|
|
llvm_unreachable("conversion functions are permitted");
|
|
}
|
|
} ConvertDiagnoser(Diagnoser.Suppress);
|
|
|
|
Converted = PerformContextualImplicitConversion(DiagLoc, E,
|
|
ConvertDiagnoser);
|
|
if (Converted.isInvalid())
|
|
return Converted;
|
|
E = Converted.get();
|
|
if (!E->getType()->isIntegralOrUnscopedEnumerationType())
|
|
return ExprError();
|
|
} else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
|
|
// An ICE must be of integral or unscoped enumeration type.
|
|
if (!Diagnoser.Suppress)
|
|
Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
|
|
return ExprError();
|
|
}
|
|
|
|
if (!isa<ConstantExpr>(E))
|
|
E = ConstantExpr::Create(Context, E);
|
|
|
|
// Circumvent ICE checking in C++11 to avoid evaluating the expression twice
|
|
// in the non-ICE case.
|
|
if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
|
|
if (Result)
|
|
*Result = E->EvaluateKnownConstIntCheckOverflow(Context);
|
|
return E;
|
|
}
|
|
|
|
Expr::EvalResult EvalResult;
|
|
SmallVector<PartialDiagnosticAt, 8> Notes;
|
|
EvalResult.Diag = &Notes;
|
|
|
|
// Try to evaluate the expression, and produce diagnostics explaining why it's
|
|
// not a constant expression as a side-effect.
|
|
bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
|
|
EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
|
|
|
|
// In C++11, we can rely on diagnostics being produced for any expression
|
|
// which is not a constant expression. If no diagnostics were produced, then
|
|
// this is a constant expression.
|
|
if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
|
|
if (Result)
|
|
*Result = EvalResult.Val.getInt();
|
|
return E;
|
|
}
|
|
|
|
// If our only note is the usual "invalid subexpression" note, just point
|
|
// the caret at its location rather than producing an essentially
|
|
// redundant note.
|
|
if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
|
|
diag::note_invalid_subexpr_in_const_expr) {
|
|
DiagLoc = Notes[0].first;
|
|
Notes.clear();
|
|
}
|
|
|
|
if (!Folded || !AllowFold) {
|
|
if (!Diagnoser.Suppress) {
|
|
Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
|
|
for (const PartialDiagnosticAt &Note : Notes)
|
|
Diag(Note.first, Note.second);
|
|
}
|
|
|
|
return ExprError();
|
|
}
|
|
|
|
Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
|
|
for (const PartialDiagnosticAt &Note : Notes)
|
|
Diag(Note.first, Note.second);
|
|
|
|
if (Result)
|
|
*Result = EvalResult.Val.getInt();
|
|
return E;
|
|
}
|
|
|
|
namespace {
|
|
// Handle the case where we conclude a expression which we speculatively
|
|
// considered to be unevaluated is actually evaluated.
|
|
class TransformToPE : public TreeTransform<TransformToPE> {
|
|
typedef TreeTransform<TransformToPE> BaseTransform;
|
|
|
|
public:
|
|
TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
|
|
|
|
// Make sure we redo semantic analysis
|
|
bool AlwaysRebuild() { return true; }
|
|
|
|
// We need to special-case DeclRefExprs referring to FieldDecls which
|
|
// are not part of a member pointer formation; normal TreeTransforming
|
|
// doesn't catch this case because of the way we represent them in the AST.
|
|
// FIXME: This is a bit ugly; is it really the best way to handle this
|
|
// case?
|
|
//
|
|
// Error on DeclRefExprs referring to FieldDecls.
|
|
ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
|
|
if (isa<FieldDecl>(E->getDecl()) &&
|
|
!SemaRef.isUnevaluatedContext())
|
|
return SemaRef.Diag(E->getLocation(),
|
|
diag::err_invalid_non_static_member_use)
|
|
<< E->getDecl() << E->getSourceRange();
|
|
|
|
return BaseTransform::TransformDeclRefExpr(E);
|
|
}
|
|
|
|
// Exception: filter out member pointer formation
|
|
ExprResult TransformUnaryOperator(UnaryOperator *E) {
|
|
if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
|
|
return E;
|
|
|
|
return BaseTransform::TransformUnaryOperator(E);
|
|
}
|
|
|
|
ExprResult TransformLambdaExpr(LambdaExpr *E) {
|
|
// Lambdas never need to be transformed.
|
|
return E;
|
|
}
|
|
};
|
|
}
|
|
|
|
ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
|
|
assert(isUnevaluatedContext() &&
|
|
"Should only transform unevaluated expressions");
|
|
ExprEvalContexts.back().Context =
|
|
ExprEvalContexts[ExprEvalContexts.size()-2].Context;
|
|
if (isUnevaluatedContext())
|
|
return E;
|
|
return TransformToPE(*this).TransformExpr(E);
|
|
}
|
|
|
|
void
|
|
Sema::PushExpressionEvaluationContext(
|
|
ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
|
|
ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
|
|
ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
|
|
LambdaContextDecl, ExprContext);
|
|
Cleanup.reset();
|
|
if (!MaybeODRUseExprs.empty())
|
|
std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
|
|
}
|
|
|
|
void
|
|
Sema::PushExpressionEvaluationContext(
|
|
ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
|
|
ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
|
|
Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
|
|
PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext);
|
|
}
|
|
|
|
namespace {
|
|
|
|
const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
|
|
PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
|
|
if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) {
|
|
if (E->getOpcode() == UO_Deref)
|
|
return CheckPossibleDeref(S, E->getSubExpr());
|
|
} else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) {
|
|
return CheckPossibleDeref(S, E->getBase());
|
|
} else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) {
|
|
return CheckPossibleDeref(S, E->getBase());
|
|
} else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) {
|
|
QualType Inner;
|
|
QualType Ty = E->getType();
|
|
if (const auto *Ptr = Ty->getAs<PointerType>())
|
|
Inner = Ptr->getPointeeType();
|
|
else if (const auto *Arr = S.Context.getAsArrayType(Ty))
|
|
Inner = Arr->getElementType();
|
|
else
|
|
return nullptr;
|
|
|
|
if (Inner->hasAttr(attr::NoDeref))
|
|
return E;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
|
|
for (const Expr *E : Rec.PossibleDerefs) {
|
|
const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E);
|
|
if (DeclRef) {
|
|
const ValueDecl *Decl = DeclRef->getDecl();
|
|
Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
|
|
<< Decl->getName() << E->getSourceRange();
|
|
Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
|
|
} else {
|
|
Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
|
|
<< E->getSourceRange();
|
|
}
|
|
}
|
|
Rec.PossibleDerefs.clear();
|
|
}
|
|
|
|
void Sema::PopExpressionEvaluationContext() {
|
|
ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
|
|
unsigned NumTypos = Rec.NumTypos;
|
|
|
|
if (!Rec.Lambdas.empty()) {
|
|
using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
|
|
if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument || Rec.isUnevaluated() ||
|
|
(Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17)) {
|
|
unsigned D;
|
|
if (Rec.isUnevaluated()) {
|
|
// C++11 [expr.prim.lambda]p2:
|
|
// A lambda-expression shall not appear in an unevaluated operand
|
|
// (Clause 5).
|
|
D = diag::err_lambda_unevaluated_operand;
|
|
} else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
|
|
// C++1y [expr.const]p2:
|
|
// A conditional-expression e is a core constant expression unless the
|
|
// evaluation of e, following the rules of the abstract machine, would
|
|
// evaluate [...] a lambda-expression.
|
|
D = diag::err_lambda_in_constant_expression;
|
|
} else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
|
|
// C++17 [expr.prim.lamda]p2:
|
|
// A lambda-expression shall not appear [...] in a template-argument.
|
|
D = diag::err_lambda_in_invalid_context;
|
|
} else
|
|
llvm_unreachable("Couldn't infer lambda error message.");
|
|
|
|
for (const auto *L : Rec.Lambdas)
|
|
Diag(L->getBeginLoc(), D);
|
|
} else {
|
|
// Mark the capture expressions odr-used. This was deferred
|
|
// during lambda expression creation.
|
|
for (auto *Lambda : Rec.Lambdas) {
|
|
for (auto *C : Lambda->capture_inits())
|
|
MarkDeclarationsReferencedInExpr(C);
|
|
}
|
|
}
|
|
}
|
|
|
|
WarnOnPendingNoDerefs(Rec);
|
|
|
|
// When are coming out of an unevaluated context, clear out any
|
|
// temporaries that we may have created as part of the evaluation of
|
|
// the expression in that context: they aren't relevant because they
|
|
// will never be constructed.
|
|
if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
|
|
ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
|
|
ExprCleanupObjects.end());
|
|
Cleanup = Rec.ParentCleanup;
|
|
CleanupVarDeclMarking();
|
|
std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
|
|
// Otherwise, merge the contexts together.
|
|
} else {
|
|
Cleanup.mergeFrom(Rec.ParentCleanup);
|
|
MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
|
|
Rec.SavedMaybeODRUseExprs.end());
|
|
}
|
|
|
|
// Pop the current expression evaluation context off the stack.
|
|
ExprEvalContexts.pop_back();
|
|
|
|
// The global expression evaluation context record is never popped.
|
|
ExprEvalContexts.back().NumTypos += NumTypos;
|
|
}
|
|
|
|
void Sema::DiscardCleanupsInEvaluationContext() {
|
|
ExprCleanupObjects.erase(
|
|
ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
|
|
ExprCleanupObjects.end());
|
|
Cleanup.reset();
|
|
MaybeODRUseExprs.clear();
|
|
}
|
|
|
|
ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
|
|
ExprResult Result = CheckPlaceholderExpr(E);
|
|
if (Result.isInvalid())
|
|
return ExprError();
|
|
E = Result.get();
|
|
if (!E->getType()->isVariablyModifiedType())
|
|
return E;
|
|
return TransformToPotentiallyEvaluated(E);
|
|
}
|
|
|
|
/// Are we in a context that is potentially constant evaluated per C++20
|
|
/// [expr.const]p12?
|
|
static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
|
|
/// C++2a [expr.const]p12:
|
|
// An expression or conversion is potentially constant evaluated if it is
|
|
switch (SemaRef.ExprEvalContexts.back().Context) {
|
|
case Sema::ExpressionEvaluationContext::ConstantEvaluated:
|
|
// -- a manifestly constant-evaluated expression,
|
|
case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
|
|
case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
|
|
case Sema::ExpressionEvaluationContext::DiscardedStatement:
|
|
// -- a potentially-evaluated expression,
|
|
case Sema::ExpressionEvaluationContext::UnevaluatedList:
|
|
// -- an immediate subexpression of a braced-init-list,
|
|
|
|
// -- [FIXME] an expression of the form & cast-expression that occurs
|
|
// within a templated entity
|
|
// -- a subexpression of one of the above that is not a subexpression of
|
|
// a nested unevaluated operand.
|
|
return true;
|
|
|
|
case Sema::ExpressionEvaluationContext::Unevaluated:
|
|
case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
|
|
// Expressions in this context are never evaluated.
|
|
return false;
|
|
}
|
|
llvm_unreachable("Invalid context");
|
|
}
|
|
|
|
namespace {
|
|
enum class OdrUseContext {
|
|
/// Declarations in this context are not odr-used.
|
|
None,
|
|
/// Declarations in this context are formally odr-used, but this is a
|
|
/// dependent context.
|
|
Dependent,
|
|
/// Declarations in this context are odr-used but not actually used (yet).
|
|
FormallyOdrUsed,
|
|
/// Declarations in this context are used.
|
|
Used
|
|
};
|
|
}
|
|
|
|
/// Are we within a context in which references to resolved functions or to
|
|
/// variables result in odr-use?
|
|
static OdrUseContext isOdrUseContext(Sema &SemaRef) {
|
|
OdrUseContext Result;
|
|
|
|
switch (SemaRef.ExprEvalContexts.back().Context) {
|
|
case Sema::ExpressionEvaluationContext::Unevaluated:
|
|
case Sema::ExpressionEvaluationContext::UnevaluatedList:
|
|
case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
|
|
return OdrUseContext::None;
|
|
|
|
case Sema::ExpressionEvaluationContext::ConstantEvaluated:
|
|
case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
|
|
Result = OdrUseContext::Used;
|
|
break;
|
|
|
|
case Sema::ExpressionEvaluationContext::DiscardedStatement:
|
|
Result = OdrUseContext::FormallyOdrUsed;
|
|
break;
|
|
|
|
case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
|
|
// A default argument formally results in odr-use, but doesn't actually
|
|
// result in a use in any real sense until it itself is used.
