forked from OSchip/llvm-project
4610 lines
176 KiB
C++
4610 lines
176 KiB
C++
//===- MemorySanitizer.cpp - detector of uninitialized reads --------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// This file is a part of MemorySanitizer, a detector of uninitialized
|
|
/// reads.
|
|
///
|
|
/// The algorithm of the tool is similar to Memcheck
|
|
/// (http://goo.gl/QKbem). We associate a few shadow bits with every
|
|
/// byte of the application memory, poison the shadow of the malloc-ed
|
|
/// or alloca-ed memory, load the shadow bits on every memory read,
|
|
/// propagate the shadow bits through some of the arithmetic
|
|
/// instruction (including MOV), store the shadow bits on every memory
|
|
/// write, report a bug on some other instructions (e.g. JMP) if the
|
|
/// associated shadow is poisoned.
|
|
///
|
|
/// But there are differences too. The first and the major one:
|
|
/// compiler instrumentation instead of binary instrumentation. This
|
|
/// gives us much better register allocation, possible compiler
|
|
/// optimizations and a fast start-up. But this brings the major issue
|
|
/// as well: msan needs to see all program events, including system
|
|
/// calls and reads/writes in system libraries, so we either need to
|
|
/// compile *everything* with msan or use a binary translation
|
|
/// component (e.g. DynamoRIO) to instrument pre-built libraries.
|
|
/// Another difference from Memcheck is that we use 8 shadow bits per
|
|
/// byte of application memory and use a direct shadow mapping. This
|
|
/// greatly simplifies the instrumentation code and avoids races on
|
|
/// shadow updates (Memcheck is single-threaded so races are not a
|
|
/// concern there. Memcheck uses 2 shadow bits per byte with a slow
|
|
/// path storage that uses 8 bits per byte).
|
|
///
|
|
/// The default value of shadow is 0, which means "clean" (not poisoned).
|
|
///
|
|
/// Every module initializer should call __msan_init to ensure that the
|
|
/// shadow memory is ready. On error, __msan_warning is called. Since
|
|
/// parameters and return values may be passed via registers, we have a
|
|
/// specialized thread-local shadow for return values
|
|
/// (__msan_retval_tls) and parameters (__msan_param_tls).
|
|
///
|
|
/// Origin tracking.
|
|
///
|
|
/// MemorySanitizer can track origins (allocation points) of all uninitialized
|
|
/// values. This behavior is controlled with a flag (msan-track-origins) and is
|
|
/// disabled by default.
|
|
///
|
|
/// Origins are 4-byte values created and interpreted by the runtime library.
|
|
/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
|
|
/// of application memory. Propagation of origins is basically a bunch of
|
|
/// "select" instructions that pick the origin of a dirty argument, if an
|
|
/// instruction has one.
|
|
///
|
|
/// Every 4 aligned, consecutive bytes of application memory have one origin
|
|
/// value associated with them. If these bytes contain uninitialized data
|
|
/// coming from 2 different allocations, the last store wins. Because of this,
|
|
/// MemorySanitizer reports can show unrelated origins, but this is unlikely in
|
|
/// practice.
|
|
///
|
|
/// Origins are meaningless for fully initialized values, so MemorySanitizer
|
|
/// avoids storing origin to memory when a fully initialized value is stored.
|
|
/// This way it avoids needless overwritting origin of the 4-byte region on
|
|
/// a short (i.e. 1 byte) clean store, and it is also good for performance.
|
|
///
|
|
/// Atomic handling.
|
|
///
|
|
/// Ideally, every atomic store of application value should update the
|
|
/// corresponding shadow location in an atomic way. Unfortunately, atomic store
|
|
/// of two disjoint locations can not be done without severe slowdown.
|
|
///
|
|
/// Therefore, we implement an approximation that may err on the safe side.
|
|
/// In this implementation, every atomically accessed location in the program
|
|
/// may only change from (partially) uninitialized to fully initialized, but
|
|
/// not the other way around. We load the shadow _after_ the application load,
|
|
/// and we store the shadow _before_ the app store. Also, we always store clean
|
|
/// shadow (if the application store is atomic). This way, if the store-load
|
|
/// pair constitutes a happens-before arc, shadow store and load are correctly
|
|
/// ordered such that the load will get either the value that was stored, or
|
|
/// some later value (which is always clean).
|
|
///
|
|
/// This does not work very well with Compare-And-Swap (CAS) and
|
|
/// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
|
|
/// must store the new shadow before the app operation, and load the shadow
|
|
/// after the app operation. Computers don't work this way. Current
|
|
/// implementation ignores the load aspect of CAS/RMW, always returning a clean
|
|
/// value. It implements the store part as a simple atomic store by storing a
|
|
/// clean shadow.
|
|
///
|
|
/// Instrumenting inline assembly.
|
|
///
|
|
/// For inline assembly code LLVM has little idea about which memory locations
|
|
/// become initialized depending on the arguments. It can be possible to figure
|
|
/// out which arguments are meant to point to inputs and outputs, but the
|
|
/// actual semantics can be only visible at runtime. In the Linux kernel it's
|
|
/// also possible that the arguments only indicate the offset for a base taken
|
|
/// from a segment register, so it's dangerous to treat any asm() arguments as
|
|
/// pointers. We take a conservative approach generating calls to
|
|
/// __msan_instrument_asm_store(ptr, size)
|
|
/// , which defer the memory unpoisoning to the runtime library.
|
|
/// The latter can perform more complex address checks to figure out whether
|
|
/// it's safe to touch the shadow memory.
|
|
/// Like with atomic operations, we call __msan_instrument_asm_store() before
|
|
/// the assembly call, so that changes to the shadow memory will be seen by
|
|
/// other threads together with main memory initialization.
|
|
///
|
|
/// KernelMemorySanitizer (KMSAN) implementation.
|
|
///
|
|
/// The major differences between KMSAN and MSan instrumentation are:
|
|
/// - KMSAN always tracks the origins and implies msan-keep-going=true;
|
|
/// - KMSAN allocates shadow and origin memory for each page separately, so
|
|
/// there are no explicit accesses to shadow and origin in the
|
|
/// instrumentation.
|
|
/// Shadow and origin values for a particular X-byte memory location
|
|
/// (X=1,2,4,8) are accessed through pointers obtained via the
|
|
/// __msan_metadata_ptr_for_load_X(ptr)
|
|
/// __msan_metadata_ptr_for_store_X(ptr)
|
|
/// functions. The corresponding functions check that the X-byte accesses
|
|
/// are possible and returns the pointers to shadow and origin memory.
|
|
/// Arbitrary sized accesses are handled with:
|
|
/// __msan_metadata_ptr_for_load_n(ptr, size)
|
|
/// __msan_metadata_ptr_for_store_n(ptr, size);
|
|
/// - TLS variables are stored in a single per-task struct. A call to a
|
|
/// function __msan_get_context_state() returning a pointer to that struct
|
|
/// is inserted into every instrumented function before the entry block;
|
|
/// - __msan_warning() takes a 32-bit origin parameter;
|
|
/// - local variables are poisoned with __msan_poison_alloca() upon function
|
|
/// entry and unpoisoned with __msan_unpoison_alloca() before leaving the
|
|
/// function;
|
|
/// - the pass doesn't declare any global variables or add global constructors
|
|
/// to the translation unit.
|
|
///
|
|
/// Also, KMSAN currently ignores uninitialized memory passed into inline asm
|
|
/// calls, making sure we're on the safe side wrt. possible false positives.
|
|
///
|
|
/// KernelMemorySanitizer only supports X86_64 at the moment.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/InstVisitor.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/ValueMap.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/AtomicOrdering.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Instrumentation.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <tuple>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "msan"
|
|
|
|
static const unsigned kOriginSize = 4;
|
|
static const unsigned kMinOriginAlignment = 4;
|
|
static const unsigned kShadowTLSAlignment = 8;
|
|
|
|
// These constants must be kept in sync with the ones in msan.h.
|
|
static const unsigned kParamTLSSize = 800;
|
|
static const unsigned kRetvalTLSSize = 800;
|
|
|
|
// Accesses sizes are powers of two: 1, 2, 4, 8.
|
|
static const size_t kNumberOfAccessSizes = 4;
|
|
|
|
/// Track origins of uninitialized values.
|
|
///
|
|
/// Adds a section to MemorySanitizer report that points to the allocation
|
|
/// (stack or heap) the uninitialized bits came from originally.
|
|
static cl::opt<int> ClTrackOrigins("msan-track-origins",
|
|
cl::desc("Track origins (allocation sites) of poisoned memory"),
|
|
cl::Hidden, cl::init(0));
|
|
|
|
static cl::opt<bool> ClKeepGoing("msan-keep-going",
|
|
cl::desc("keep going after reporting a UMR"),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static cl::opt<bool> ClPoisonStack("msan-poison-stack",
|
|
cl::desc("poison uninitialized stack variables"),
|
|
cl::Hidden, cl::init(true));
|
|
|
|
static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
|
|
cl::desc("poison uninitialized stack variables with a call"),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
|
|
cl::desc("poison uninitialized stack variables with the given pattern"),
|
|
cl::Hidden, cl::init(0xff));
|
|
|
|
static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
|
|
cl::desc("poison undef temps"),
|
|
cl::Hidden, cl::init(true));
|
|
|
|
static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
|
|
cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
|
|
cl::Hidden, cl::init(true));
|
|
|
|
static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
|
|
cl::desc("exact handling of relational integer ICmp"),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static cl::opt<bool> ClHandleLifetimeIntrinsics(
|
|
"msan-handle-lifetime-intrinsics",
|
|
cl::desc(
|
|
"when possible, poison scoped variables at the beginning of the scope "
|
|
"(slower, but more precise)"),
|
|
cl::Hidden, cl::init(true));
|
|
|
|
// When compiling the Linux kernel, we sometimes see false positives related to
|
|
// MSan being unable to understand that inline assembly calls may initialize
|
|
// local variables.
|
|
// This flag makes the compiler conservatively unpoison every memory location
|
|
// passed into an assembly call. Note that this may cause false positives.
|
|
// Because it's impossible to figure out the array sizes, we can only unpoison
|
|
// the first sizeof(type) bytes for each type* pointer.
|
|
// The instrumentation is only enabled in KMSAN builds, and only if
|
|
// -msan-handle-asm-conservative is on. This is done because we may want to
|
|
// quickly disable assembly instrumentation when it breaks.
|
|
static cl::opt<bool> ClHandleAsmConservative(
|
|
"msan-handle-asm-conservative",
|
|
cl::desc("conservative handling of inline assembly"), cl::Hidden,
|
|
cl::init(true));
|
|
|
|
// This flag controls whether we check the shadow of the address
|
|
// operand of load or store. Such bugs are very rare, since load from
|
|
// a garbage address typically results in SEGV, but still happen
|
|
// (e.g. only lower bits of address are garbage, or the access happens
|
|
// early at program startup where malloc-ed memory is more likely to
|
|
// be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
|
|
static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
|
|
cl::desc("report accesses through a pointer which has poisoned shadow"),
|
|
cl::Hidden, cl::init(true));
|
|
|
|
static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
|
|
cl::desc("print out instructions with default strict semantics"),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static cl::opt<int> ClInstrumentationWithCallThreshold(
|
|
"msan-instrumentation-with-call-threshold",
|
|
cl::desc(
|
|
"If the function being instrumented requires more than "
|
|
"this number of checks and origin stores, use callbacks instead of "
|
|
"inline checks (-1 means never use callbacks)."),
|
|
cl::Hidden, cl::init(3500));
|
|
|
|
static cl::opt<bool>
|
|
ClEnableKmsan("msan-kernel",
|
|
cl::desc("Enable KernelMemorySanitizer instrumentation"),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
// This is an experiment to enable handling of cases where shadow is a non-zero
|
|
// compile-time constant. For some unexplainable reason they were silently
|
|
// ignored in the instrumentation.
|
|
static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow",
|
|
cl::desc("Insert checks for constant shadow values"),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
// This is off by default because of a bug in gold:
|
|
// https://sourceware.org/bugzilla/show_bug.cgi?id=19002
|
|
static cl::opt<bool> ClWithComdat("msan-with-comdat",
|
|
cl::desc("Place MSan constructors in comdat sections"),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
// These options allow to specify custom memory map parameters
|
|
// See MemoryMapParams for details.
|
|
static cl::opt<uint64_t> ClAndMask("msan-and-mask",
|
|
cl::desc("Define custom MSan AndMask"),
|
|
cl::Hidden, cl::init(0));
|
|
|
|
static cl::opt<uint64_t> ClXorMask("msan-xor-mask",
|
|
cl::desc("Define custom MSan XorMask"),
|
|
cl::Hidden, cl::init(0));
|
|
|
|
static cl::opt<uint64_t> ClShadowBase("msan-shadow-base",
|
|
cl::desc("Define custom MSan ShadowBase"),
|
|
cl::Hidden, cl::init(0));
|
|
|
|
static cl::opt<uint64_t> ClOriginBase("msan-origin-base",
|
|
cl::desc("Define custom MSan OriginBase"),
|
|
cl::Hidden, cl::init(0));
|
|
|
|
static const char *const kMsanModuleCtorName = "msan.module_ctor";
|
|
static const char *const kMsanInitName = "__msan_init";
|
|
|
|
namespace {
|
|
|
|
// Memory map parameters used in application-to-shadow address calculation.
|
|
// Offset = (Addr & ~AndMask) ^ XorMask
|
|
// Shadow = ShadowBase + Offset
|
|
// Origin = OriginBase + Offset
|
|
struct MemoryMapParams {
|
|
uint64_t AndMask;
|
|
uint64_t XorMask;
|
|
uint64_t ShadowBase;
|
|
uint64_t OriginBase;
|
|
};
|
|
|
|
struct PlatformMemoryMapParams {
|
|
const MemoryMapParams *bits32;
|
|
const MemoryMapParams *bits64;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
// i386 Linux
|
|
static const MemoryMapParams Linux_I386_MemoryMapParams = {
|
|
0x000080000000, // AndMask
|
|
0, // XorMask (not used)
|
|
0, // ShadowBase (not used)
|
|
0x000040000000, // OriginBase
|
|
};
|
|
|
|
// x86_64 Linux
|
|
static const MemoryMapParams Linux_X86_64_MemoryMapParams = {
|
|
#ifdef MSAN_LINUX_X86_64_OLD_MAPPING
|
|
0x400000000000, // AndMask
|
|
0, // XorMask (not used)
|
|
0, // ShadowBase (not used)
|
|
0x200000000000, // OriginBase
|
|
#else
|
|
0, // AndMask (not used)
|
|
0x500000000000, // XorMask
|
|
0, // ShadowBase (not used)
|
|
0x100000000000, // OriginBase
|
|
#endif
|
|
};
|
|
|
|
// mips64 Linux
|
|
static const MemoryMapParams Linux_MIPS64_MemoryMapParams = {
|
|
0, // AndMask (not used)
|
|
0x008000000000, // XorMask
|
|
0, // ShadowBase (not used)
|
|
0x002000000000, // OriginBase
|
|
};
|
|
|
|
// ppc64 Linux
|
|
static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = {
|
|
0xE00000000000, // AndMask
|
|
0x100000000000, // XorMask
|
|
0x080000000000, // ShadowBase
|
|
0x1C0000000000, // OriginBase
|
|
};
|
|
|
|
// aarch64 Linux
|
|
static const MemoryMapParams Linux_AArch64_MemoryMapParams = {
|
|
0, // AndMask (not used)
|
|
0x06000000000, // XorMask
|
|
0, // ShadowBase (not used)
|
|
0x01000000000, // OriginBase
|
|
};
|
|
|
|
// i386 FreeBSD
|
|
static const MemoryMapParams FreeBSD_I386_MemoryMapParams = {
|
|
0x000180000000, // AndMask
|
|
0x000040000000, // XorMask
|
|
0x000020000000, // ShadowBase
|
|
0x000700000000, // OriginBase
|
|
};
|
|
|
|
// x86_64 FreeBSD
|
|
static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = {
|
|
0xc00000000000, // AndMask
|
|
0x200000000000, // XorMask
|
|
0x100000000000, // ShadowBase
|
|
0x380000000000, // OriginBase
|
|
};
|
|
|
|
// x86_64 NetBSD
|
|
static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = {
|
|
0, // AndMask
|
|
0x500000000000, // XorMask
|
|
0, // ShadowBase
|
|
0x100000000000, // OriginBase
|
|
};
|
|
|
|
static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = {
|
|
&Linux_I386_MemoryMapParams,
|
|
&Linux_X86_64_MemoryMapParams,
|
|
};
|
|
|
|
static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = {
|
|
nullptr,
|
|
&Linux_MIPS64_MemoryMapParams,
|
|
};
|
|
|
|
static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = {
|
|
nullptr,
|
|
&Linux_PowerPC64_MemoryMapParams,
|
|
};
|
|
|
|
static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = {
|
|
nullptr,
|
|
&Linux_AArch64_MemoryMapParams,
|
|
};
|
|
|
|
static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = {
|
|
&FreeBSD_I386_MemoryMapParams,
|
|
&FreeBSD_X86_64_MemoryMapParams,
|
|
};
|
|
|
|
static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = {
|
|
nullptr,
|
|
&NetBSD_X86_64_MemoryMapParams,
|
|
};
|
|
|
|
namespace {
|
|
|
|
/// Instrument functions of a module to detect uninitialized reads.
|
|
///
|
|
/// Instantiating MemorySanitizer inserts the msan runtime library API function
|
|
/// declarations into the module if they don't exist already. Instantiating
|
|
/// ensures the __msan_init function is in the list of global constructors for
|
|
/// the module.
|
|
class MemorySanitizer {
|
|
public:
|
|
MemorySanitizer(Module &M, MemorySanitizerOptions Options)
|
|
: CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins),
|
|
Recover(Options.Recover) {
|
|
initializeModule(M);
|
|
}
|
|
|
|
// MSan cannot be moved or copied because of MapParams.
|
|
MemorySanitizer(MemorySanitizer &&) = delete;
|
|
MemorySanitizer &operator=(MemorySanitizer &&) = delete;
|
|
MemorySanitizer(const MemorySanitizer &) = delete;
|
|
MemorySanitizer &operator=(const MemorySanitizer &) = delete;
|
|
|
|
bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI);
|
|
|
|
private:
|
|
friend struct MemorySanitizerVisitor;
|
|
friend struct VarArgAMD64Helper;
|
|
friend struct VarArgMIPS64Helper;
|
|
friend struct VarArgAArch64Helper;
|
|
friend struct VarArgPowerPC64Helper;
|
|
|
|
void initializeModule(Module &M);
|
|
void initializeCallbacks(Module &M);
|
|
void createKernelApi(Module &M);
|
|
void createUserspaceApi(Module &M);
|
|
|
|
/// True if we're compiling the Linux kernel.
|
|
bool CompileKernel;
|
|
/// Track origins (allocation points) of uninitialized values.
|
|
int TrackOrigins;
|
|
bool Recover;
|
|
|
|
LLVMContext *C;
|
|
Type *IntptrTy;
|
|
Type *OriginTy;
|
|
|
|
// XxxTLS variables represent the per-thread state in MSan and per-task state
|
|
// in KMSAN.
|
|
// For the userspace these point to thread-local globals. In the kernel land
|
|
// they point to the members of a per-task struct obtained via a call to
|
|
// __msan_get_context_state().
|
|
|
|
/// Thread-local shadow storage for function parameters.
|
|
Value *ParamTLS;
|
|
|
|
/// Thread-local origin storage for function parameters.
|
|
Value *ParamOriginTLS;
|
|
|
|
/// Thread-local shadow storage for function return value.
|
|
Value *RetvalTLS;
|
|
|
|
/// Thread-local origin storage for function return value.
|
|
Value *RetvalOriginTLS;
|
|
|
|
/// Thread-local shadow storage for in-register va_arg function
|
|
/// parameters (x86_64-specific).
|
|
Value *VAArgTLS;
|
|
|
|
/// Thread-local shadow storage for in-register va_arg function
|
|
/// parameters (x86_64-specific).
|
|
Value *VAArgOriginTLS;
|
|
|
|
/// Thread-local shadow storage for va_arg overflow area
|
|
/// (x86_64-specific).
|
|
Value *VAArgOverflowSizeTLS;
|
|
|
|
/// Thread-local space used to pass origin value to the UMR reporting
|
|
/// function.
|
|
Value *OriginTLS;
|
|
|
|
/// Are the instrumentation callbacks set up?
|
|
bool CallbacksInitialized = false;
|
|
|
|
/// The run-time callback to print a warning.
|
|
FunctionCallee WarningFn;
|
|
|
|
// These arrays are indexed by log2(AccessSize).
|
|
FunctionCallee MaybeWarningFn[kNumberOfAccessSizes];
|
|
FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes];
|
|
|
|
/// Run-time helper that generates a new origin value for a stack
|
|
/// allocation.
|
|
FunctionCallee MsanSetAllocaOrigin4Fn;
|
|
|
|
/// Run-time helper that poisons stack on function entry.
|
|
FunctionCallee MsanPoisonStackFn;
|
|
|
|
/// Run-time helper that records a store (or any event) of an
|
|
/// uninitialized value and returns an updated origin id encoding this info.
|
|
FunctionCallee MsanChainOriginFn;
|
|
|
|
/// MSan runtime replacements for memmove, memcpy and memset.
|
|
FunctionCallee MemmoveFn, MemcpyFn, MemsetFn;
|
|
|
|
/// KMSAN callback for task-local function argument shadow.
|
|
StructType *MsanContextStateTy;
|
|
FunctionCallee MsanGetContextStateFn;
|
|
|
|
/// Functions for poisoning/unpoisoning local variables
|
|
FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn;
|
|
|
|
/// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin
|
|
/// pointers.
|
|
FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN;
|
|
FunctionCallee MsanMetadataPtrForLoad_1_8[4];
|
|
FunctionCallee MsanMetadataPtrForStore_1_8[4];
|
|
FunctionCallee MsanInstrumentAsmStoreFn;
|
|
|
|
/// Helper to choose between different MsanMetadataPtrXxx().
|
|
FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size);
|
|
|
|
/// Memory map parameters used in application-to-shadow calculation.
|
|
const MemoryMapParams *MapParams;
|
|
|
|
/// Custom memory map parameters used when -msan-shadow-base or
|
|
// -msan-origin-base is provided.
|
|
MemoryMapParams CustomMapParams;
|
|
|
|
MDNode *ColdCallWeights;
|
|
|
|
/// Branch weights for origin store.
|
|
MDNode *OriginStoreWeights;
|
|
|
|
/// An empty volatile inline asm that prevents callback merge.
