llvm-project/llvm/lib/MC/ELFObjectWriter.cpp

1519 lines
51 KiB
C++

//===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements ELF object file writer information.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCELFObjectWriter.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCFixupKindInfo.h"
#include "llvm/MC/MCFragment.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCSymbolELF.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/MC/MCValue.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/SMLoc.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
#undef DEBUG_TYPE
#define DEBUG_TYPE "reloc-info"
namespace {
using SectionIndexMapTy = DenseMap<const MCSectionELF *, uint32_t>;
class ELFObjectWriter;
struct ELFWriter;
bool isDwoSection(const MCSectionELF &Sec) {
return Sec.getName().endswith(".dwo");
}
class SymbolTableWriter {
ELFWriter &EWriter;
bool Is64Bit;
// indexes we are going to write to .symtab_shndx.
std::vector<uint32_t> ShndxIndexes;
// The numbel of symbols written so far.
unsigned NumWritten;
void createSymtabShndx();
template <typename T> void write(T Value);
public:
SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit);
void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size,
uint8_t other, uint32_t shndx, bool Reserved);
ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; }
};
struct ELFWriter {
ELFObjectWriter &OWriter;
support::endian::Writer W;
enum DwoMode {
AllSections,
NonDwoOnly,
DwoOnly,
} Mode;
static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout);
static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
bool Used, bool Renamed);
/// Helper struct for containing some precomputed information on symbols.
struct ELFSymbolData {
const MCSymbolELF *Symbol;
StringRef Name;
uint32_t SectionIndex;
uint32_t Order;
};
/// @}
/// @name Symbol Table Data
/// @{
StringTableBuilder StrTabBuilder{StringTableBuilder::ELF};
/// @}
// This holds the symbol table index of the last local symbol.
unsigned LastLocalSymbolIndex;
// This holds the .strtab section index.
unsigned StringTableIndex;
// This holds the .symtab section index.
unsigned SymbolTableIndex;
// Sections in the order they are to be output in the section table.
std::vector<const MCSectionELF *> SectionTable;
unsigned addToSectionTable(const MCSectionELF *Sec);
// TargetObjectWriter wrappers.
bool is64Bit() const;
bool usesRela(const MCSectionELF &Sec) const;
uint64_t align(unsigned Alignment);
bool maybeWriteCompression(uint64_t Size,
SmallVectorImpl<uint8_t> &CompressedContents,
unsigned Alignment);
public:
ELFWriter(ELFObjectWriter &OWriter, raw_pwrite_stream &OS,
bool IsLittleEndian, DwoMode Mode)
: OWriter(OWriter),
W(OS, IsLittleEndian ? support::little : support::big), Mode(Mode) {}
void WriteWord(uint64_t Word) {
if (is64Bit())
W.write<uint64_t>(Word);
else
W.write<uint32_t>(Word);
}
template <typename T> void write(T Val) {
W.write(Val);
}
void writeHeader(const MCAssembler &Asm);
void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex,
ELFSymbolData &MSD, const MCAsmLayout &Layout);
// Start and end offset of each section
using SectionOffsetsTy =
std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>;
// Map from a signature symbol to the group section index
using RevGroupMapTy = DenseMap<const MCSymbol *, unsigned>;
/// Compute the symbol table data
///
/// \param Asm - The assembler.
/// \param SectionIndexMap - Maps a section to its index.
/// \param RevGroupMap - Maps a signature symbol to the group section.
void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout,
const SectionIndexMapTy &SectionIndexMap,
const RevGroupMapTy &RevGroupMap,
SectionOffsetsTy &SectionOffsets);
void writeAddrsigSection();
MCSectionELF *createRelocationSection(MCContext &Ctx,
const MCSectionELF &Sec);
void writeSectionHeader(const MCAsmLayout &Layout,
const SectionIndexMapTy &SectionIndexMap,
const SectionOffsetsTy &SectionOffsets);
void writeSectionData(const MCAssembler &Asm, MCSection &Sec,
const MCAsmLayout &Layout);
void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
uint64_t Address, uint64_t Offset, uint64_t Size,
uint32_t Link, uint32_t Info, uint64_t Alignment,
uint64_t EntrySize);
void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec);
uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout);
void writeSection(const SectionIndexMapTy &SectionIndexMap,
uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size,
const MCSectionELF &Section);
};
class ELFObjectWriter : public MCObjectWriter {
/// The target specific ELF writer instance.