|
|
Result = OdrUseContext::FormallyOdrUsed;
|
|
break;
|
|
}
|
|
|
|
if (SemaRef.CurContext->isDependentContext())
|
|
return OdrUseContext::Dependent;
|
|
|
|
return Result;
|
|
}
|
|
|
|
static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
|
|
CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Func);
|
|
return Func->isConstexpr() &&
|
|
(Func->isImplicitlyInstantiable() || (MD && !MD->isUserProvided()));
|
|
}
|
|
|
|
/// Mark a function referenced, and check whether it is odr-used
|
|
/// (C++ [basic.def.odr]p2, C99 6.9p3)
|
|
void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
|
|
bool MightBeOdrUse) {
|
|
assert(Func && "No function?");
|
|
|
|
Func->setReferenced();
|
|
|
|
// Recursive functions aren't really used until they're used from some other
|
|
// context.
|
|
bool IsRecursiveCall = CurContext == Func;
|
|
|
|
// C++11 [basic.def.odr]p3:
|
|
// A function whose name appears as a potentially-evaluated expression is
|
|
// odr-used if it is the unique lookup result or the selected member of a
|
|
// set of overloaded functions [...].
|
|
//
|
|
// We (incorrectly) mark overload resolution as an unevaluated context, so we
|
|
// can just check that here.
|
|
OdrUseContext OdrUse =
|
|
MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None;
|
|
if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
|
|
OdrUse = OdrUseContext::FormallyOdrUsed;
|
|
|
|
// C++20 [expr.const]p12:
|
|
// A function [...] is needed for constant evaluation if it is [...] a
|
|
// constexpr function that is named by an expression that is potentially
|
|
// constant evaluated
|
|
bool NeededForConstantEvaluation =
|
|
isPotentiallyConstantEvaluatedContext(*this) &&
|
|
isImplicitlyDefinableConstexprFunction(Func);
|
|
|
|
// Determine whether we require a function definition to exist, per
|
|
// C++11 [temp.inst]p3:
|
|
// Unless a function template specialization has been explicitly
|
|
// instantiated or explicitly specialized, the function template
|
|
// specialization is implicitly instantiated when the specialization is
|
|
// referenced in a context that requires a function definition to exist.
|
|
// C++20 [temp.inst]p7:
|
|
// The existence of a definition of a [...] function is considered to
|
|
// affect the semantics of the program if the [...] function is needed for
|
|
// constant evaluation by an expression
|
|
// C++20 [basic.def.odr]p10:
|
|
// Every program shall contain exactly one definition of every non-inline
|
|
// function or variable that is odr-used in that program outside of a
|
|
// discarded statement
|
|
// C++20 [special]p1:
|
|
// The implementation will implicitly define [defaulted special members]
|
|
// if they are odr-used or needed for constant evaluation.
|
|
//
|
|
// Note that we skip the implicit instantiation of templates that are only
|
|
// used in unused default arguments or by recursive calls to themselves.
|
|
// This is formally non-conforming, but seems reasonable in practice.
|
|
bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used ||
|
|
NeededForConstantEvaluation);
|
|
|
|
// C++14 [temp.expl.spec]p6:
|
|
// If a template [...] is explicitly specialized then that specialization
|
|
// shall be declared before the first use of that specialization that would
|
|
// cause an implicit instantiation to take place, in every translation unit
|
|
// in which such a use occurs
|
|
if (NeedDefinition &&
|
|
(Func->getTemplateSpecializationKind() != TSK_Undeclared ||
|
|
Func->getMemberSpecializationInfo()))
|
|
checkSpecializationVisibility(Loc, Func);
|
|
|
|
// C++14 [except.spec]p17:
|
|
// An exception-specification is considered to be needed when:
|
|
// - the function is odr-used or, if it appears in an unevaluated operand,
|
|
// would be odr-used if the expression were potentially-evaluated;
|
|
//
|
|
// Note, we do this even if MightBeOdrUse is false. That indicates that the
|
|
// function is a pure virtual function we're calling, and in that case the
|
|
// function was selected by overload resolution and we need to resolve its
|
|
// exception specification for a different reason.
|
|
const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
|
|
if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
|
|
ResolveExceptionSpec(Loc, FPT);
|
|
|
|
if (getLangOpts().CUDA)
|
|
CheckCUDACall(Loc, Func);
|
|
|
|
// If we need a definition, try to create one.
|
|
if (NeedDefinition && !Func->getBody()) {
|
|
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
|
|
Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
|
|
if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
|
|
if (Constructor->isDefaultConstructor()) {
|
|
if (Constructor->isTrivial() &&
|
|
!Constructor->hasAttr<DLLExportAttr>())
|
|
return;
|
|
DefineImplicitDefaultConstructor(Loc, Constructor);
|
|
} else if (Constructor->isCopyConstructor()) {
|
|
DefineImplicitCopyConstructor(Loc, Constructor);
|
|
} else if (Constructor->isMoveConstructor()) {
|
|
DefineImplicitMoveConstructor(Loc, Constructor);
|
|
}
|
|
} else if (Constructor->getInheritedConstructor()) {
|
|
DefineInheritingConstructor(Loc, Constructor);
|
|
}
|
|
} else if (CXXDestructorDecl *Destructor =
|
|
dyn_cast<CXXDestructorDecl>(Func)) {
|
|
Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
|
|
if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
|
|
if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
|
|
return;
|
|
DefineImplicitDestructor(Loc, Destructor);
|
|
}
|
|
if (Destructor->isVirtual() && getLangOpts().AppleKext)
|
|
MarkVTableUsed(Loc, Destructor->getParent());
|
|
} else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
|
|
if (MethodDecl->isOverloadedOperator() &&
|
|
MethodDecl->getOverloadedOperator() == OO_Equal) {
|
|
MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
|
|
if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
|
|
if (MethodDecl->isCopyAssignmentOperator())
|
|
DefineImplicitCopyAssignment(Loc, MethodDecl);
|
|
else if (MethodDecl->isMoveAssignmentOperator())
|
|
DefineImplicitMoveAssignment(Loc, MethodDecl);
|
|
}
|
|
} else if (isa<CXXConversionDecl>(MethodDecl) &&
|
|
MethodDecl->getParent()->isLambda()) {
|
|
CXXConversionDecl *Conversion =
|
|
cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
|
|
if (Conversion->isLambdaToBlockPointerConversion())
|
|
DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
|
|
else
|
|
DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
|
|
} else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
|
|
MarkVTableUsed(Loc, MethodDecl->getParent());
|
|
}
|
|
|
|
// Implicit instantiation of function templates and member functions of
|
|
// class templates.
|
|
if (Func->isImplicitlyInstantiable()) {
|
|
TemplateSpecializationKind TSK =
|
|
Func->getTemplateSpecializationKindForInstantiation();
|
|
SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
|
|
bool FirstInstantiation = PointOfInstantiation.isInvalid();
|
|
if (FirstInstantiation) {
|
|
PointOfInstantiation = Loc;
|
|
Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
|
|
} else if (TSK != TSK_ImplicitInstantiation) {
|
|
// Use the point of use as the point of instantiation, instead of the
|
|
// point of explicit instantiation (which we track as the actual point
|
|
// of instantiation). This gives better backtraces in diagnostics.
|
|
PointOfInstantiation = Loc;
|
|
}
|
|
|
|
if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
|
|
Func->isConstexpr()) {
|
|
if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
|
|
cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
|
|
CodeSynthesisContexts.size())
|
|
PendingLocalImplicitInstantiations.push_back(
|
|
std::make_pair(Func, PointOfInstantiation));
|
|
else if (Func->isConstexpr())
|
|
// Do not defer instantiations of constexpr functions, to avoid the
|
|
// expression evaluator needing to call back into Sema if it sees a
|
|
// call to such a function.
|
|
InstantiateFunctionDefinition(PointOfInstantiation, Func);
|
|
else {
|
|
Func->setInstantiationIsPending(true);
|
|
PendingInstantiations.push_back(
|
|
std::make_pair(Func, PointOfInstantiation));
|
|
// Notify the consumer that a function was implicitly instantiated.
|
|
Consumer.HandleCXXImplicitFunctionInstantiation(Func);
|
|
}
|
|
}
|
|
} else {
|
|
// Walk redefinitions, as some of them may be instantiable.
|
|
for (auto i : Func->redecls()) {
|
|
if (!i->isUsed(false) && i->isImplicitlyInstantiable())
|
|
MarkFunctionReferenced(Loc, i, MightBeOdrUse);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this is the first "real" use, act on that.
|
|
if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
|
|
// Keep track of used but undefined functions.
|
|
if (!Func->isDefined()) {
|
|
if (mightHaveNonExternalLinkage(Func))
|
|
UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
|
|
else if (Func->getMostRecentDecl()->isInlined() &&
|
|
!LangOpts.GNUInline &&
|
|
!Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
|
|
UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
|
|
else if (isExternalWithNoLinkageType(Func))
|
|
UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
|
|
}
|
|
|
|
Func->markUsed(Context);
|
|
|
|
if (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)
|
|
checkOpenMPDeviceFunction(Loc, Func);
|
|
}
|
|
}
|
|
|
|
static void
|
|
diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
|
|
ValueDecl *var, DeclContext *DC) {
|
|
DeclContext *VarDC = var->getDeclContext();
|
|
|
|
// If the parameter still belongs to the translation unit, then
|
|
// we're actually just using one parameter in the declaration of
|
|
// the next.
|
|
if (isa<ParmVarDecl>(var) &&
|
|
isa<TranslationUnitDecl>(VarDC))
|
|
return;
|
|
|
|
// For C code, don't diagnose about capture if we're not actually in code
|
|
// right now; it's impossible to write a non-constant expression outside of
|
|
// function context, so we'll get other (more useful) diagnostics later.
|
|
//
|
|
// For C++, things get a bit more nasty... it would be nice to suppress this
|
|
// diagnostic for certain cases like using a local variable in an array bound
|
|
// for a member of a local class, but the correct predicate is not obvious.
|
|
if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
|
|
return;
|
|
|
|
unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
|
|
unsigned ContextKind = 3; // unknown
|
|
if (isa<CXXMethodDecl>(VarDC) &&
|
|
cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
|
|
ContextKind = 2;
|
|
} else if (isa<FunctionDecl>(VarDC)) {
|
|
ContextKind = 0;
|
|
} else if (isa<BlockDecl>(VarDC)) {
|
|
ContextKind = 1;
|
|
}
|
|
|
|
S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
|
|
<< var << ValueKind << ContextKind << VarDC;
|
|
S.Diag(var->getLocation(), diag::note_entity_declared_at)
|
|
<< var;
|
|
|
|
// FIXME: Add additional diagnostic info about class etc. which prevents
|
|
// capture.
|
|
}
|
|
|
|
|
|
static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var,
|
|
bool &SubCapturesAreNested,
|
|
QualType &CaptureType,
|
|
QualType &DeclRefType) {
|
|
// Check whether we've already captured it.
|
|
if (CSI->CaptureMap.count(Var)) {
|
|
// If we found a capture, any subcaptures are nested.
|
|
SubCapturesAreNested = true;
|
|
|
|
// Retrieve the capture type for this variable.
|
|
CaptureType = CSI->getCapture(Var).getCaptureType();
|
|
|
|
// Compute the type of an expression that refers to this variable.
|
|
DeclRefType = CaptureType.getNonReferenceType();
|
|
|
|
// Similarly to mutable captures in lambda, all the OpenMP captures by copy
|
|
// are mutable in the sense that user can change their value - they are
|
|
// private instances of the captured declarations.
|
|
const Capture &Cap = CSI->getCapture(Var);
|
|
if (Cap.isCopyCapture() &&
|
|
!(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) &&
|
|
!(isa<CapturedRegionScopeInfo>(CSI) &&
|
|
cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
|
|
DeclRefType.addConst();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Only block literals, captured statements, and lambda expressions can
|
|
// capture; other scopes don't work.
|
|
static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var,
|
|
SourceLocation Loc,
|
|
const bool Diagnose, Sema &S) {
|
|
if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
|
|
return getLambdaAwareParentOfDeclContext(DC);
|
|
else if (Var->hasLocalStorage()) {
|
|
if (Diagnose)
|
|
diagnoseUncapturableValueReference(S, Loc, Var, DC);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
|
|
// certain types of variables (unnamed, variably modified types etc.)
|
|
// so check for eligibility.
|
|
static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var,
|
|
SourceLocation Loc,
|
|
const bool Diagnose, Sema &S) {
|
|
|
|
bool IsBlock = isa<BlockScopeInfo>(CSI);
|
|
bool IsLambda = isa<LambdaScopeInfo>(CSI);
|
|
|
|
// Lambdas are not allowed to capture unnamed variables
|
|
// (e.g. anonymous unions).
|
|
// FIXME: The C++11 rule don't actually state this explicitly, but I'm
|
|
// assuming that's the intent.