|
|
InlineAsm *EmptyAsm;
|
|
};
|
|
|
|
void insertModuleCtor(Module &M) {
|
|
getOrCreateSanitizerCtorAndInitFunctions(
|
|
M, kMsanModuleCtorName, kMsanInitName,
|
|
/*InitArgTypes=*/{},
|
|
/*InitArgs=*/{},
|
|
// This callback is invoked when the functions are created the first
|
|
// time. Hook them into the global ctors list in that case:
|
|
[&](Function *Ctor, FunctionCallee) {
|
|
if (!ClWithComdat) {
|
|
appendToGlobalCtors(M, Ctor, 0);
|
|
return;
|
|
}
|
|
Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName);
|
|
Ctor->setComdat(MsanCtorComdat);
|
|
appendToGlobalCtors(M, Ctor, 0, Ctor);
|
|
});
|
|
}
|
|
|
|
/// A legacy function pass for msan instrumentation.
|
|
///
|
|
/// Instruments functions to detect unitialized reads.
|
|
struct MemorySanitizerLegacyPass : public FunctionPass {
|
|
// Pass identification, replacement for typeid.
|
|
static char ID;
|
|
|
|
MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {})
|
|
: FunctionPass(ID), Options(Options) {}
|
|
StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
return MSan->sanitizeFunction(
|
|
F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F));
|
|
}
|
|
bool doInitialization(Module &M) override;
|
|
|
|
Optional<MemorySanitizer> MSan;
|
|
MemorySanitizerOptions Options;
|
|
};
|
|
|
|
template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) {
|
|
return (Opt.getNumOccurrences() > 0) ? Opt : Default;
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K)
|
|
: Kernel(getOptOrDefault(ClEnableKmsan, K)),
|
|
TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)),
|
|
Recover(getOptOrDefault(ClKeepGoing, Kernel || R)) {}
|
|
|
|
PreservedAnalyses MemorySanitizerPass::run(Function &F,
|
|
FunctionAnalysisManager &FAM) {
|
|
MemorySanitizer Msan(*F.getParent(), Options);
|
|
if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)))
|
|
return PreservedAnalyses::none();
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
PreservedAnalyses MemorySanitizerPass::run(Module &M,
|
|
ModuleAnalysisManager &AM) {
|
|
if (Options.Kernel)
|
|
return PreservedAnalyses::all();
|
|
insertModuleCtor(M);
|
|
return PreservedAnalyses::none();
|
|
}
|
|
|
|
char MemorySanitizerLegacyPass::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan",
|
|
"MemorySanitizer: detects uninitialized reads.", false,
|
|
false)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan",
|
|
"MemorySanitizer: detects uninitialized reads.", false,
|
|
false)
|
|
|
|
FunctionPass *
|
|
llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) {
|
|
return new MemorySanitizerLegacyPass(Options);
|
|
}
|
|
|
|
/// Create a non-const global initialized with the given string.
|
|
///
|
|
/// Creates a writable global for Str so that we can pass it to the
|
|
/// run-time lib. Runtime uses first 4 bytes of the string to store the
|
|
/// frame ID, so the string needs to be mutable.
|
|
static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
|
|
StringRef Str) {
|
|
Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
|
|
return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
|
|
GlobalValue::PrivateLinkage, StrConst, "");
|
|
}
|
|
|
|
/// Create KMSAN API callbacks.
|
|
void MemorySanitizer::createKernelApi(Module &M) {
|
|
IRBuilder<> IRB(*C);
|
|
|
|
// These will be initialized in insertKmsanPrologue().
|
|
RetvalTLS = nullptr;
|
|
RetvalOriginTLS = nullptr;
|
|
ParamTLS = nullptr;
|
|
ParamOriginTLS = nullptr;
|
|
VAArgTLS = nullptr;
|
|
VAArgOriginTLS = nullptr;
|
|
VAArgOverflowSizeTLS = nullptr;
|
|
// OriginTLS is unused in the kernel.
|
|
OriginTLS = nullptr;
|
|
|
|
// __msan_warning() in the kernel takes an origin.
|
|
WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(),
|
|
IRB.getInt32Ty());
|
|
// Requests the per-task context state (kmsan_context_state*) from the
|
|
// runtime library.
|
|
MsanContextStateTy = StructType::get(
|
|
ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8),
|
|
ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8),
|
|
ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8),
|
|
ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */
|
|
IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy,
|
|
OriginTy);
|
|
MsanGetContextStateFn = M.getOrInsertFunction(
|
|
"__msan_get_context_state", PointerType::get(MsanContextStateTy, 0));
|
|
|
|
Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0),
|
|
PointerType::get(IRB.getInt32Ty(), 0));
|
|
|
|
for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) {
|
|
std::string name_load =
|
|
"__msan_metadata_ptr_for_load_" + std::to_string(size);
|
|
std::string name_store =
|
|
"__msan_metadata_ptr_for_store_" + std::to_string(size);
|
|
MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction(
|
|
name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0));
|
|
MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction(
|
|
name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0));
|
|
}
|
|
|
|
MsanMetadataPtrForLoadN = M.getOrInsertFunction(
|
|
"__msan_metadata_ptr_for_load_n", RetTy,
|
|
PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty());
|
|
MsanMetadataPtrForStoreN = M.getOrInsertFunction(
|
|
"__msan_metadata_ptr_for_store_n", RetTy,
|
|
PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty());
|
|
|
|
// Functions for poisoning and unpoisoning memory.
|
|
MsanPoisonAllocaFn =
|
|
M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(),
|
|
IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy());
|
|
MsanUnpoisonAllocaFn = M.getOrInsertFunction(
|
|
"__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy);
|
|
}
|
|
|
|
static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) {
|
|
return M.getOrInsertGlobal(Name, Ty, [&] {
|
|
return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage,
|
|
nullptr, Name, nullptr,
|
|
GlobalVariable::InitialExecTLSModel);
|
|
});
|
|
}
|
|
|
|
/// Insert declarations for userspace-specific functions and globals.
|
|
void MemorySanitizer::createUserspaceApi(Module &M) {
|
|
IRBuilder<> IRB(*C);
|
|
// Create the callback.
|
|
// FIXME: this function should have "Cold" calling conv,
|
|
// which is not yet implemented.
|
|
StringRef WarningFnName = Recover ? "__msan_warning"
|
|
: "__msan_warning_noreturn";
|
|
WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy());
|
|
|
|
// Create the global TLS variables.
|
|
RetvalTLS =
|
|
getOrInsertGlobal(M, "__msan_retval_tls",
|
|
ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8));
|
|
|
|
RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy);
|
|
|
|
ParamTLS =
|
|
getOrInsertGlobal(M, "__msan_param_tls",
|
|
ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8));
|
|
|
|
ParamOriginTLS =
|
|
getOrInsertGlobal(M, "__msan_param_origin_tls",
|
|
ArrayType::get(OriginTy, kParamTLSSize / 4));
|
|
|
|
VAArgTLS =
|
|
getOrInsertGlobal(M, "__msan_va_arg_tls",
|
|
ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8));
|
|
|
|
VAArgOriginTLS =
|
|
getOrInsertGlobal(M, "__msan_va_arg_origin_tls",
|
|
ArrayType::get(OriginTy, kParamTLSSize / 4));
|
|
|
|
VAArgOverflowSizeTLS =
|
|
getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty());
|
|
OriginTLS = getOrInsertGlobal(M, "__msan_origin_tls", IRB.getInt32Ty());
|
|
|
|
for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
|
|
AccessSizeIndex++) {
|
|
unsigned AccessSize = 1 << AccessSizeIndex;
|
|
std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
|
|
MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
|
|
FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
|
|
IRB.getInt32Ty());
|
|
|
|
FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
|
|
MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
|
|
FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
|
|
IRB.getInt8PtrTy(), IRB.getInt32Ty());
|
|
}
|
|
|
|
MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
|
|
"__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
|
|
IRB.getInt8PtrTy(), IntptrTy);
|
|
MsanPoisonStackFn =
|
|
M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(),
|
|
IRB.getInt8PtrTy(), IntptrTy);
|
|
}
|
|
|
|
/// Insert extern declaration of runtime-provided functions and globals.
|
|
void MemorySanitizer::initializeCallbacks(Module &M) {
|
|
// Only do this once.
|
|
if (CallbacksInitialized)
|
|
return;
|
|
|
|
IRBuilder<> IRB(*C);
|
|
// Initialize callbacks that are common for kernel and userspace
|
|
// instrumentation.
|
|
MsanChainOriginFn = M.getOrInsertFunction(
|
|
"__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty());
|
|
MemmoveFn = M.getOrInsertFunction(
|
|
"__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
|
|
IRB.getInt8PtrTy(), IntptrTy);
|
|
MemcpyFn = M.getOrInsertFunction(
|
|
"__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
|
|
IntptrTy);
|
|
MemsetFn = M.getOrInsertFunction(
|
|
"__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
|
|
IntptrTy);
|
|
// We insert an empty inline asm after __msan_report* to avoid callback merge.
|
|
EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
|
|
StringRef(""), StringRef(""),
|
|
/*hasSideEffects=*/true);
|
|
|
|
MsanInstrumentAsmStoreFn =
|
|
M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(),
|
|
PointerType::get(IRB.getInt8Ty(), 0), IntptrTy);
|
|
|
|
if (CompileKernel) {
|
|
createKernelApi(M);
|
|
} else {
|
|
createUserspaceApi(M);
|
|
}
|
|
CallbacksInitialized = true;
|
|
}
|
|
|
|
FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore,
|
|
int size) {
|
|
FunctionCallee *Fns =
|
|
isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8;
|
|
switch (size) {
|
|
case 1:
|
|
return Fns[0];
|
|
case 2:
|
|
return Fns[1];
|
|
case 4:
|
|
return Fns[2];
|
|
case 8:
|
|
return Fns[3];
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
/// Module-level initialization.
|
|
///
|
|
/// inserts a call to __msan_init to the module's constructor list.
|
|
void MemorySanitizer::initializeModule(Module &M) {
|
|
auto &DL = M.getDataLayout();
|
|
|
|
bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0;
|
|
bool OriginPassed = ClOriginBase.getNumOccurrences() > 0;
|
|
// Check the overrides first
|
|
if (ShadowPassed || OriginPassed) {
|
|
CustomMapParams.AndMask = ClAndMask;
|
|
CustomMapParams.XorMask = ClXorMask;
|
|
CustomMapParams.ShadowBase = ClShadowBase;
|
|
CustomMapParams.OriginBase = ClOriginBase;
|
|
MapParams = &CustomMapParams;
|
|
} else {
|
|
Triple TargetTriple(M.getTargetTriple());
|
|
switch (TargetTriple.getOS()) {
|
|
case Triple::FreeBSD:
|
|
switch (TargetTriple.getArch()) {
|
|
case Triple::x86_64:
|
|
MapParams = FreeBSD_X86_MemoryMapParams.bits64;
|
|
break;
|
|
case Triple::x86:
|
|
MapParams = FreeBSD_X86_MemoryMapParams.bits32;
|
|
break;
|
|
default:
|
|
report_fatal_error("unsupported architecture");
|
|
}
|
|
break;
|
|
case Triple::NetBSD:
|
|
switch (TargetTriple.getArch()) {
|
|
case Triple::x86_64:
|
|
MapParams = NetBSD_X86_MemoryMapParams.bits64;
|
|
break;
|
|
default:
|
|
report_fatal_error("unsupported architecture");
|
|
}
|
|
break;
|
|
case Triple::Linux:
|
|
switch (TargetTriple.getArch()) {
|
|
case Triple::x86_64:
|
|
MapParams = Linux_X86_MemoryMapParams.bits64;
|
|
break;
|
|
case Triple::x86:
|
|
MapParams = Linux_X86_MemoryMapParams.bits32;
|
|
break;
|
|
case Triple::mips64:
|
|
case Triple::mips64el:
|
|
MapParams = Linux_MIPS_MemoryMapParams.bits64;
|
|
break;
|
|
case Triple::ppc64:
|
|
case Triple::ppc64le:
|
|
MapParams = Linux_PowerPC_MemoryMapParams.bits64;
|
|
break;
|
|
case Triple::aarch64:
|
|
case Triple::aarch64_be:
|
|
MapParams = Linux_ARM_MemoryMapParams.bits64;
|
|
break;
|
|
default:
|
|
report_fatal_error("unsupported architecture");
|
|
}
|
|
break;
|
|
default:
|
|
report_fatal_error("unsupported operating system");
|
|
}
|
|
}
|
|
|
|
C = &(M.getContext());
|
|
IRBuilder<> IRB(*C);
|
|
IntptrTy = IRB.getIntPtrTy(DL);
|
|
OriginTy = IRB.getInt32Ty();
|
|
|
|
ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
|
|
OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
|
|
|
|
if (!CompileKernel) {
|
|
if (TrackOrigins)
|
|
M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] {
|
|
return new GlobalVariable(
|
|
M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
|
|
IRB.getInt32(TrackOrigins), "__msan_track_origins");
|
|
});
|
|
|
|
if (Recover)
|
|
M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] {
|
|
return new GlobalVariable(M, IRB.getInt32Ty(), true,
|
|
GlobalValue::WeakODRLinkage,
|
|
IRB.getInt32(Recover), "__msan_keep_going");
|
|
});
|
|
}
|
|
}
|
|
|
|
bool MemorySanitizerLegacyPass::doInitialization(Module &M) {
|
|
if (!Options.Kernel)
|
|
insertModuleCtor(M);
|
|
MSan.emplace(M, Options);
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// A helper class that handles instrumentation of VarArg
|
|
/// functions on a particular platform.
|
|
///
|
|
/// Implementations are expected to insert the instrumentation
|
|
/// necessary to propagate argument shadow through VarArg function
|
|
/// calls. Visit* methods are called during an InstVisitor pass over
|
|
/// the function, and should avoid creating new basic blocks. A new
|
|
/// instance of this class is created for each instrumented function.
|
|
struct VarArgHelper {
|
|
virtual ~VarArgHelper() = default;
|
|
|
|
/// Visit a CallSite.
|
|
virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
|
|
|
|
/// Visit a va_start call.
|
|
virtual void visitVAStartInst(VAStartInst &I) = 0;
|
|
|
|
/// Visit a va_copy call.
|
|
virtual void visitVACopyInst(VACopyInst &I) = 0;
|
|
|
|
/// Finalize function instrumentation.
|
|
///
|
|
/// This method is called after visiting all interesting (see above)
|
|
/// instructions in a function.
|
|
virtual void finalizeInstrumentation() = 0;
|
|
};
|
|
|
|
struct MemorySanitizerVisitor;
|
|
|
|
} // end anonymous namespace
|
|
|
|
static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
|
|
MemorySanitizerVisitor &Visitor);
|
|
|
|
static unsigned TypeSizeToSizeIndex(unsigned TypeSize) {
|
|
if (TypeSize <= 8) return 0;
|
|
return Log2_32_Ceil((TypeSize + 7) / 8);
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// This class does all the work for a given function. Store and Load
|
|
/// instructions store and load corresponding shadow and origin
|
|
/// values. Most instructions propagate shadow from arguments to their
|
|
/// return values. Certain instructions (most importantly, BranchInst)
|
|
/// test their argument shadow and print reports (with a runtime call) if it's
|
|
/// non-zero.
|
|
struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
|
|
Function &F;
|
|
MemorySanitizer &MS;
|
|
SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
|
|
ValueMap<Value*, Value*> ShadowMap, OriginMap;
|
|
std::unique_ptr<VarArgHelper> VAHelper;
|
|
const TargetLibraryInfo *TLI;
|
|
BasicBlock *ActualFnStart;
|
|
|
|
// The following flags disable parts of MSan instrumentation based on
|
|
// blacklist contents and command-line options.
|
|
bool InsertChecks;
|
|
bool PropagateShadow;
|
|
bool PoisonStack;
|
|
bool PoisonUndef;
|
|
bool CheckReturnValue;
|
|
|
|
struct ShadowOriginAndInsertPoint {
|
|
Value *Shadow;
|
|
Value *Origin;
|
|
Instruction *OrigIns;
|
|
|
|
ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
|
|
: Shadow(S), Origin(O), OrigIns(I) {}
|
|
};
|
|
SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
|
|
bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics;
|
|
SmallSet<AllocaInst *, 16> AllocaSet;
|
|
SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList;
|
|
SmallVector<StoreInst *, 16> StoreList;
|
|
|
|
MemorySanitizerVisitor(Function &F, MemorySanitizer &MS,
|
|
const TargetLibraryInfo &TLI)
|
|
: F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) {
|
|
bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory);
|
|
InsertChecks = SanitizeFunction;
|
|
PropagateShadow = SanitizeFunction;
|
|
PoisonStack = SanitizeFunction && ClPoisonStack;
|
|
PoisonUndef = SanitizeFunction && ClPoisonUndef;
|
|
// FIXME: Consider using SpecialCaseList to specify a list of functions that
|
|
// must always return fully initialized values. For now, we hardcode "main".
|
|
CheckReturnValue = SanitizeFunction && (F.getName() == "main");
|
|
|
|
MS.initializeCallbacks(*F.getParent());
|
|
if (MS.CompileKernel)
|
|
ActualFnStart = insertKmsanPrologue(F);
|
|
else
|
|
ActualFnStart = &F.getEntryBlock();
|
|
|
|
LLVM_DEBUG(if (!InsertChecks) dbgs()
|
|
<< "MemorySanitizer is not inserting checks into '"
|
|
<< F.getName() << "'\n");
|
|
}
|
|
|
|
Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
|
|
if (MS.TrackOrigins <= 1) return V;
|
|
return IRB.CreateCall(MS.MsanChainOriginFn, V);
|
|
}
|
|
|
|
Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) {
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
|
|
if (IntptrSize == kOriginSize) return Origin;
|
|
assert(IntptrSize == kOriginSize * 2);
|
|
Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false);
|
|
return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8));
|
|
}
|
|
|
|
/// Fill memory range with the given origin value.
|
|
void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr,
|
|
unsigned Size, unsigned Alignment) {
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
unsigned IntptrAlignment = DL.getABITypeAlignment(MS.IntptrTy);
|
|
unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
|
|
assert(IntptrAlignment >= kMinOriginAlignment);
|
|
assert(IntptrSize >= kOriginSize);
|
|
|
|
unsigned Ofs = 0;
|
|
unsigned CurrentAlignment = Alignment;
|
|
if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) {
|
|
Value *IntptrOrigin = originToIntptr(IRB, Origin);
|
|
Value *IntptrOriginPtr =
|
|
IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0));
|
|
for (unsigned i = 0; i < Size / IntptrSize; ++i) {
|
|
Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i)
|
|
: IntptrOriginPtr;
|
|
IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
|
|
Ofs += IntptrSize / kOriginSize;
|
|
CurrentAlignment = IntptrAlignment;
|
|
}
|
|
}
|
|
|
|
for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) {
|
|
Value *GEP =
|
|
i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr;
|
|
IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
|
|
CurrentAlignment = kMinOriginAlignment;
|
|
}
|
|
}
|
|
|
|
void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
|
|
Value *OriginPtr, unsigned Alignment, bool AsCall) {
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
|
|
unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
|
|
if (Shadow->getType()->isAggregateType()) {
|
|
paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize,
|
|
OriginAlignment);
|
|
} else {
|
|
Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
|
|
Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
|
|
if (ConstantShadow) {
|
|
if (ClCheckConstantShadow && !ConstantShadow->isZeroValue())
|
|
paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize,
|
|
OriginAlignment);
|
|
return;
|
|
}
|
|
|
|
unsigned TypeSizeInBits =
|
|
DL.getTypeSizeInBits(ConvertedShadow->getType());
|
|
unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
|
|
if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) {
|
|
FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex];
|
|
Value *ConvertedShadow2 = IRB.CreateZExt(
|
|
ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
|
|
IRB.CreateCall(Fn, {ConvertedShadow2,
|
|
IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
|
|
Origin});
|
|
} else {
|
|
Value *Cmp = IRB.CreateICmpNE(
|
|
ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp");
|
|
Instruction *CheckTerm = SplitBlockAndInsertIfThen(
|
|
Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
|
|
IRBuilder<> IRBNew(CheckTerm);
|
|
paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize,
|
|
OriginAlignment);
|
|
}
|
|
}
|
|
}
|
|
|
|
void materializeStores(bool InstrumentWithCalls) {
|
|
for (StoreInst *SI : StoreList) {
|
|
IRBuilder<> IRB(SI);
|
|
Value *Val = SI->getValueOperand();
|
|
Value *Addr = SI->getPointerOperand();
|
|
Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val);
|
|
Value *ShadowPtr, *OriginPtr;
|
|
Type *ShadowTy = Shadow->getType();
|
|
unsigned Alignment = SI->getAlignment();
|
|
unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
|
|
std::tie(ShadowPtr, OriginPtr) =
|
|
getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true);
|
|
|
|
StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment);
|
|
LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n");
|
|
(void)NewSI;
|
|
|
|
if (SI->isAtomic())
|
|
SI->setOrdering(addReleaseOrdering(SI->getOrdering()));
|
|
|
|
if (MS.TrackOrigins && !SI->isAtomic())
|
|
storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr,
|
|
OriginAlignment, InstrumentWithCalls);
|
|
}
|
|
}
|
|
|
|
/// Helper function to insert a warning at IRB's current insert point.
|
|
void insertWarningFn(IRBuilder<> &IRB, Value *Origin) {
|
|
if (!Origin)
|
|
Origin = (Value *)IRB.getInt32(0);
|
|
if (MS.CompileKernel) {
|
|
IRB.CreateCall(MS.WarningFn, Origin);
|
|
} else {
|
|
if (MS.TrackOrigins) {
|
|
IRB.CreateStore(Origin, MS.OriginTLS);
|
|
}
|
|
IRB.CreateCall(MS.WarningFn, {});
|
|
}
|
|
IRB.CreateCall(MS.EmptyAsm, {});
|
|
// FIXME: Insert UnreachableInst if !MS.Recover?
|
|
// This may invalidate some of the following checks and needs to be done
|
|
// at the very end.