std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter;
DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>> Relocations;
DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames;
bool SeenGnuAbi = false;
bool hasRelocationAddend() const;
bool shouldRelocateWithSymbol(const MCAssembler &Asm,
const MCSymbolRefExpr *RefA,
const MCSymbolELF *Sym, uint64_t C,
unsigned Type) const;
public:
ELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW)
: TargetObjectWriter(std::move(MOTW)) {}
void reset() override {
SeenGnuAbi = false;
Relocations.clear();
Renames.clear();
MCObjectWriter::reset();
}
bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
const MCSymbol &SymA,
const MCFragment &FB, bool InSet,
bool IsPCRel) const override;
virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc,
const MCSectionELF *From,
const MCSectionELF *To) {
return true;
}
void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout,
const MCFragment *Fragment, const MCFixup &Fixup,
MCValue Target, uint64_t &FixedValue) override;
void executePostLayoutBinding(MCAssembler &Asm,
const MCAsmLayout &Layout) override;
void markGnuAbi() override { SeenGnuAbi = true; }
bool seenGnuAbi() const { return SeenGnuAbi; }
friend struct ELFWriter;
};
class ELFSingleObjectWriter : public ELFObjectWriter {
raw_pwrite_stream &OS;
bool IsLittleEndian;
public:
ELFSingleObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
raw_pwrite_stream &OS, bool IsLittleEndian)
: ELFObjectWriter(std::move(MOTW)), OS(OS),
IsLittleEndian(IsLittleEndian) {}
uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override {
return ELFWriter(*this, OS, IsLittleEndian, ELFWriter::AllSections)
.writeObject(Asm, Layout);
}
friend struct ELFWriter;
};
class ELFDwoObjectWriter : public ELFObjectWriter {
raw_pwrite_stream &OS, &DwoOS;
bool IsLittleEndian;
public:
ELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS,
bool IsLittleEndian)
: ELFObjectWriter(std::move(MOTW)), OS(OS), DwoOS(DwoOS),
IsLittleEndian(IsLittleEndian) {}
virtual bool checkRelocation(MCContext &Ctx, SMLoc Loc,
const MCSectionELF *From,
const MCSectionELF *To) override {
if (isDwoSection(*From)) {
Ctx.reportError(Loc, "A dwo section may not contain relocations");
return false;
}
if (To && isDwoSection(*To)) {
Ctx.reportError(Loc, "A relocation may not refer to a dwo section");
return false;
}
return true;
}
uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override {
uint64_t Size = ELFWriter(*this, OS, IsLittleEndian, ELFWriter::NonDwoOnly)
.writeObject(Asm, Layout);
Size += ELFWriter(*this, DwoOS, IsLittleEndian, ELFWriter::DwoOnly)
.writeObject(Asm, Layout);
return Size;
}
};
} // end anonymous namespace
uint64_t ELFWriter::align(unsigned Alignment) {
uint64_t Offset = W.OS.tell(), NewOffset = alignTo(Offset, Alignment);
W.OS.write_zeros(NewOffset - Offset);
return NewOffset;
}
unsigned ELFWriter::addToSectionTable(const MCSectionELF *Sec) {
SectionTable.push_back(Sec);
StrTabBuilder.add(Sec->getName());
return SectionTable.size();
}
void SymbolTableWriter::createSymtabShndx() {
if (!ShndxIndexes.empty())
return;
ShndxIndexes.resize(NumWritten);
}
template <typename T> void SymbolTableWriter::write(T Value) {
EWriter.write(Value);
}
SymbolTableWriter::SymbolTableWriter(ELFWriter &EWriter, bool Is64Bit)
: EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {}
void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value,
uint64_t size, uint8_t other,
uint32_t shndx, bool Reserved) {
bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved;
if (LargeIndex)
createSymtabShndx();
if (!ShndxIndexes.empty()) {
if (LargeIndex)
ShndxIndexes.push_back(shndx);
else
ShndxIndexes.push_back(0);
}
uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx;
if (Is64Bit) {
write(name); // st_name
write(info); // st_info
write(other); // st_other
write(Index); // st_shndx
write(value); // st_value
write(size); // st_size
} else {
write(name); // st_name
write(uint32_t(value)); // st_value
write(uint32_t(size)); // st_size
write(info); // st_info
write(other); // st_other
write(Index); // st_shndx
}
++NumWritten;
}
bool ELFWriter::is64Bit() const {
return OWriter.TargetObjectWriter->is64Bit();
}
bool ELFWriter::usesRela(const MCSectionELF &Sec) const {
return OWriter.hasRelocationAddend() &&
Sec.getType() != ELF::SHT_LLVM_CALL_GRAPH_PROFILE;
}
// Emit the ELF header.
void ELFWriter::writeHeader(const MCAssembler &Asm) {
// ELF Header
// ----------
//
// Note
// ----
// emitWord method behaves differently for ELF32 and ELF64, writing
// 4 bytes in the former and 8 in the latter.
W.OS << ELF::ElfMagic; // e_ident[EI_MAG0] to e_ident[EI_MAG3]
W.OS << char(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS]
// e_ident[EI_DATA]
W.OS << char(W.Endian == support::little ? ELF::ELFDATA2LSB
: ELF::ELFDATA2MSB);
W.OS << char(ELF::EV_CURRENT); // e_ident[EI_VERSION]
// e_ident[EI_OSABI]
uint8_t OSABI = OWriter.TargetObjectWriter->getOSABI();
W.OS << char(OSABI == ELF::ELFOSABI_NONE && OWriter.seenGnuAbi()
? int(ELF::ELFOSABI_GNU)
: OSABI);
// e_ident[EI_ABIVERSION]
W.OS << char(OWriter.TargetObjectWriter->getABIVersion());
W.OS.write_zeros(ELF::EI_NIDENT - ELF::EI_PAD);
W.write<uint16_t>(ELF::ET_REL); // e_type
W.write<uint16_t>(OWriter.TargetObjectWriter->getEMachine()); // e_machine = target
W.write<uint32_t>(ELF::EV_CURRENT); // e_version
WriteWord(0); // e_entry, no entry point in .o file
WriteWord(0); // e_phoff, no program header for .o
WriteWord(0); // e_shoff = sec hdr table off in bytes
// e_flags = whatever the target wants
W.write<uint32_t>(Asm.getELFHeaderEFlags());
// e_ehsize = ELF header size
W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Ehdr)
: sizeof(ELF::Elf32_Ehdr));
W.write<uint16_t>(0); // e_phentsize = prog header entry size
W.write<uint16_t>(0); // e_phnum = # prog header entries = 0
// e_shentsize = Section header entry size
W.write<uint16_t>(is64Bit() ? sizeof(ELF::Elf64_Shdr)
: sizeof(ELF::Elf32_Shdr));
// e_shnum = # of section header ents
W.write<uint16_t>(0);
// e_shstrndx = Section # of '.strtab'
assert(StringTableIndex < ELF::SHN_LORESERVE);
W.write<uint16_t>(StringTableIndex);
}
uint64_t ELFWriter::SymbolValue(const MCSymbol &Sym,
const MCAsmLayout &Layout) {
if (Sym.isCommon())
return Sym.getCommonAlignment();
uint64_t Res;
if (!Layout.getSymbolOffset(Sym, Res))
return 0;
if (Layout.getAssembler().isThumbFunc(&Sym))
Res |= 1;
return Res;
}
static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) {
uint8_t Type = newType;
// Propagation rules:
// IFUNC > FUNC > OBJECT > NOTYPE
// TLS_OBJECT > OBJECT > NOTYPE
//
// dont let the new type degrade the old type
switch (origType) {
default:
break;
case ELF::STT_GNU_IFUNC:
if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT ||
Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS)
Type = ELF::STT_GNU_IFUNC;
break;
case ELF::STT_FUNC:
if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
Type == ELF::STT_TLS)
Type = ELF::STT_FUNC;
break;
case ELF::STT_OBJECT:
if (Type == ELF::STT_NOTYPE)
Type = ELF::STT_OBJECT;
break;
case ELF::STT_TLS:
if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC)
Type = ELF::STT_TLS;
break;
}
return Type;
}
static bool isIFunc(const MCSymbolELF *Symbol) {
while (Symbol->getType() != ELF::STT_GNU_IFUNC) {
const MCSymbolRefExpr *Value;
if (!Symbol->isVariable() ||
!(Value = dyn_cast<MCSymbolRefExpr>(Symbol->getVariableValue())) ||
Value->getKind() != MCSymbolRefExpr::VK_None ||
mergeTypeForSet(Symbol->getType(), ELF::STT_GNU_IFUNC) != ELF::STT_GNU_IFUNC)
return false;
Symbol = &cast<MCSymbolELF>(Value->getSymbol());
}
return true;
}
void ELFWriter::writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex,
ELFSymbolData &MSD, const MCAsmLayout &Layout) {
const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol);
const MCSymbolELF *Base =
cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol));
// This has to be in sync with when computeSymbolTable uses SHN_ABS or
// SHN_COMMON.