|
|
if (IsLambda && !Var->getDeclName()) {
|
|
if (Diagnose) {
|
|
S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
|
|
S.Diag(Var->getLocation(), diag::note_declared_at);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Prohibit variably-modified types in blocks; they're difficult to deal with.
|
|
if (Var->getType()->isVariablyModifiedType() && IsBlock) {
|
|
if (Diagnose) {
|
|
S.Diag(Loc, diag::err_ref_vm_type);
|
|
S.Diag(Var->getLocation(), diag::note_previous_decl)
|
|
<< Var->getDeclName();
|
|
}
|
|
return false;
|
|
}
|
|
// Prohibit structs with flexible array members too.
|
|
// We cannot capture what is in the tail end of the struct.
|
|
if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
|
|
if (VTTy->getDecl()->hasFlexibleArrayMember()) {
|
|
if (Diagnose) {
|
|
if (IsBlock)
|
|
S.Diag(Loc, diag::err_ref_flexarray_type);
|
|
else
|
|
S.Diag(Loc, diag::err_lambda_capture_flexarray_type)
|
|
<< Var->getDeclName();
|
|
S.Diag(Var->getLocation(), diag::note_previous_decl)
|
|
<< Var->getDeclName();
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
|
|
// Lambdas and captured statements are not allowed to capture __block
|
|
// variables; they don't support the expected semantics.
|
|
if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
|
|
if (Diagnose) {
|
|
S.Diag(Loc, diag::err_capture_block_variable)
|
|
<< Var->getDeclName() << !IsLambda;
|
|
S.Diag(Var->getLocation(), diag::note_previous_decl)
|
|
<< Var->getDeclName();
|
|
}
|
|
return false;
|
|
}
|
|
// OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
|
|
if (S.getLangOpts().OpenCL && IsBlock &&
|
|
Var->getType()->isBlockPointerType()) {
|
|
if (Diagnose)
|
|
S.Diag(Loc, diag::err_opencl_block_ref_block);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Returns true if the capture by block was successful.
|
|
static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var,
|
|
SourceLocation Loc,
|
|
const bool BuildAndDiagnose,
|
|
QualType &CaptureType,
|
|
QualType &DeclRefType,
|
|
const bool Nested,
|
|
Sema &S) {
|
|
Expr *CopyExpr = nullptr;
|
|
bool ByRef = false;
|
|
|
|
// Blocks are not allowed to capture arrays, excepting OpenCL.
|
|
// OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
|
|
// (decayed to pointers).
|
|
if (!S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
|
|
if (BuildAndDiagnose) {
|
|
S.Diag(Loc, diag::err_ref_array_type);
|
|
S.Diag(Var->getLocation(), diag::note_previous_decl)
|
|
<< Var->getDeclName();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Forbid the block-capture of autoreleasing variables.
|
|
if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
|
|
if (BuildAndDiagnose) {
|
|
S.Diag(Loc, diag::err_arc_autoreleasing_capture)
|
|
<< /*block*/ 0;
|
|
S.Diag(Var->getLocation(), diag::note_previous_decl)
|
|
<< Var->getDeclName();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Warn about implicitly autoreleasing indirect parameters captured by blocks.
|
|
if (const auto *PT = CaptureType->getAs<PointerType>()) {
|
|
// This function finds out whether there is an AttributedType of kind
|
|
// attr::ObjCOwnership in Ty. The existence of AttributedType of kind
|
|
// attr::ObjCOwnership implies __autoreleasing was explicitly specified
|
|
// rather than being added implicitly by the compiler.
|
|
auto IsObjCOwnershipAttributedType = [](QualType Ty) {
|
|
while (const auto *AttrTy = Ty->getAs<AttributedType>()) {
|
|
if (AttrTy->getAttrKind() == attr::ObjCOwnership)
|
|
return true;
|
|
|
|
// Peel off AttributedTypes that are not of kind ObjCOwnership.
|
|
Ty = AttrTy->getModifiedType();
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
QualType PointeeTy = PT->getPointeeType();
|
|
|
|
if (PointeeTy->getAs<ObjCObjectPointerType>() &&
|
|
PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
|
|
!IsObjCOwnershipAttributedType(PointeeTy)) {
|
|
if (BuildAndDiagnose) {
|
|
SourceLocation VarLoc = Var->getLocation();
|
|
S.Diag(Loc, diag::warn_block_capture_autoreleasing);
|
|
S.Diag(VarLoc, diag::note_declare_parameter_strong);
|
|
}
|
|
}
|
|
}
|
|
|
|
const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
|
|
if (HasBlocksAttr || CaptureType->isReferenceType() ||
|
|
(S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) {
|
|
// Block capture by reference does not change the capture or
|
|
// declaration reference types.
|
|
ByRef = true;
|
|
} else {
|
|
// Block capture by copy introduces 'const'.
|
|
CaptureType = CaptureType.getNonReferenceType().withConst();
|
|
DeclRefType = CaptureType;
|
|
|
|
if (S.getLangOpts().CPlusPlus && BuildAndDiagnose) {
|
|
if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
|
|
// The capture logic needs the destructor, so make sure we mark it.
|
|
// Usually this is unnecessary because most local variables have
|
|
// their destructors marked at declaration time, but parameters are
|
|
// an exception because it's technically only the call site that
|
|
// actually requires the destructor.
|
|
if (isa<ParmVarDecl>(Var))
|
|
S.FinalizeVarWithDestructor(Var, Record);
|
|
|
|
// Enter a new evaluation context to insulate the copy
|
|
// full-expression.
|
|
EnterExpressionEvaluationContext scope(
|
|
S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
|
|
|
|
// According to the blocks spec, the capture of a variable from
|
|
// the stack requires a const copy constructor. This is not true
|
|
// of the copy/move done to move a __block variable to the heap.
|
|
Expr *DeclRef = new (S.Context) DeclRefExpr(
|
|
S.Context, Var, Nested, DeclRefType.withConst(), VK_LValue, Loc);
|
|
|
|
ExprResult Result
|
|
= S.PerformCopyInitialization(
|
|
InitializedEntity::InitializeBlock(Var->getLocation(),
|
|
CaptureType, false),
|
|
Loc, DeclRef);
|
|
|
|
// Build a full-expression copy expression if initialization
|
|
// succeeded and used a non-trivial constructor. Recover from
|
|
// errors by pretending that the copy isn't necessary.
|
|
if (!Result.isInvalid() &&
|
|
!cast<CXXConstructExpr>(Result.get())->getConstructor()
|
|
->isTrivial()) {
|
|
Result = S.MaybeCreateExprWithCleanups(Result);
|
|
CopyExpr = Result.get();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Actually capture the variable.
|
|
if (BuildAndDiagnose)
|
|
BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
|
|
SourceLocation(), CaptureType, CopyExpr);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
/// Capture the given variable in the captured region.
|
|
static bool captureInCapturedRegion(CapturedRegionScopeInfo *RSI,
|
|
VarDecl *Var,
|
|
SourceLocation Loc,
|
|
const bool BuildAndDiagnose,
|
|
QualType &CaptureType,
|
|
QualType &DeclRefType,
|
|
const bool RefersToCapturedVariable,
|
|
Sema &S) {
|
|
// By default, capture variables by reference.
|
|
bool ByRef = true;
|
|
// Using an LValue reference type is consistent with Lambdas (see below).
|
|
if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
|
|
if (S.isOpenMPCapturedDecl(Var)) {
|
|
bool HasConst = DeclRefType.isConstQualified();
|
|
DeclRefType = DeclRefType.getUnqualifiedType();
|
|
// Don't lose diagnostics about assignments to const.
|
|
if (HasConst)
|
|
DeclRefType.addConst();
|
|
}
|
|
ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel);
|
|
}
|
|
|
|
if (ByRef)
|
|
CaptureType = S.Context.getLValueReferenceType(DeclRefType);
|
|
else
|
|
CaptureType = DeclRefType;
|
|
|
|
Expr *CopyExpr = nullptr;
|
|
if (BuildAndDiagnose) {
|
|
// The current implementation assumes that all variables are captured
|
|
// by references. Since there is no capture by copy, no expression
|
|
// evaluation will be needed.
|
|
RecordDecl *RD = RSI->TheRecordDecl;
|
|
|
|
FieldDecl *Field
|
|
= FieldDecl::Create(S.Context, RD, Loc, Loc, nullptr, CaptureType,
|
|
S.Context.getTrivialTypeSourceInfo(CaptureType, Loc),
|
|
nullptr, false, ICIS_NoInit);
|
|
Field->setImplicit(true);
|
|
Field->setAccess(AS_private);
|
|
RD->addDecl(Field);
|
|
if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP)
|
|
S.setOpenMPCaptureKind(Field, Var, RSI->OpenMPLevel);
|
|
|
|
CopyExpr = new (S.Context) DeclRefExpr(
|
|
S.Context, Var, RefersToCapturedVariable, DeclRefType, VK_LValue, Loc);
|
|
Var->setReferenced(true);
|
|
Var->markUsed(S.Context);
|
|
}
|
|
|
|
// Actually capture the variable.
|
|
if (BuildAndDiagnose)
|
|
RSI->addCapture(Var, /*isBlock*/false, ByRef, RefersToCapturedVariable, Loc,
|
|
SourceLocation(), CaptureType, CopyExpr);
|
|
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Create a field within the lambda class for the variable
|
|
/// being captured.
|
|
static void addAsFieldToClosureType(Sema &S, LambdaScopeInfo *LSI,
|
|
QualType FieldType, QualType DeclRefType,
|
|
SourceLocation Loc,
|
|
bool RefersToCapturedVariable) {
|
|
CXXRecordDecl *Lambda = LSI->Lambda;
|
|
|
|
// Build the non-static data member.
|
|
FieldDecl *Field
|
|
= FieldDecl::Create(S.Context, Lambda, Loc, Loc, nullptr, FieldType,
|
|
S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
|
|
nullptr, false, ICIS_NoInit);
|
|
// If the variable being captured has an invalid type, mark the lambda class
|
|
// as invalid as well.
|
|
if (!FieldType->isDependentType()) {
|
|
if (S.RequireCompleteType(Loc, FieldType, diag::err_field_incomplete)) {
|
|
Lambda->setInvalidDecl();
|
|
Field->setInvalidDecl();
|
|
} else {
|
|
NamedDecl *Def;
|
|
FieldType->isIncompleteType(&Def);
|
|
if (Def && Def->isInvalidDecl()) {
|
|
Lambda->setInvalidDecl();
|
|
Field->setInvalidDecl();
|
|
}
|
|
}
|
|
}
|
|
Field->setImplicit(true);
|
|
Field->setAccess(AS_private);
|
|
Lambda->addDecl(Field);
|
|
}
|
|
|
|
/// Capture the given variable in the lambda.
|
|
static bool captureInLambda(LambdaScopeInfo *LSI,
|
|
VarDecl *Var,
|
|
SourceLocation Loc,
|
|
const bool BuildAndDiagnose,
|
|
QualType &CaptureType,
|
|
QualType &DeclRefType,
|
|
const bool RefersToCapturedVariable,
|
|
const Sema::TryCaptureKind Kind,
|
|
SourceLocation EllipsisLoc,
|
|
const bool IsTopScope,
|
|
Sema &S) {
|
|
|
|
// Determine whether we are capturing by reference or by value.
|
|
bool ByRef = false;
|
|
if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
|
|
ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
|
|
} else {
|
|
ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
|
|
}
|
|
|
|
// Compute the type of the field that will capture this variable.
|
|
if (ByRef) {
|
|
// C++11 [expr.prim.lambda]p15:
|
|
// An entity is captured by reference if it is implicitly or
|
|
// explicitly captured but not captured by copy. It is
|
|
// unspecified whether additional unnamed non-static data
|
|
// members are declared in the closure type for entities
|
|
// captured by reference.
|
|
//
|
|
// FIXME: It is not clear whether we want to build an lvalue reference
|
|
// to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
|
|
// to do the former, while EDG does the latter. Core issue 1249 will
|
|
// clarify, but for now we follow GCC because it's a more permissive and
|
|
// easily defensible position.
|
|
CaptureType = S.Context.getLValueReferenceType(DeclRefType);
|
|
} else {
|
|
// C++11 [expr.prim.lambda]p14:
|
|
// For each entity captured by copy, an unnamed non-static
|
|
// data member is declared in the closure type. The
|
|
// declaration order of these members is unspecified. The type
|
|
// of such a data member is the type of the corresponding
|
|
// captured entity if the entity is not a reference to an
|
|
// object, or the referenced type otherwise. [Note: If the
|
|
// captured entity is a reference to a function, the
|
|
// corresponding data member is also a reference to a
|
|
// function. - end note ]
|
|
if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
|
|
if (!RefType->getPointeeType()->isFunctionType())
|
|
CaptureType = RefType->getPointeeType();
|
|
}
|
|
|
|
// Forbid the lambda copy-capture of autoreleasing variables.