|
|
}
|
|
|
|
void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin,
|
|
bool AsCall) {
|
|
IRBuilder<> IRB(OrigIns);
|
|
LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n");
|
|
Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
|
|
LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n");
|
|
|
|
Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
|
|
if (ConstantShadow) {
|
|
if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) {
|
|
insertWarningFn(IRB, Origin);
|
|
}
|
|
return;
|
|
}
|
|
|
|
const DataLayout &DL = OrigIns->getModule()->getDataLayout();
|
|
|
|
unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
|
|
unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
|
|
if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) {
|
|
FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex];
|
|
Value *ConvertedShadow2 =
|
|
IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
|
|
IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin
|
|
? Origin
|
|
: (Value *)IRB.getInt32(0)});
|
|
} else {
|
|
Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
|
|
getCleanShadow(ConvertedShadow), "_mscmp");
|
|
Instruction *CheckTerm = SplitBlockAndInsertIfThen(
|
|
Cmp, OrigIns,
|
|
/* Unreachable */ !MS.Recover, MS.ColdCallWeights);
|
|
|
|
IRB.SetInsertPoint(CheckTerm);
|
|
insertWarningFn(IRB, Origin);
|
|
LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n");
|
|
}
|
|
}
|
|
|
|
void materializeChecks(bool InstrumentWithCalls) {
|
|
for (const auto &ShadowData : InstrumentationList) {
|
|
Instruction *OrigIns = ShadowData.OrigIns;
|
|
Value *Shadow = ShadowData.Shadow;
|
|
Value *Origin = ShadowData.Origin;
|
|
materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls);
|
|
}
|
|
LLVM_DEBUG(dbgs() << "DONE:\n" << F);
|
|
}
|
|
|
|
BasicBlock *insertKmsanPrologue(Function &F) {
|
|
BasicBlock *ret =
|
|
SplitBlock(&F.getEntryBlock(), F.getEntryBlock().getFirstNonPHI());
|
|
IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
|
|
Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {});
|
|
Constant *Zero = IRB.getInt32(0);
|
|
MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
|
|
{Zero, IRB.getInt32(0)}, "param_shadow");
|
|
MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
|
|
{Zero, IRB.getInt32(1)}, "retval_shadow");
|
|
MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
|
|
{Zero, IRB.getInt32(2)}, "va_arg_shadow");
|
|
MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
|
|
{Zero, IRB.getInt32(3)}, "va_arg_origin");
|
|
MS.VAArgOverflowSizeTLS =
|
|
IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
|
|
{Zero, IRB.getInt32(4)}, "va_arg_overflow_size");
|
|
MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
|
|
{Zero, IRB.getInt32(5)}, "param_origin");
|
|
MS.RetvalOriginTLS =
|
|
IRB.CreateGEP(MS.MsanContextStateTy, ContextState,
|
|
{Zero, IRB.getInt32(6)}, "retval_origin");
|
|
return ret;
|
|
}
|
|
|
|
/// Add MemorySanitizer instrumentation to a function.
|
|
bool runOnFunction() {
|
|
// In the presence of unreachable blocks, we may see Phi nodes with
|
|
// incoming nodes from such blocks. Since InstVisitor skips unreachable
|
|
// blocks, such nodes will not have any shadow value associated with them.
|
|
// It's easier to remove unreachable blocks than deal with missing shadow.
|
|
removeUnreachableBlocks(F);
|
|
|
|
// Iterate all BBs in depth-first order and create shadow instructions
|
|
// for all instructions (where applicable).
|
|
// For PHI nodes we create dummy shadow PHIs which will be finalized later.
|
|
for (BasicBlock *BB : depth_first(ActualFnStart))
|
|
visit(*BB);
|
|
|
|
// Finalize PHI nodes.
|
|
for (PHINode *PN : ShadowPHINodes) {
|
|
PHINode *PNS = cast<PHINode>(getShadow(PN));
|
|
PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr;
|
|
size_t NumValues = PN->getNumIncomingValues();
|
|
for (size_t v = 0; v < NumValues; v++) {
|
|
PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
|
|
if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
|
|
}
|
|
}
|
|
|
|
VAHelper->finalizeInstrumentation();
|
|
|
|
// Poison llvm.lifetime.start intrinsics, if we haven't fallen back to
|
|
// instrumenting only allocas.
|
|
if (InstrumentLifetimeStart) {
|
|
for (auto Item : LifetimeStartList) {
|
|
instrumentAlloca(*Item.second, Item.first);
|
|
AllocaSet.erase(Item.second);
|
|
}
|
|
}
|
|
// Poison the allocas for which we didn't instrument the corresponding
|
|
// lifetime intrinsics.
|
|
for (AllocaInst *AI : AllocaSet)
|
|
instrumentAlloca(*AI);
|
|
|
|
bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 &&
|
|
InstrumentationList.size() + StoreList.size() >
|
|
(unsigned)ClInstrumentationWithCallThreshold;
|
|
|
|
// Insert shadow value checks.
|
|
materializeChecks(InstrumentWithCalls);
|
|
|
|
// Delayed instrumentation of StoreInst.
|
|
// This may not add new address checks.
|
|
materializeStores(InstrumentWithCalls);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Compute the shadow type that corresponds to a given Value.
|
|
Type *getShadowTy(Value *V) {
|
|
return getShadowTy(V->getType());
|
|
}
|
|
|
|
/// Compute the shadow type that corresponds to a given Type.
|
|
Type *getShadowTy(Type *OrigTy) {
|
|
if (!OrigTy->isSized()) {
|
|
return nullptr;
|
|
}
|
|
// For integer type, shadow is the same as the original type.
|
|
// This may return weird-sized types like i1.
|
|
if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
|
|
return IT;
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
|
|
uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType());
|
|
return VectorType::get(IntegerType::get(*MS.C, EltSize),
|
|
VT->getNumElements());
|
|
}
|
|
if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) {
|
|
return ArrayType::get(getShadowTy(AT->getElementType()),
|
|
AT->getNumElements());
|
|
}
|
|
if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
|
|
SmallVector<Type*, 4> Elements;
|
|
for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
|
|
Elements.push_back(getShadowTy(ST->getElementType(i)));
|
|
StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
|
|
LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
|
|
return Res;
|
|
}
|
|
uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy);
|
|
return IntegerType::get(*MS.C, TypeSize);
|
|
}
|
|
|
|
/// Flatten a vector type.
|
|
Type *getShadowTyNoVec(Type *ty) {
|
|
if (VectorType *vt = dyn_cast<VectorType>(ty))
|
|
return IntegerType::get(*MS.C, vt->getBitWidth());
|
|
return ty;
|
|
}
|
|
|
|
/// Convert a shadow value to it's flattened variant.
|
|
Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
|
|
Type *Ty = V->getType();
|
|
Type *NoVecTy = getShadowTyNoVec(Ty);
|
|
if (Ty == NoVecTy) return V;
|
|
return IRB.CreateBitCast(V, NoVecTy);
|
|
}
|
|
|
|
/// Compute the integer shadow offset that corresponds to a given
|
|
/// application address.
|
|
///
|
|
/// Offset = (Addr & ~AndMask) ^ XorMask
|
|
Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) {
|
|
Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy);
|
|
|
|
uint64_t AndMask = MS.MapParams->AndMask;
|
|
if (AndMask)
|
|
OffsetLong =
|
|
IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask));
|
|
|
|
uint64_t XorMask = MS.MapParams->XorMask;
|
|
if (XorMask)
|
|
OffsetLong =
|
|
IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask));
|
|
return OffsetLong;
|
|
}
|
|
|
|
/// Compute the shadow and origin addresses corresponding to a given
|
|
/// application address.
|
|
///
|
|
/// Shadow = ShadowBase + Offset
|
|
/// Origin = (OriginBase + Offset) & ~3ULL
|
|
std::pair<Value *, Value *> getShadowOriginPtrUserspace(Value *Addr,
|
|
IRBuilder<> &IRB,
|
|
Type *ShadowTy,
|
|
unsigned Alignment) {
|
|
Value *ShadowOffset = getShadowPtrOffset(Addr, IRB);
|
|
Value *ShadowLong = ShadowOffset;
|
|
uint64_t ShadowBase = MS.MapParams->ShadowBase;
|
|
if (ShadowBase != 0) {
|
|
ShadowLong =
|
|
IRB.CreateAdd(ShadowLong,
|
|
ConstantInt::get(MS.IntptrTy, ShadowBase));
|
|
}
|
|
Value *ShadowPtr =
|
|
IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
|
|
Value *OriginPtr = nullptr;
|
|
if (MS.TrackOrigins) {
|
|
Value *OriginLong = ShadowOffset;
|
|
uint64_t OriginBase = MS.MapParams->OriginBase;
|
|
if (OriginBase != 0)
|
|
OriginLong = IRB.CreateAdd(OriginLong,
|
|
ConstantInt::get(MS.IntptrTy, OriginBase));
|
|
if (Alignment < kMinOriginAlignment) {
|
|
uint64_t Mask = kMinOriginAlignment - 1;
|
|
OriginLong =
|
|
IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask));
|
|
}
|
|
OriginPtr =
|
|
IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0));
|
|
}
|
|
return std::make_pair(ShadowPtr, OriginPtr);
|
|
}
|
|
|
|
std::pair<Value *, Value *>
|
|
getShadowOriginPtrKernel(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy,
|
|
unsigned Alignment, bool isStore) {
|
|
Value *ShadowOriginPtrs;
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
int Size = DL.getTypeStoreSize(ShadowTy);
|
|
|
|
FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size);
|
|
Value *AddrCast =
|
|
IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0));
|
|
if (Getter) {
|
|
ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast);
|
|
} else {
|
|
Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size);
|
|
ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN
|
|
: MS.MsanMetadataPtrForLoadN,
|
|
{AddrCast, SizeVal});
|
|
}
|
|
Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0);
|
|
ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0));
|
|
Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1);
|
|
|
|
return std::make_pair(ShadowPtr, OriginPtr);
|
|
}
|
|
|
|
std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB,
|
|
Type *ShadowTy,
|
|
unsigned Alignment,
|
|
bool isStore) {
|
|
std::pair<Value *, Value *> ret;
|
|
if (MS.CompileKernel)
|
|
ret = getShadowOriginPtrKernel(Addr, IRB, ShadowTy, Alignment, isStore);
|
|
else
|
|
ret = getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment);
|
|
return ret;
|
|
}
|
|
|
|
/// Compute the shadow address for a given function argument.
|
|
///
|
|
/// Shadow = ParamTLS+ArgOffset.
|
|
Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
|
|
int ArgOffset) {
|
|
Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
|
|
if (ArgOffset)
|
|
Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
|
|
return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
|
|
"_msarg");
|
|
}
|
|
|
|
/// Compute the origin address for a given function argument.
|
|
Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
|
|
int ArgOffset) {
|
|
if (!MS.TrackOrigins)
|
|
return nullptr;
|
|
Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
|
|
if (ArgOffset)
|
|
Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
|
|
return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
|
|
"_msarg_o");
|
|
}
|
|
|
|
/// Compute the shadow address for a retval.
|
|
Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
|
|
return IRB.CreatePointerCast(MS.RetvalTLS,
|
|
PointerType::get(getShadowTy(A), 0),
|
|
"_msret");
|
|
}
|
|
|
|
/// Compute the origin address for a retval.
|
|
Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
|
|
// We keep a single origin for the entire retval. Might be too optimistic.
|
|
return MS.RetvalOriginTLS;
|
|
}
|
|
|
|
/// Set SV to be the shadow value for V.
|
|
void setShadow(Value *V, Value *SV) {
|
|
assert(!ShadowMap.count(V) && "Values may only have one shadow");
|
|
ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V);
|
|
}
|
|
|
|
/// Set Origin to be the origin value for V.
|
|
void setOrigin(Value *V, Value *Origin) {
|
|
if (!MS.TrackOrigins) return;
|
|
assert(!OriginMap.count(V) && "Values may only have one origin");
|
|
LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n");
|
|
OriginMap[V] = Origin;
|
|
}
|
|
|
|
Constant *getCleanShadow(Type *OrigTy) {
|
|
Type *ShadowTy = getShadowTy(OrigTy);
|
|
if (!ShadowTy)
|
|
return nullptr;
|
|
return Constant::getNullValue(ShadowTy);
|
|
}
|
|
|
|
/// Create a clean shadow value for a given value.
|
|
///
|
|
/// Clean shadow (all zeroes) means all bits of the value are defined
|
|
/// (initialized).
|
|
Constant *getCleanShadow(Value *V) {
|
|
return getCleanShadow(V->getType());
|
|
}
|
|
|
|
/// Create a dirty shadow of a given shadow type.
|
|
Constant *getPoisonedShadow(Type *ShadowTy) {
|
|
assert(ShadowTy);
|
|
if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
|
|
return Constant::getAllOnesValue(ShadowTy);
|
|
if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) {
|
|
SmallVector<Constant *, 4> Vals(AT->getNumElements(),
|
|
getPoisonedShadow(AT->getElementType()));
|
|
return ConstantArray::get(AT, Vals);
|
|
}
|
|
if (StructType *ST = dyn_cast<StructType>(ShadowTy)) {
|
|
SmallVector<Constant *, 4> Vals;
|
|
for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
|
|
Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
|
|
return ConstantStruct::get(ST, Vals);
|
|
}
|
|
llvm_unreachable("Unexpected shadow type");
|
|
}
|
|
|
|
/// Create a dirty shadow for a given value.
|
|
Constant *getPoisonedShadow(Value *V) {
|
|
Type *ShadowTy = getShadowTy(V);
|
|
if (!ShadowTy)
|
|
return nullptr;
|
|
return getPoisonedShadow(ShadowTy);
|
|
}
|
|
|
|
/// Create a clean (zero) origin.
|
|
Value *getCleanOrigin() {
|
|
return Constant::getNullValue(MS.OriginTy);
|
|
}
|
|
|
|
/// Get the shadow value for a given Value.
|
|
///
|
|
/// This function either returns the value set earlier with setShadow,
|
|
/// or extracts if from ParamTLS (for function arguments).
|
|
Value *getShadow(Value *V) {
|
|
if (!PropagateShadow) return getCleanShadow(V);
|
|
if (Instruction *I = dyn_cast<Instruction>(V)) {
|
|
if (I->getMetadata("nosanitize"))
|
|
return getCleanShadow(V);
|
|
// For instructions the shadow is already stored in the map.
|
|
Value *Shadow = ShadowMap[V];
|
|
if (!Shadow) {
|
|
LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
|
|
(void)I;
|
|
assert(Shadow && "No shadow for a value");
|
|
}
|
|
return Shadow;
|
|
}
|
|
if (UndefValue *U = dyn_cast<UndefValue>(V)) {
|
|
Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
|
|
LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
|
|
(void)U;
|
|
return AllOnes;
|
|
}
|
|
if (Argument *A = dyn_cast<Argument>(V)) {
|
|
// For arguments we compute the shadow on demand and store it in the map.
|
|
Value **ShadowPtr = &ShadowMap[V];
|
|
if (*ShadowPtr)
|
|
return *ShadowPtr;
|
|
Function *F = A->getParent();
|
|
IRBuilder<> EntryIRB(ActualFnStart->getFirstNonPHI());
|
|
unsigned ArgOffset = 0;
|
|
const DataLayout &DL = F->getParent()->getDataLayout();
|
|
for (auto &FArg : F->args()) {
|
|
if (!FArg.getType()->isSized()) {
|
|
LLVM_DEBUG(dbgs() << "Arg is not sized\n");
|
|
continue;
|
|
}
|
|
unsigned Size =
|
|
FArg.hasByValAttr()
|
|
? DL.getTypeAllocSize(FArg.getType()->getPointerElementType())
|
|
: DL.getTypeAllocSize(FArg.getType());
|
|
if (A == &FArg) {
|
|
bool Overflow = ArgOffset + Size > kParamTLSSize;
|
|
Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
|
|
if (FArg.hasByValAttr()) {
|
|
// ByVal pointer itself has clean shadow. We copy the actual
|
|
// argument shadow to the underlying memory.
|
|
// Figure out maximal valid memcpy alignment.
|
|
unsigned ArgAlign = FArg.getParamAlignment();
|
|
if (ArgAlign == 0) {
|
|
Type *EltType = A->getType()->getPointerElementType();
|
|
ArgAlign = DL.getABITypeAlignment(EltType);
|
|
}
|
|
Value *CpShadowPtr =
|
|
getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign,
|
|
/*isStore*/ true)
|
|
.first;
|
|
// TODO(glider): need to copy origins.
|
|
if (Overflow) {
|
|
// ParamTLS overflow.
|
|
EntryIRB.CreateMemSet(
|
|
CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()),
|
|
Size, ArgAlign);
|
|
} else {
|
|
unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
|
|
Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base,
|
|
CopyAlign, Size);
|
|
LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n");
|
|
(void)Cpy;
|
|
}
|
|
*ShadowPtr = getCleanShadow(V);
|
|
} else {
|
|
if (Overflow) {
|
|
// ParamTLS overflow.
|
|
*ShadowPtr = getCleanShadow(V);
|
|
} else {
|
|
*ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base,
|
|
kShadowTLSAlignment);
|
|
}
|
|
}
|
|
LLVM_DEBUG(dbgs()
|
|
<< " ARG: " << FArg << " ==> " << **ShadowPtr << "\n");
|
|
if (MS.TrackOrigins && !Overflow) {
|
|
Value *OriginPtr =
|
|
getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
|
|
setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr));
|
|
} else {
|
|
setOrigin(A, getCleanOrigin());
|
|
}
|
|
}
|
|
ArgOffset += alignTo(Size, kShadowTLSAlignment);
|
|
}
|
|
assert(*ShadowPtr && "Could not find shadow for an argument");
|
|
return *ShadowPtr;
|
|
}
|
|
// For everything else the shadow is zero.
|
|
return getCleanShadow(V);
|
|
}
|
|
|
|
/// Get the shadow for i-th argument of the instruction I.
|
|
Value *getShadow(Instruction *I, int i) {
|
|
return getShadow(I->getOperand(i));
|
|
}
|
|
|
|
/// Get the origin for a value.
|
|
Value *getOrigin(Value *V) {
|
|
if (!MS.TrackOrigins) return nullptr;
|
|
if (!PropagateShadow) return getCleanOrigin();
|
|
if (isa<Constant>(V)) return getCleanOrigin();
|
|
assert((isa<Instruction>(V) || isa<Argument>(V)) &&
|
|
"Unexpected value type in getOrigin()");
|
|
if (Instruction *I = dyn_cast<Instruction>(V)) {
|
|
if (I->getMetadata("nosanitize"))
|
|
return getCleanOrigin();
|
|
}
|
|
Value *Origin = OriginMap[V];
|
|
assert(Origin && "Missing origin");
|
|
return Origin;
|
|
}
|
|
|
|
/// Get the origin for i-th argument of the instruction I.
|
|
Value *getOrigin(Instruction *I, int i) {
|
|
return getOrigin(I->getOperand(i));
|
|
}
|
|
|
|
/// Remember the place where a shadow check should be inserted.
|
|
///
|
|
/// This location will be later instrumented with a check that will print a
|
|
/// UMR warning in runtime if the shadow value is not 0.
|
|
void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
|
|
assert(Shadow);
|
|
if (!InsertChecks) return;
|
|
#ifndef NDEBUG
|
|
Type *ShadowTy = Shadow->getType();
|
|
assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
|
|
"Can only insert checks for integer and vector shadow types");
|
|
#endif
|
|
InstrumentationList.push_back(
|
|
ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
|
|
}
|
|
|
|
/// Remember the place where a shadow check should be inserted.
|
|
///
|
|
/// This location will be later instrumented with a check that will print a
|
|
/// UMR warning in runtime if the value is not fully defined.
|
|
void insertShadowCheck(Value *Val, Instruction *OrigIns) {
|
|
assert(Val);
|
|
Value *Shadow, *Origin;
|
|
if (ClCheckConstantShadow) {
|
|
Shadow = getShadow(Val);
|
|
if (!Shadow) return;
|
|
Origin = getOrigin(Val);
|
|
} else {
|
|
Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
|
|
if (!Shadow) return;
|
|
Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
|
|
}
|
|
insertShadowCheck(Shadow, Origin, OrigIns);
|
|
}
|
|
|
|
AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
|
|
switch (a) {
|
|
case AtomicOrdering::NotAtomic:
|
|
return AtomicOrdering::NotAtomic;
|
|
case AtomicOrdering::Unordered:
|
|
case AtomicOrdering::Monotonic:
|
|
case AtomicOrdering::Release:
|
|
return AtomicOrdering::Release;
|
|
case AtomicOrdering::Acquire:
|
|
case AtomicOrdering::AcquireRelease:
|
|
return AtomicOrdering::AcquireRelease;
|
|
case AtomicOrdering::SequentiallyConsistent:
|
|
return AtomicOrdering::SequentiallyConsistent;
|
|
}
|
|
llvm_unreachable("Unknown ordering");
|
|
}
|
|
|
|
AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
|
|
switch (a) {
|
|
case AtomicOrdering::NotAtomic:
|
|
return AtomicOrdering::NotAtomic;
|
|
case AtomicOrdering::Unordered:
|
|
case AtomicOrdering::Monotonic:
|
|
case AtomicOrdering::Acquire:
|
|
return AtomicOrdering::Acquire;
|
|
case AtomicOrdering::Release:
|
|
case AtomicOrdering::AcquireRelease:
|
|
return AtomicOrdering::AcquireRelease;
|
|
case AtomicOrdering::SequentiallyConsistent:
|
|
return AtomicOrdering::SequentiallyConsistent;
|
|
}
|
|
llvm_unreachable("Unknown ordering");
|
|
}
|
|
|
|
// ------------------- Visitors.
|
|
using InstVisitor<MemorySanitizerVisitor>::visit;
|
|
void visit(Instruction &I) {
|
|
if (!I.getMetadata("nosanitize"))
|
|
InstVisitor<MemorySanitizerVisitor>::visit(I);
|
|
}
|
|
|
|
/// Instrument LoadInst
|
|
///
|
|
/// Loads the corresponding shadow and (optionally) origin.
|
|
/// Optionally, checks that the load address is fully defined.
|
|
void visitLoadInst(LoadInst &I) {
|
|
assert(I.getType()->isSized() && "Load type must have size");
|
|
assert(!I.getMetadata("nosanitize"));
|
|
IRBuilder<> IRB(I.getNextNode());
|
|
Type *ShadowTy = getShadowTy(&I);
|
|
Value *Addr = I.getPointerOperand();
|
|
Value *ShadowPtr, *OriginPtr;
|
|
unsigned Alignment = I.getAlignment();
|
|
if (PropagateShadow) {
|
|
std::tie(ShadowPtr, OriginPtr) =
|
|
getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
|
|
setShadow(&I,
|
|
IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld"));
|
|
} else {
|
|
setShadow(&I, getCleanShadow(&I));
|
|
}
|
|
|
|
if (ClCheckAccessAddress)
|
|
insertShadowCheck(I.getPointerOperand(), &I);
|
|
|
|
if (I.isAtomic())
|
|
I.setOrdering(addAcquireOrdering(I.getOrdering()));
|
|
|
|
if (MS.TrackOrigins) {
|
|
if (PropagateShadow) {
|
|
unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
|
|
setOrigin(
|
|
&I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment));
|
|
} else {
|
|
setOrigin(&I, getCleanOrigin());
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Instrument StoreInst
|
|
///
|
|
/// Stores the corresponding shadow and (optionally) origin.
|
|
/// Optionally, checks that the store address is fully defined.
|
|
void visitStoreInst(StoreInst &I) {
|
|
StoreList.push_back(&I);
|
|
if (ClCheckAccessAddress)
|
|
insertShadowCheck(I.getPointerOperand(), &I);
|
|
}
|
|
|
|
void handleCASOrRMW(Instruction &I) {
|
|
assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
|
|
|
|
IRBuilder<> IRB(&I);
|
|
Value *Addr = I.getOperand(0);
|
|
Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, I.getType(),
|
|
/*Alignment*/ 1, /*isStore*/ true)
|
|
.first;
|
|
|
|
if (ClCheckAccessAddress)
|
|
insertShadowCheck(Addr, &I);
|
|
|
|
// Only test the conditional argument of cmpxchg instruction.