bool IsReserved = !Base || Symbol.isCommon();
// Binding and Type share the same byte as upper and lower nibbles
uint8_t Binding = Symbol.getBinding();
uint8_t Type = Symbol.getType();
if (isIFunc(&Symbol))
Type = ELF::STT_GNU_IFUNC;
if (Base) {
Type = mergeTypeForSet(Type, Base->getType());
}
uint8_t Info = (Binding << 4) | Type;
// Other and Visibility share the same byte with Visibility using the lower
// 2 bits
uint8_t Visibility = Symbol.getVisibility();
uint8_t Other = Symbol.getOther() | Visibility;
uint64_t Value = SymbolValue(*MSD.Symbol, Layout);
uint64_t Size = 0;
const MCExpr *ESize = MSD.Symbol->getSize();
if (!ESize && Base) {
// For expressions like .set y, x+1, if y's size is unset, inherit from x.
ESize = Base->getSize();
// For `.size x, 2; y = x; .size y, 1; z = y; z1 = z; .symver y, y@v1`, z,
// z1, and y@v1's st_size equals y's. However, `Base` is `x` which will give
// us 2. Follow the MCSymbolRefExpr assignment chain, which covers most
// needs. MCBinaryExpr is not handled.
const MCSymbolELF *Sym = &Symbol;
while (Sym->isVariable()) {
if (auto *Expr =
dyn_cast<MCSymbolRefExpr>(Sym->getVariableValue(false))) {
Sym = cast<MCSymbolELF>(&Expr->getSymbol());
if (!Sym->getSize())
continue;
ESize = Sym->getSize();
}
break;
}
}
if (ESize) {
int64_t Res;
if (!ESize->evaluateKnownAbsolute(Res, Layout))
report_fatal_error("Size expression must be absolute.");
Size = Res;
}
// Write out the symbol table entry
Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex,
IsReserved);
}
bool ELFWriter::isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
bool Used, bool Renamed) {
if (Symbol.isVariable()) {
const MCExpr *Expr = Symbol.getVariableValue();
// Target Expressions that are always inlined do not appear in the symtab
if (const auto *T = dyn_cast<MCTargetExpr>(Expr))
if (T->inlineAssignedExpr())
return false;
if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) {
if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF)
return false;
}
}
if (Used)
return true;
if (Renamed)
return false;
if (Symbol.isVariable() && Symbol.isUndefined()) {
// FIXME: this is here just to diagnose the case of a var = commmon_sym.
Layout.getBaseSymbol(Symbol);
return false;
}
if (Symbol.isTemporary())
return false;
if (Symbol.getType() == ELF::STT_SECTION)
return false;
return true;
}
void ELFWriter::computeSymbolTable(
MCAssembler &Asm, const MCAsmLayout &Layout,
const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap,
SectionOffsetsTy &SectionOffsets) {
MCContext &Ctx = Asm.getContext();
SymbolTableWriter Writer(*this, is64Bit());
// Symbol table
unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32;
MCSectionELF *SymtabSection =
Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize);
SymtabSection->setAlignment(is64Bit() ? Align(8) : Align(4));
SymbolTableIndex = addToSectionTable(SymtabSection);
uint64_t SecStart = align(SymtabSection->getAlignment());
// The first entry is the undefined symbol entry.
Writer.writeSymbol(0, 0, 0, 0, 0, 0, false);
std::vector<ELFSymbolData> LocalSymbolData;
std::vector<ELFSymbolData> ExternalSymbolData;
MutableArrayRef<std::pair<std::string, size_t>> FileNames =
Asm.getFileNames();
for (const std::pair<std::string, size_t> &F : FileNames)
StrTabBuilder.add(F.first);
// Add the data for the symbols.