|
|
if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
|
|
if (BuildAndDiagnose) {
|
|
S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
|
|
S.Diag(Var->getLocation(), diag::note_previous_decl)
|
|
<< Var->getDeclName();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Make sure that by-copy captures are of a complete and non-abstract type.
|
|
if (BuildAndDiagnose) {
|
|
if (!CaptureType->isDependentType() &&
|
|
S.RequireCompleteType(Loc, CaptureType,
|
|
diag::err_capture_of_incomplete_type,
|
|
Var->getDeclName()))
|
|
return false;
|
|
|
|
if (S.RequireNonAbstractType(Loc, CaptureType,
|
|
diag::err_capture_of_abstract_type))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Capture this variable in the lambda.
|
|
if (BuildAndDiagnose)
|
|
addAsFieldToClosureType(S, LSI, CaptureType, DeclRefType, Loc,
|
|
RefersToCapturedVariable);
|
|
|
|
// Compute the type of a reference to this captured variable.
|
|
if (ByRef)
|
|
DeclRefType = CaptureType.getNonReferenceType();
|
|
else {
|
|
// C++ [expr.prim.lambda]p5:
|
|
// The closure type for a lambda-expression has a public inline
|
|
// function call operator [...]. This function call operator is
|
|
// declared const (9.3.1) if and only if the lambda-expression's
|
|
// parameter-declaration-clause is not followed by mutable.
|
|
DeclRefType = CaptureType.getNonReferenceType();
|
|
if (!LSI->Mutable && !CaptureType->isReferenceType())
|
|
DeclRefType.addConst();
|
|
}
|
|
|
|
// Add the capture.
|
|
if (BuildAndDiagnose)
|
|
LSI->addCapture(Var, /*IsBlock=*/false, ByRef, RefersToCapturedVariable,
|
|
Loc, EllipsisLoc, CaptureType, /*CopyExpr=*/nullptr);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Sema::tryCaptureVariable(
|
|
VarDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
|
|
SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
|
|
QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
|
|
// An init-capture is notionally from the context surrounding its
|
|
// declaration, but its parent DC is the lambda class.
|
|
DeclContext *VarDC = Var->getDeclContext();
|
|
if (Var->isInitCapture())
|
|
VarDC = VarDC->getParent();
|
|
|
|
DeclContext *DC = CurContext;
|
|
const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
|
|
? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
|
|
// We need to sync up the Declaration Context with the
|
|
// FunctionScopeIndexToStopAt
|
|
if (FunctionScopeIndexToStopAt) {
|
|
unsigned FSIndex = FunctionScopes.size() - 1;
|
|
while (FSIndex != MaxFunctionScopesIndex) {
|
|
DC = getLambdaAwareParentOfDeclContext(DC);
|
|
--FSIndex;
|
|
}
|
|
}
|
|
|
|
|
|
// If the variable is declared in the current context, there is no need to
|
|
// capture it.
|
|
if (VarDC == DC) return true;
|
|
|
|
// Capture global variables if it is required to use private copy of this
|
|
// variable.
|
|
bool IsGlobal = !Var->hasLocalStorage();
|
|
if (IsGlobal &&
|
|
!(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true,
|
|
MaxFunctionScopesIndex)))
|
|
return true;
|
|
Var = Var->getCanonicalDecl();
|
|
|
|
// Walk up the stack to determine whether we can capture the variable,
|
|
// performing the "simple" checks that don't depend on type. We stop when
|
|
// we've either hit the declared scope of the variable or find an existing
|
|
// capture of that variable. We start from the innermost capturing-entity
|
|
// (the DC) and ensure that all intervening capturing-entities
|
|
// (blocks/lambdas etc.) between the innermost capturer and the variable`s
|
|
// declcontext can either capture the variable or have already captured
|
|
// the variable.
|
|
CaptureType = Var->getType();
|
|
DeclRefType = CaptureType.getNonReferenceType();
|
|
bool Nested = false;
|
|
bool Explicit = (Kind != TryCapture_Implicit);
|
|
unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
|
|
do {
|
|
// Only block literals, captured statements, and lambda expressions can
|
|
// capture; other scopes don't work.
|
|
DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
|
|
ExprLoc,
|
|
BuildAndDiagnose,
|
|
*this);
|
|
// We need to check for the parent *first* because, if we *have*
|
|
// private-captured a global variable, we need to recursively capture it in
|
|
// intermediate blocks, lambdas, etc.
|
|
if (!ParentDC) {
|
|
if (IsGlobal) {
|
|
FunctionScopesIndex = MaxFunctionScopesIndex - 1;
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
FunctionScopeInfo *FSI = FunctionScopes[FunctionScopesIndex];
|
|
CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
|
|
|
|
|
|
// Check whether we've already captured it.
|
|
if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
|
|
DeclRefType)) {
|
|
CSI->getCapture(Var).markUsed(BuildAndDiagnose);
|
|
break;
|
|
}
|
|
// If we are instantiating a generic lambda call operator body,
|
|
// we do not want to capture new variables. What was captured
|
|
// during either a lambdas transformation or initial parsing
|
|
// should be used.
|
|
if (isGenericLambdaCallOperatorSpecialization(DC)) {
|
|
if (BuildAndDiagnose) {
|
|
LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
|
|
if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
|
|
Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
|
|
Diag(Var->getLocation(), diag::note_previous_decl)
|
|
<< Var->getDeclName();
|
|
Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
|
|
} else
|
|
diagnoseUncapturableValueReference(*this, ExprLoc, Var, DC);
|
|
}
|
|
return true;
|
|
}
|
|
// Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
|
|
// certain types of variables (unnamed, variably modified types etc.)
|
|
// so check for eligibility.
|
|
if (!isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this))
|
|
return true;
|
|
|
|
// Try to capture variable-length arrays types.
|
|
if (Var->getType()->isVariablyModifiedType()) {
|
|
// We're going to walk down into the type and look for VLA
|
|
// expressions.
|
|
QualType QTy = Var->getType();
|
|
if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
|
|
QTy = PVD->getOriginalType();
|
|
captureVariablyModifiedType(Context, QTy, CSI);
|
|
}
|
|
|
|
if (getLangOpts().OpenMP) {
|
|
if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
|
|
// OpenMP private variables should not be captured in outer scope, so
|
|
// just break here. Similarly, global variables that are captured in a
|
|
// target region should not be captured outside the scope of the region.
|
|
if (RSI->CapRegionKind == CR_OpenMP) {
|
|
bool IsOpenMPPrivateDecl = isOpenMPPrivateDecl(Var, RSI->OpenMPLevel);
|
|
auto IsTargetCap = !IsOpenMPPrivateDecl &&
|
|
isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel);
|
|
// When we detect target captures we are looking from inside the
|
|
// target region, therefore we need to propagate the capture from the
|
|
// enclosing region. Therefore, the capture is not initially nested.
|
|
if (IsTargetCap)
|
|
adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel);
|
|
|
|
if (IsTargetCap || IsOpenMPPrivateDecl) {
|
|
Nested = !IsTargetCap;
|
|
DeclRefType = DeclRefType.getUnqualifiedType();
|
|
CaptureType = Context.getLValueReferenceType(DeclRefType);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
|
|
// No capture-default, and this is not an explicit capture
|
|
// so cannot capture this variable.
|
|
if (BuildAndDiagnose) {
|
|
Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
|
|
Diag(Var->getLocation(), diag::note_previous_decl)
|
|
<< Var->getDeclName();
|
|
if (cast<LambdaScopeInfo>(CSI)->Lambda)
|
|
Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getBeginLoc(),
|
|
diag::note_lambda_decl);
|
|
// FIXME: If we error out because an outer lambda can not implicitly
|
|
// capture a variable that an inner lambda explicitly captures, we
|
|
// should have the inner lambda do the explicit capture - because
|
|
// it makes for cleaner diagnostics later. This would purely be done
|
|
// so that the diagnostic does not misleadingly claim that a variable
|
|
// can not be captured by a lambda implicitly even though it is captured
|
|
// explicitly. Suggestion:
|
|
// - create const bool VariableCaptureWasInitiallyExplicit = Explicit
|
|
// at the function head
|
|
// - cache the StartingDeclContext - this must be a lambda
|
|
// - captureInLambda in the innermost lambda the variable.
|
|
}
|
|
return true;
|
|
}
|
|
|
|
FunctionScopesIndex--;
|
|
DC = ParentDC;
|
|
Explicit = false;
|
|
} while (!VarDC->Equals(DC));
|
|
|
|
// Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
|
|
// computing the type of the capture at each step, checking type-specific
|
|
// requirements, and adding captures if requested.
|
|
// If the variable had already been captured previously, we start capturing
|
|
// at the lambda nested within that one.
|
|
for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
|
|
++I) {
|
|
CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
|
|
|
|
if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
|
|
if (!captureInBlock(BSI, Var, ExprLoc,
|
|
BuildAndDiagnose, CaptureType,
|
|
DeclRefType, Nested, *this))
|
|
return true;
|
|
Nested = true;
|
|
} else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
|
|
if (!captureInCapturedRegion(RSI, Var, ExprLoc,
|
|
BuildAndDiagnose, CaptureType,
|
|
DeclRefType, Nested, *this))
|
|
return true;
|
|
Nested = true;
|
|
} else {
|
|
LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
|
|
if (!captureInLambda(LSI, Var, ExprLoc,
|
|
BuildAndDiagnose, CaptureType,
|
|
DeclRefType, Nested, Kind, EllipsisLoc,
|
|
/*IsTopScope*/I == N - 1, *this))
|
|
return true;
|
|
Nested = true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
|
|
TryCaptureKind Kind, SourceLocation EllipsisLoc) {
|
|
QualType CaptureType;
|
|
QualType DeclRefType;
|
|
return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
|
|
/*BuildAndDiagnose=*/true, CaptureType,
|
|
DeclRefType, nullptr);
|
|
}
|
|
|
|
bool Sema::NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc) {
|
|
QualType CaptureType;
|
|
QualType DeclRefType;
|
|
return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
|
|
/*BuildAndDiagnose=*/false, CaptureType,
|
|
DeclRefType, nullptr);
|
|
}
|
|
|
|
QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
|
|
QualType CaptureType;
|
|
QualType DeclRefType;
|
|
|
|
// Determine whether we can capture this variable.
|
|
if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
|
|
/*BuildAndDiagnose=*/false, CaptureType,
|
|
DeclRefType, nullptr))
|
|
return QualType();
|
|
|
|
return DeclRefType;
|
|
}
|
|
|
|
|
|
|
|
// If either the type of the variable or the initializer is dependent,
|
|
// return false. Otherwise, determine whether the variable is a constant
|
|
// expression. Use this if you need to know if a variable that might or
|
|
// might not be dependent is truly a constant expression.
|
|
static inline bool IsVariableNonDependentAndAConstantExpression(VarDecl *Var,
|
|
ASTContext &Context) {
|
|
|
|
if (Var->getType()->isDependentType())
|
|
return false;
|
|
const VarDecl *DefVD = nullptr;
|
|
Var->getAnyInitializer(DefVD);
|
|
if (!DefVD)
|
|
return false;
|
|
EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
|
|
Expr *Init = cast<Expr>(Eval->Value);
|
|
if (Init->isValueDependent())
|
|
return false;
|
|
return IsVariableAConstantExpression(Var, Context);
|
|
}
|
|
|
|
|
|
void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
|
|
// Per C++11 [basic.def.odr], a variable is odr-used "unless it is
|
|
// an object that satisfies the requirements for appearing in a
|
|
// constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
|
|
// is immediately applied." This function handles the lvalue-to-rvalue
|
|
// conversion part.
|
|
MaybeODRUseExprs.erase(E->IgnoreParens());
|
|
|
|
// If we are in a lambda, check if this DeclRefExpr or MemberExpr refers
|
|
// to a variable that is a constant expression, and if so, identify it as
|
|
// a reference to a variable that does not involve an odr-use of that
|
|
// variable.
|
|
if (LambdaScopeInfo *LSI = getCurLambda()) {
|
|
Expr *SansParensExpr = E->IgnoreParens();
|
|
VarDecl *Var = nullptr;
|
|
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SansParensExpr))
|
|
Var = dyn_cast<VarDecl>(DRE->getFoundDecl());
|
|
else if (MemberExpr *ME = dyn_cast<MemberExpr>(SansParensExpr))
|
|
Var = dyn_cast<VarDecl>(ME->getMemberDecl());
|
|
|
|
if (Var && IsVariableNonDependentAndAConstantExpression(Var, Context))
|
|
LSI->markVariableExprAsNonODRUsed(SansParensExpr);
|
|
}
|
|
}
|
|
|
|
ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
|
|
Res = CorrectDelayedTyposInExpr(Res);
|
|
|
|
if (!Res.isUsable())
|
|
return Res;
|
|
|
|
// If a constant-expression is a reference to a variable where we delay
|
|
// deciding whether it is an odr-use, just assume we will apply the
|
|
// lvalue-to-rvalue conversion. In the one case where this doesn't happen
|
|
// (a non-type template argument), we have special handling anyway.