|
|
// The other argument can potentially be uninitialized, but we can not
|
|
// detect this situation reliably without possible false positives.
|
|
if (isa<AtomicCmpXchgInst>(I))
|
|
insertShadowCheck(I.getOperand(1), &I);
|
|
|
|
IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
|
|
|
|
setShadow(&I, getCleanShadow(&I));
|
|
setOrigin(&I, getCleanOrigin());
|
|
}
|
|
|
|
void visitAtomicRMWInst(AtomicRMWInst &I) {
|
|
handleCASOrRMW(I);
|
|
I.setOrdering(addReleaseOrdering(I.getOrdering()));
|
|
}
|
|
|
|
void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
|
|
handleCASOrRMW(I);
|
|
I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
|
|
}
|
|
|
|
// Vector manipulation.
|
|
void visitExtractElementInst(ExtractElementInst &I) {
|
|
insertShadowCheck(I.getOperand(1), &I);
|
|
IRBuilder<> IRB(&I);
|
|
setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
|
|
"_msprop"));
|
|
setOrigin(&I, getOrigin(&I, 0));
|
|
}
|
|
|
|
void visitInsertElementInst(InsertElementInst &I) {
|
|
insertShadowCheck(I.getOperand(2), &I);
|
|
IRBuilder<> IRB(&I);
|
|
setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
|
|
I.getOperand(2), "_msprop"));
|
|
setOriginForNaryOp(I);
|
|
}
|
|
|
|
void visitShuffleVectorInst(ShuffleVectorInst &I) {
|
|
insertShadowCheck(I.getOperand(2), &I);
|
|
IRBuilder<> IRB(&I);
|
|
setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
|
|
I.getOperand(2), "_msprop"));
|
|
setOriginForNaryOp(I);
|
|
}
|
|
|
|
// Casts.
|
|
void visitSExtInst(SExtInst &I) {
|
|
IRBuilder<> IRB(&I);
|
|
setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
|
|
setOrigin(&I, getOrigin(&I, 0));
|
|
}
|
|
|
|
void visitZExtInst(ZExtInst &I) {
|
|
IRBuilder<> IRB(&I);
|
|
setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
|
|
setOrigin(&I, getOrigin(&I, 0));
|
|
}
|
|
|
|
void visitTruncInst(TruncInst &I) {
|
|
IRBuilder<> IRB(&I);
|
|
setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
|
|
setOrigin(&I, getOrigin(&I, 0));
|
|
}
|
|
|
|
void visitBitCastInst(BitCastInst &I) {
|
|
// Special case: if this is the bitcast (there is exactly 1 allowed) between
|
|
// a musttail call and a ret, don't instrument. New instructions are not
|
|
// allowed after a musttail call.
|
|
if (auto *CI = dyn_cast<CallInst>(I.getOperand(0)))
|
|
if (CI->isMustTailCall())
|
|
return;
|
|
IRBuilder<> IRB(&I);
|
|
setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
|
|
setOrigin(&I, getOrigin(&I, 0));
|
|
}
|
|
|
|
void visitPtrToIntInst(PtrToIntInst &I) {
|
|
IRBuilder<> IRB(&I);
|
|
setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
|
|
"_msprop_ptrtoint"));
|
|
setOrigin(&I, getOrigin(&I, 0));
|
|
}
|
|
|
|
void visitIntToPtrInst(IntToPtrInst &I) {
|
|
IRBuilder<> IRB(&I);
|
|
setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
|
|
"_msprop_inttoptr"));
|
|
setOrigin(&I, getOrigin(&I, 0));
|
|
}
|
|
|
|
void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
|
|
void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
|
|
void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
|
|
void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
|
|
void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
|
|
void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
|
|
|
|
/// Propagate shadow for bitwise AND.
|
|
///
|
|
/// This code is exact, i.e. if, for example, a bit in the left argument
|
|
/// is defined and 0, then neither the value not definedness of the
|
|
/// corresponding bit in B don't affect the resulting shadow.
|
|
void visitAnd(BinaryOperator &I) {
|
|
IRBuilder<> IRB(&I);
|
|
// "And" of 0 and a poisoned value results in unpoisoned value.
|
|
// 1&1 => 1; 0&1 => 0; p&1 => p;
|
|
// 1&0 => 0; 0&0 => 0; p&0 => 0;
|
|
// 1&p => p; 0&p => 0; p&p => p;
|
|
// S = (S1 & S2) | (V1 & S2) | (S1 & V2)
|
|
Value *S1 = getShadow(&I, 0);
|
|
Value *S2 = getShadow(&I, 1);
|
|
Value *V1 = I.getOperand(0);
|
|
Value *V2 = I.getOperand(1);
|
|
if (V1->getType() != S1->getType()) {
|
|
V1 = IRB.CreateIntCast(V1, S1->getType(), false);
|
|
V2 = IRB.CreateIntCast(V2, S2->getType(), false);
|
|
}
|
|
Value *S1S2 = IRB.CreateAnd(S1, S2);
|
|
Value *V1S2 = IRB.CreateAnd(V1, S2);
|
|
Value *S1V2 = IRB.CreateAnd(S1, V2);
|
|
setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2}));
|
|
setOriginForNaryOp(I);
|
|
}
|
|
|
|
void visitOr(BinaryOperator &I) {
|
|
IRBuilder<> IRB(&I);
|
|
// "Or" of 1 and a poisoned value results in unpoisoned value.
|
|
// 1|1 => 1; 0|1 => 1; p|1 => 1;
|
|
// 1|0 => 1; 0|0 => 0; p|0 => p;
|
|
// 1|p => 1; 0|p => p; p|p => p;
|
|
// S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
|
|
Value *S1 = getShadow(&I, 0);
|
|
Value *S2 = getShadow(&I, 1);
|
|
Value *V1 = IRB.CreateNot(I.getOperand(0));
|
|
Value *V2 = IRB.CreateNot(I.getOperand(1));
|
|
if (V1->getType() != S1->getType()) {
|
|
V1 = IRB.CreateIntCast(V1, S1->getType(), false);
|
|
V2 = IRB.CreateIntCast(V2, S2->getType(), false);
|
|
}
|
|
Value *S1S2 = IRB.CreateAnd(S1, S2);
|
|
Value *V1S2 = IRB.CreateAnd(V1, S2);
|
|
Value *S1V2 = IRB.CreateAnd(S1, V2);
|
|
setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2}));
|
|
setOriginForNaryOp(I);
|
|
}
|
|
|
|
/// Default propagation of shadow and/or origin.
|
|
///
|
|
/// This class implements the general case of shadow propagation, used in all
|
|
/// cases where we don't know and/or don't care about what the operation
|
|
/// actually does. It converts all input shadow values to a common type
|
|
/// (extending or truncating as necessary), and bitwise OR's them.
|
|
///
|
|
/// This is much cheaper than inserting checks (i.e. requiring inputs to be
|
|
/// fully initialized), and less prone to false positives.
|
|
///
|
|
/// This class also implements the general case of origin propagation. For a
|
|
/// Nary operation, result origin is set to the origin of an argument that is
|
|
/// not entirely initialized. If there is more than one such arguments, the
|
|
/// rightmost of them is picked. It does not matter which one is picked if all
|
|
/// arguments are initialized.
|
|
template <bool CombineShadow>
|
|
class Combiner {
|
|
Value *Shadow = nullptr;
|
|
Value *Origin = nullptr;
|
|
IRBuilder<> &IRB;
|
|
MemorySanitizerVisitor *MSV;
|
|
|
|
public:
|
|
Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB)
|
|
: IRB(IRB), MSV(MSV) {}
|
|
|
|
/// Add a pair of shadow and origin values to the mix.
|
|
Combiner &Add(Value *OpShadow, Value *OpOrigin) {
|
|
if (CombineShadow) {
|
|
assert(OpShadow);
|
|
if (!Shadow)
|
|
Shadow = OpShadow;
|
|
else {
|
|
OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
|
|
Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
|
|
}
|
|
}
|
|
|
|
if (MSV->MS.TrackOrigins) {
|
|
assert(OpOrigin);
|
|
if (!Origin) {
|
|
Origin = OpOrigin;
|
|
} else {
|
|
Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin);
|
|
// No point in adding something that might result in 0 origin value.
|
|
if (!ConstOrigin || !ConstOrigin->isNullValue()) {
|
|
Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
|
|
Value *Cond =
|
|
IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow));
|
|
Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
/// Add an application value to the mix.
|
|
Combiner &Add(Value *V) {
|
|
Value *OpShadow = MSV->getShadow(V);
|
|
Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr;
|
|
return Add(OpShadow, OpOrigin);
|
|
}
|
|
|
|
/// Set the current combined values as the given instruction's shadow
|
|
/// and origin.
|
|
void Done(Instruction *I) {
|
|
if (CombineShadow) {
|
|
assert(Shadow);
|
|
Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
|
|
MSV->setShadow(I, Shadow);
|
|
}
|
|
if (MSV->MS.TrackOrigins) {
|
|
assert(Origin);
|
|
MSV->setOrigin(I, Origin);
|
|
}
|
|
}
|
|
};
|
|
|
|
using ShadowAndOriginCombiner = Combiner<true>;
|
|
using OriginCombiner = Combiner<false>;
|
|
|
|
/// Propagate origin for arbitrary operation.
|
|
void setOriginForNaryOp(Instruction &I) {
|
|
if (!MS.TrackOrigins) return;
|
|
IRBuilder<> IRB(&I);
|
|
OriginCombiner OC(this, IRB);
|
|
for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
|
|
OC.Add(OI->get());
|
|
OC.Done(&I);
|
|
}
|
|
|
|
size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
|
|
assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
|
|
"Vector of pointers is not a valid shadow type");
|
|
return Ty->isVectorTy() ?
|
|
Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
|
|
Ty->getPrimitiveSizeInBits();
|
|
}
|
|
|
|
/// Cast between two shadow types, extending or truncating as
|
|
/// necessary.
|
|
Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
|
|
bool Signed = false) {
|
|
Type *srcTy = V->getType();
|
|
size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
|
|
size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
|
|
if (srcSizeInBits > 1 && dstSizeInBits == 1)
|
|
return IRB.CreateICmpNE(V, getCleanShadow(V));
|
|
|
|
if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
|
|
return IRB.CreateIntCast(V, dstTy, Signed);
|
|
if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
|
|
dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
|
|
return IRB.CreateIntCast(V, dstTy, Signed);
|
|
Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
|
|
Value *V2 =
|
|
IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
|
|
return IRB.CreateBitCast(V2, dstTy);
|
|
// TODO: handle struct types.
|
|
}
|
|
|
|
/// Cast an application value to the type of its own shadow.
|
|
Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
|
|
Type *ShadowTy = getShadowTy(V);
|
|
if (V->getType() == ShadowTy)
|
|
return V;
|
|
if (V->getType()->isPtrOrPtrVectorTy())
|
|
return IRB.CreatePtrToInt(V, ShadowTy);
|
|
else
|
|
return IRB.CreateBitCast(V, ShadowTy);
|
|
}
|
|
|
|
/// Propagate shadow for arbitrary operation.
|
|
void handleShadowOr(Instruction &I) {
|
|
IRBuilder<> IRB(&I);
|
|
ShadowAndOriginCombiner SC(this, IRB);
|
|
for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
|
|
SC.Add(OI->get());
|
|
SC.Done(&I);
|
|
}
|
|
|
|
void visitFNeg(UnaryOperator &I) { handleShadowOr(I); }
|
|
|
|
// Handle multiplication by constant.
|
|
//
|
|
// Handle a special case of multiplication by constant that may have one or
|
|
// more zeros in the lower bits. This makes corresponding number of lower bits
|
|
// of the result zero as well. We model it by shifting the other operand
|
|
// shadow left by the required number of bits. Effectively, we transform
|
|
// (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B).
|
|
// We use multiplication by 2**N instead of shift to cover the case of
|
|
// multiplication by 0, which may occur in some elements of a vector operand.
|
|
void handleMulByConstant(BinaryOperator &I, Constant *ConstArg,
|
|
Value *OtherArg) {
|
|
Constant *ShadowMul;
|
|
Type *Ty = ConstArg->getType();
|
|
if (Ty->isVectorTy()) {
|
|
unsigned NumElements = Ty->getVectorNumElements();
|
|
Type *EltTy = Ty->getSequentialElementType();
|
|
SmallVector<Constant *, 16> Elements;
|
|
for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
|
|
if (ConstantInt *Elt =
|
|
dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) {
|
|
const APInt &V = Elt->getValue();
|
|
APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
|
|
Elements.push_back(ConstantInt::get(EltTy, V2));
|
|
} else {
|
|
Elements.push_back(ConstantInt::get(EltTy, 1));
|
|
}
|
|
}
|
|
ShadowMul = ConstantVector::get(Elements);
|
|
} else {
|
|
if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) {
|
|
const APInt &V = Elt->getValue();
|
|
APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
|
|
ShadowMul = ConstantInt::get(Ty, V2);
|
|
} else {
|
|
ShadowMul = ConstantInt::get(Ty, 1);
|
|
}
|
|
}
|
|
|
|
IRBuilder<> IRB(&I);
|
|
setShadow(&I,
|
|
IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst"));
|
|
setOrigin(&I, getOrigin(OtherArg));
|
|
}
|
|
|
|
void visitMul(BinaryOperator &I) {
|
|
Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
|
|
Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
|
|
if (constOp0 && !constOp1)
|
|
handleMulByConstant(I, constOp0, I.getOperand(1));
|
|
else if (constOp1 && !constOp0)
|
|
handleMulByConstant(I, constOp1, I.getOperand(0));
|
|
else
|
|
handleShadowOr(I);
|
|
}
|
|
|
|
void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
|
|
void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
|
|
void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
|
|
void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
|
|
void visitSub(BinaryOperator &I) { handleShadowOr(I); }
|
|
void visitXor(BinaryOperator &I) { handleShadowOr(I); }
|
|
|
|
void handleIntegerDiv(Instruction &I) {
|
|
IRBuilder<> IRB(&I);
|
|
// Strict on the second argument.
|
|
insertShadowCheck(I.getOperand(1), &I);
|
|
setShadow(&I, getShadow(&I, 0));
|
|
setOrigin(&I, getOrigin(&I, 0));
|
|
}
|
|
|
|
void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); }
|
|
void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); }
|
|
void visitURem(BinaryOperator &I) { handleIntegerDiv(I); }
|
|
void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); }
|
|
|
|
// Floating point division is side-effect free. We can not require that the
|
|
// divisor is fully initialized and must propagate shadow. See PR37523.
|
|
void visitFDiv(BinaryOperator &I) { handleShadowOr(I); }
|
|
void visitFRem(BinaryOperator &I) { handleShadowOr(I); }
|
|
|
|
/// Instrument == and != comparisons.
|
|
///
|
|
/// Sometimes the comparison result is known even if some of the bits of the
|
|
/// arguments are not.
|
|
void handleEqualityComparison(ICmpInst &I) {
|
|
IRBuilder<> IRB(&I);
|
|
Value *A = I.getOperand(0);
|
|
Value *B = I.getOperand(1);
|
|
Value *Sa = getShadow(A);
|
|
Value *Sb = getShadow(B);
|
|
|
|
// Get rid of pointers and vectors of pointers.
|
|
// For ints (and vectors of ints), types of A and Sa match,
|
|
// and this is a no-op.
|
|
A = IRB.CreatePointerCast(A, Sa->getType());
|
|
B = IRB.CreatePointerCast(B, Sb->getType());
|
|
|
|
// A == B <==> (C = A^B) == 0
|
|
// A != B <==> (C = A^B) != 0
|
|
// Sc = Sa | Sb
|
|
Value *C = IRB.CreateXor(A, B);
|
|
Value *Sc = IRB.CreateOr(Sa, Sb);
|
|
// Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
|
|
// Result is defined if one of the following is true
|
|
// * there is a defined 1 bit in C
|
|
// * C is fully defined
|
|
// Si = !(C & ~Sc) && Sc
|
|
Value *Zero = Constant::getNullValue(Sc->getType());
|
|
Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
|
|
Value *Si =
|
|
IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
|
|
IRB.CreateICmpEQ(
|
|
IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
|
|
Si->setName("_msprop_icmp");
|
|
setShadow(&I, Si);
|
|
setOriginForNaryOp(I);
|
|
}
|
|
|
|
/// Build the lowest possible value of V, taking into account V's
|
|
/// uninitialized bits.
|
|
Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
|
|
bool isSigned) {
|
|
if (isSigned) {
|
|
// Split shadow into sign bit and other bits.
|
|
Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
|
|
Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
|
|
// Maximise the undefined shadow bit, minimize other undefined bits.
|
|
return
|
|
IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
|
|
} else {
|
|
// Minimize undefined bits.
|
|
return IRB.CreateAnd(A, IRB.CreateNot(Sa));
|
|
}
|
|
}
|
|
|
|
/// Build the highest possible value of V, taking into account V's
|
|
/// uninitialized bits.
|
|
Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
|
|
bool isSigned) {
|
|
if (isSigned) {
|
|
// Split shadow into sign bit and other bits.
|
|
Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
|
|
Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
|
|
// Minimise the undefined shadow bit, maximise other undefined bits.
|
|
return
|
|
IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
|
|
} else {
|
|
// Maximize undefined bits.
|
|
return IRB.CreateOr(A, Sa);
|
|
}
|
|
}
|
|
|
|
/// Instrument relational comparisons.
|
|
///
|
|
/// This function does exact shadow propagation for all relational
|
|
/// comparisons of integers, pointers and vectors of those.
|
|
/// FIXME: output seems suboptimal when one of the operands is a constant
|
|
void handleRelationalComparisonExact(ICmpInst &I) {
|
|
IRBuilder<> IRB(&I);
|
|
Value *A = I.getOperand(0);
|
|
Value *B = I.getOperand(1);
|
|
Value *Sa = getShadow(A);
|
|
Value *Sb = getShadow(B);
|
|
|
|
// Get rid of pointers and vectors of pointers.
|
|
// For ints (and vectors of ints), types of A and Sa match,
|
|
// and this is a no-op.
|
|
A = IRB.CreatePointerCast(A, Sa->getType());
|
|
B = IRB.CreatePointerCast(B, Sb->getType());
|
|
|
|
// Let [a0, a1] be the interval of possible values of A, taking into account
|
|
// its undefined bits. Let [b0, b1] be the interval of possible values of B.
|
|
// Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
|
|
bool IsSigned = I.isSigned();
|
|
Value *S1 = IRB.CreateICmp(I.getPredicate(),
|
|
getLowestPossibleValue(IRB, A, Sa, IsSigned),
|
|
getHighestPossibleValue(IRB, B, Sb, IsSigned));
|
|
Value *S2 = IRB.CreateICmp(I.getPredicate(),
|
|
getHighestPossibleValue(IRB, A, Sa, IsSigned),
|
|
getLowestPossibleValue(IRB, B, Sb, IsSigned));
|
|
Value *Si = IRB.CreateXor(S1, S2);
|
|
setShadow(&I, Si);
|
|
setOriginForNaryOp(I);
|
|
}
|
|
|
|
/// Instrument signed relational comparisons.
|
|
///
|
|
/// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest
|
|
/// bit of the shadow. Everything else is delegated to handleShadowOr().
|
|
void handleSignedRelationalComparison(ICmpInst &I) {
|
|
Constant *constOp;
|
|
Value *op = nullptr;
|
|
CmpInst::Predicate pre;
|
|
if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) {
|
|
op = I.getOperand(0);
|
|
pre = I.getPredicate();
|
|
} else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) {
|
|
op = I.getOperand(1);
|
|
pre = I.getSwappedPredicate();
|
|
} else {
|
|
handleShadowOr(I);
|
|
return;
|
|
}
|
|
|
|
if ((constOp->isNullValue() &&
|
|
(pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) ||
|
|
(constOp->isAllOnesValue() &&
|
|
(pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) {
|
|
IRBuilder<> IRB(&I);
|
|
Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op),
|
|
"_msprop_icmp_s");
|
|
setShadow(&I, Shadow);
|
|
setOrigin(&I, getOrigin(op));
|
|
} else {
|
|
handleShadowOr(I);
|
|
}
|
|
}
|
|
|
|
void visitICmpInst(ICmpInst &I) {
|
|
if (!ClHandleICmp) {
|
|
handleShadowOr(I);
|
|
return;
|
|
}
|
|
if (I.isEquality()) {
|
|
handleEqualityComparison(I);
|
|
return;
|
|
}
|
|
|
|
assert(I.isRelational());
|
|
if (ClHandleICmpExact) {
|
|
handleRelationalComparisonExact(I);
|
|
return;
|
|
}
|
|
if (I.isSigned()) {
|
|
handleSignedRelationalComparison(I);
|
|
return;
|
|
}
|
|
|
|
assert(I.isUnsigned());
|
|
if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
|
|
handleRelationalComparisonExact(I);
|
|
return;
|
|
}
|
|
|
|
handleShadowOr(I);
|
|
}
|
|
|
|
void visitFCmpInst(FCmpInst &I) {
|
|
handleShadowOr(I);
|
|
}
|
|
|
|
void handleShift(BinaryOperator &I) {
|
|
IRBuilder<> IRB(&I);
|
|
// If any of the S2 bits are poisoned, the whole thing is poisoned.
|
|
// Otherwise perform the same shift on S1.
|
|
Value *S1 = getShadow(&I, 0);
|
|
Value *S2 = getShadow(&I, 1);
|
|
Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
|
|
S2->getType());
|
|
Value *V2 = I.getOperand(1);
|
|
Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
|
|
setShadow(&I, IRB.CreateOr(Shift, S2Conv));
|
|
setOriginForNaryOp(I);
|
|
}
|
|
|
|
void visitShl(BinaryOperator &I) { handleShift(I); }
|
|
void visitAShr(BinaryOperator &I) { handleShift(I); }
|
|
void visitLShr(BinaryOperator &I) { handleShift(I); }
|
|
|
|
/// Instrument llvm.memmove
|
|
///
|
|
/// At this point we don't know if llvm.memmove will be inlined or not.
|
|
/// If we don't instrument it and it gets inlined,
|
|
/// our interceptor will not kick in and we will lose the memmove.
|
|
/// If we instrument the call here, but it does not get inlined,
|
|
/// we will memove the shadow twice: which is bad in case
|
|
/// of overlapping regions. So, we simply lower the intrinsic to a call.
|
|
///
|
|
/// Similar situation exists for memcpy and memset.
|
|
void visitMemMoveInst(MemMoveInst &I) {
|
|
IRBuilder<> IRB(&I);
|
|
IRB.CreateCall(
|
|
MS.MemmoveFn,
|
|
{IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
|
|
IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
|
|
IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
|
|
I.eraseFromParent();
|
|
}
|
|
|
|
// Similar to memmove: avoid copying shadow twice.