bool HasLargeSectionIndex = false;
for (auto It : llvm::enumerate(Asm.symbols())) {
const auto &Symbol = cast<MCSymbolELF>(It.value());
bool Used = Symbol.isUsedInReloc();
bool WeakrefUsed = Symbol.isWeakrefUsedInReloc();
bool isSignature = Symbol.isSignature();
if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature,
OWriter.Renames.count(&Symbol)))
continue;
if (Symbol.isTemporary() && Symbol.isUndefined()) {
Ctx.reportError(SMLoc(), "Undefined temporary symbol " + Symbol.getName());
continue;
}
ELFSymbolData MSD;
MSD.Symbol = cast<MCSymbolELF>(&Symbol);
MSD.Order = It.index();
bool Local = Symbol.getBinding() == ELF::STB_LOCAL;
assert(Local || !Symbol.isTemporary());
if (Symbol.isAbsolute()) {
MSD.SectionIndex = ELF::SHN_ABS;
} else if (Symbol.isCommon()) {
if (Symbol.isTargetCommon()) {
MSD.SectionIndex = Symbol.getIndex();
} else {
assert(!Local);
MSD.SectionIndex = ELF::SHN_COMMON;
}
} else if (Symbol.isUndefined()) {
if (isSignature && !Used) {
MSD.SectionIndex = RevGroupMap.lookup(&Symbol);
if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
HasLargeSectionIndex = true;
} else {
MSD.SectionIndex = ELF::SHN_UNDEF;
}
} else {
const MCSectionELF &Section =
static_cast<const MCSectionELF &>(Symbol.getSection());
// We may end up with a situation when section symbol is technically
// defined, but should not be. That happens because we explicitly
// pre-create few .debug_* sections to have accessors.
// And if these sections were not really defined in the code, but were
// referenced, we simply error out.
if (!Section.isRegistered()) {
assert(static_cast<const MCSymbolELF &>(Symbol).getType() ==
ELF::STT_SECTION);
Ctx.reportError(SMLoc(),
"Undefined section reference: " + Symbol.getName());
continue;
}
if (Mode == NonDwoOnly && isDwoSection(Section))
continue;
MSD.SectionIndex = SectionIndexMap.lookup(&Section);
assert(MSD.SectionIndex && "Invalid section index!");
if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
HasLargeSectionIndex = true;
}
StringRef Name = Symbol.getName();
// Sections have their own string table
if (Symbol.getType() != ELF::STT_SECTION) {
MSD.Name = Name;
StrTabBuilder.add(Name);
}
if (Local)
LocalSymbolData.push_back(MSD);
else
ExternalSymbolData.push_back(MSD);
}
// This holds the .symtab_shndx section index.
unsigned SymtabShndxSectionIndex = 0;
if (HasLargeSectionIndex) {
MCSectionELF *SymtabShndxSection =
Ctx.getELFSection(".symtab_shndx", ELF::SHT_SYMTAB_SHNDX, 0, 4);
SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection);
SymtabShndxSection->setAlignment(Align(4));
}
StrTabBuilder.finalize();
// Make the first STT_FILE precede previous local symbols.
unsigned Index = 1;
auto FileNameIt = FileNames.begin();
if (!FileNames.empty())
FileNames[0].second = 0;
for (ELFSymbolData &MSD : LocalSymbolData) {
// Emit STT_FILE symbols before their associated local symbols.
for (; FileNameIt != FileNames.end() && FileNameIt->second <= MSD.Order;
++FileNameIt) {
Writer.writeSymbol(StrTabBuilder.getOffset(FileNameIt->first),
ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT,
ELF::SHN_ABS, true);
++Index;
}
unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION
? 0
: StrTabBuilder.getOffset(MSD.Name);
MSD.Symbol->setIndex(Index++);
writeSymbol(Writer, StringIndex, MSD, Layout);
}
for (; FileNameIt != FileNames.end(); ++FileNameIt) {
Writer.writeSymbol(StrTabBuilder.getOffset(FileNameIt->first),
ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT,
ELF::SHN_ABS, true);
++Index;
}
// Write the symbol table entries.
LastLocalSymbolIndex = Index;
for (ELFSymbolData &MSD : ExternalSymbolData) {
unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name);
MSD.Symbol->setIndex(Index++);
writeSymbol(Writer, StringIndex, MSD, Layout);
assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL);
}
uint64_t SecEnd = W.OS.tell();
SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd);
ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes();
if (ShndxIndexes.empty()) {
assert(SymtabShndxSectionIndex == 0);
return;
}
assert(SymtabShndxSectionIndex != 0);
SecStart = W.OS.tell();
const MCSectionELF *SymtabShndxSection =
SectionTable[SymtabShndxSectionIndex - 1];
for (uint32_t Index : ShndxIndexes)
write(Index);
SecEnd = W.OS.tell();
SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd);
}
void ELFWriter::writeAddrsigSection() {
for (const MCSymbol *Sym : OWriter.AddrsigSyms)
encodeULEB128(Sym->getIndex(), W.OS);
}
MCSectionELF *ELFWriter::createRelocationSection(MCContext &Ctx,
const MCSectionELF &Sec) {
if (OWriter.Relocations[&Sec].empty())
return nullptr;
const StringRef SectionName = Sec.getName();
bool Rela = usesRela(Sec);
std::string RelaSectionName = Rela ? ".rela" : ".rel";
RelaSectionName += SectionName;
unsigned EntrySize;
if (Rela)
EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela);
else
EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel);
unsigned Flags = ELF::SHF_INFO_LINK;
if (Sec.getFlags() & ELF::SHF_GROUP)
Flags = ELF::SHF_GROUP;
MCSectionELF *RelaSection = Ctx.createELFRelSection(
RelaSectionName, Rela ? ELF::SHT_RELA : ELF::SHT_REL, Flags, EntrySize,
Sec.getGroup(), &Sec);
RelaSection->setAlignment(is64Bit() ? Align(8) : Align(4));
return RelaSection;
}
// Include the debug info compression header.
bool ELFWriter::maybeWriteCompression(
uint64_t Size, SmallVectorImpl<uint8_t> &CompressedContents,
unsigned Alignment) {
uint64_t HdrSize =
is64Bit() ? sizeof(ELF::Elf32_Chdr) : sizeof(ELF::Elf64_Chdr);
if (Size <= HdrSize + CompressedContents.size())
return false;
// Platform specific header is followed by compressed data.
if (is64Bit()) {
// Write Elf64_Chdr header.
write(static_cast<ELF::Elf64_Word>(ELF::ELFCOMPRESS_ZLIB));
write(static_cast<ELF::Elf64_Word>(0)); // ch_reserved field.
write(static_cast<ELF::Elf64_Xword>(Size));
write(static_cast<ELF::Elf64_Xword>(Alignment));
} else {
// Write Elf32_Chdr header otherwise.