|
|
UpdateMarkingForLValueToRValue(Res.get());
|
|
return Res;
|
|
}
|
|
|
|
void Sema::CleanupVarDeclMarking() {
|
|
// Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
|
|
// call.
|
|
MaybeODRUseExprSet LocalMaybeODRUseExprs;
|
|
std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs);
|
|
|
|
for (Expr *E : LocalMaybeODRUseExprs) {
|
|
VarDecl *Var;
|
|
SourceLocation Loc;
|
|
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
|
|
Var = cast<VarDecl>(DRE->getDecl());
|
|
Loc = DRE->getLocation();
|
|
} else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
|
|
Var = cast<VarDecl>(ME->getMemberDecl());
|
|
Loc = ME->getMemberLoc();
|
|
} else {
|
|
llvm_unreachable("Unexpected expression");
|
|
}
|
|
|
|
MarkVarDeclODRUsed(Var, Loc, *this,
|
|
/*MaxFunctionScopeIndex Pointer*/ nullptr);
|
|
}
|
|
|
|
assert(MaybeODRUseExprs.empty() &&
|
|
"MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
|
|
}
|
|
|
|
static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
|
|
VarDecl *Var, Expr *E) {
|
|
assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E)) &&
|
|
"Invalid Expr argument to DoMarkVarDeclReferenced");
|
|
Var->setReferenced();
|
|
|
|
if (Var->isInvalidDecl())
|
|
return;
|
|
|
|
auto *MSI = Var->getMemberSpecializationInfo();
|
|
TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
|
|
: Var->getTemplateSpecializationKind();
|
|
|
|
OdrUseContext OdrUse = isOdrUseContext(SemaRef);
|
|
bool UsableInConstantExpr =
|
|
Var->isUsableInConstantExpressions(SemaRef.Context);
|
|
|
|
// C++20 [expr.const]p12:
|
|
// A variable [...] is needed for constant evaluation if it is [...] a
|
|
// variable whose name appears as a potentially constant evaluated
|
|
// expression that is either a contexpr variable or is of non-volatile
|
|
// const-qualified integral type or of reference type
|
|
bool NeededForConstantEvaluation =
|
|
isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
|
|
|
|
bool NeedDefinition =
|
|
OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
|
|
|
|
VarTemplateSpecializationDecl *VarSpec =
|
|
dyn_cast<VarTemplateSpecializationDecl>(Var);
|
|
assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
|
|
"Can't instantiate a partial template specialization.");
|
|
|
|
// If this might be a member specialization of a static data member, check
|
|
// the specialization is visible. We already did the checks for variable
|
|
// template specializations when we created them.
|
|
if (NeedDefinition && TSK != TSK_Undeclared &&
|
|
!isa<VarTemplateSpecializationDecl>(Var))
|
|
SemaRef.checkSpecializationVisibility(Loc, Var);
|
|
|
|
// Perform implicit instantiation of static data members, static data member
|
|
// templates of class templates, and variable template specializations. Delay
|
|
// instantiations of variable templates, except for those that could be used
|
|
// in a constant expression.
|
|
if (NeedDefinition && isTemplateInstantiation(TSK)) {
|
|
// Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
|
|
// instantiation declaration if a variable is usable in a constant
|
|
// expression (among other cases).
|
|
bool TryInstantiating =
|
|
TSK == TSK_ImplicitInstantiation ||
|
|
(TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
|
|
|
|
if (TryInstantiating) {
|
|
SourceLocation PointOfInstantiation =
|
|
MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
|
|
bool FirstInstantiation = PointOfInstantiation.isInvalid();
|
|
if (FirstInstantiation) {
|
|
PointOfInstantiation = Loc;
|
|
if (MSI)
|
|
MSI->setPointOfInstantiation(PointOfInstantiation);
|
|
else
|
|
Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
|
|
}
|
|
|
|
bool InstantiationDependent = false;
|
|
bool IsNonDependent =
|
|
VarSpec ? !TemplateSpecializationType::anyDependentTemplateArguments(
|
|
VarSpec->getTemplateArgsInfo(), InstantiationDependent)
|
|
: true;
|
|
|
|
// Do not instantiate specializations that are still type-dependent.
|
|
if (IsNonDependent) {
|
|
if (UsableInConstantExpr) {
|
|
// Do not defer instantiations of variables that could be used in a
|
|
// constant expression.
|
|
SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
|
|
} else if (FirstInstantiation ||
|
|
isa<VarTemplateSpecializationDecl>(Var)) {
|
|
// FIXME: For a specialization of a variable template, we don't
|
|
// distinguish between "declaration and type implicitly instantiated"
|
|
// and "implicit instantiation of definition requested", so we have
|
|
// no direct way to avoid enqueueing the pending instantiation
|
|
// multiple times.
|
|
SemaRef.PendingInstantiations
|
|
.push_back(std::make_pair(Var, PointOfInstantiation));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// C++20 [basic.def.odr]p4:
|
|
// A variable x whose name appears as a potentially-evaluated expression e
|
|
// is odr-used by e unless
|
|
// -- x is a reference that is usable in constant expressions
|
|
// -- x is a variable of non-reference type that is usable in constant
|
|
// expressions and has no mutable subobjects [FIXME], and e is an
|
|
// element of the set of potential results of an expression of
|
|
// non-volatile-qualified non-class type to which the lvalue-to-rvalue
|
|
// conversion is applied
|
|
// -- x is a variable of non-reference type, and e is an element of the set
|
|
// of potential results of a discarded-value expression to which the
|
|
// lvalue-to-rvalue conversion is not applied [FIXME]
|
|
//
|
|
// We check the first part of the second bullet here, and
|
|
// Sema::UpdateMarkingForLValueToRValue deals with the second part.
|
|
// FIXME: To get the third bullet right, we need to delay this even for
|
|
// variables that are not usable in constant expressions.
|
|
switch (OdrUse) {
|
|
case OdrUseContext::None:
|
|
break;
|
|
|
|
case OdrUseContext::FormallyOdrUsed:
|
|
// FIXME: Ignoring formal odr-uses results in incorrect lambda capture
|
|
// behavior.
|
|
break;
|
|
|
|
case OdrUseContext::Used:
|
|
if (E && IsVariableAConstantExpression(Var, SemaRef.Context)) {
|
|
// A reference initialized by a constant expression can never be
|
|
// odr-used, so simply ignore it.
|
|
if (!Var->getType()->isReferenceType() ||
|
|
(SemaRef.LangOpts.OpenMP && SemaRef.isOpenMPCapturedDecl(Var)))
|
|
SemaRef.MaybeODRUseExprs.insert(E);
|
|
} else {
|
|
MarkVarDeclODRUsed(Var, Loc, SemaRef,
|
|
/*MaxFunctionScopeIndex ptr*/ nullptr);
|
|
}
|
|
break;
|
|
|
|
case OdrUseContext::Dependent:
|
|
// If this is a dependent context, we don't need to mark variables as
|
|
// odr-used, but we may still need to track them for lambda capture.
|
|
// FIXME: Do we also need to do this inside dependent typeid expressions
|
|
// (which are modeled as unevaluated at this point)?
|
|
const bool RefersToEnclosingScope =
|
|
(SemaRef.CurContext != Var->getDeclContext() &&
|
|
Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage());
|
|
if (RefersToEnclosingScope) {
|
|
LambdaScopeInfo *const LSI =
|
|
SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
|
|
if (LSI && (!LSI->CallOperator ||
|
|
!LSI->CallOperator->Encloses(Var->getDeclContext()))) {
|
|
// If a variable could potentially be odr-used, defer marking it so
|
|
// until we finish analyzing the full expression for any
|
|
// lvalue-to-rvalue
|
|
// or discarded value conversions that would obviate odr-use.
|
|
// Add it to the list of potential captures that will be analyzed
|
|
// later (ActOnFinishFullExpr) for eventual capture and odr-use marking
|
|
// unless the variable is a reference that was initialized by a constant
|
|
// expression (this will never need to be captured or odr-used).
|
|
//
|
|
// FIXME: We can simplify this a lot after implementing P0588R1.
|
|
assert(E && "Capture variable should be used in an expression.");
|
|
if (!Var->getType()->isReferenceType() ||
|
|
!IsVariableNonDependentAndAConstantExpression(Var, SemaRef.Context))
|
|
LSI->addPotentialCapture(E->IgnoreParens());
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// Mark a variable referenced, and check whether it is odr-used
|
|
/// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be
|
|
/// used directly for normal expressions referring to VarDecl.
|
|
void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
|
|
DoMarkVarDeclReferenced(*this, Loc, Var, nullptr);
|
|
}
|
|
|
|
static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
|
|
Decl *D, Expr *E, bool MightBeOdrUse) {
|
|
if (SemaRef.isInOpenMPDeclareTargetContext())
|
|
SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D);
|
|
|
|
if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
|
|
DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
|
|
return;
|
|
}
|
|
|
|
SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
|
|
|
|
// If this is a call to a method via a cast, also mark the method in the
|
|
// derived class used in case codegen can devirtualize the call.
|
|
const MemberExpr *ME = dyn_cast<MemberExpr>(E);
|
|
if (!ME)
|
|
return;
|
|
CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
|
|
if (!MD)
|
|
return;
|
|
// Only attempt to devirtualize if this is truly a virtual call.
|
|
bool IsVirtualCall = MD->isVirtual() &&
|
|
ME->performsVirtualDispatch(SemaRef.getLangOpts());
|
|
if (!IsVirtualCall)
|
|
return;
|
|
|
|
// If it's possible to devirtualize the call, mark the called function
|
|
// referenced.
|
|
CXXMethodDecl *DM = MD->getDevirtualizedMethod(
|
|
ME->getBase(), SemaRef.getLangOpts().AppleKext);
|
|
if (DM)
|
|
SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
|
|
}
|
|
|
|
/// Perform reference-marking and odr-use handling for a DeclRefExpr.
|
|
void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
|
|
// TODO: update this with DR# once a defect report is filed.
|
|
// C++11 defect. The address of a pure member should not be an ODR use, even
|
|
// if it's a qualified reference.
|
|
bool OdrUse = true;
|
|
if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
|
|
if (Method->isVirtual() &&
|
|
!Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext))
|
|
OdrUse = false;
|
|
MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse);
|
|
}
|
|
|
|
/// Perform reference-marking and odr-use handling for a MemberExpr.
|
|
void Sema::MarkMemberReferenced(MemberExpr *E) {
|
|
// C++11 [basic.def.odr]p2:
|
|
// A non-overloaded function whose name appears as a potentially-evaluated
|
|
// expression or a member of a set of candidate functions, if selected by
|
|
// overload resolution when referred to from a potentially-evaluated
|
|
// expression, is odr-used, unless it is a pure virtual function and its
|
|
// name is not explicitly qualified.
|
|
bool MightBeOdrUse = true;
|
|
if (E->performsVirtualDispatch(getLangOpts())) {
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
|
|
if (Method->isPure())
|
|
MightBeOdrUse = false;
|
|
}
|
|
SourceLocation Loc =
|
|
E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
|
|
MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse);
|
|
}
|
|
|
|
/// Perform marking for a reference to an arbitrary declaration. It
|
|
/// marks the declaration referenced, and performs odr-use checking for
|
|
/// functions and variables. This method should not be used when building a
|
|
/// normal expression which refers to a variable.
|
|
void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
|
|
bool MightBeOdrUse) {
|
|
if (MightBeOdrUse) {
|
|
if (auto *VD = dyn_cast<VarDecl>(D)) {
|
|
MarkVariableReferenced(Loc, VD);
|
|
return;
|
|
}
|
|
}
|
|
if (auto *FD = dyn_cast<FunctionDecl>(D)) {
|
|
MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
|
|
return;
|
|
}
|
|
D->setReferenced();
|
|
}
|
|
|
|
namespace {
|
|
// Mark all of the declarations used by a type as referenced.
|
|
// FIXME: Not fully implemented yet! We need to have a better understanding
|
|
// of when we're entering a context we should not recurse into.
|
|
// FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
|
|
// TreeTransforms rebuilding the type in a new context. Rather than
|
|
// duplicating the TreeTransform logic, we should consider reusing it here.