|
|
// This is somewhat unfortunate as it may slowdown small constant memcpys.
|
|
// FIXME: consider doing manual inline for small constant sizes and proper
|
|
// alignment.
|
|
void visitMemCpyInst(MemCpyInst &I) {
|
|
IRBuilder<> IRB(&I);
|
|
IRB.CreateCall(
|
|
MS.MemcpyFn,
|
|
{IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
|
|
IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
|
|
IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
|
|
I.eraseFromParent();
|
|
}
|
|
|
|
// Same as memcpy.
|
|
void visitMemSetInst(MemSetInst &I) {
|
|
IRBuilder<> IRB(&I);
|
|
IRB.CreateCall(
|
|
MS.MemsetFn,
|
|
{IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
|
|
IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
|
|
IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)});
|
|
I.eraseFromParent();
|
|
}
|
|
|
|
void visitVAStartInst(VAStartInst &I) {
|
|
VAHelper->visitVAStartInst(I);
|
|
}
|
|
|
|
void visitVACopyInst(VACopyInst &I) {
|
|
VAHelper->visitVACopyInst(I);
|
|
}
|
|
|
|
/// Handle vector store-like intrinsics.
|
|
///
|
|
/// Instrument intrinsics that look like a simple SIMD store: writes memory,
|
|
/// has 1 pointer argument and 1 vector argument, returns void.
|
|
bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
|
|
IRBuilder<> IRB(&I);
|
|
Value* Addr = I.getArgOperand(0);
|
|
Value *Shadow = getShadow(&I, 1);
|
|
Value *ShadowPtr, *OriginPtr;
|
|
|
|
// We don't know the pointer alignment (could be unaligned SSE store!).
|
|
// Have to assume to worst case.
|
|
std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
|
|
Addr, IRB, Shadow->getType(), /*Alignment*/ 1, /*isStore*/ true);
|
|
IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
|
|
|
|
if (ClCheckAccessAddress)
|
|
insertShadowCheck(Addr, &I);
|
|
|
|
// FIXME: factor out common code from materializeStores
|
|
if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr);
|
|
return true;
|
|
}
|
|
|
|
/// Handle vector load-like intrinsics.
|
|
///
|
|
/// Instrument intrinsics that look like a simple SIMD load: reads memory,
|
|
/// has 1 pointer argument, returns a vector.
|
|
bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
|
|
IRBuilder<> IRB(&I);
|
|
Value *Addr = I.getArgOperand(0);
|
|
|
|
Type *ShadowTy = getShadowTy(&I);
|
|
Value *ShadowPtr, *OriginPtr;
|
|
if (PropagateShadow) {
|
|
// We don't know the pointer alignment (could be unaligned SSE load!).
|
|
// Have to assume to worst case.
|
|
unsigned Alignment = 1;
|
|
std::tie(ShadowPtr, OriginPtr) =
|
|
getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false);
|
|
setShadow(&I,
|
|
IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld"));
|
|
} else {
|
|
setShadow(&I, getCleanShadow(&I));
|
|
}
|
|
|
|
if (ClCheckAccessAddress)
|
|
insertShadowCheck(Addr, &I);
|
|
|
|
if (MS.TrackOrigins) {
|
|
if (PropagateShadow)
|
|
setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr));
|
|
else
|
|
setOrigin(&I, getCleanOrigin());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Handle (SIMD arithmetic)-like intrinsics.
|
|
///
|
|
/// Instrument intrinsics with any number of arguments of the same type,
|
|
/// equal to the return type. The type should be simple (no aggregates or
|
|
/// pointers; vectors are fine).
|
|
/// Caller guarantees that this intrinsic does not access memory.
|
|
bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
|
|
Type *RetTy = I.getType();
|
|
if (!(RetTy->isIntOrIntVectorTy() ||
|
|
RetTy->isFPOrFPVectorTy() ||
|
|
RetTy->isX86_MMXTy()))
|
|
return false;
|
|
|
|
unsigned NumArgOperands = I.getNumArgOperands();
|
|
|
|
for (unsigned i = 0; i < NumArgOperands; ++i) {
|
|
Type *Ty = I.getArgOperand(i)->getType();
|
|
if (Ty != RetTy)
|
|
return false;
|
|
}
|
|
|
|
IRBuilder<> IRB(&I);
|
|
ShadowAndOriginCombiner SC(this, IRB);
|
|
for (unsigned i = 0; i < NumArgOperands; ++i)
|
|
SC.Add(I.getArgOperand(i));
|
|
SC.Done(&I);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Heuristically instrument unknown intrinsics.
|
|
///
|
|
/// The main purpose of this code is to do something reasonable with all
|
|
/// random intrinsics we might encounter, most importantly - SIMD intrinsics.
|
|
/// We recognize several classes of intrinsics by their argument types and
|
|
/// ModRefBehaviour and apply special intrumentation when we are reasonably
|
|
/// sure that we know what the intrinsic does.
|
|
///
|
|
/// We special-case intrinsics where this approach fails. See llvm.bswap
|
|
/// handling as an example of that.
|
|
bool handleUnknownIntrinsic(IntrinsicInst &I) {
|
|
unsigned NumArgOperands = I.getNumArgOperands();
|
|
if (NumArgOperands == 0)
|
|
return false;
|
|
|
|
if (NumArgOperands == 2 &&
|
|
I.getArgOperand(0)->getType()->isPointerTy() &&
|
|
I.getArgOperand(1)->getType()->isVectorTy() &&
|
|
I.getType()->isVoidTy() &&
|
|
!I.onlyReadsMemory()) {
|
|
// This looks like a vector store.
|
|
return handleVectorStoreIntrinsic(I);
|
|
}
|
|
|
|
if (NumArgOperands == 1 &&
|
|
I.getArgOperand(0)->getType()->isPointerTy() &&
|
|
I.getType()->isVectorTy() &&
|
|
I.onlyReadsMemory()) {
|
|
// This looks like a vector load.
|
|
return handleVectorLoadIntrinsic(I);
|
|
}
|
|
|
|
if (I.doesNotAccessMemory())
|
|
if (maybeHandleSimpleNomemIntrinsic(I))
|
|
return true;
|
|
|
|
// FIXME: detect and handle SSE maskstore/maskload
|
|
return false;
|
|
}
|
|
|
|
void handleInvariantGroup(IntrinsicInst &I) {
|
|
setShadow(&I, getShadow(&I, 0));
|
|
setOrigin(&I, getOrigin(&I, 0));
|
|
}
|
|
|
|
void handleLifetimeStart(IntrinsicInst &I) {
|
|
if (!PoisonStack)
|
|
return;
|
|
DenseMap<Value *, AllocaInst *> AllocaForValue;
|
|
AllocaInst *AI =
|
|
llvm::findAllocaForValue(I.getArgOperand(1), AllocaForValue);
|
|
if (!AI)
|
|
InstrumentLifetimeStart = false;
|
|
LifetimeStartList.push_back(std::make_pair(&I, AI));
|
|
}
|
|
|
|
void handleBswap(IntrinsicInst &I) {
|
|
IRBuilder<> IRB(&I);
|
|
Value *Op = I.getArgOperand(0);
|
|
Type *OpType = Op->getType();
|
|
Function *BswapFunc = Intrinsic::getDeclaration(
|
|
F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1));
|
|
setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
|
|
setOrigin(&I, getOrigin(Op));
|
|
}
|
|
|
|
// Instrument vector convert instrinsic.
|
|
//
|
|
// This function instruments intrinsics like cvtsi2ss:
|
|
// %Out = int_xxx_cvtyyy(%ConvertOp)
|
|
// or
|
|
// %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
|
|
// Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
|
|
// number \p Out elements, and (if has 2 arguments) copies the rest of the
|
|
// elements from \p CopyOp.
|
|
// In most cases conversion involves floating-point value which may trigger a
|
|
// hardware exception when not fully initialized. For this reason we require
|
|
// \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
|
|
// We copy the shadow of \p CopyOp[NumUsedElements:] to \p
|
|
// Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
|
|
// return a fully initialized value.
|
|
void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) {
|
|
IRBuilder<> IRB(&I);
|
|
Value *CopyOp, *ConvertOp;
|
|
|
|
switch (I.getNumArgOperands()) {
|
|
case 3:
|
|
assert(isa<ConstantInt>(I.getArgOperand(2)) && "Invalid rounding mode");
|
|
LLVM_FALLTHROUGH;
|
|
case 2:
|
|
CopyOp = I.getArgOperand(0);
|
|
ConvertOp = I.getArgOperand(1);
|
|
break;
|
|
case 1:
|
|
ConvertOp = I.getArgOperand(0);
|
|
CopyOp = nullptr;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
|
|
}
|
|
|
|
// The first *NumUsedElements* elements of ConvertOp are converted to the
|
|
// same number of output elements. The rest of the output is copied from
|
|
// CopyOp, or (if not available) filled with zeroes.
|
|
// Combine shadow for elements of ConvertOp that are used in this operation,
|
|
// and insert a check.
|
|
// FIXME: consider propagating shadow of ConvertOp, at least in the case of
|
|
// int->any conversion.
|
|
Value *ConvertShadow = getShadow(ConvertOp);
|
|
Value *AggShadow = nullptr;
|
|
if (ConvertOp->getType()->isVectorTy()) {
|
|
AggShadow = IRB.CreateExtractElement(
|
|
ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
|
|
for (int i = 1; i < NumUsedElements; ++i) {
|
|
Value *MoreShadow = IRB.CreateExtractElement(
|
|
ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
|
|
AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
|
|
}
|
|
} else {
|
|
AggShadow = ConvertShadow;
|
|
}
|
|
assert(AggShadow->getType()->isIntegerTy());
|
|
insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
|
|
|
|
// Build result shadow by zero-filling parts of CopyOp shadow that come from
|
|
// ConvertOp.
|
|
if (CopyOp) {
|
|
assert(CopyOp->getType() == I.getType());
|
|
assert(CopyOp->getType()->isVectorTy());
|
|
Value *ResultShadow = getShadow(CopyOp);
|
|
Type *EltTy = ResultShadow->getType()->getVectorElementType();
|
|
for (int i = 0; i < NumUsedElements; ++i) {
|
|
ResultShadow = IRB.CreateInsertElement(
|
|
ResultShadow, ConstantInt::getNullValue(EltTy),
|
|
ConstantInt::get(IRB.getInt32Ty(), i));
|
|
}
|
|
setShadow(&I, ResultShadow);
|
|
setOrigin(&I, getOrigin(CopyOp));
|
|
} else {
|
|
setShadow(&I, getCleanShadow(&I));
|
|
setOrigin(&I, getCleanOrigin());
|
|
}
|
|
}
|
|
|
|
// Given a scalar or vector, extract lower 64 bits (or less), and return all
|
|
// zeroes if it is zero, and all ones otherwise.
|
|
Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
|
|
if (S->getType()->isVectorTy())
|
|
S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
|
|
assert(S->getType()->getPrimitiveSizeInBits() <= 64);
|
|
Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
|
|
return CreateShadowCast(IRB, S2, T, /* Signed */ true);
|
|
}
|
|
|
|
// Given a vector, extract its first element, and return all
|
|
// zeroes if it is zero, and all ones otherwise.
|
|
Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
|
|
Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0);
|
|
Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1));
|
|
return CreateShadowCast(IRB, S2, T, /* Signed */ true);
|
|
}
|
|
|
|
Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
|
|
Type *T = S->getType();
|
|
assert(T->isVectorTy());
|
|
Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
|
|
return IRB.CreateSExt(S2, T);
|
|
}
|
|
|
|
// Instrument vector shift instrinsic.
|
|
//
|
|
// This function instruments intrinsics like int_x86_avx2_psll_w.
|
|
// Intrinsic shifts %In by %ShiftSize bits.
|
|
// %ShiftSize may be a vector. In that case the lower 64 bits determine shift
|
|
// size, and the rest is ignored. Behavior is defined even if shift size is
|
|
// greater than register (or field) width.
|
|
void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
|
|
assert(I.getNumArgOperands() == 2);
|
|
IRBuilder<> IRB(&I);
|
|
// If any of the S2 bits are poisoned, the whole thing is poisoned.
|
|
// Otherwise perform the same shift on S1.
|
|
Value *S1 = getShadow(&I, 0);
|
|
Value *S2 = getShadow(&I, 1);
|
|
Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
|
|
: Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
|
|
Value *V1 = I.getOperand(0);
|
|
Value *V2 = I.getOperand(1);
|
|
Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledValue(),
|
|
{IRB.CreateBitCast(S1, V1->getType()), V2});
|
|
Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
|
|
setShadow(&I, IRB.CreateOr(Shift, S2Conv));
|
|
setOriginForNaryOp(I);
|
|
}
|
|
|
|
// Get an X86_MMX-sized vector type.
|
|
Type *getMMXVectorTy(unsigned EltSizeInBits) {
|
|
const unsigned X86_MMXSizeInBits = 64;
|
|
assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 &&
|
|
"Illegal MMX vector element size");
|
|
return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits),
|
|
X86_MMXSizeInBits / EltSizeInBits);
|
|
}
|
|
|
|
// Returns a signed counterpart for an (un)signed-saturate-and-pack
|
|
// intrinsic.
|
|
Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) {
|
|
switch (id) {
|
|
case Intrinsic::x86_sse2_packsswb_128:
|
|
case Intrinsic::x86_sse2_packuswb_128:
|
|
return Intrinsic::x86_sse2_packsswb_128;
|
|
|
|
case Intrinsic::x86_sse2_packssdw_128:
|
|
case Intrinsic::x86_sse41_packusdw:
|
|
return Intrinsic::x86_sse2_packssdw_128;
|
|
|
|
case Intrinsic::x86_avx2_packsswb:
|
|
case Intrinsic::x86_avx2_packuswb:
|
|
return Intrinsic::x86_avx2_packsswb;
|
|
|
|
case Intrinsic::x86_avx2_packssdw:
|
|
case Intrinsic::x86_avx2_packusdw:
|
|
return Intrinsic::x86_avx2_packssdw;
|
|
|
|
case Intrinsic::x86_mmx_packsswb:
|
|
case Intrinsic::x86_mmx_packuswb:
|
|
return Intrinsic::x86_mmx_packsswb;
|
|
|
|
case Intrinsic::x86_mmx_packssdw:
|
|
return Intrinsic::x86_mmx_packssdw;
|
|
default:
|
|
llvm_unreachable("unexpected intrinsic id");
|
|
}
|
|
}
|
|
|
|
// Instrument vector pack instrinsic.
|
|
//
|
|
// This function instruments intrinsics like x86_mmx_packsswb, that
|
|
// packs elements of 2 input vectors into half as many bits with saturation.
|
|
// Shadow is propagated with the signed variant of the same intrinsic applied
|
|
// to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer).
|
|
// EltSizeInBits is used only for x86mmx arguments.
|
|
void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) {
|
|
assert(I.getNumArgOperands() == 2);
|
|
bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
|
|
IRBuilder<> IRB(&I);
|
|
Value *S1 = getShadow(&I, 0);
|
|
Value *S2 = getShadow(&I, 1);
|
|
assert(isX86_MMX || S1->getType()->isVectorTy());
|
|
|
|
// SExt and ICmpNE below must apply to individual elements of input vectors.
|
|
// In case of x86mmx arguments, cast them to appropriate vector types and
|
|
// back.
|
|
Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType();
|
|
if (isX86_MMX) {
|
|
S1 = IRB.CreateBitCast(S1, T);
|
|
S2 = IRB.CreateBitCast(S2, T);
|
|
}
|
|
Value *S1_ext = IRB.CreateSExt(
|
|
IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T);
|
|
Value *S2_ext = IRB.CreateSExt(
|
|
IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T);
|
|
if (isX86_MMX) {
|
|
Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C);
|
|
S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy);
|
|
S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy);
|
|
}
|
|
|
|
Function *ShadowFn = Intrinsic::getDeclaration(
|
|
F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID()));
|
|
|
|
Value *S =
|
|
IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack");
|
|
if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I));
|
|
setShadow(&I, S);
|
|
setOriginForNaryOp(I);
|
|
}
|
|
|
|
// Instrument sum-of-absolute-differencies intrinsic.
|
|
void handleVectorSadIntrinsic(IntrinsicInst &I) {
|
|
const unsigned SignificantBitsPerResultElement = 16;
|
|
bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
|
|
Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType();
|
|
unsigned ZeroBitsPerResultElement =
|
|
ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement;
|
|
|
|
IRBuilder<> IRB(&I);
|
|
Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
|
|
S = IRB.CreateBitCast(S, ResTy);
|
|
S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
|
|
ResTy);
|
|
S = IRB.CreateLShr(S, ZeroBitsPerResultElement);
|
|
S = IRB.CreateBitCast(S, getShadowTy(&I));
|
|
setShadow(&I, S);
|
|
setOriginForNaryOp(I);
|
|
}
|
|
|
|
// Instrument multiply-add intrinsic.
|
|
void handleVectorPmaddIntrinsic(IntrinsicInst &I,
|
|
unsigned EltSizeInBits = 0) {
|
|
bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
|
|
Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType();
|
|
IRBuilder<> IRB(&I);
|
|
Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
|
|
S = IRB.CreateBitCast(S, ResTy);
|
|
S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
|
|
ResTy);
|
|
S = IRB.CreateBitCast(S, getShadowTy(&I));
|
|
setShadow(&I, S);
|
|
setOriginForNaryOp(I);
|
|
}
|
|
|
|
// Instrument compare-packed intrinsic.
|
|
// Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or
|
|
// all-ones shadow.
|
|
void handleVectorComparePackedIntrinsic(IntrinsicInst &I) {
|
|
IRBuilder<> IRB(&I);
|
|
Type *ResTy = getShadowTy(&I);
|
|
Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
|
|
Value *S = IRB.CreateSExt(
|
|
IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy);
|
|
setShadow(&I, S);
|
|
setOriginForNaryOp(I);
|
|
}
|
|
|
|
// Instrument compare-scalar intrinsic.
|
|
// This handles both cmp* intrinsics which return the result in the first
|
|
// element of a vector, and comi* which return the result as i32.
|
|
void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) {
|
|
IRBuilder<> IRB(&I);
|
|
Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
|
|
Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I));
|
|
setShadow(&I, S);
|
|
setOriginForNaryOp(I);
|
|
}
|
|
|
|
void handleStmxcsr(IntrinsicInst &I) {
|
|
IRBuilder<> IRB(&I);
|
|
Value* Addr = I.getArgOperand(0);
|
|
Type *Ty = IRB.getInt32Ty();
|
|
Value *ShadowPtr =
|
|
getShadowOriginPtr(Addr, IRB, Ty, /*Alignment*/ 1, /*isStore*/ true)
|
|
.first;
|
|
|
|
IRB.CreateStore(getCleanShadow(Ty),
|
|
IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo()));
|
|
|
|
if (ClCheckAccessAddress)
|
|
insertShadowCheck(Addr, &I);
|
|
}
|
|
|
|
void handleLdmxcsr(IntrinsicInst &I) {
|
|
if (!InsertChecks) return;
|
|
|
|
IRBuilder<> IRB(&I);
|
|
Value *Addr = I.getArgOperand(0);
|
|
Type *Ty = IRB.getInt32Ty();
|
|
unsigned Alignment = 1;
|
|
Value *ShadowPtr, *OriginPtr;
|
|
std::tie(ShadowPtr, OriginPtr) =
|
|
getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false);
|
|
|
|
if (ClCheckAccessAddress)
|
|
insertShadowCheck(Addr, &I);
|
|
|
|
Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr");
|
|
Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr)
|
|
: getCleanOrigin();
|
|
insertShadowCheck(Shadow, Origin, &I);
|
|
}
|
|
|
|
void handleMaskedStore(IntrinsicInst &I) {
|
|
IRBuilder<> IRB(&I);
|
|
Value *V = I.getArgOperand(0);
|
|
Value *Addr = I.getArgOperand(1);
|
|
unsigned Align = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
|
|
Value *Mask = I.getArgOperand(3);
|
|
Value *Shadow = getShadow(V);
|
|
|
|
Value *ShadowPtr;
|
|
Value *OriginPtr;
|
|
std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr(
|
|
Addr, IRB, Shadow->getType(), Align, /*isStore*/ true);
|
|
|
|
if (ClCheckAccessAddress) {
|
|
insertShadowCheck(Addr, &I);
|
|
// Uninitialized mask is kind of like uninitialized address, but not as
|
|
// scary.
|
|
insertShadowCheck(Mask, &I);
|
|
}
|
|
|
|
IRB.CreateMaskedStore(Shadow, ShadowPtr, Align, Mask);
|
|
|
|
if (MS.TrackOrigins) {
|
|
auto &DL = F.getParent()->getDataLayout();
|
|
paintOrigin(IRB, getOrigin(V), OriginPtr,
|
|
DL.getTypeStoreSize(Shadow->getType()),
|
|
std::max(Align, kMinOriginAlignment));
|
|
}
|
|
}
|
|
|
|
bool handleMaskedLoad(IntrinsicInst &I) {
|
|
IRBuilder<> IRB(&I);
|
|
Value *Addr = I.getArgOperand(0);
|
|
unsigned Align = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
|
|
Value *Mask = I.getArgOperand(2);
|
|
Value *PassThru = I.getArgOperand(3);
|
|
|
|
Type *ShadowTy = getShadowTy(&I);
|
|
Value *ShadowPtr, *OriginPtr;
|
|
if (PropagateShadow) {
|
|
std::tie(ShadowPtr, OriginPtr) =
|
|
getShadowOriginPtr(Addr, IRB, ShadowTy, Align, /*isStore*/ false);
|
|
setShadow(&I, IRB.CreateMaskedLoad(ShadowPtr, Align, Mask,
|
|
getShadow(PassThru), "_msmaskedld"));
|
|
} else {
|
|
setShadow(&I, getCleanShadow(&I));
|
|
}
|
|
|
|
if (ClCheckAccessAddress) {
|
|
insertShadowCheck(Addr, &I);
|
|
insertShadowCheck(Mask, &I);
|
|
}
|
|
|
|
if (MS.TrackOrigins) {
|
|
if (PropagateShadow) {
|
|
// Choose between PassThru's and the loaded value's origins.
|
|
Value *MaskedPassThruShadow = IRB.CreateAnd(
|
|
getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy));
|
|
|
|
Value *Acc = IRB.CreateExtractElement(
|
|
MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
|
|
for (int i = 1, N = PassThru->getType()->getVectorNumElements(); i < N;
|
|
++i) {
|
|
Value *More = IRB.CreateExtractElement(
|
|
MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i));
|
|
Acc = IRB.CreateOr(Acc, More);
|
|
}
|
|
|
|
Value *Origin = IRB.CreateSelect(
|
|
IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())),
|
|
getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr));
|
|
|
|
setOrigin(&I, Origin);
|
|
} else {
|
|
setOrigin(&I, getCleanOrigin());
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Instrument BMI / BMI2 intrinsics.