write(static_cast<ELF::Elf32_Word>(ELF::ELFCOMPRESS_ZLIB));
write(static_cast<ELF::Elf32_Word>(Size));
write(static_cast<ELF::Elf32_Word>(Alignment));
}
return true;
}
void ELFWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec,
const MCAsmLayout &Layout) {
MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
StringRef SectionName = Section.getName();
auto &MC = Asm.getContext();
const auto &MAI = MC.getAsmInfo();
bool CompressionEnabled =
MAI->compressDebugSections() != DebugCompressionType::None;
if (!CompressionEnabled || !SectionName.startswith(".debug_")) {
Asm.writeSectionData(W.OS, &Section, Layout);
return;
}
assert((MAI->compressDebugSections() == DebugCompressionType::Z ||
MAI->compressDebugSections() == DebugCompressionType::GNU) &&
"expected zlib or zlib-gnu style compression");
SmallVector<char, 128> UncompressedData;
raw_svector_ostream VecOS(UncompressedData);
Asm.writeSectionData(VecOS, &Section, Layout);
SmallVector<uint8_t, 128> CompressedContents;
compression::zlib::compress(
makeArrayRef(reinterpret_cast<uint8_t *>(UncompressedData.data()),
UncompressedData.size()),
CompressedContents);
bool ZlibStyle = MAI->compressDebugSections() == DebugCompressionType::Z;
if (!maybeWriteCompression(UncompressedData.size(), CompressedContents,
Sec.getAlignment())) {
W.OS << UncompressedData;
return;
}
if (ZlibStyle) {
// Set the compressed flag. That is zlib style.
Section.setFlags(Section.getFlags() | ELF::SHF_COMPRESSED);
// Alignment field should reflect the requirements of
// the compressed section header.
Section.setAlignment(is64Bit() ? Align(8) : Align(4));
} else {
// Add "z" prefix to section name. This is zlib-gnu style.
MC.renameELFSection(&Section, (".z" + SectionName.drop_front(1)).str());
}
W.OS << toStringRef(CompressedContents);
}
void ELFWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
uint64_t Address, uint64_t Offset,
uint64_t Size, uint32_t Link, uint32_t Info,
uint64_t Alignment, uint64_t EntrySize) {
W.write<uint32_t>(Name); // sh_name: index into string table
W.write<uint32_t>(Type); // sh_type
WriteWord(Flags); // sh_flags
WriteWord(Address); // sh_addr
WriteWord(Offset); // sh_offset
WriteWord(Size); // sh_size
W.write<uint32_t>(Link); // sh_link
W.write<uint32_t>(Info); // sh_info
WriteWord(Alignment); // sh_addralign
WriteWord(EntrySize); // sh_entsize
}
void ELFWriter::writeRelocations(const MCAssembler &Asm,
const MCSectionELF &Sec) {
std::vector<ELFRelocationEntry> &Relocs = OWriter.Relocations[&Sec];
// We record relocations by pushing to the end of a vector. Reverse the vector
// to get the relocations in the order they were created.
// In most cases that is not important, but it can be for special sections
// (.eh_frame) or specific relocations (TLS optimizations on SystemZ).
std::reverse(Relocs.begin(), Relocs.end());
// Sort the relocation entries. MIPS needs this.
OWriter.TargetObjectWriter->sortRelocs(Asm, Relocs);
const bool Rela = usesRela(Sec);
for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
const ELFRelocationEntry &Entry = Relocs[e - i - 1];
unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0;
if (is64Bit()) {
write(Entry.Offset);
if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) {
write(uint32_t(Index));
write(OWriter.TargetObjectWriter->getRSsym(Entry.Type));
write(OWriter.TargetObjectWriter->getRType3(Entry.Type));
write(OWriter.TargetObjectWriter->getRType2(Entry.Type));
write(OWriter.TargetObjectWriter->getRType(Entry.Type));
} else {
struct ELF::Elf64_Rela ERE64;
ERE64.setSymbolAndType(Index, Entry.Type);
write(ERE64.r_info);
}
if (Rela)
write(Entry.Addend);
} else {
write(uint32_t(Entry.Offset));
struct ELF::Elf32_Rela ERE32;
ERE32.setSymbolAndType(Index, Entry.Type);
write(ERE32.r_info);
if (Rela)
write(uint32_t(Entry.Addend));
if (OWriter.TargetObjectWriter->getEMachine() == ELF::EM_MIPS) {
if (uint32_t RType =
OWriter.TargetObjectWriter->getRType2(Entry.Type)) {
write(uint32_t(Entry.Offset));
ERE32.setSymbolAndType(0, RType);
write(ERE32.r_info);
write(uint32_t(0));
}
if (uint32_t RType =
OWriter.TargetObjectWriter->getRType3(Entry.Type)) {
write(uint32_t(Entry.Offset));
ERE32.setSymbolAndType(0, RType);
write(ERE32.r_info);
write(uint32_t(0));
}
}
}
}
}
void ELFWriter::writeSection(const SectionIndexMapTy &SectionIndexMap,
uint32_t GroupSymbolIndex, uint64_t Offset,
uint64_t Size, const MCSectionELF &Section) {
uint64_t sh_link = 0;
uint64_t sh_info = 0;
switch(Section.getType()) {
default:
// Nothing to do.
break;
case ELF::SHT_DYNAMIC:
llvm_unreachable("SHT_DYNAMIC in a relocatable object");
case ELF::SHT_REL:
case ELF::SHT_RELA: {
sh_link = SymbolTableIndex;
assert(sh_link && ".symtab not found");
const MCSection *InfoSection = Section.getLinkedToSection();
sh_info = SectionIndexMap.lookup(cast<MCSectionELF>(InfoSection));
break;
}
case ELF::SHT_SYMTAB:
sh_link = StringTableIndex;
sh_info = LastLocalSymbolIndex;
break;
case ELF::SHT_SYMTAB_SHNDX:
case ELF::SHT_LLVM_CALL_GRAPH_PROFILE:
case ELF::SHT_LLVM_ADDRSIG:
sh_link = SymbolTableIndex;
break;
case ELF::SHT_GROUP:
sh_link = SymbolTableIndex;
sh_info = GroupSymbolIndex;
break;
}
if (Section.getFlags() & ELF::SHF_LINK_ORDER) {
// If the value in the associated metadata is not a definition, Sym will be
// undefined. Represent this with sh_link=0.