|
|
// Currently that causes problems when rebuilding LambdaExprs.
|
|
class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
|
|
Sema &S;
|
|
SourceLocation Loc;
|
|
|
|
public:
|
|
typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
|
|
|
|
MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
|
|
|
|
bool TraverseTemplateArgument(const TemplateArgument &Arg);
|
|
};
|
|
}
|
|
|
|
bool MarkReferencedDecls::TraverseTemplateArgument(
|
|
const TemplateArgument &Arg) {
|
|
{
|
|
// A non-type template argument is a constant-evaluated context.
|
|
EnterExpressionEvaluationContext Evaluated(
|
|
S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
|
|
if (Arg.getKind() == TemplateArgument::Declaration) {
|
|
if (Decl *D = Arg.getAsDecl())
|
|
S.MarkAnyDeclReferenced(Loc, D, true);
|
|
} else if (Arg.getKind() == TemplateArgument::Expression) {
|
|
S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false);
|
|
}
|
|
}
|
|
|
|
return Inherited::TraverseTemplateArgument(Arg);
|
|
}
|
|
|
|
void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
|
|
MarkReferencedDecls Marker(*this, Loc);
|
|
Marker.TraverseType(T);
|
|
}
|
|
|
|
namespace {
|
|
/// Helper class that marks all of the declarations referenced by
|
|
/// potentially-evaluated subexpressions as "referenced".
|
|
class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
|
|
Sema &S;
|
|
bool SkipLocalVariables;
|
|
|
|
public:
|
|
typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
|
|
|
|
EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
|
|
: Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
|
|
|
|
void VisitDeclRefExpr(DeclRefExpr *E) {
|
|
// If we were asked not to visit local variables, don't.
|
|
if (SkipLocalVariables) {
|
|
if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
|
|
if (VD->hasLocalStorage())
|
|
return;
|
|
}
|
|
|
|
S.MarkDeclRefReferenced(E);
|
|
}
|
|
|
|
void VisitMemberExpr(MemberExpr *E) {
|
|
S.MarkMemberReferenced(E);
|
|
Inherited::VisitMemberExpr(E);
|
|
}
|
|
|
|
void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
|
|
S.MarkFunctionReferenced(
|
|
E->getBeginLoc(),
|
|
const_cast<CXXDestructorDecl *>(E->getTemporary()->getDestructor()));
|
|
Visit(E->getSubExpr());
|
|
}
|
|
|
|
void VisitCXXNewExpr(CXXNewExpr *E) {
|
|
if (E->getOperatorNew())
|
|
S.MarkFunctionReferenced(E->getBeginLoc(), E->getOperatorNew());
|
|
if (E->getOperatorDelete())
|
|
S.MarkFunctionReferenced(E->getBeginLoc(), E->getOperatorDelete());
|
|
Inherited::VisitCXXNewExpr(E);
|
|
}
|
|
|
|
void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
|
|
if (E->getOperatorDelete())
|
|
S.MarkFunctionReferenced(E->getBeginLoc(), E->getOperatorDelete());
|
|
QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
|
|
if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
|
|
CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
|
|
S.MarkFunctionReferenced(E->getBeginLoc(), S.LookupDestructor(Record));
|
|
}
|
|
|
|
Inherited::VisitCXXDeleteExpr(E);
|
|
}
|
|
|
|
void VisitCXXConstructExpr(CXXConstructExpr *E) {
|
|
S.MarkFunctionReferenced(E->getBeginLoc(), E->getConstructor());
|
|
Inherited::VisitCXXConstructExpr(E);
|
|
}
|
|
|
|
void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
|
|
Visit(E->getExpr());
|
|
}
|
|
|
|
void VisitImplicitCastExpr(ImplicitCastExpr *E) {
|
|
Inherited::VisitImplicitCastExpr(E);
|
|
|
|
if (E->getCastKind() == CK_LValueToRValue)
|
|
S.UpdateMarkingForLValueToRValue(E->getSubExpr());
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Mark any declarations that appear within this expression or any
|
|
/// potentially-evaluated subexpressions as "referenced".
|
|
///
|
|
/// \param SkipLocalVariables If true, don't mark local variables as
|
|
/// 'referenced'.
|
|
void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
|
|
bool SkipLocalVariables) {
|
|
EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
|
|
}
|
|
|
|
/// Emit a diagnostic that describes an effect on the run-time behavior
|
|
/// of the program being compiled.
|
|
///
|
|
/// This routine emits the given diagnostic when the code currently being
|
|
/// type-checked is "potentially evaluated", meaning that there is a
|
|
/// possibility that the code will actually be executable. Code in sizeof()
|
|
/// expressions, code used only during overload resolution, etc., are not
|
|
/// potentially evaluated. This routine will suppress such diagnostics or,
|
|
/// in the absolutely nutty case of potentially potentially evaluated
|
|
/// expressions (C++ typeid), queue the diagnostic to potentially emit it
|
|
/// later.
|
|
///
|
|
/// This routine should be used for all diagnostics that describe the run-time
|
|
/// behavior of a program, such as passing a non-POD value through an ellipsis.
|
|
/// Failure to do so will likely result in spurious diagnostics or failures
|
|
/// during overload resolution or within sizeof/alignof/typeof/typeid.
|
|
bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
|
|
const PartialDiagnostic &PD) {
|
|
switch (ExprEvalContexts.back().Context) {
|
|
case ExpressionEvaluationContext::Unevaluated:
|
|
case ExpressionEvaluationContext::UnevaluatedList:
|
|
case ExpressionEvaluationContext::UnevaluatedAbstract:
|
|
case ExpressionEvaluationContext::DiscardedStatement:
|
|
// The argument will never be evaluated, so don't complain.
|
|
break;
|
|
|
|
case ExpressionEvaluationContext::ConstantEvaluated:
|
|
// Relevant diagnostics should be produced by constant evaluation.
|
|
break;
|
|
|
|
case ExpressionEvaluationContext::PotentiallyEvaluated:
|
|
case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
|
|
if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
|
|
FunctionScopes.back()->PossiblyUnreachableDiags.
|
|
push_back(sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
|
|
return true;
|
|
}
|
|
|
|
// The initializer of a constexpr variable or of the first declaration of a
|
|
// static data member is not syntactically a constant evaluated constant,
|
|
// but nonetheless is always required to be a constant expression, so we
|
|
// can skip diagnosing.
|
|
// FIXME: Using the mangling context here is a hack.
|
|
if (auto *VD = dyn_cast_or_null<VarDecl>(
|
|
ExprEvalContexts.back().ManglingContextDecl)) {
|
|
if (VD->isConstexpr() ||
|
|
(VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
|
|
break;
|
|
// FIXME: For any other kind of variable, we should build a CFG for its
|
|
// initializer and check whether the context in question is reachable.
|
|
}
|
|
|
|
Diag(Loc, PD);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
|
|
const PartialDiagnostic &PD) {
|
|
return DiagRuntimeBehavior(
|
|
Loc, Statement ? llvm::makeArrayRef(Statement) : llvm::None, PD);
|
|
}
|
|
|
|
bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
|
|
CallExpr *CE, FunctionDecl *FD) {
|
|
if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
|
|
return false;
|
|
|
|
// If we're inside a decltype's expression, don't check for a valid return
|
|
// type or construct temporaries until we know whether this is the last call.
|
|
if (ExprEvalContexts.back().ExprContext ==
|
|
ExpressionEvaluationContextRecord::EK_Decltype) {
|
|
ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
|
|
return false;
|
|
}
|
|
|
|
class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
|
|
FunctionDecl *FD;
|
|
CallExpr *CE;
|
|
|
|
public:
|
|
CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
|
|
: FD(FD), CE(CE) { }
|
|
|
|
void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
|
|
if (!FD) {
|
|
S.Diag(Loc, diag::err_call_incomplete_return)
|
|
<< T << CE->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
S.Diag(Loc, diag::err_call_function_incomplete_return)
|
|
<< CE->getSourceRange() << FD->getDeclName() << T;
|
|
S.Diag(FD->getLocation(), diag::note_entity_declared_at)
|
|
<< FD->getDeclName();
|
|
}
|
|
} Diagnoser(FD, CE);
|
|
|
|
if (RequireCompleteType(Loc, ReturnType, Diagnoser))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
|
|
// will prevent this condition from triggering, which is what we want.
|
|
void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
|
|
SourceLocation Loc;
|
|
|
|
unsigned diagnostic = diag::warn_condition_is_assignment;
|
|
bool IsOrAssign = false;
|
|
|
|
if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
|
|
if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
|
|
return;
|
|
|
|
IsOrAssign = Op->getOpcode() == BO_OrAssign;
|
|
|
|
// Greylist some idioms by putting them into a warning subcategory.
|
|
if (ObjCMessageExpr *ME
|
|
= dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
|
|
Selector Sel = ME->getSelector();
|
|
|
|
// self = [<foo> init...]
|
|
if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
|
|
diagnostic = diag::warn_condition_is_idiomatic_assignment;
|
|
|
|
// <foo> = [<bar> nextObject]
|
|
else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
|
|
diagnostic = diag::warn_condition_is_idiomatic_assignment;
|
|
}
|
|
|
|
Loc = Op->getOperatorLoc();
|
|
} else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
|
|
if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
|
|
return;
|
|
|
|
IsOrAssign = Op->getOperator() == OO_PipeEqual;
|
|
Loc = Op->getOperatorLoc();
|
|
} else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
|
|
return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
|
|
else {
|
|
// Not an assignment.
|
|
return;
|
|
}
|
|
|
|
Diag(Loc, diagnostic) << E->getSourceRange();
|
|
|
|
SourceLocation Open = E->getBeginLoc();
|
|
SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
|
|
Diag(Loc, diag::note_condition_assign_silence)
|
|
<< FixItHint::CreateInsertion(Open, "(")
|
|
<< FixItHint::CreateInsertion(Close, ")");
|
|
|
|
if (IsOrAssign)
|
|
Diag(Loc, diag::note_condition_or_assign_to_comparison)
|
|
<< FixItHint::CreateReplacement(Loc, "!=");
|
|
else
|
|
Diag(Loc, diag::note_condition_assign_to_comparison)
|
|
<< FixItHint::CreateReplacement(Loc, "==");
|
|
}
|
|
|
|
/// Redundant parentheses over an equality comparison can indicate
|
|
/// that the user intended an assignment used as condition.
|
|
void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
|
|
// Don't warn if the parens came from a macro.
|
|
SourceLocation parenLoc = ParenE->getBeginLoc();
|
|
if (parenLoc.isInvalid() || parenLoc.isMacroID())
|
|
return;
|
|
// Don't warn for dependent expressions.
|
|
if (ParenE->isTypeDependent())
|
|
return;
|
|
|
|
Expr *E = ParenE->IgnoreParens();
|
|
|
|
if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
|
|
if (opE->getOpcode() == BO_EQ &&
|
|
opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
|
|
== Expr::MLV_Valid) {
|
|
SourceLocation Loc = opE->getOperatorLoc();
|
|
|
|
Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
|
|
SourceRange ParenERange = ParenE->getSourceRange();
|
|
Diag(Loc, diag::note_equality_comparison_silence)
|
|
<< FixItHint::CreateRemoval(ParenERange.getBegin())
|
|
<< FixItHint::CreateRemoval(ParenERange.getEnd());
|
|
Diag(Loc, diag::note_equality_comparison_to_assign)
|
|
<< FixItHint::CreateReplacement(Loc, "=");
|
|
}
|
|
}
|
|
|
|
ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
|
|
bool IsConstexpr) {
|
|
DiagnoseAssignmentAsCondition(E);
|
|
if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
|
|
DiagnoseEqualityWithExtraParens(parenE);
|
|
|
|
ExprResult result = CheckPlaceholderExpr(E);
|
|
if (result.isInvalid()) return ExprError();
|
|
E = result.get();
|
|
|
|
if (!E->isTypeDependent()) {
|
|
if (getLangOpts().CPlusPlus)
|
|
return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
|
|
|
|
ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
|
|
if (ERes.isInvalid())
|
|
return ExprError();
|
|
E = ERes.get();
|
|
|
|
QualType T = E->getType();
|
|
if (!T->isScalarType()) { // C99 6.8.4.1p1
|
|
Diag(Loc, diag::err_typecheck_statement_requires_scalar)
|
|
<< T << E->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
CheckBoolLikeConversion(E, Loc);
|
|
}
|
|
|
|
return E;
|
|
}
|
|
|
|
Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
|
|
Expr *SubExpr, ConditionKind CK) {
|
|
// Empty conditions are valid in for-statements.