|
|
// All of these intrinsics are Z = I(X, Y)
|
|
// where the types of all operands and the result match, and are either i32 or i64.
|
|
// The following instrumentation happens to work for all of them:
|
|
// Sz = I(Sx, Y) | (sext (Sy != 0))
|
|
void handleBmiIntrinsic(IntrinsicInst &I) {
|
|
IRBuilder<> IRB(&I);
|
|
Type *ShadowTy = getShadowTy(&I);
|
|
|
|
// If any bit of the mask operand is poisoned, then the whole thing is.
|
|
Value *SMask = getShadow(&I, 1);
|
|
SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)),
|
|
ShadowTy);
|
|
// Apply the same intrinsic to the shadow of the first operand.
|
|
Value *S = IRB.CreateCall(I.getCalledFunction(),
|
|
{getShadow(&I, 0), I.getOperand(1)});
|
|
S = IRB.CreateOr(SMask, S);
|
|
setShadow(&I, S);
|
|
setOriginForNaryOp(I);
|
|
}
|
|
|
|
void visitIntrinsicInst(IntrinsicInst &I) {
|
|
switch (I.getIntrinsicID()) {
|
|
case Intrinsic::lifetime_start:
|
|
handleLifetimeStart(I);
|
|
break;
|
|
case Intrinsic::launder_invariant_group:
|
|
case Intrinsic::strip_invariant_group:
|
|
handleInvariantGroup(I);
|
|
break;
|
|
case Intrinsic::bswap:
|
|
handleBswap(I);
|
|
break;
|
|
case Intrinsic::masked_store:
|
|
handleMaskedStore(I);
|
|
break;
|
|
case Intrinsic::masked_load:
|
|
handleMaskedLoad(I);
|
|
break;
|
|
case Intrinsic::x86_sse_stmxcsr:
|
|
handleStmxcsr(I);
|
|
break;
|
|
case Intrinsic::x86_sse_ldmxcsr:
|
|
handleLdmxcsr(I);
|
|
break;
|
|
case Intrinsic::x86_avx512_vcvtsd2usi64:
|
|
case Intrinsic::x86_avx512_vcvtsd2usi32:
|
|
case Intrinsic::x86_avx512_vcvtss2usi64:
|
|
case Intrinsic::x86_avx512_vcvtss2usi32:
|
|
case Intrinsic::x86_avx512_cvttss2usi64:
|
|
case Intrinsic::x86_avx512_cvttss2usi:
|
|
case Intrinsic::x86_avx512_cvttsd2usi64:
|
|
case Intrinsic::x86_avx512_cvttsd2usi:
|
|
case Intrinsic::x86_avx512_cvtusi2ss:
|
|
case Intrinsic::x86_avx512_cvtusi642sd:
|
|
case Intrinsic::x86_avx512_cvtusi642ss:
|
|
case Intrinsic::x86_sse2_cvtsd2si64:
|
|
case Intrinsic::x86_sse2_cvtsd2si:
|
|
case Intrinsic::x86_sse2_cvtsd2ss:
|
|
case Intrinsic::x86_sse2_cvttsd2si64:
|
|
case Intrinsic::x86_sse2_cvttsd2si:
|
|
case Intrinsic::x86_sse_cvtss2si64:
|
|
case Intrinsic::x86_sse_cvtss2si:
|
|
case Intrinsic::x86_sse_cvttss2si64:
|
|
case Intrinsic::x86_sse_cvttss2si:
|
|
handleVectorConvertIntrinsic(I, 1);
|
|
break;
|
|
case Intrinsic::x86_sse_cvtps2pi:
|
|
case Intrinsic::x86_sse_cvttps2pi:
|
|
handleVectorConvertIntrinsic(I, 2);
|
|
break;
|
|
|
|
case Intrinsic::x86_avx512_psll_w_512:
|
|
case Intrinsic::x86_avx512_psll_d_512:
|
|
case Intrinsic::x86_avx512_psll_q_512:
|
|
case Intrinsic::x86_avx512_pslli_w_512:
|
|
case Intrinsic::x86_avx512_pslli_d_512:
|
|
case Intrinsic::x86_avx512_pslli_q_512:
|
|
case Intrinsic::x86_avx512_psrl_w_512:
|
|
case Intrinsic::x86_avx512_psrl_d_512:
|
|
case Intrinsic::x86_avx512_psrl_q_512:
|
|
case Intrinsic::x86_avx512_psra_w_512:
|
|
case Intrinsic::x86_avx512_psra_d_512:
|
|
case Intrinsic::x86_avx512_psra_q_512:
|
|
case Intrinsic::x86_avx512_psrli_w_512:
|
|
case Intrinsic::x86_avx512_psrli_d_512:
|
|
case Intrinsic::x86_avx512_psrli_q_512:
|
|
case Intrinsic::x86_avx512_psrai_w_512:
|
|
case Intrinsic::x86_avx512_psrai_d_512:
|
|
case Intrinsic::x86_avx512_psrai_q_512:
|
|
case Intrinsic::x86_avx512_psra_q_256:
|
|
case Intrinsic::x86_avx512_psra_q_128:
|
|
case Intrinsic::x86_avx512_psrai_q_256:
|
|
case Intrinsic::x86_avx512_psrai_q_128:
|
|
case Intrinsic::x86_avx2_psll_w:
|
|
case Intrinsic::x86_avx2_psll_d:
|
|
case Intrinsic::x86_avx2_psll_q:
|
|
case Intrinsic::x86_avx2_pslli_w:
|
|
case Intrinsic::x86_avx2_pslli_d:
|
|
case Intrinsic::x86_avx2_pslli_q:
|
|
case Intrinsic::x86_avx2_psrl_w:
|
|
case Intrinsic::x86_avx2_psrl_d:
|
|
case Intrinsic::x86_avx2_psrl_q:
|
|
case Intrinsic::x86_avx2_psra_w:
|
|
case Intrinsic::x86_avx2_psra_d:
|
|
case Intrinsic::x86_avx2_psrli_w:
|
|
case Intrinsic::x86_avx2_psrli_d:
|
|
case Intrinsic::x86_avx2_psrli_q:
|
|
case Intrinsic::x86_avx2_psrai_w:
|
|
case Intrinsic::x86_avx2_psrai_d:
|
|
case Intrinsic::x86_sse2_psll_w:
|
|
case Intrinsic::x86_sse2_psll_d:
|
|
case Intrinsic::x86_sse2_psll_q:
|
|
case Intrinsic::x86_sse2_pslli_w:
|
|
case Intrinsic::x86_sse2_pslli_d:
|
|
case Intrinsic::x86_sse2_pslli_q:
|
|
case Intrinsic::x86_sse2_psrl_w:
|
|
case Intrinsic::x86_sse2_psrl_d:
|
|
case Intrinsic::x86_sse2_psrl_q:
|
|
case Intrinsic::x86_sse2_psra_w:
|
|
case Intrinsic::x86_sse2_psra_d:
|
|
case Intrinsic::x86_sse2_psrli_w:
|
|
case Intrinsic::x86_sse2_psrli_d:
|
|
case Intrinsic::x86_sse2_psrli_q:
|
|
case Intrinsic::x86_sse2_psrai_w:
|
|
case Intrinsic::x86_sse2_psrai_d:
|
|
case Intrinsic::x86_mmx_psll_w:
|
|
case Intrinsic::x86_mmx_psll_d:
|
|
case Intrinsic::x86_mmx_psll_q:
|
|
case Intrinsic::x86_mmx_pslli_w:
|
|
case Intrinsic::x86_mmx_pslli_d:
|
|
case Intrinsic::x86_mmx_pslli_q:
|
|
case Intrinsic::x86_mmx_psrl_w:
|
|
case Intrinsic::x86_mmx_psrl_d:
|
|
case Intrinsic::x86_mmx_psrl_q:
|
|
case Intrinsic::x86_mmx_psra_w:
|
|
case Intrinsic::x86_mmx_psra_d:
|
|
case Intrinsic::x86_mmx_psrli_w:
|
|
case Intrinsic::x86_mmx_psrli_d:
|
|
case Intrinsic::x86_mmx_psrli_q:
|
|
case Intrinsic::x86_mmx_psrai_w:
|
|
case Intrinsic::x86_mmx_psrai_d:
|
|
handleVectorShiftIntrinsic(I, /* Variable */ false);
|
|
break;
|
|
case Intrinsic::x86_avx2_psllv_d:
|
|
case Intrinsic::x86_avx2_psllv_d_256:
|
|
case Intrinsic::x86_avx512_psllv_d_512:
|
|
case Intrinsic::x86_avx2_psllv_q:
|
|
case Intrinsic::x86_avx2_psllv_q_256:
|
|
case Intrinsic::x86_avx512_psllv_q_512:
|
|
case Intrinsic::x86_avx2_psrlv_d:
|
|
case Intrinsic::x86_avx2_psrlv_d_256:
|
|
case Intrinsic::x86_avx512_psrlv_d_512:
|
|
case Intrinsic::x86_avx2_psrlv_q:
|
|
case Intrinsic::x86_avx2_psrlv_q_256:
|
|
case Intrinsic::x86_avx512_psrlv_q_512:
|
|
case Intrinsic::x86_avx2_psrav_d:
|
|
case Intrinsic::x86_avx2_psrav_d_256:
|
|
case Intrinsic::x86_avx512_psrav_d_512:
|
|
case Intrinsic::x86_avx512_psrav_q_128:
|
|
case Intrinsic::x86_avx512_psrav_q_256:
|
|
case Intrinsic::x86_avx512_psrav_q_512:
|
|
handleVectorShiftIntrinsic(I, /* Variable */ true);
|
|
break;
|
|
|
|
case Intrinsic::x86_sse2_packsswb_128:
|
|
case Intrinsic::x86_sse2_packssdw_128:
|
|
case Intrinsic::x86_sse2_packuswb_128:
|
|
case Intrinsic::x86_sse41_packusdw:
|
|
case Intrinsic::x86_avx2_packsswb:
|
|
case Intrinsic::x86_avx2_packssdw:
|
|
case Intrinsic::x86_avx2_packuswb:
|
|
case Intrinsic::x86_avx2_packusdw:
|
|
handleVectorPackIntrinsic(I);
|
|
break;
|
|
|
|
case Intrinsic::x86_mmx_packsswb:
|
|
case Intrinsic::x86_mmx_packuswb:
|
|
handleVectorPackIntrinsic(I, 16);
|
|
break;
|
|
|
|
case Intrinsic::x86_mmx_packssdw:
|
|
handleVectorPackIntrinsic(I, 32);
|
|
break;
|
|
|
|
case Intrinsic::x86_mmx_psad_bw:
|
|
case Intrinsic::x86_sse2_psad_bw:
|
|
case Intrinsic::x86_avx2_psad_bw:
|
|
handleVectorSadIntrinsic(I);
|
|
break;
|
|
|
|
case Intrinsic::x86_sse2_pmadd_wd:
|
|
case Intrinsic::x86_avx2_pmadd_wd:
|
|
case Intrinsic::x86_ssse3_pmadd_ub_sw_128:
|
|
case Intrinsic::x86_avx2_pmadd_ub_sw:
|
|
handleVectorPmaddIntrinsic(I);
|
|
break;
|
|
|
|
case Intrinsic::x86_ssse3_pmadd_ub_sw:
|
|
handleVectorPmaddIntrinsic(I, 8);
|
|
break;
|
|
|
|
case Intrinsic::x86_mmx_pmadd_wd:
|
|
handleVectorPmaddIntrinsic(I, 16);
|
|
break;
|
|
|
|
case Intrinsic::x86_sse_cmp_ss:
|
|
case Intrinsic::x86_sse2_cmp_sd:
|
|
case Intrinsic::x86_sse_comieq_ss:
|
|
case Intrinsic::x86_sse_comilt_ss:
|
|
case Intrinsic::x86_sse_comile_ss:
|
|
case Intrinsic::x86_sse_comigt_ss:
|
|
case Intrinsic::x86_sse_comige_ss:
|
|
case Intrinsic::x86_sse_comineq_ss:
|
|
case Intrinsic::x86_sse_ucomieq_ss:
|
|
case Intrinsic::x86_sse_ucomilt_ss:
|
|
case Intrinsic::x86_sse_ucomile_ss:
|
|
case Intrinsic::x86_sse_ucomigt_ss:
|
|
case Intrinsic::x86_sse_ucomige_ss:
|
|
case Intrinsic::x86_sse_ucomineq_ss:
|
|
case Intrinsic::x86_sse2_comieq_sd:
|
|
case Intrinsic::x86_sse2_comilt_sd:
|
|
case Intrinsic::x86_sse2_comile_sd:
|
|
case Intrinsic::x86_sse2_comigt_sd:
|
|
case Intrinsic::x86_sse2_comige_sd:
|
|
case Intrinsic::x86_sse2_comineq_sd:
|
|
case Intrinsic::x86_sse2_ucomieq_sd:
|
|
case Intrinsic::x86_sse2_ucomilt_sd:
|
|
case Intrinsic::x86_sse2_ucomile_sd:
|
|
case Intrinsic::x86_sse2_ucomigt_sd:
|
|
case Intrinsic::x86_sse2_ucomige_sd:
|
|
case Intrinsic::x86_sse2_ucomineq_sd:
|
|
handleVectorCompareScalarIntrinsic(I);
|
|
break;
|
|
|
|
case Intrinsic::x86_sse_cmp_ps:
|
|
case Intrinsic::x86_sse2_cmp_pd:
|
|
// FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function
|
|
// generates reasonably looking IR that fails in the backend with "Do not
|
|
// know how to split the result of this operator!".
|
|
handleVectorComparePackedIntrinsic(I);
|
|
break;
|
|
|
|
case Intrinsic::x86_bmi_bextr_32:
|
|
case Intrinsic::x86_bmi_bextr_64:
|
|
case Intrinsic::x86_bmi_bzhi_32:
|
|
case Intrinsic::x86_bmi_bzhi_64:
|
|
case Intrinsic::x86_bmi_pdep_32:
|
|
case Intrinsic::x86_bmi_pdep_64:
|
|
case Intrinsic::x86_bmi_pext_32:
|
|
case Intrinsic::x86_bmi_pext_64:
|
|
handleBmiIntrinsic(I);
|
|
break;
|
|
|
|
case Intrinsic::is_constant:
|
|
// The result of llvm.is.constant() is always defined.
|
|
setShadow(&I, getCleanShadow(&I));
|
|
setOrigin(&I, getCleanOrigin());
|
|
break;
|
|
|
|
default:
|
|
if (!handleUnknownIntrinsic(I))
|
|
visitInstruction(I);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void visitCallSite(CallSite CS) {
|
|
Instruction &I = *CS.getInstruction();
|
|
assert(!I.getMetadata("nosanitize"));
|
|
assert((CS.isCall() || CS.isInvoke() || CS.isCallBr()) &&
|
|
"Unknown type of CallSite");
|
|
if (CS.isCallBr() || (CS.isCall() && cast<CallInst>(&I)->isInlineAsm())) {
|
|
// For inline asm (either a call to asm function, or callbr instruction),
|
|
// do the usual thing: check argument shadow and mark all outputs as
|
|
// clean. Note that any side effects of the inline asm that are not
|
|
// immediately visible in its constraints are not handled.
|
|
if (ClHandleAsmConservative && MS.CompileKernel)
|
|
visitAsmInstruction(I);
|
|
else
|
|
visitInstruction(I);
|
|
return;
|
|
}
|
|
if (CS.isCall()) {
|
|
CallInst *Call = cast<CallInst>(&I);
|
|
assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
|
|
|
|
// We are going to insert code that relies on the fact that the callee
|
|
// will become a non-readonly function after it is instrumented by us. To
|
|
// prevent this code from being optimized out, mark that function
|
|
// non-readonly in advance.
|
|
if (Function *Func = Call->getCalledFunction()) {
|
|
// Clear out readonly/readnone attributes.
|
|
AttrBuilder B;
|
|
B.addAttribute(Attribute::ReadOnly)
|
|
.addAttribute(Attribute::ReadNone)
|
|
.addAttribute(Attribute::WriteOnly)
|
|
.addAttribute(Attribute::ArgMemOnly)
|
|
.addAttribute(Attribute::Speculatable);
|
|
Func->removeAttributes(AttributeList::FunctionIndex, B);
|
|
}
|
|
|
|
maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI);
|
|
}
|
|
IRBuilder<> IRB(&I);
|
|
|
|
unsigned ArgOffset = 0;
|
|
LLVM_DEBUG(dbgs() << " CallSite: " << I << "\n");
|
|
for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
|
|
ArgIt != End; ++ArgIt) {
|
|
Value *A = *ArgIt;
|
|
unsigned i = ArgIt - CS.arg_begin();
|
|
if (!A->getType()->isSized()) {
|
|
LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
|
|
continue;
|
|
}
|
|
unsigned Size = 0;
|
|
Value *Store = nullptr;
|
|
// Compute the Shadow for arg even if it is ByVal, because
|
|
// in that case getShadow() will copy the actual arg shadow to
|
|
// __msan_param_tls.
|
|
Value *ArgShadow = getShadow(A);
|
|
Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
|
|
LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A
|
|
<< " Shadow: " << *ArgShadow << "\n");
|
|
bool ArgIsInitialized = false;
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
if (CS.paramHasAttr(i, Attribute::ByVal)) {
|
|
assert(A->getType()->isPointerTy() &&
|
|
"ByVal argument is not a pointer!");
|
|
Size = DL.getTypeAllocSize(A->getType()->getPointerElementType());
|
|
if (ArgOffset + Size > kParamTLSSize) break;
|
|
unsigned ParamAlignment = CS.getParamAlignment(i);
|
|
unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment);
|
|
Value *AShadowPtr =
|
|
getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment,
|
|
/*isStore*/ false)
|
|
.first;
|
|
|
|
Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr,
|
|
Alignment, Size);
|
|
// TODO(glider): need to copy origins.
|
|
} else {
|
|
Size = DL.getTypeAllocSize(A->getType());
|
|
if (ArgOffset + Size > kParamTLSSize) break;
|
|
Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
|
|
kShadowTLSAlignment);
|
|
Constant *Cst = dyn_cast<Constant>(ArgShadow);
|
|
if (Cst && Cst->isNullValue()) ArgIsInitialized = true;
|
|
}
|
|
if (MS.TrackOrigins && !ArgIsInitialized)
|
|
IRB.CreateStore(getOrigin(A),
|
|
getOriginPtrForArgument(A, IRB, ArgOffset));
|
|
(void)Store;
|
|
assert(Size != 0 && Store != nullptr);
|
|
LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n");
|
|
ArgOffset += alignTo(Size, 8);
|
|
}
|
|
LLVM_DEBUG(dbgs() << " done with call args\n");
|
|
|
|
FunctionType *FT = CS.getFunctionType();
|
|
if (FT->isVarArg()) {
|
|
VAHelper->visitCallSite(CS, IRB);
|
|
}
|
|
|
|
// Now, get the shadow for the RetVal.
|
|
if (!I.getType()->isSized()) return;
|
|
// Don't emit the epilogue for musttail call returns.
|
|
if (CS.isCall() && cast<CallInst>(&I)->isMustTailCall()) return;
|
|
IRBuilder<> IRBBefore(&I);
|
|
// Until we have full dynamic coverage, make sure the retval shadow is 0.
|
|
Value *Base = getShadowPtrForRetval(&I, IRBBefore);
|
|
IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
|
|
BasicBlock::iterator NextInsn;
|
|
if (CS.isCall()) {
|
|
NextInsn = ++I.getIterator();
|
|
assert(NextInsn != I.getParent()->end());
|
|
} else {
|
|
BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
|
|
if (!NormalDest->getSinglePredecessor()) {
|
|
// FIXME: this case is tricky, so we are just conservative here.
|
|
// Perhaps we need to split the edge between this BB and NormalDest,
|
|
// but a naive attempt to use SplitEdge leads to a crash.
|
|
setShadow(&I, getCleanShadow(&I));
|
|
setOrigin(&I, getCleanOrigin());
|
|
return;
|
|
}
|
|
// FIXME: NextInsn is likely in a basic block that has not been visited yet.
|
|
// Anything inserted there will be instrumented by MSan later!
|
|
NextInsn = NormalDest->getFirstInsertionPt();
|
|
assert(NextInsn != NormalDest->end() &&
|
|
"Could not find insertion point for retval shadow load");
|
|
}
|
|
IRBuilder<> IRBAfter(&*NextInsn);
|
|
Value *RetvalShadow = IRBAfter.CreateAlignedLoad(
|
|
getShadowTy(&I), getShadowPtrForRetval(&I, IRBAfter),
|
|
kShadowTLSAlignment, "_msret");
|
|
setShadow(&I, RetvalShadow);
|
|
if (MS.TrackOrigins)
|
|
setOrigin(&I, IRBAfter.CreateLoad(MS.OriginTy,
|
|
getOriginPtrForRetval(IRBAfter)));
|
|
}
|
|
|
|
bool isAMustTailRetVal(Value *RetVal) {
|
|
if (auto *I = dyn_cast<BitCastInst>(RetVal)) {
|
|
RetVal = I->getOperand(0);
|
|
}
|
|
if (auto *I = dyn_cast<CallInst>(RetVal)) {
|
|
return I->isMustTailCall();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void visitReturnInst(ReturnInst &I) {
|
|
IRBuilder<> IRB(&I);
|
|
Value *RetVal = I.getReturnValue();
|
|
if (!RetVal) return;
|
|
// Don't emit the epilogue for musttail call returns.
|
|
if (isAMustTailRetVal(RetVal)) return;
|
|
Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
|
|
if (CheckReturnValue) {
|
|
insertShadowCheck(RetVal, &I);
|
|
Value *Shadow = getCleanShadow(RetVal);
|
|
IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
|
|
} else {
|
|
Value *Shadow = getShadow(RetVal);
|
|
IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
|
|
if (MS.TrackOrigins)
|
|
IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
|
|
}
|
|
}
|
|
|
|
void visitPHINode(PHINode &I) {
|
|
IRBuilder<> IRB(&I);
|
|
if (!PropagateShadow) {
|
|
setShadow(&I, getCleanShadow(&I));
|
|
setOrigin(&I, getCleanOrigin());
|
|
return;
|
|
}
|
|
|
|
ShadowPHINodes.push_back(&I);
|
|
setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
|
|
"_msphi_s"));
|
|
if (MS.TrackOrigins)
|
|
setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
|
|
"_msphi_o"));
|
|
}
|
|
|
|
Value *getLocalVarDescription(AllocaInst &I) {
|
|
SmallString<2048> StackDescriptionStorage;
|
|
raw_svector_ostream StackDescription(StackDescriptionStorage);
|
|
// We create a string with a description of the stack allocation and
|
|
// pass it into __msan_set_alloca_origin.
|
|
// It will be printed by the run-time if stack-originated UMR is found.