const MCSymbol *Sym = Section.getLinkedToSymbol();
if (Sym && Sym->isInSection()) {
const MCSectionELF *Sec = cast<MCSectionELF>(&Sym->getSection());
sh_link = SectionIndexMap.lookup(Sec);
}
}
WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getName()),
Section.getType(), Section.getFlags(), 0, Offset, Size,
sh_link, sh_info, Section.getAlignment(),
Section.getEntrySize());
}
void ELFWriter::writeSectionHeader(
const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap,
const SectionOffsetsTy &SectionOffsets) {
const unsigned NumSections = SectionTable.size();
// Null section first.
uint64_t FirstSectionSize =
(NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0;
WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0);
for (const MCSectionELF *Section : SectionTable) {
uint32_t GroupSymbolIndex;
unsigned Type = Section->getType();
if (Type != ELF::SHT_GROUP)
GroupSymbolIndex = 0;
else
GroupSymbolIndex = Section->getGroup()->getIndex();
const std::pair<uint64_t, uint64_t> &Offsets =
SectionOffsets.find(Section)->second;
uint64_t Size;
if (Type == ELF::SHT_NOBITS)
Size = Layout.getSectionAddressSize(Section);
else
Size = Offsets.second - Offsets.first;
writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size,
*Section);
}
}
uint64_t ELFWriter::writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) {
uint64_t StartOffset = W.OS.tell();
MCContext &Ctx = Asm.getContext();
MCSectionELF *StrtabSection =
Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0);
StringTableIndex = addToSectionTable(StrtabSection);
RevGroupMapTy RevGroupMap;
SectionIndexMapTy SectionIndexMap;
std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers;
// Write out the ELF header ...
writeHeader(Asm);
// ... then the sections ...
SectionOffsetsTy SectionOffsets;
std::vector<MCSectionELF *> Groups;
std::vector<MCSectionELF *> Relocations;
for (MCSection &Sec : Asm) {
MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
if (Mode == NonDwoOnly && isDwoSection(Section))
continue;
if (Mode == DwoOnly && !isDwoSection(Section))
continue;
// Remember the offset into the file for this section.
const uint64_t SecStart = align(Section.getAlignment());
const MCSymbolELF *SignatureSymbol = Section.getGroup();
writeSectionData(Asm, Section, Layout);
uint64_t SecEnd = W.OS.tell();
SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd);
MCSectionELF *RelSection = createRelocationSection(Ctx, Section);
if (SignatureSymbol) {
unsigned &GroupIdx = RevGroupMap[SignatureSymbol];
if (!GroupIdx) {
MCSectionELF *Group =
Ctx.createELFGroupSection(SignatureSymbol, Section.isComdat());
GroupIdx = addToSectionTable(Group);
Group->setAlignment(Align(4));
Groups.push_back(Group);
}
std::vector<const MCSectionELF *> &Members =
GroupMembers[SignatureSymbol];
Members.push_back(&Section);
if (RelSection)
Members.push_back(RelSection);
}
SectionIndexMap[&Section] = addToSectionTable(&Section);
if (RelSection) {
SectionIndexMap[RelSection] = addToSectionTable(RelSection);
Relocations.push_back(RelSection);
}
OWriter.TargetObjectWriter->addTargetSectionFlags(Ctx, Section);
}
for (MCSectionELF *Group : Groups) {
// Remember the offset into the file for this section.
const uint64_t SecStart = align(Group->getAlignment());
const MCSymbol *SignatureSymbol = Group->getGroup();
assert(SignatureSymbol);
write(uint32_t(Group->isComdat() ? unsigned(ELF::GRP_COMDAT) : 0));
for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) {
uint32_t SecIndex = SectionIndexMap.lookup(Member);
write(SecIndex);
}
uint64_t SecEnd = W.OS.tell();
SectionOffsets[Group] = std::make_pair(SecStart, SecEnd);
}
if (Mode == DwoOnly) {
// dwo files don't have symbol tables or relocations, but they do have
// string tables.
StrTabBuilder.finalize();
} else {
MCSectionELF *AddrsigSection;
if (OWriter.EmitAddrsigSection) {
AddrsigSection = Ctx.getELFSection(".llvm_addrsig", ELF::SHT_LLVM_ADDRSIG,
ELF::SHF_EXCLUDE);
addToSectionTable(AddrsigSection);
}
// Compute symbol table information.
computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap,
SectionOffsets);
for (MCSectionELF *RelSection : Relocations) {
// Remember the offset into the file for this section.
const uint64_t SecStart = align(RelSection->getAlignment());
writeRelocations(Asm,
cast<MCSectionELF>(*RelSection->getLinkedToSection()));
uint64_t SecEnd = W.OS.tell();
SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd);
}
if (OWriter.EmitAddrsigSection) {
uint64_t SecStart = W.OS.tell();
writeAddrsigSection();
uint64_t SecEnd = W.OS.tell();
SectionOffsets[AddrsigSection] = std::make_pair(SecStart, SecEnd);
}
}
{
uint64_t SecStart = W.OS.tell();
StrTabBuilder.write(W.OS);
SectionOffsets[StrtabSection] = std::make_pair(SecStart, W.OS.tell());
}
const uint64_t SectionHeaderOffset = align(is64Bit() ? 8 : 4);
// ... then the section header table ...