|
|
if (!SubExpr)
|
|
return ConditionResult();
|
|
|
|
ExprResult Cond;
|
|
switch (CK) {
|
|
case ConditionKind::Boolean:
|
|
Cond = CheckBooleanCondition(Loc, SubExpr);
|
|
break;
|
|
|
|
case ConditionKind::ConstexprIf:
|
|
Cond = CheckBooleanCondition(Loc, SubExpr, true);
|
|
break;
|
|
|
|
case ConditionKind::Switch:
|
|
Cond = CheckSwitchCondition(Loc, SubExpr);
|
|
break;
|
|
}
|
|
if (Cond.isInvalid())
|
|
return ConditionError();
|
|
|
|
// FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
|
|
FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
|
|
if (!FullExpr.get())
|
|
return ConditionError();
|
|
|
|
return ConditionResult(*this, nullptr, FullExpr,
|
|
CK == ConditionKind::ConstexprIf);
|
|
}
|
|
|
|
namespace {
|
|
/// A visitor for rebuilding a call to an __unknown_any expression
|
|
/// to have an appropriate type.
|
|
struct RebuildUnknownAnyFunction
|
|
: StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
|
|
|
|
Sema &S;
|
|
|
|
RebuildUnknownAnyFunction(Sema &S) : S(S) {}
|
|
|
|
ExprResult VisitStmt(Stmt *S) {
|
|
llvm_unreachable("unexpected statement!");
|
|
}
|
|
|
|
ExprResult VisitExpr(Expr *E) {
|
|
S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
|
|
<< E->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
/// Rebuild an expression which simply semantically wraps another
|
|
/// expression which it shares the type and value kind of.
|
|
template <class T> ExprResult rebuildSugarExpr(T *E) {
|
|
ExprResult SubResult = Visit(E->getSubExpr());
|
|
if (SubResult.isInvalid()) return ExprError();
|
|
|
|
Expr *SubExpr = SubResult.get();
|
|
E->setSubExpr(SubExpr);
|
|
E->setType(SubExpr->getType());
|
|
E->setValueKind(SubExpr->getValueKind());
|
|
assert(E->getObjectKind() == OK_Ordinary);
|
|
return E;
|
|
}
|
|
|
|
ExprResult VisitParenExpr(ParenExpr *E) {
|
|
return rebuildSugarExpr(E);
|
|
}
|
|
|
|
ExprResult VisitUnaryExtension(UnaryOperator *E) {
|
|
return rebuildSugarExpr(E);
|
|
}
|
|
|
|
ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
|
|
ExprResult SubResult = Visit(E->getSubExpr());
|
|
if (SubResult.isInvalid()) return ExprError();
|
|
|
|
Expr *SubExpr = SubResult.get();
|
|
E->setSubExpr(SubExpr);
|
|
E->setType(S.Context.getPointerType(SubExpr->getType()));
|
|
assert(E->getValueKind() == VK_RValue);
|
|
assert(E->getObjectKind() == OK_Ordinary);
|
|
return E;
|
|
}
|
|
|
|
ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
|
|
if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
|
|
|
|
E->setType(VD->getType());
|
|
|
|
assert(E->getValueKind() == VK_RValue);
|
|
if (S.getLangOpts().CPlusPlus &&
|
|
!(isa<CXXMethodDecl>(VD) &&
|
|
cast<CXXMethodDecl>(VD)->isInstance()))
|
|
E->setValueKind(VK_LValue);
|
|
|
|
return E;
|
|
}
|
|
|
|
ExprResult VisitMemberExpr(MemberExpr *E) {
|
|
return resolveDecl(E, E->getMemberDecl());
|
|
}
|
|
|
|
ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
|
|
return resolveDecl(E, E->getDecl());
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Given a function expression of unknown-any type, try to rebuild it
|
|
/// to have a function type.
|
|
static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
|
|
ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
|
|
if (Result.isInvalid()) return ExprError();
|
|
return S.DefaultFunctionArrayConversion(Result.get());
|
|
}
|
|
|
|
namespace {
|
|
/// A visitor for rebuilding an expression of type __unknown_anytype
|
|
/// into one which resolves the type directly on the referring
|
|
/// expression. Strict preservation of the original source
|
|
/// structure is not a goal.
|
|
struct RebuildUnknownAnyExpr
|
|
: StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
|
|
|
|
Sema &S;
|
|
|
|
/// The current destination type.
|
|
QualType DestType;
|
|
|
|
RebuildUnknownAnyExpr(Sema &S, QualType CastType)
|
|
: S(S), DestType(CastType) {}
|
|
|
|
ExprResult VisitStmt(Stmt *S) {
|
|
llvm_unreachable("unexpected statement!");
|
|
}
|
|
|
|
ExprResult VisitExpr(Expr *E) {
|
|
S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
|
|
<< E->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
ExprResult VisitCallExpr(CallExpr *E);
|
|
ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
|
|
|
|
/// Rebuild an expression which simply semantically wraps another
|
|
/// expression which it shares the type and value kind of.
|
|
template <class T> ExprResult rebuildSugarExpr(T *E) {
|
|
ExprResult SubResult = Visit(E->getSubExpr());
|
|
if (SubResult.isInvalid()) return ExprError();
|
|
Expr *SubExpr = SubResult.get();
|
|
E->setSubExpr(SubExpr);
|
|
E->setType(SubExpr->getType());
|
|
E->setValueKind(SubExpr->getValueKind());
|
|
assert(E->getObjectKind() == OK_Ordinary);
|
|
return E;
|
|
}
|
|
|
|
ExprResult VisitParenExpr(ParenExpr *E) {
|
|
return rebuildSugarExpr(E);
|
|
}
|
|
|
|
ExprResult VisitUnaryExtension(UnaryOperator *E) {
|
|
return rebuildSugarExpr(E);
|
|
}
|
|
|
|
ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
|
|
const PointerType *Ptr = DestType->getAs<PointerType>();
|
|
if (!Ptr) {
|
|
S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
|
|
<< E->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
if (isa<CallExpr>(E->getSubExpr())) {
|
|
S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
|
|
<< E->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
assert(E->getValueKind() == VK_RValue);
|
|
assert(E->getObjectKind() == OK_Ordinary);
|
|
E->setType(DestType);
|
|
|
|
// Build the sub-expression as if it were an object of the pointee type.
|
|
DestType = Ptr->getPointeeType();
|
|
ExprResult SubResult = Visit(E->getSubExpr());
|
|
if (SubResult.isInvalid()) return ExprError();
|
|
E->setSubExpr(SubResult.get());
|
|
return E;
|
|
}
|
|
|
|
ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
|
|
|
|
ExprResult resolveDecl(Expr *E, ValueDecl *VD);
|
|
|
|
ExprResult VisitMemberExpr(MemberExpr *E) {
|
|
return resolveDecl(E, E->getMemberDecl());
|
|
}
|
|
|
|
ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
|
|
return resolveDecl(E, E->getDecl());
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Rebuilds a call expression which yielded __unknown_anytype.
|
|
ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
|
|
Expr *CalleeExpr = E->getCallee();
|
|
|
|
enum FnKind {
|
|
FK_MemberFunction,
|
|
FK_FunctionPointer,
|
|
FK_BlockPointer
|
|
};
|
|
|
|
FnKind Kind;
|
|
QualType CalleeType = CalleeExpr->getType();
|
|
if (CalleeType == S.Context.BoundMemberTy) {
|
|
assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
|
|
Kind = FK_MemberFunction;
|
|
CalleeType = Expr::findBoundMemberType(CalleeExpr);
|
|
} else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
|
|
CalleeType = Ptr->getPointeeType();
|
|
Kind = FK_FunctionPointer;
|
|
} else {
|
|
CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
|
|
Kind = FK_BlockPointer;
|
|
}
|
|
const FunctionType *FnType = CalleeType->castAs<FunctionType>();
|
|
|
|
// Verify that this is a legal result type of a function.
|
|
if (DestType->isArrayType() || DestType->isFunctionType()) {
|
|
unsigned diagID = diag::err_func_returning_array_function;
|
|
if (Kind == FK_BlockPointer)
|
|
diagID = diag::err_block_returning_array_function;
|
|
|
|
S.Diag(E->getExprLoc(), diagID)
|
|
<< DestType->isFunctionType() << DestType;
|
|
return ExprError();
|
|
}
|
|
|
|
// Otherwise, go ahead and set DestType as the call's result.
|
|
E->setType(DestType.getNonLValueExprType(S.Context));
|
|
E->setValueKind(Expr::getValueKindForType(DestType));
|
|
assert(E->getObjectKind() == OK_Ordinary);
|
|
|
|
// Rebuild the function type, replacing the result type with DestType.
|
|
const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
|
|
if (Proto) {
|
|
// __unknown_anytype(...) is a special case used by the debugger when
|
|
// it has no idea what a function's signature is.
|
|
//
|
|
// We want to build this call essentially under the K&R
|
|
// unprototyped rules, but making a FunctionNoProtoType in C++
|
|
// would foul up all sorts of assumptions. However, we cannot
|
|
// simply pass all arguments as variadic arguments, nor can we
|
|
// portably just call the function under a non-variadic type; see
|
|
// the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
|
|
// However, it turns out that in practice it is generally safe to
|
|
// call a function declared as "A foo(B,C,D);" under the prototype
|
|
// "A foo(B,C,D,...);". The only known exception is with the
|
|
// Windows ABI, where any variadic function is implicitly cdecl
|
|
// regardless of its normal CC. Therefore we change the parameter
|
|
// types to match the types of the arguments.
|
|
//
|
|
// This is a hack, but it is far superior to moving the
|
|
// corresponding target-specific code from IR-gen to Sema/AST.
|
|
|
|
ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
|
|
SmallVector<QualType, 8> ArgTypes;
|
|
if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
|
|
ArgTypes.reserve(E->getNumArgs());
|
|
for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
|
|
Expr *Arg = E->getArg(i);
|
|
QualType ArgType = Arg->getType();
|
|
if (E->isLValue()) {
|
|
ArgType = S.Context.getLValueReferenceType(ArgType);
|
|
} else if (E->isXValue()) {
|
|
ArgType = S.Context.getRValueReferenceType(ArgType);
|
|
}
|
|
ArgTypes.push_back(ArgType);
|
|
}
|
|
ParamTypes = ArgTypes;
|
|
}
|
|
DestType = S.Context.getFunctionType(DestType, ParamTypes,
|
|
Proto->getExtProtoInfo());
|
|
} else {
|
|
DestType = S.Context.getFunctionNoProtoType(DestType,
|
|
FnType->getExtInfo());
|
|
}
|
|
|
|
// Rebuild the appropriate pointer-to-function type.
|
|
switch (Kind) {
|
|
case FK_MemberFunction:
|
|
// Nothing to do.
|
|
break;
|
|
|
|
case FK_FunctionPointer:
|
|
DestType = S.Context.getPointerType(DestType);
|
|
break;
|
|
|
|
case FK_BlockPointer:
|
|
DestType = S.Context.getBlockPointerType(DestType);
|
|
break;
|
|
}
|
|
|
|
// Finally, we can recurse.
|
|
ExprResult CalleeResult = Visit(CalleeExpr);
|
|
if (!CalleeResult.isUsable()) return ExprError();
|
|
E->setCallee(CalleeResult.get());
|
|
|
|
// Bind a temporary if necessary.
|
|
return S.MaybeBindToTemporary(E);
|
|
}
|
|
|
|
ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
|
|
// Verify that this is a legal result type of a call.
|
|
if (DestType->isArrayType() || DestType->isFunctionType()) {
|
|
S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
|
|
<< DestType->isFunctionType() << DestType;
|
|
return ExprError();
|
|
}
|
|
|
|
// Rewrite the method result type if available.
|
|
if (ObjCMethodDecl *Method = E->getMethodDecl()) {
|
|
assert(Method->getReturnType() == S.Context.UnknownAnyTy);
|
|
Method->setReturnType(DestType);
|
|
}
|
|
|
|
// Change the type of the message.
|
|
E->setType(DestType.getNonReferenceType());
|
|
E->setValueKind(Expr::getValueKindForType(DestType));
|
|
|
|
return S.MaybeBindToTemporary(E);
|
|
}
|
|
|
|
ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
|
|
// The only case we should ever see here is a function-to-pointer decay.
|
|
if (E->getCastKind() == CK_FunctionToPointerDecay) {
|
|
assert(E->getValueKind() == VK_RValue);
|
|
assert(E->getObjectKind() == OK_Ordinary);
|
|
|
|
E->setType(DestType);
|
|
|
|
// Rebuild the sub-expression as the pointee (function) type.