|
|
// The first 4 bytes of the string are set to '----' and will be replaced
|
|
// by __msan_va_arg_overflow_size_tls at the first call.
|
|
StackDescription << "----" << I.getName() << "@" << F.getName();
|
|
return createPrivateNonConstGlobalForString(*F.getParent(),
|
|
StackDescription.str());
|
|
}
|
|
|
|
void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) {
|
|
if (PoisonStack && ClPoisonStackWithCall) {
|
|
IRB.CreateCall(MS.MsanPoisonStackFn,
|
|
{IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len});
|
|
} else {
|
|
Value *ShadowBase, *OriginBase;
|
|
std::tie(ShadowBase, OriginBase) =
|
|
getShadowOriginPtr(&I, IRB, IRB.getInt8Ty(), 1, /*isStore*/ true);
|
|
|
|
Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
|
|
IRB.CreateMemSet(ShadowBase, PoisonValue, Len, I.getAlignment());
|
|
}
|
|
|
|
if (PoisonStack && MS.TrackOrigins) {
|
|
Value *Descr = getLocalVarDescription(I);
|
|
IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn,
|
|
{IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len,
|
|
IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
|
|
IRB.CreatePointerCast(&F, MS.IntptrTy)});
|
|
}
|
|
}
|
|
|
|
void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) {
|
|
Value *Descr = getLocalVarDescription(I);
|
|
if (PoisonStack) {
|
|
IRB.CreateCall(MS.MsanPoisonAllocaFn,
|
|
{IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len,
|
|
IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())});
|
|
} else {
|
|
IRB.CreateCall(MS.MsanUnpoisonAllocaFn,
|
|
{IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len});
|
|
}
|
|
}
|
|
|
|
void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) {
|
|
if (!InsPoint)
|
|
InsPoint = &I;
|
|
IRBuilder<> IRB(InsPoint->getNextNode());
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType());
|
|
Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize);
|
|
if (I.isArrayAllocation())
|
|
Len = IRB.CreateMul(Len, I.getArraySize());
|
|
|
|
if (MS.CompileKernel)
|
|
poisonAllocaKmsan(I, IRB, Len);
|
|
else
|
|
poisonAllocaUserspace(I, IRB, Len);
|
|
}
|
|
|
|
void visitAllocaInst(AllocaInst &I) {
|
|
setShadow(&I, getCleanShadow(&I));
|
|
setOrigin(&I, getCleanOrigin());
|
|
// We'll get to this alloca later unless it's poisoned at the corresponding
|
|
// llvm.lifetime.start.
|
|
AllocaSet.insert(&I);
|
|
}
|
|
|
|
void visitSelectInst(SelectInst& I) {
|
|
IRBuilder<> IRB(&I);
|
|
// a = select b, c, d
|
|
Value *B = I.getCondition();
|
|
Value *C = I.getTrueValue();
|
|
Value *D = I.getFalseValue();
|
|
Value *Sb = getShadow(B);
|
|
Value *Sc = getShadow(C);
|
|
Value *Sd = getShadow(D);
|
|
|
|
// Result shadow if condition shadow is 0.
|
|
Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
|
|
Value *Sa1;
|
|
if (I.getType()->isAggregateType()) {
|
|
// To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
|
|
// an extra "select". This results in much more compact IR.
|
|
// Sa = select Sb, poisoned, (select b, Sc, Sd)
|
|
Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
|
|
} else {
|
|
// Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
|
|
// If Sb (condition is poisoned), look for bits in c and d that are equal
|
|
// and both unpoisoned.
|
|
// If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
|
|
|
|
// Cast arguments to shadow-compatible type.
|
|
C = CreateAppToShadowCast(IRB, C);
|
|
D = CreateAppToShadowCast(IRB, D);
|
|
|
|
// Result shadow if condition shadow is 1.
|
|
Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd});
|
|
}
|
|
Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
|
|
setShadow(&I, Sa);
|
|
if (MS.TrackOrigins) {
|
|
// Origins are always i32, so any vector conditions must be flattened.
|
|
// FIXME: consider tracking vector origins for app vectors?
|
|
if (B->getType()->isVectorTy()) {
|
|
Type *FlatTy = getShadowTyNoVec(B->getType());
|
|
B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy),
|
|
ConstantInt::getNullValue(FlatTy));
|
|
Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy),
|
|
ConstantInt::getNullValue(FlatTy));
|
|
}
|
|
// a = select b, c, d
|
|
// Oa = Sb ? Ob : (b ? Oc : Od)
|
|
setOrigin(
|
|
&I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()),
|
|
IRB.CreateSelect(B, getOrigin(I.getTrueValue()),
|
|
getOrigin(I.getFalseValue()))));
|
|
}
|
|
}
|
|
|
|
void visitLandingPadInst(LandingPadInst &I) {
|
|
// Do nothing.
|
|
// See https://github.com/google/sanitizers/issues/504
|
|
setShadow(&I, getCleanShadow(&I));
|
|
setOrigin(&I, getCleanOrigin());
|
|
}
|
|
|
|
void visitCatchSwitchInst(CatchSwitchInst &I) {
|
|
setShadow(&I, getCleanShadow(&I));
|
|
setOrigin(&I, getCleanOrigin());
|
|
}
|
|
|
|
void visitFuncletPadInst(FuncletPadInst &I) {
|
|
setShadow(&I, getCleanShadow(&I));
|
|
setOrigin(&I, getCleanOrigin());
|
|
}
|
|
|
|
void visitGetElementPtrInst(GetElementPtrInst &I) {
|
|
handleShadowOr(I);
|
|
}
|
|
|
|
void visitExtractValueInst(ExtractValueInst &I) {
|
|
IRBuilder<> IRB(&I);
|
|
Value *Agg = I.getAggregateOperand();
|
|
LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n");
|
|
Value *AggShadow = getShadow(Agg);
|
|
LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
|
|
Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
|
|
LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n");
|
|
setShadow(&I, ResShadow);
|
|
setOriginForNaryOp(I);
|
|
}
|
|
|
|
void visitInsertValueInst(InsertValueInst &I) {
|
|
IRBuilder<> IRB(&I);
|
|
LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n");
|
|
Value *AggShadow = getShadow(I.getAggregateOperand());
|
|
Value *InsShadow = getShadow(I.getInsertedValueOperand());
|
|
LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
|
|
LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n");
|
|
Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
|
|
LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n");
|
|
setShadow(&I, Res);
|
|
setOriginForNaryOp(I);
|
|
}
|
|
|
|
void dumpInst(Instruction &I) {
|
|
if (CallInst *CI = dyn_cast<CallInst>(&I)) {
|
|
errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
|
|
} else {
|
|
errs() << "ZZZ " << I.getOpcodeName() << "\n";
|
|
}
|
|
errs() << "QQQ " << I << "\n";
|
|
}
|
|
|
|
void visitResumeInst(ResumeInst &I) {
|
|
LLVM_DEBUG(dbgs() << "Resume: " << I << "\n");
|
|
// Nothing to do here.
|
|
}
|
|
|
|
void visitCleanupReturnInst(CleanupReturnInst &CRI) {
|
|
LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n");
|
|
// Nothing to do here.
|
|
}
|
|
|
|
void visitCatchReturnInst(CatchReturnInst &CRI) {
|
|
LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n");
|
|
// Nothing to do here.
|
|
}
|
|
|
|
void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB,
|
|
const DataLayout &DL, bool isOutput) {
|
|
// For each assembly argument, we check its value for being initialized.
|
|
// If the argument is a pointer, we assume it points to a single element
|
|
// of the corresponding type (or to a 8-byte word, if the type is unsized).
|
|
// Each such pointer is instrumented with a call to the runtime library.
|
|
Type *OpType = Operand->getType();
|
|
// Check the operand value itself.
|
|
insertShadowCheck(Operand, &I);
|
|
if (!OpType->isPointerTy() || !isOutput) {
|
|
assert(!isOutput);
|
|
return;
|
|
}
|
|
Type *ElType = OpType->getPointerElementType();
|
|
if (!ElType->isSized())
|
|
return;
|
|
int Size = DL.getTypeStoreSize(ElType);
|
|
Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy());
|
|
Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size);
|
|
IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal});
|
|
}
|
|
|
|
/// Get the number of output arguments returned by pointers.
|
|
int getNumOutputArgs(InlineAsm *IA, CallBase *CB) {
|
|
int NumRetOutputs = 0;
|
|
int NumOutputs = 0;
|
|
Type *RetTy = cast<Value>(CB)->getType();
|
|
if (!RetTy->isVoidTy()) {
|
|
// Register outputs are returned via the CallInst return value.
|
|
auto *ST = dyn_cast<StructType>(RetTy);
|
|
if (ST)
|
|
NumRetOutputs = ST->getNumElements();
|
|
else
|
|
NumRetOutputs = 1;
|
|
}
|
|
InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
|
|
for (size_t i = 0, n = Constraints.size(); i < n; i++) {
|
|
InlineAsm::ConstraintInfo Info = Constraints[i];
|
|
switch (Info.Type) {
|
|
case InlineAsm::isOutput:
|
|
NumOutputs++;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return NumOutputs - NumRetOutputs;
|
|
}
|
|
|
|
void visitAsmInstruction(Instruction &I) {
|
|
// Conservative inline assembly handling: check for poisoned shadow of
|
|
// asm() arguments, then unpoison the result and all the memory locations
|
|
// pointed to by those arguments.
|
|
// An inline asm() statement in C++ contains lists of input and output
|
|
// arguments used by the assembly code. These are mapped to operands of the
|
|
// CallInst as follows:
|
|
// - nR register outputs ("=r) are returned by value in a single structure
|
|
// (SSA value of the CallInst);
|
|
// - nO other outputs ("=m" and others) are returned by pointer as first
|
|
// nO operands of the CallInst;
|
|
// - nI inputs ("r", "m" and others) are passed to CallInst as the
|
|
// remaining nI operands.
|
|
// The total number of asm() arguments in the source is nR+nO+nI, and the
|
|
// corresponding CallInst has nO+nI+1 operands (the last operand is the
|
|
// function to be called).
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
CallBase *CB = cast<CallBase>(&I);
|
|
IRBuilder<> IRB(&I);
|
|
InlineAsm *IA = cast<InlineAsm>(CB->getCalledValue());
|
|
int OutputArgs = getNumOutputArgs(IA, CB);
|
|
// The last operand of a CallInst is the function itself.
|
|
int NumOperands = CB->getNumOperands() - 1;
|
|
|
|
// Check input arguments. Doing so before unpoisoning output arguments, so
|
|
// that we won't overwrite uninit values before checking them.
|
|
for (int i = OutputArgs; i < NumOperands; i++) {
|
|
Value *Operand = CB->getOperand(i);
|
|
instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false);
|
|
}
|
|
// Unpoison output arguments. This must happen before the actual InlineAsm
|
|
// call, so that the shadow for memory published in the asm() statement
|
|
// remains valid.
|
|
for (int i = 0; i < OutputArgs; i++) {
|
|
Value *Operand = CB->getOperand(i);
|
|
instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true);
|
|
}
|
|
|
|
setShadow(&I, getCleanShadow(&I));
|
|
setOrigin(&I, getCleanOrigin());
|
|
}
|
|
|
|
void visitInstruction(Instruction &I) {
|
|
// Everything else: stop propagating and check for poisoned shadow.
|
|
if (ClDumpStrictInstructions)
|
|
dumpInst(I);
|
|
LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n");
|
|
for (size_t i = 0, n = I.getNumOperands(); i < n; i++) {
|
|
Value *Operand = I.getOperand(i);
|
|
if (Operand->getType()->isSized())
|
|
insertShadowCheck(Operand, &I);
|
|
}
|
|
setShadow(&I, getCleanShadow(&I));
|
|
setOrigin(&I, getCleanOrigin());
|
|
}
|
|
};
|
|
|
|
/// AMD64-specific implementation of VarArgHelper.
|
|
struct VarArgAMD64Helper : public VarArgHelper {
|
|
// An unfortunate workaround for asymmetric lowering of va_arg stuff.
|
|
// See a comment in visitCallSite for more details.
|
|
static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
|
|
static const unsigned AMD64FpEndOffsetSSE = 176;
|
|
// If SSE is disabled, fp_offset in va_list is zero.
|
|
static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset;
|
|
|
|
unsigned AMD64FpEndOffset;
|
|
Function &F;
|
|
MemorySanitizer &MS;
|
|
MemorySanitizerVisitor &MSV;
|
|
Value *VAArgTLSCopy = nullptr;
|
|
Value *VAArgTLSOriginCopy = nullptr;
|
|
Value *VAArgOverflowSize = nullptr;
|
|
|
|
SmallVector<CallInst*, 16> VAStartInstrumentationList;
|
|
|
|
enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
|
|
|
|
VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
|
|
MemorySanitizerVisitor &MSV)
|
|
: F(F), MS(MS), MSV(MSV) {
|
|
AMD64FpEndOffset = AMD64FpEndOffsetSSE;
|
|
for (const auto &Attr : F.getAttributes().getFnAttributes()) {
|
|
if (Attr.isStringAttribute() &&
|
|
(Attr.getKindAsString() == "target-features")) {
|
|
if (Attr.getValueAsString().contains("-sse"))
|
|
AMD64FpEndOffset = AMD64FpEndOffsetNoSSE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
ArgKind classifyArgument(Value* arg) {
|
|
// A very rough approximation of X86_64 argument classification rules.
|
|
Type *T = arg->getType();
|
|
if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
|
|
return AK_FloatingPoint;
|
|
if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
|
|
return AK_GeneralPurpose;
|
|
if (T->isPointerTy())
|
|
return AK_GeneralPurpose;
|
|
return AK_Memory;
|
|
}
|
|
|
|
// For VarArg functions, store the argument shadow in an ABI-specific format
|
|
// that corresponds to va_list layout.
|
|
// We do this because Clang lowers va_arg in the frontend, and this pass
|
|
// only sees the low level code that deals with va_list internals.
|
|
// A much easier alternative (provided that Clang emits va_arg instructions)
|
|
// would have been to associate each live instance of va_list with a copy of
|
|
// MSanParamTLS, and extract shadow on va_arg() call in the argument list
|
|
// order.
|
|
void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
|
|
unsigned GpOffset = 0;
|
|
unsigned FpOffset = AMD64GpEndOffset;
|
|
unsigned OverflowOffset = AMD64FpEndOffset;
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
|
|
ArgIt != End; ++ArgIt) {
|
|
Value *A = *ArgIt;
|
|
unsigned ArgNo = CS.getArgumentNo(ArgIt);
|
|
bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams();
|
|
bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal);
|
|
if (IsByVal) {
|
|
// ByVal arguments always go to the overflow area.
|
|
// Fixed arguments passed through the overflow area will be stepped
|
|
// over by va_start, so don't count them towards the offset.
|
|
if (IsFixed)
|
|
continue;
|
|
assert(A->getType()->isPointerTy());
|
|
Type *RealTy = A->getType()->getPointerElementType();
|
|
uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
|
|
Value *ShadowBase = getShadowPtrForVAArgument(
|
|
RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8));
|
|
Value *OriginBase = nullptr;
|
|
if (MS.TrackOrigins)
|
|
OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset);
|
|
OverflowOffset += alignTo(ArgSize, 8);
|
|
if (!ShadowBase)
|
|
continue;
|
|
Value *ShadowPtr, *OriginPtr;
|
|
std::tie(ShadowPtr, OriginPtr) =
|
|
MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment,
|
|
/*isStore*/ false);
|
|
|
|
IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr,
|
|
kShadowTLSAlignment, ArgSize);
|
|
if (MS.TrackOrigins)
|
|
IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr,
|
|
kShadowTLSAlignment, ArgSize);
|
|
} else {
|
|
ArgKind AK = classifyArgument(A);
|
|
if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
|
|
AK = AK_Memory;
|
|
if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
|
|
AK = AK_Memory;
|
|
Value *ShadowBase, *OriginBase = nullptr;
|
|
switch (AK) {
|
|
case AK_GeneralPurpose:
|
|
ShadowBase =
|
|
getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8);
|
|
if (MS.TrackOrigins)
|
|
OriginBase =
|
|
getOriginPtrForVAArgument(A->getType(), IRB, GpOffset);
|
|
GpOffset += 8;
|
|
break;
|
|
case AK_FloatingPoint:
|
|
ShadowBase =
|
|
getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16);
|
|
if (MS.TrackOrigins)
|
|
OriginBase =
|
|
getOriginPtrForVAArgument(A->getType(), IRB, FpOffset);
|
|
FpOffset += 16;
|
|
break;
|
|
case AK_Memory:
|
|
if (IsFixed)
|
|
continue;
|
|
uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
|
|
ShadowBase =
|
|
getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8);
|
|
if (MS.TrackOrigins)
|
|
OriginBase =
|
|
getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset);
|
|
OverflowOffset += alignTo(ArgSize, 8);
|
|
}
|
|
// Take fixed arguments into account for GpOffset and FpOffset,
|
|
// but don't actually store shadows for them.
|
|
// TODO(glider): don't call get*PtrForVAArgument() for them.
|
|
if (IsFixed)
|
|
continue;
|
|
if (!ShadowBase)
|
|
continue;
|
|
Value *Shadow = MSV.getShadow(A);
|
|
IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment);
|
|
if (MS.TrackOrigins) {
|
|
Value *Origin = MSV.getOrigin(A);
|
|
unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
|
|
MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize,
|
|
std::max(kShadowTLSAlignment, kMinOriginAlignment));
|
|
}
|
|
}
|
|
}
|
|
Constant *OverflowSize =
|
|
ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
|
|
IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
|
|
}
|
|
|
|
/// Compute the shadow address for a given va_arg.
|
|
Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
|
|
unsigned ArgOffset, unsigned ArgSize) {
|
|
// Make sure we don't overflow __msan_va_arg_tls.
|
|
if (ArgOffset + ArgSize > kParamTLSSize)
|
|
return nullptr;
|
|
Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
|
|
Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
|
|
return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
|
|
"_msarg_va_s");
|
|
}
|
|
|
|
/// Compute the origin address for a given va_arg.
|
|
Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) {
|
|
Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy);
|
|
// getOriginPtrForVAArgument() is always called after
|
|
// getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never
|
|
// overflow.
|
|
Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
|
|
return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
|
|
"_msarg_va_o");
|
|
}
|
|
|
|
void unpoisonVAListTagForInst(IntrinsicInst &I) {
|
|
IRBuilder<> IRB(&I);
|
|
Value *VAListTag = I.getArgOperand(0);
|
|
Value *ShadowPtr, *OriginPtr;
|
|
unsigned Alignment = 8;
|
|
std::tie(ShadowPtr, OriginPtr) =
|
|
MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment,
|
|
/*isStore*/ true);
|
|
|
|
// Unpoison the whole __va_list_tag.
|
|
// FIXME: magic ABI constants.
|
|
IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
|
|
/* size */ 24, Alignment, false);
|
|
// We shouldn't need to zero out the origins, as they're only checked for
|
|
// nonzero shadow.
|
|
}
|
|
|
|
void visitVAStartInst(VAStartInst &I) override {
|
|
if (F.getCallingConv() == CallingConv::Win64)
|
|
return;
|
|
VAStartInstrumentationList.push_back(&I);
|
|
unpoisonVAListTagForInst(I);
|
|
}
|
|
|
|
void visitVACopyInst(VACopyInst &I) override {
|
|
if (F.getCallingConv() == CallingConv::Win64) return;
|
|
unpoisonVAListTagForInst(I);
|
|
}
|
|
|
|
void finalizeInstrumentation() override {
|
|
assert(!VAArgOverflowSize && !VAArgTLSCopy &&
|
|
"finalizeInstrumentation called twice");
|
|
if (!VAStartInstrumentationList.empty()) {
|
|
// If there is a va_start in this function, make a backup copy of
|
|
// va_arg_tls somewhere in the function entry block.
|
|
IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
|
|
VAArgOverflowSize =
|
|
IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
|
|
Value *CopySize =
|
|
IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
|
|
VAArgOverflowSize);
|
|
VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
|
|
IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize);
|
|
if (MS.TrackOrigins) {
|
|
VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
|
|
IRB.CreateMemCpy(VAArgTLSOriginCopy, 8, MS.VAArgOriginTLS, 8, CopySize);
|
|
}
|
|
}
|
|
|
|
// Instrument va_start.
|
|
// Copy va_list shadow from the backup copy of the TLS contents.
|
|
for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
|
|
CallInst *OrigInst = VAStartInstrumentationList[i];
|
|
IRBuilder<> IRB(OrigInst->getNextNode());
|
|
Value *VAListTag = OrigInst->getArgOperand(0);
|
|
|
|
Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
|
|
Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr(
|
|
IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
|
|
ConstantInt::get(MS.IntptrTy, 16)),
|
|
PointerType::get(RegSaveAreaPtrTy, 0));
|
|
Value *RegSaveAreaPtr =
|
|
IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
|
|
Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
|
|
unsigned Alignment = 16;
|
|
std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
|
|
MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
|
|
Alignment, /*isStore*/ true);
|
|
IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
|
|
AMD64FpEndOffset);
|
|
if (MS.TrackOrigins)
|
|
IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy,
|
|
Alignment, AMD64FpEndOffset);
|
|
Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C);
|
|
Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr(
|
|
IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
|
|
ConstantInt::get(MS.IntptrTy, 8)),
|
|
PointerType::get(OverflowArgAreaPtrTy, 0));
|
|
Value *OverflowArgAreaPtr =
|
|
IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr);
|
|
Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr;
|
|
std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) =
|
|
MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(),
|
|
Alignment, /*isStore*/ true);
|
|
Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
|
|
AMD64FpEndOffset);
|
|
IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment,
|
|
VAArgOverflowSize);
|
|
if (MS.TrackOrigins) {
|
|
SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy,
|
|
AMD64FpEndOffset);
|
|
IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment,
|
|
VAArgOverflowSize);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
/// MIPS64-specific implementation of VarArgHelper.
|
|
struct VarArgMIPS64Helper : public VarArgHelper {
|
|
Function &F;
|
|
MemorySanitizer &MS;
|
|
MemorySanitizerVisitor &MSV;
|
|
Value *VAArgTLSCopy = nullptr;
|
|
Value *VAArgSize = nullptr;
|
|
|
|
SmallVector<CallInst*, 16> VAStartInstrumentationList;
|
|
|
|
VarArgMIPS64Helper(Function &F, MemorySanitizer &MS,
|
|
MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
|
|
|
|
void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
|
|
unsigned VAArgOffset = 0;
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
for (CallSite::arg_iterator ArgIt = CS.arg_begin() +
|
|
CS.getFunctionType()->getNumParams(), End = CS.arg_end();
|
|
ArgIt != End; ++ArgIt) {
|
|
Triple TargetTriple(F.getParent()->getTargetTriple());
|
|
Value *A = *ArgIt;
|
|
Value *Base;
|
|
uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
|
|
if (TargetTriple.getArch() == Triple::mips64) {
|
|
// Adjusting the shadow for argument with size < 8 to match the placement
|
|
// of bits in big endian system
|
|
if (ArgSize < 8)
|
|
VAArgOffset += (8 - ArgSize);
|
|
}
|
|
Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize);
|
|
VAArgOffset += ArgSize;
|
|
VAArgOffset = alignTo(VAArgOffset, 8);
|
|
if (!Base)
|
|
continue;
|
|
IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
|
|
}
|
|
|
|
Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset);
|
|
// Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
|
|
// a new class member i.e. it is the total size of all VarArgs.