writeSectionHeader(Layout, SectionIndexMap, SectionOffsets);
uint16_t NumSections = support::endian::byte_swap<uint16_t>(
(SectionTable.size() + 1 >= ELF::SHN_LORESERVE) ? (uint16_t)ELF::SHN_UNDEF
: SectionTable.size() + 1,
W.Endian);
unsigned NumSectionsOffset;
auto &Stream = static_cast<raw_pwrite_stream &>(W.OS);
if (is64Bit()) {
uint64_t Val =
support::endian::byte_swap<uint64_t>(SectionHeaderOffset, W.Endian);
Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
offsetof(ELF::Elf64_Ehdr, e_shoff));
NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum);
} else {
uint32_t Val =
support::endian::byte_swap<uint32_t>(SectionHeaderOffset, W.Endian);
Stream.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
offsetof(ELF::Elf32_Ehdr, e_shoff));
NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum);
}
Stream.pwrite(reinterpret_cast<char *>(&NumSections), sizeof(NumSections),
NumSectionsOffset);
return W.OS.tell() - StartOffset;
}
bool ELFObjectWriter::hasRelocationAddend() const {
return TargetObjectWriter->hasRelocationAddend();
}
void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
const MCAsmLayout &Layout) {
// The presence of symbol versions causes undefined symbols and
// versions declared with @@@ to be renamed.
for (const MCAssembler::Symver &S : Asm.Symvers) {
StringRef AliasName = S.Name;
const auto &Symbol = cast<MCSymbolELF>(*S.Sym);
size_t Pos = AliasName.find('@');
assert(Pos != StringRef::npos);
StringRef Prefix = AliasName.substr(0, Pos);
StringRef Rest = AliasName.substr(Pos);
StringRef Tail = Rest;
if (Rest.startswith("@@@"))
Tail = Rest.substr(Symbol.isUndefined() ? 2 : 1);
auto *Alias =
cast<MCSymbolELF>(Asm.getContext().getOrCreateSymbol(Prefix + Tail));
Asm.registerSymbol(*Alias);
const MCExpr *Value = MCSymbolRefExpr::create(&Symbol, Asm.getContext());
Alias->setVariableValue(Value);
// Aliases defined with .symvar copy the binding from the symbol they alias.
// This is the first place we are able to copy this information.
Alias->setBinding(Symbol.getBinding());
Alias->setVisibility(Symbol.getVisibility());
Alias->setOther(Symbol.getOther());
if (!Symbol.isUndefined() && S.KeepOriginalSym)
continue;
if (Symbol.isUndefined() && Rest.startswith("@@") &&
!Rest.startswith("@@@")) {
Asm.getContext().reportError(S.Loc, "default version symbol " +
AliasName + " must be defined");
continue;
}
if (Renames.count(&Symbol) && Renames[&Symbol] != Alias) {
Asm.getContext().reportError(S.Loc, Twine("multiple versions for ") +
Symbol.getName());
continue;
}
Renames.insert(std::make_pair(&Symbol, Alias));
}
for (const MCSymbol *&Sym : AddrsigSyms) {
if (const MCSymbol *R = Renames.lookup(cast<MCSymbolELF>(Sym)))
Sym = R;
if (Sym->isInSection() && Sym->getName().startswith(".L"))
Sym = Sym->getSection().getBeginSymbol();
Sym->setUsedInReloc();
}
}
// It is always valid to create a relocation with a symbol. It is preferable
// to use a relocation with a section if that is possible. Using the section
// allows us to omit some local symbols from the symbol table.
bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm,
const MCSymbolRefExpr *RefA,
const MCSymbolELF *Sym,
uint64_t C,
unsigned Type) const {
// A PCRel relocation to an absolute value has no symbol (or section). We
// represent that with a relocation to a null section.
if (!RefA)
return false;
MCSymbolRefExpr::VariantKind Kind = RefA->getKind();
switch (Kind) {
default:
break;
// The .odp creation emits a relocation against the symbol ".TOC." which
// create a R_PPC64_TOC relocation. However the relocation symbol name
// in final object creation should be NULL, since the symbol does not
// really exist, it is just the reference to TOC base for the current
// object file. Since the symbol is undefined, returning false results
// in a relocation with a null section which is the desired result.
case MCSymbolRefExpr::VK_PPC_TOCBASE:
return false;
// These VariantKind cause the relocation to refer to something other than
// the symbol itself, like a linker generated table. Since the address of
// symbol is not relevant, we cannot replace the symbol with the
// section and patch the difference in the addend.
case MCSymbolRefExpr::VK_GOT:
case MCSymbolRefExpr::VK_PLT:
case MCSymbolRefExpr::VK_GOTPCREL:
case MCSymbolRefExpr::VK_GOTPCREL_NORELAX:
case MCSymbolRefExpr::VK_PPC_GOT_LO:
case MCSymbolRefExpr::VK_PPC_GOT_HI:
case MCSymbolRefExpr::VK_PPC_GOT_HA:
return true;
}
// An undefined symbol is not in any section, so the relocation has to point
// to the symbol itself.
assert(Sym && "Expected a symbol");
if (Sym->isUndefined())
return true;
unsigned Binding = Sym->getBinding();
switch(Binding) {
default:
llvm_unreachable("Invalid Binding");
case ELF::STB_LOCAL:
break;
case ELF::STB_WEAK:
// If the symbol is weak, it might be overridden by a symbol in another
// file. The relocation has to point to the symbol so that the linker
// can update it.
return true;
case ELF::STB_GLOBAL:
case ELF::STB_GNU_UNIQUE:
// Global ELF symbols can be preempted by the dynamic linker. The relocation
// has to point to the symbol for a reason analogous to the STB_WEAK case.
return true;
}
// Keep symbol type for a local ifunc because it may result in an IRELATIVE
// reloc that the dynamic loader will use to resolve the address at startup
// time.
if (Sym->getType() == ELF::STT_GNU_IFUNC)
return true;
// If a relocation points to a mergeable section, we have to be careful.
// If the offset is zero, a relocation with the section will encode the
// same information. With a non-zero offset, the situation is different.
// For example, a relocation can point 42 bytes past the end of a string.