|
|
DestType = DestType->castAs<PointerType>()->getPointeeType();
|
|
|
|
ExprResult Result = Visit(E->getSubExpr());
|
|
if (!Result.isUsable()) return ExprError();
|
|
|
|
E->setSubExpr(Result.get());
|
|
return E;
|
|
} else if (E->getCastKind() == CK_LValueToRValue) {
|
|
assert(E->getValueKind() == VK_RValue);
|
|
assert(E->getObjectKind() == OK_Ordinary);
|
|
|
|
assert(isa<BlockPointerType>(E->getType()));
|
|
|
|
E->setType(DestType);
|
|
|
|
// The sub-expression has to be a lvalue reference, so rebuild it as such.
|
|
DestType = S.Context.getLValueReferenceType(DestType);
|
|
|
|
ExprResult Result = Visit(E->getSubExpr());
|
|
if (!Result.isUsable()) return ExprError();
|
|
|
|
E->setSubExpr(Result.get());
|
|
return E;
|
|
} else {
|
|
llvm_unreachable("Unhandled cast type!");
|
|
}
|
|
}
|
|
|
|
ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
|
|
ExprValueKind ValueKind = VK_LValue;
|
|
QualType Type = DestType;
|
|
|
|
// We know how to make this work for certain kinds of decls:
|
|
|
|
// - functions
|
|
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
|
|
if (const PointerType *Ptr = Type->getAs<PointerType>()) {
|
|
DestType = Ptr->getPointeeType();
|
|
ExprResult Result = resolveDecl(E, VD);
|
|
if (Result.isInvalid()) return ExprError();
|
|
return S.ImpCastExprToType(Result.get(), Type,
|
|
CK_FunctionToPointerDecay, VK_RValue);
|
|
}
|
|
|
|
if (!Type->isFunctionType()) {
|
|
S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
|
|
<< VD << E->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
|
|
// We must match the FunctionDecl's type to the hack introduced in
|
|
// RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
|
|
// type. See the lengthy commentary in that routine.
|
|
QualType FDT = FD->getType();
|
|
const FunctionType *FnType = FDT->castAs<FunctionType>();
|
|
const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
|
|
DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
|
|
if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
|
|
SourceLocation Loc = FD->getLocation();
|
|
FunctionDecl *NewFD = FunctionDecl::Create(S.Context,
|
|
FD->getDeclContext(),
|
|
Loc, Loc, FD->getNameInfo().getName(),
|
|
DestType, FD->getTypeSourceInfo(),
|
|
SC_None, false/*isInlineSpecified*/,
|
|
FD->hasPrototype(),
|
|
false/*isConstexprSpecified*/);
|
|
|
|
if (FD->getQualifier())
|
|
NewFD->setQualifierInfo(FD->getQualifierLoc());
|
|
|
|
SmallVector<ParmVarDecl*, 16> Params;
|
|
for (const auto &AI : FT->param_types()) {
|
|
ParmVarDecl *Param =
|
|
S.BuildParmVarDeclForTypedef(FD, Loc, AI);
|
|
Param->setScopeInfo(0, Params.size());
|
|
Params.push_back(Param);
|
|
}
|
|
NewFD->setParams(Params);
|
|
DRE->setDecl(NewFD);
|
|
VD = DRE->getDecl();
|
|
}
|
|
}
|
|
|
|
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
|
|
if (MD->isInstance()) {
|
|
ValueKind = VK_RValue;
|
|
Type = S.Context.BoundMemberTy;
|
|
}
|
|
|
|
// Function references aren't l-values in C.
|
|
if (!S.getLangOpts().CPlusPlus)
|
|
ValueKind = VK_RValue;
|
|
|
|
// - variables
|
|
} else if (isa<VarDecl>(VD)) {
|
|
if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
|
|
Type = RefTy->getPointeeType();
|
|
} else if (Type->isFunctionType()) {
|
|
S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
|
|
<< VD << E->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
// - nothing else
|
|
} else {
|
|
S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
|
|
<< VD << E->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
// Modifying the declaration like this is friendly to IR-gen but
|
|
// also really dangerous.
|
|
VD->setType(DestType);
|
|
E->setType(Type);
|
|
E->setValueKind(ValueKind);
|
|
return E;
|
|
}
|
|
|
|
/// Check a cast of an unknown-any type. We intentionally only
|
|
/// trigger this for C-style casts.
|
|
ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
|
|
Expr *CastExpr, CastKind &CastKind,
|
|
ExprValueKind &VK, CXXCastPath &Path) {
|
|
// The type we're casting to must be either void or complete.
|
|
if (!CastType->isVoidType() &&
|
|
RequireCompleteType(TypeRange.getBegin(), CastType,
|
|
diag::err_typecheck_cast_to_incomplete))
|
|
return ExprError();
|
|
|
|
// Rewrite the casted expression from scratch.
|
|
ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
|
|
if (!result.isUsable()) return ExprError();
|
|
|
|
CastExpr = result.get();
|
|
VK = CastExpr->getValueKind();
|
|
CastKind = CK_NoOp;
|
|
|
|
return CastExpr;
|
|
}
|
|
|
|
ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
|
|
return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
|
|
}
|
|
|
|
ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
|
|
Expr *arg, QualType ¶mType) {
|
|
// If the syntactic form of the argument is not an explicit cast of
|
|
// any sort, just do default argument promotion.
|
|
ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
|
|
if (!castArg) {
|
|
ExprResult result = DefaultArgumentPromotion(arg);
|
|
if (result.isInvalid()) return ExprError();
|
|
paramType = result.get()->getType();
|
|
return result;
|
|
}
|
|
|
|
// Otherwise, use the type that was written in the explicit cast.
|
|
assert(!arg->hasPlaceholderType());
|
|
paramType = castArg->getTypeAsWritten();
|
|
|
|
// Copy-initialize a parameter of that type.
|
|
InitializedEntity entity =
|
|
InitializedEntity::InitializeParameter(Context, paramType,
|
|
/*consumed*/ false);
|
|
return PerformCopyInitialization(entity, callLoc, arg);
|
|
}
|
|
|
|
static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
|
|
Expr *orig = E;
|
|
unsigned diagID = diag::err_uncasted_use_of_unknown_any;
|
|
while (true) {
|
|
E = E->IgnoreParenImpCasts();
|
|
if (CallExpr *call = dyn_cast<CallExpr>(E)) {
|
|
E = call->getCallee();
|
|
diagID = diag::err_uncasted_call_of_unknown_any;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
SourceLocation loc;
|
|
NamedDecl *d;
|
|
if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
|
|
loc = ref->getLocation();
|
|
d = ref->getDecl();
|
|
} else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
|
|
loc = mem->getMemberLoc();
|
|
d = mem->getMemberDecl();
|
|
} else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
|
|
diagID = diag::err_uncasted_call_of_unknown_any;
|
|
loc = msg->getSelectorStartLoc();
|
|
d = msg->getMethodDecl();
|
|
if (!d) {
|
|
S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
|
|
<< static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
|
|
<< orig->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
} else {
|
|
S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
|
|
<< E->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
S.Diag(loc, diagID) << d << orig->getSourceRange();
|
|
|
|
// Never recoverable.
|
|
return ExprError();
|
|
}
|
|
|
|
/// Check for operands with placeholder types and complain if found.
|
|
/// Returns ExprError() if there was an error and no recovery was possible.
|
|
ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
|
|
if (!getLangOpts().CPlusPlus) {
|
|
// C cannot handle TypoExpr nodes on either side of a binop because it
|
|
// doesn't handle dependent types properly, so make sure any TypoExprs have
|
|
// been dealt with before checking the operands.
|
|
ExprResult Result = CorrectDelayedTyposInExpr(E);
|
|
if (!Result.isUsable()) return ExprError();
|
|
E = Result.get();
|
|
}
|
|
|
|
const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
|
|
if (!placeholderType) return E;
|
|
|
|
switch (placeholderType->getKind()) {
|
|
|
|
// Overloaded expressions.
|
|
case BuiltinType::Overload: {
|
|
// Try to resolve a single function template specialization.
|
|
// This is obligatory.
|
|
ExprResult Result = E;
|
|
if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
|
|
return Result;
|
|
|
|
// No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
|
|
// leaves Result unchanged on failure.
|
|
Result = E;
|
|
if (resolveAndFixAddressOfOnlyViableOverloadCandidate(Result))
|
|
return Result;
|
|
|
|
// If that failed, try to recover with a call.
|
|
tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
|
|
/*complain*/ true);
|
|
return Result;
|
|
}
|
|
|
|
// Bound member functions.
|
|
case BuiltinType::BoundMember: {
|
|
ExprResult result = E;
|
|
const Expr *BME = E->IgnoreParens();
|
|
PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
|
|
// Try to give a nicer diagnostic if it is a bound member that we recognize.
|
|
if (isa<CXXPseudoDestructorExpr>(BME)) {
|
|
PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
|
|
} else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
|
|
if (ME->getMemberNameInfo().getName().getNameKind() ==
|
|
DeclarationName::CXXDestructorName)
|
|
PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
|
|
}
|
|
tryToRecoverWithCall(result, PD,
|
|
/*complain*/ true);
|
|
return result;
|
|
}
|
|
|
|
// ARC unbridged casts.
|
|
case BuiltinType::ARCUnbridgedCast: {
|
|
Expr *realCast = stripARCUnbridgedCast(E);
|
|
diagnoseARCUnbridgedCast(realCast);
|
|
return realCast;
|
|
}
|
|
|
|
// Expressions of unknown type.
|
|
case BuiltinType::UnknownAny:
|
|
return diagnoseUnknownAnyExpr(*this, E);
|
|
|
|
// Pseudo-objects.
|
|
case BuiltinType::PseudoObject:
|
|
return checkPseudoObjectRValue(E);
|
|
|
|
case BuiltinType::BuiltinFn: {
|
|
// Accept __noop without parens by implicitly converting it to a call expr.
|
|
auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
|
|
if (DRE) {
|
|
auto *FD = cast<FunctionDecl>(DRE->getDecl());
|
|
if (FD->getBuiltinID() == Builtin::BI__noop) {
|
|
E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
|
|
CK_BuiltinFnToFnPtr)
|
|
.get();
|
|
return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy,
|
|
VK_RValue, SourceLocation());
|
|
}
|
|
}
|
|
|
|
Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
|
|
return ExprError();
|
|
}
|
|
|
|
// Expressions of unknown type.
|
|
case BuiltinType::OMPArraySection:
|
|
Diag(E->getBeginLoc(), diag::err_omp_array_section_use);
|
|
return ExprError();
|
|
|
|
// Everything else should be impossible.
|
|
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
|
|
case BuiltinType::Id:
|
|
#include "clang/Basic/OpenCLImageTypes.def"
|
|
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
|
|
case BuiltinType::Id:
|
|
#include "clang/Basic/OpenCLExtensionTypes.def"
|
|
#define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
|
|
#define PLACEHOLDER_TYPE(Id, SingletonId)
|
|
#include "clang/AST/BuiltinTypes.def"
|
|
break;
|
|
}
|
|
|
|
llvm_unreachable("invalid placeholder type!");
|
|
}
|
|
|
|
bool Sema::CheckCaseExpression(Expr *E) {
|
|
if (E->isTypeDependent())
|
|
return true;
|
|
if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
|
|
return E->getType()->isIntegralOrEnumerationType();
|
|
return false;
|
|
}
|
|
|
|
/// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
|
|
ExprResult
|
|
Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
|
|
assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
|
|
"Unknown Objective-C Boolean value!");
|
|
QualType BoolT = Context.ObjCBuiltinBoolTy;
|
|
if (!Context.getBOOLDecl()) {
|
|
LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
|
|
Sema::LookupOrdinaryName);
|
|
if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
|
|
NamedDecl *ND = Result.getFoundDecl();
|
|
if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
|
|
Context.setBOOLDecl(TD);
|
|
}
|
|
}
|
|
if (Context.getBOOLDecl())
|
|
BoolT = Context.getBOOLType();
|
|
return new (Context)
|
|
ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
|
|
}
|
|
|
|
ExprResult Sema::ActOnObjCAvailabilityCheckExpr(
|
|
llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc,
|
|
SourceLocation RParen) {
|
|
|
|
StringRef Platform = getASTContext().getTargetInfo().getPlatformName();
|
|
|
|
auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
|
|
return Spec.getPlatform() == Platform;
|
|
});
|
|
|
|
VersionTuple Version;
|
|
if (Spec != AvailSpecs.end())
|
|
Version = Spec->getVersion();
|
|
|
|
// The use of `@available` in the enclosing function should be analyzed to
|
|
// warn when it's used inappropriately (i.e. not if(@available)).
|
|
if (getCurFunctionOrMethodDecl())
|
|
getEnclosingFunction()->HasPotentialAvailabilityViolations = true;
|
|
else if (getCurBlock() || getCurLambda())
|
|
getCurFunction()->HasPotentialAvailabilityViolations = true;
|
|
|
|
return new (Context)
|
|
ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy);
|
|
}
|