|
|
IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
|
|
}
|
|
|
|
/// Compute the shadow address for a given va_arg.
|
|
Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
|
|
unsigned ArgOffset, unsigned ArgSize) {
|
|
// Make sure we don't overflow __msan_va_arg_tls.
|
|
if (ArgOffset + ArgSize > kParamTLSSize)
|
|
return nullptr;
|
|
Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
|
|
Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
|
|
return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
|
|
"_msarg");
|
|
}
|
|
|
|
void visitVAStartInst(VAStartInst &I) override {
|
|
IRBuilder<> IRB(&I);
|
|
VAStartInstrumentationList.push_back(&I);
|
|
Value *VAListTag = I.getArgOperand(0);
|
|
Value *ShadowPtr, *OriginPtr;
|
|
unsigned Alignment = 8;
|
|
std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
|
|
VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
|
|
IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
|
|
/* size */ 8, Alignment, false);
|
|
}
|
|
|
|
void visitVACopyInst(VACopyInst &I) override {
|
|
IRBuilder<> IRB(&I);
|
|
VAStartInstrumentationList.push_back(&I);
|
|
Value *VAListTag = I.getArgOperand(0);
|
|
Value *ShadowPtr, *OriginPtr;
|
|
unsigned Alignment = 8;
|
|
std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
|
|
VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
|
|
IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
|
|
/* size */ 8, Alignment, false);
|
|
}
|
|
|
|
void finalizeInstrumentation() override {
|
|
assert(!VAArgSize && !VAArgTLSCopy &&
|
|
"finalizeInstrumentation called twice");
|
|
IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
|
|
VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
|
|
Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
|
|
VAArgSize);
|
|
|
|
if (!VAStartInstrumentationList.empty()) {
|
|
// If there is a va_start in this function, make a backup copy of
|
|
// va_arg_tls somewhere in the function entry block.
|
|
VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
|
|
IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize);
|
|
}
|
|
|
|
// Instrument va_start.
|
|
// Copy va_list shadow from the backup copy of the TLS contents.
|
|
for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
|
|
CallInst *OrigInst = VAStartInstrumentationList[i];
|
|
IRBuilder<> IRB(OrigInst->getNextNode());
|
|
Value *VAListTag = OrigInst->getArgOperand(0);
|
|
Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
|
|
Value *RegSaveAreaPtrPtr =
|
|
IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
|
|
PointerType::get(RegSaveAreaPtrTy, 0));
|
|
Value *RegSaveAreaPtr =
|
|
IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
|
|
Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
|
|
unsigned Alignment = 8;
|
|
std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
|
|
MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
|
|
Alignment, /*isStore*/ true);
|
|
IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
|
|
CopySize);
|
|
}
|
|
}
|
|
};
|
|
|
|
/// AArch64-specific implementation of VarArgHelper.
|
|
struct VarArgAArch64Helper : public VarArgHelper {
|
|
static const unsigned kAArch64GrArgSize = 64;
|
|
static const unsigned kAArch64VrArgSize = 128;
|
|
|
|
static const unsigned AArch64GrBegOffset = 0;
|
|
static const unsigned AArch64GrEndOffset = kAArch64GrArgSize;
|
|
// Make VR space aligned to 16 bytes.
|
|
static const unsigned AArch64VrBegOffset = AArch64GrEndOffset;
|
|
static const unsigned AArch64VrEndOffset = AArch64VrBegOffset
|
|
+ kAArch64VrArgSize;
|
|
static const unsigned AArch64VAEndOffset = AArch64VrEndOffset;
|
|
|
|
Function &F;
|
|
MemorySanitizer &MS;
|
|
MemorySanitizerVisitor &MSV;
|
|
Value *VAArgTLSCopy = nullptr;
|
|
Value *VAArgOverflowSize = nullptr;
|
|
|
|
SmallVector<CallInst*, 16> VAStartInstrumentationList;
|
|
|
|
enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
|
|
|
|
VarArgAArch64Helper(Function &F, MemorySanitizer &MS,
|
|
MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
|
|
|
|
ArgKind classifyArgument(Value* arg) {
|
|
Type *T = arg->getType();
|
|
if (T->isFPOrFPVectorTy())
|
|
return AK_FloatingPoint;
|
|
if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
|
|
|| (T->isPointerTy()))
|
|
return AK_GeneralPurpose;
|
|
return AK_Memory;
|
|
}
|
|
|
|
// The instrumentation stores the argument shadow in a non ABI-specific
|
|
// format because it does not know which argument is named (since Clang,
|
|
// like x86_64 case, lowers the va_args in the frontend and this pass only
|
|
// sees the low level code that deals with va_list internals).
|
|
// The first seven GR registers are saved in the first 56 bytes of the
|
|
// va_arg tls arra, followers by the first 8 FP/SIMD registers, and then
|
|
// the remaining arguments.
|
|
// Using constant offset within the va_arg TLS array allows fast copy
|
|
// in the finalize instrumentation.
|
|
void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
|
|
unsigned GrOffset = AArch64GrBegOffset;
|
|
unsigned VrOffset = AArch64VrBegOffset;
|
|
unsigned OverflowOffset = AArch64VAEndOffset;
|
|
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
|
|
ArgIt != End; ++ArgIt) {
|
|
Value *A = *ArgIt;
|
|
unsigned ArgNo = CS.getArgumentNo(ArgIt);
|
|
bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams();
|
|
ArgKind AK = classifyArgument(A);
|
|
if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset)
|
|
AK = AK_Memory;
|
|
if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset)
|
|
AK = AK_Memory;
|
|
Value *Base;
|
|
switch (AK) {
|
|
case AK_GeneralPurpose:
|
|
Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8);
|
|
GrOffset += 8;
|
|
break;
|
|
case AK_FloatingPoint:
|
|
Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8);
|
|
VrOffset += 16;
|
|
break;
|
|
case AK_Memory:
|
|
// Don't count fixed arguments in the overflow area - va_start will
|
|
// skip right over them.
|
|
if (IsFixed)
|
|
continue;
|
|
uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
|
|
Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset,
|
|
alignTo(ArgSize, 8));
|
|
OverflowOffset += alignTo(ArgSize, 8);
|
|
break;
|
|
}
|
|
// Count Gp/Vr fixed arguments to their respective offsets, but don't
|
|
// bother to actually store a shadow.
|
|
if (IsFixed)
|
|
continue;
|
|
if (!Base)
|
|
continue;
|
|
IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
|
|
}
|
|
Constant *OverflowSize =
|
|
ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset);
|
|
IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
|
|
}
|
|
|
|
/// Compute the shadow address for a given va_arg.
|
|
Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
|
|
unsigned ArgOffset, unsigned ArgSize) {
|
|
// Make sure we don't overflow __msan_va_arg_tls.
|
|
if (ArgOffset + ArgSize > kParamTLSSize)
|
|
return nullptr;
|
|
Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
|
|
Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
|
|
return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
|
|
"_msarg");
|
|
}
|
|
|
|
void visitVAStartInst(VAStartInst &I) override {
|
|
IRBuilder<> IRB(&I);
|
|
VAStartInstrumentationList.push_back(&I);
|
|
Value *VAListTag = I.getArgOperand(0);
|
|
Value *ShadowPtr, *OriginPtr;
|
|
unsigned Alignment = 8;
|
|
std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
|
|
VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
|
|
IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
|
|
/* size */ 32, Alignment, false);
|
|
}
|
|
|
|
void visitVACopyInst(VACopyInst &I) override {
|
|
IRBuilder<> IRB(&I);
|
|
VAStartInstrumentationList.push_back(&I);
|
|
Value *VAListTag = I.getArgOperand(0);
|
|
Value *ShadowPtr, *OriginPtr;
|
|
unsigned Alignment = 8;
|
|
std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
|
|
VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
|
|
IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
|
|
/* size */ 32, Alignment, false);
|
|
}
|
|
|
|
// Retrieve a va_list field of 'void*' size.
|
|
Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) {
|
|
Value *SaveAreaPtrPtr =
|
|
IRB.CreateIntToPtr(
|
|
IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
|
|
ConstantInt::get(MS.IntptrTy, offset)),
|
|
Type::getInt64PtrTy(*MS.C));
|
|
return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr);
|
|
}
|
|
|
|
// Retrieve a va_list field of 'int' size.
|
|
Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) {
|
|
Value *SaveAreaPtr =
|
|
IRB.CreateIntToPtr(
|
|
IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
|
|
ConstantInt::get(MS.IntptrTy, offset)),
|
|
Type::getInt32PtrTy(*MS.C));
|
|
Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr);
|
|
return IRB.CreateSExt(SaveArea32, MS.IntptrTy);
|
|
}
|
|
|
|
void finalizeInstrumentation() override {
|
|
assert(!VAArgOverflowSize && !VAArgTLSCopy &&
|
|
"finalizeInstrumentation called twice");
|
|
if (!VAStartInstrumentationList.empty()) {
|
|
// If there is a va_start in this function, make a backup copy of
|
|
// va_arg_tls somewhere in the function entry block.
|
|
IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
|
|
VAArgOverflowSize =
|
|
IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
|
|
Value *CopySize =
|
|
IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset),
|
|
VAArgOverflowSize);
|
|
VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
|
|
IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize);
|
|
}
|
|
|
|
Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize);
|
|
Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize);
|
|
|
|
// Instrument va_start, copy va_list shadow from the backup copy of
|
|
// the TLS contents.
|
|
for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
|
|
CallInst *OrigInst = VAStartInstrumentationList[i];
|
|
IRBuilder<> IRB(OrigInst->getNextNode());
|
|
|
|
Value *VAListTag = OrigInst->getArgOperand(0);
|
|
|
|
// The variadic ABI for AArch64 creates two areas to save the incoming
|
|
// argument registers (one for 64-bit general register xn-x7 and another
|
|
// for 128-bit FP/SIMD vn-v7).
|
|
// We need then to propagate the shadow arguments on both regions
|
|
// 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'.
|
|
// The remaning arguments are saved on shadow for 'va::stack'.
|
|
// One caveat is it requires only to propagate the non-named arguments,
|
|
// however on the call site instrumentation 'all' the arguments are
|
|
// saved. So to copy the shadow values from the va_arg TLS array
|
|
// we need to adjust the offset for both GR and VR fields based on
|
|
// the __{gr,vr}_offs value (since they are stores based on incoming
|
|
// named arguments).
|
|
|
|
// Read the stack pointer from the va_list.
|
|
Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0);
|
|
|
|
// Read both the __gr_top and __gr_off and add them up.
|
|
Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8);
|
|
Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24);
|
|
|
|
Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea);
|
|
|
|
// Read both the __vr_top and __vr_off and add them up.
|
|
Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16);
|
|
Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28);
|
|
|
|
Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea);
|
|
|
|
// It does not know how many named arguments is being used and, on the
|
|
// callsite all the arguments were saved. Since __gr_off is defined as
|
|
// '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic
|
|
// argument by ignoring the bytes of shadow from named arguments.
|
|
Value *GrRegSaveAreaShadowPtrOff =
|
|
IRB.CreateAdd(GrArgSize, GrOffSaveArea);
|
|
|
|
Value *GrRegSaveAreaShadowPtr =
|
|
MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
|
|
/*Alignment*/ 8, /*isStore*/ true)
|
|
.first;
|
|
|
|
Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
|
|
GrRegSaveAreaShadowPtrOff);
|
|
Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff);
|
|
|
|
IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, 8, GrSrcPtr, 8, GrCopySize);
|
|
|
|
// Again, but for FP/SIMD values.
|
|
Value *VrRegSaveAreaShadowPtrOff =
|
|
IRB.CreateAdd(VrArgSize, VrOffSaveArea);
|
|
|
|
Value *VrRegSaveAreaShadowPtr =
|
|
MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(),
|
|
/*Alignment*/ 8, /*isStore*/ true)
|
|
.first;
|
|
|
|
Value *VrSrcPtr = IRB.CreateInBoundsGEP(
|
|
IRB.getInt8Ty(),
|
|
IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
|
|
IRB.getInt32(AArch64VrBegOffset)),
|
|
VrRegSaveAreaShadowPtrOff);
|
|
Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff);
|
|
|
|
IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, 8, VrSrcPtr, 8, VrCopySize);
|
|
|
|
// And finally for remaining arguments.
|
|
Value *StackSaveAreaShadowPtr =
|
|
MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(),
|
|
/*Alignment*/ 16, /*isStore*/ true)
|
|
.first;
|
|
|
|
Value *StackSrcPtr =
|
|
IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy,
|
|
IRB.getInt32(AArch64VAEndOffset));
|
|
|
|
IRB.CreateMemCpy(StackSaveAreaShadowPtr, 16, StackSrcPtr, 16,
|
|
VAArgOverflowSize);
|
|
}
|
|
}
|
|
};
|
|
|
|
/// PowerPC64-specific implementation of VarArgHelper.
|
|
struct VarArgPowerPC64Helper : public VarArgHelper {
|
|
Function &F;
|
|
MemorySanitizer &MS;
|
|
MemorySanitizerVisitor &MSV;
|
|
Value *VAArgTLSCopy = nullptr;
|
|
Value *VAArgSize = nullptr;
|
|
|
|
SmallVector<CallInst*, 16> VAStartInstrumentationList;
|
|
|
|
VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS,
|
|
MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {}
|
|
|
|
void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
|
|
// For PowerPC, we need to deal with alignment of stack arguments -
|
|
// they are mostly aligned to 8 bytes, but vectors and i128 arrays
|
|
// are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes,
|
|
// and QPX vectors are aligned to 32 bytes. For that reason, we
|
|
// compute current offset from stack pointer (which is always properly
|
|
// aligned), and offset for the first vararg, then subtract them.
|
|
unsigned VAArgBase;
|
|
Triple TargetTriple(F.getParent()->getTargetTriple());
|
|
// Parameter save area starts at 48 bytes from frame pointer for ABIv1,
|
|
// and 32 bytes for ABIv2. This is usually determined by target
|
|
// endianness, but in theory could be overriden by function attribute.
|
|
// For simplicity, we ignore it here (it'd only matter for QPX vectors).
|
|
if (TargetTriple.getArch() == Triple::ppc64)
|
|
VAArgBase = 48;
|
|
else
|
|
VAArgBase = 32;
|
|
unsigned VAArgOffset = VAArgBase;
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
|
|
ArgIt != End; ++ArgIt) {
|
|
Value *A = *ArgIt;
|
|
unsigned ArgNo = CS.getArgumentNo(ArgIt);
|
|
bool IsFixed = ArgNo < CS.getFunctionType()->getNumParams();
|
|
bool IsByVal = CS.paramHasAttr(ArgNo, Attribute::ByVal);
|
|
if (IsByVal) {
|
|
assert(A->getType()->isPointerTy());
|
|
Type *RealTy = A->getType()->getPointerElementType();
|
|
uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
|
|
uint64_t ArgAlign = CS.getParamAlignment(ArgNo);
|
|
if (ArgAlign < 8)
|
|
ArgAlign = 8;
|
|
VAArgOffset = alignTo(VAArgOffset, ArgAlign);
|
|
if (!IsFixed) {
|
|
Value *Base = getShadowPtrForVAArgument(
|
|
RealTy, IRB, VAArgOffset - VAArgBase, ArgSize);
|
|
if (Base) {
|
|
Value *AShadowPtr, *AOriginPtr;
|
|
std::tie(AShadowPtr, AOriginPtr) =
|
|
MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(),
|
|
kShadowTLSAlignment, /*isStore*/ false);
|
|
|
|
IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr,
|
|
kShadowTLSAlignment, ArgSize);
|
|
}
|
|
}
|
|
VAArgOffset += alignTo(ArgSize, 8);
|
|
} else {
|
|
Value *Base;
|
|
uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
|
|
uint64_t ArgAlign = 8;
|
|
if (A->getType()->isArrayTy()) {
|
|
// Arrays are aligned to element size, except for long double
|
|
// arrays, which are aligned to 8 bytes.
|
|
Type *ElementTy = A->getType()->getArrayElementType();
|
|
if (!ElementTy->isPPC_FP128Ty())
|
|
ArgAlign = DL.getTypeAllocSize(ElementTy);
|
|
} else if (A->getType()->isVectorTy()) {
|
|
// Vectors are naturally aligned.
|
|
ArgAlign = DL.getTypeAllocSize(A->getType());
|
|
}
|
|
if (ArgAlign < 8)
|
|
ArgAlign = 8;
|
|
VAArgOffset = alignTo(VAArgOffset, ArgAlign);
|
|
if (DL.isBigEndian()) {
|
|
// Adjusting the shadow for argument with size < 8 to match the placement
|
|
// of bits in big endian system
|
|
if (ArgSize < 8)
|
|
VAArgOffset += (8 - ArgSize);
|
|
}
|
|
if (!IsFixed) {
|
|
Base = getShadowPtrForVAArgument(A->getType(), IRB,
|
|
VAArgOffset - VAArgBase, ArgSize);
|
|
if (Base)
|
|
IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
|
|
}
|
|
VAArgOffset += ArgSize;
|
|
VAArgOffset = alignTo(VAArgOffset, 8);
|
|
}
|
|
if (IsFixed)
|
|
VAArgBase = VAArgOffset;
|
|
}
|
|
|
|
Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(),
|
|
VAArgOffset - VAArgBase);
|
|
// Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
|
|
// a new class member i.e. it is the total size of all VarArgs.
|
|
IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
|
|
}
|
|
|
|
/// Compute the shadow address for a given va_arg.
|
|
Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
|
|
unsigned ArgOffset, unsigned ArgSize) {
|
|
// Make sure we don't overflow __msan_va_arg_tls.
|
|
if (ArgOffset + ArgSize > kParamTLSSize)
|
|
return nullptr;
|
|
Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
|
|
Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
|
|
return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
|
|
"_msarg");
|
|
}
|
|
|
|
void visitVAStartInst(VAStartInst &I) override {
|
|
IRBuilder<> IRB(&I);
|
|
VAStartInstrumentationList.push_back(&I);
|
|
Value *VAListTag = I.getArgOperand(0);
|
|
Value *ShadowPtr, *OriginPtr;
|
|
unsigned Alignment = 8;
|
|
std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
|
|
VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
|
|
IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
|
|
/* size */ 8, Alignment, false);
|
|
}
|
|
|
|
void visitVACopyInst(VACopyInst &I) override {
|
|
IRBuilder<> IRB(&I);
|
|
Value *VAListTag = I.getArgOperand(0);
|
|
Value *ShadowPtr, *OriginPtr;
|
|
unsigned Alignment = 8;
|
|
std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr(
|
|
VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true);
|
|
// Unpoison the whole __va_list_tag.
|
|
// FIXME: magic ABI constants.
|
|
IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
|
|
/* size */ 8, Alignment, false);
|
|
}
|
|
|
|
void finalizeInstrumentation() override {
|
|
assert(!VAArgSize && !VAArgTLSCopy &&
|
|
"finalizeInstrumentation called twice");
|
|
IRBuilder<> IRB(MSV.ActualFnStart->getFirstNonPHI());
|
|
VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS);
|
|
Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
|
|
VAArgSize);
|
|
|
|
if (!VAStartInstrumentationList.empty()) {
|
|
// If there is a va_start in this function, make a backup copy of
|
|
// va_arg_tls somewhere in the function entry block.
|
|
VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
|
|
IRB.CreateMemCpy(VAArgTLSCopy, 8, MS.VAArgTLS, 8, CopySize);
|
|
}
|
|
|
|
// Instrument va_start.
|
|
// Copy va_list shadow from the backup copy of the TLS contents.
|
|
for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
|
|
CallInst *OrigInst = VAStartInstrumentationList[i];
|
|
IRBuilder<> IRB(OrigInst->getNextNode());
|
|
Value *VAListTag = OrigInst->getArgOperand(0);
|
|
Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C);
|
|
Value *RegSaveAreaPtrPtr =
|
|
IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
|
|
PointerType::get(RegSaveAreaPtrTy, 0));
|
|
Value *RegSaveAreaPtr =
|
|
IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr);
|
|
Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr;
|
|
unsigned Alignment = 8;
|
|
std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) =
|
|
MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(),
|
|
Alignment, /*isStore*/ true);
|
|
IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment,
|
|
CopySize);
|
|
}
|
|
}
|
|
};
|
|
|
|
/// A no-op implementation of VarArgHelper.
|
|
struct VarArgNoOpHelper : public VarArgHelper {
|
|
VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
|
|
MemorySanitizerVisitor &MSV) {}
|
|
|
|
void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {}
|
|
|
|
void visitVAStartInst(VAStartInst &I) override {}
|
|
|
|
void visitVACopyInst(VACopyInst &I) override {}
|
|
|
|
void finalizeInstrumentation() override {}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
|
|
MemorySanitizerVisitor &Visitor) {
|
|
// VarArg handling is only implemented on AMD64. False positives are possible
|
|
// on other platforms.
|
|
Triple TargetTriple(Func.getParent()->getTargetTriple());
|
|
if (TargetTriple.getArch() == Triple::x86_64)
|
|
return new VarArgAMD64Helper(Func, Msan, Visitor);
|
|
else if (TargetTriple.isMIPS64())
|
|
return new VarArgMIPS64Helper(Func, Msan, Visitor);
|
|
else if (TargetTriple.getArch() == Triple::aarch64)
|
|
return new VarArgAArch64Helper(Func, Msan, Visitor);
|
|
else if (TargetTriple.getArch() == Triple::ppc64 ||
|
|
TargetTriple.getArch() == Triple::ppc64le)
|
|
return new VarArgPowerPC64Helper(Func, Msan, Visitor);
|
|
else
|
|
return new VarArgNoOpHelper(Func, Msan, Visitor);
|
|
}
|
|
|
|
bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) {
|
|
if (!CompileKernel && F.getName() == kMsanModuleCtorName)
|
|
return false;
|
|
|
|
MemorySanitizerVisitor Visitor(F, *this, TLI);
|
|
|
|
// Clear out readonly/readnone attributes.
|
|
AttrBuilder B;
|
|
B.addAttribute(Attribute::ReadOnly)
|
|
.addAttribute(Attribute::ReadNone)
|
|
.addAttribute(Attribute::WriteOnly)
|
|
.addAttribute(Attribute::ArgMemOnly)
|
|
.addAttribute(Attribute::Speculatable);
|
|
F.removeAttributes(AttributeList::FunctionIndex, B);
|
|
|
|
return Visitor.runOnFunction();
|
|
}
|