// If we change such a relocation to use the section, the linker would think
// that it pointed to another string and subtracting 42 at runtime will
// produce the wrong value.
if (Sym->isInSection()) {
auto &Sec = cast<MCSectionELF>(Sym->getSection());
unsigned Flags = Sec.getFlags();
if (Flags & ELF::SHF_MERGE) {
if (C != 0)
return true;
// gold<2.34 incorrectly ignored the addend for R_386_GOTOFF (9)
// (http://sourceware.org/PR16794).
if (TargetObjectWriter->getEMachine() == ELF::EM_386 &&
Type == ELF::R_386_GOTOFF)
return true;
// ld.lld handles R_MIPS_HI16/R_MIPS_LO16 separately, not as a whole, so
// it doesn't know that an R_MIPS_HI16 with implicit addend 1 and an
// R_MIPS_LO16 with implicit addend -32768 represents 32768, which is in
// range of a MergeInputSection. We could introduce a new RelExpr member
// (like R_RISCV_PC_INDIRECT for R_RISCV_PCREL_HI20 / R_RISCV_PCREL_LO12)
// but the complexity is unnecessary given that GNU as keeps the original
// symbol for this case as well.
if (TargetObjectWriter->getEMachine() == ELF::EM_MIPS &&
!hasRelocationAddend())
return true;
}
// Most TLS relocations use a got, so they need the symbol. Even those that
// are just an offset (@tpoff), require a symbol in gold versions before
// 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed
// http://sourceware.org/PR16773.
if (Flags & ELF::SHF_TLS)
return true;
}
// If the symbol is a thumb function the final relocation must set the lowest
// bit. With a symbol that is done by just having the symbol have that bit
// set, so we would lose the bit if we relocated with the section.
// FIXME: We could use the section but add the bit to the relocation value.
if (Asm.isThumbFunc(Sym))
return true;
if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type))
return true;
return false;
}
void ELFObjectWriter::recordRelocation(MCAssembler &Asm,
const MCAsmLayout &Layout,
const MCFragment *Fragment,
const MCFixup &Fixup, MCValue Target,
uint64_t &FixedValue) {
MCAsmBackend &Backend = Asm.getBackend();
bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
MCFixupKindInfo::FKF_IsPCRel;
const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent());
uint64_t C = Target.getConstant();
uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
MCContext &Ctx = Asm.getContext();
if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol());
if (SymB.isUndefined()) {
Ctx.reportError(Fixup.getLoc(),
Twine("symbol '") + SymB.getName() +
"' can not be undefined in a subtraction expression");
return;
}
assert(!SymB.isAbsolute() && "Should have been folded");
const MCSection &SecB = SymB.getSection();
if (&SecB != &FixupSection) {
Ctx.reportError(Fixup.getLoc(),
"Cannot represent a difference across sections");
return;
}
assert(!IsPCRel && "should have been folded");
IsPCRel = true;
C += FixupOffset - Layout.getSymbolOffset(SymB);
}
// We either rejected the fixup or folded B into C at this point.
const MCSymbolRefExpr *RefA = Target.getSymA();
const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr;
bool ViaWeakRef = false;
if (SymA && SymA->isVariable()) {
const MCExpr *Expr = SymA->getVariableValue();
if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) {
if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) {
SymA = cast<MCSymbolELF>(&Inner->getSymbol());
ViaWeakRef = true;
}
}
}
const MCSectionELF *SecA = (SymA && SymA->isInSection())
? cast<MCSectionELF>(&SymA->getSection())
: nullptr;
if (!checkRelocation(Ctx, Fixup.getLoc(), &FixupSection, SecA))
return;
unsigned Type = TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel);
const auto *Parent = cast<MCSectionELF>(Fragment->getParent());
// Emiting relocation with sybmol for CG Profile to help with --cg-profile.
bool RelocateWithSymbol =
shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type) ||
(Parent->getType() == ELF::SHT_LLVM_CALL_GRAPH_PROFILE);
uint64_t Addend = 0;
FixedValue = !RelocateWithSymbol && SymA && !SymA->isUndefined()
? C + Layout.getSymbolOffset(*SymA)
: C;
if (hasRelocationAddend()) {
Addend = FixedValue;
FixedValue = 0;
}
if (!RelocateWithSymbol) {
const auto *SectionSymbol =
SecA ? cast<MCSymbolELF>(SecA->getBeginSymbol()) : nullptr;
if (SectionSymbol)
SectionSymbol->setUsedInReloc();
ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend, SymA, C);
Relocations[&FixupSection].push_back(Rec);
return;
}
const MCSymbolELF *RenamedSymA = SymA;
if (SymA) {
if (const MCSymbolELF *R = Renames.lookup(SymA))
RenamedSymA = R;
if (ViaWeakRef)
RenamedSymA->setIsWeakrefUsedInReloc();
else
RenamedSymA->setUsedInReloc();
}
ELFRelocationEntry Rec(FixupOffset, RenamedSymA, Type, Addend, SymA, C);
Relocations[&FixupSection].push_back(Rec);
}
bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(
const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB,
bool InSet, bool IsPCRel) const {
const auto &SymA = cast<MCSymbolELF>(SA);
if (IsPCRel) {
assert(!InSet);
if (SymA.getBinding() != ELF::STB_LOCAL ||
SymA.getType() == ELF::STT_GNU_IFUNC)
return false;
}
return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB,
InSet, IsPCRel);
}
std::unique_ptr<MCObjectWriter>
llvm::createELFObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
raw_pwrite_stream &OS, bool IsLittleEndian) {
return std::make_unique<ELFSingleObjectWriter>(std::move(MOTW), OS,
IsLittleEndian);
}
std::unique_ptr<MCObjectWriter>
llvm::createELFDwoObjectWriter(std::unique_ptr<MCELFObjectTargetWriter> MOTW,
raw_pwrite_stream &OS, raw_pwrite_stream &DwoOS,
bool IsLittleEndian) {
return std::make_unique<ELFDwoObjectWriter>(std::move(MOTW), OS, DwoOS,
IsLittleEndian);
}