forked from OSchip/llvm-project
6212 lines
220 KiB
C++
6212 lines
220 KiB
C++
//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Bitcode/BitcodeReader.h"
|
|
#include "MetadataLoader.h"
|
|
#include "ValueList.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Bitcode/BitstreamReader.h"
|
|
#include "llvm/Bitcode/LLVMBitCodes.h"
|
|
#include "llvm/Config/llvm-config.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/AutoUpgrade.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/Comdat.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GVMaterializer.h"
|
|
#include "llvm/IR/GlobalAlias.h"
|
|
#include "llvm/IR/GlobalIFunc.h"
|
|
#include "llvm/IR/GlobalIndirectSymbol.h"
|
|
#include "llvm/IR/GlobalObject.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/ModuleSummaryIndex.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/Verifier.h"
|
|
#include "llvm/Support/AtomicOrdering.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Error.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/ErrorOr.h"
|
|
#include "llvm/Support/ManagedStatic.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <deque>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <set>
|
|
#include <string>
|
|
#include <system_error>
|
|
#include <tuple>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool> PrintSummaryGUIDs(
|
|
"print-summary-global-ids", cl::init(false), cl::Hidden,
|
|
cl::desc(
|
|
"Print the global id for each value when reading the module summary"));
|
|
|
|
namespace {
|
|
|
|
enum {
|
|
SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
static Error error(const Twine &Message) {
|
|
return make_error<StringError>(
|
|
Message, make_error_code(BitcodeError::CorruptedBitcode));
|
|
}
|
|
|
|
/// Helper to read the header common to all bitcode files.
|
|
static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
|
|
// Sniff for the signature.
|
|
if (!Stream.canSkipToPos(4) ||
|
|
Stream.Read(8) != 'B' ||
|
|
Stream.Read(8) != 'C' ||
|
|
Stream.Read(4) != 0x0 ||
|
|
Stream.Read(4) != 0xC ||
|
|
Stream.Read(4) != 0xE ||
|
|
Stream.Read(4) != 0xD)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
|
|
const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
|
|
const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
|
|
|
|
if (Buffer.getBufferSize() & 3)
|
|
return error("Invalid bitcode signature");
|
|
|
|
// If we have a wrapper header, parse it and ignore the non-bc file contents.
|
|
// The magic number is 0x0B17C0DE stored in little endian.
|
|
if (isBitcodeWrapper(BufPtr, BufEnd))
|
|
if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
|
|
return error("Invalid bitcode wrapper header");
|
|
|
|
BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
|
|
if (!hasValidBitcodeHeader(Stream))
|
|
return error("Invalid bitcode signature");
|
|
|
|
return std::move(Stream);
|
|
}
|
|
|
|
/// Convert a string from a record into an std::string, return true on failure.
|
|
template <typename StrTy>
|
|
static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
|
|
StrTy &Result) {
|
|
if (Idx > Record.size())
|
|
return true;
|
|
|
|
for (unsigned i = Idx, e = Record.size(); i != e; ++i)
|
|
Result += (char)Record[i];
|
|
return false;
|
|
}
|
|
|
|
// Strip all the TBAA attachment for the module.
|
|
static void stripTBAA(Module *M) {
|
|
for (auto &F : *M) {
|
|
if (F.isMaterializable())
|
|
continue;
|
|
for (auto &I : instructions(F))
|
|
I.setMetadata(LLVMContext::MD_tbaa, nullptr);
|
|
}
|
|
}
|
|
|
|
/// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
|
|
/// "epoch" encoded in the bitcode, and return the producer name if any.
|
|
static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
|
|
if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
// Read all the records.
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
std::string ProducerIdentification;
|
|
|
|
while (true) {
|
|
BitstreamEntry Entry = Stream.advance();
|
|
|
|
switch (Entry.Kind) {
|
|
default:
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
return ProducerIdentification;
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record.
|
|
Record.clear();
|
|
unsigned BitCode = Stream.readRecord(Entry.ID, Record);
|
|
switch (BitCode) {
|
|
default: // Default behavior: reject
|
|
return error("Invalid value");
|
|
case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
|
|
convertToString(Record, 0, ProducerIdentification);
|
|
break;
|
|
case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
|
|
unsigned epoch = (unsigned)Record[0];
|
|
if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
|
|
return error(
|
|
Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
|
|
"' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
|
|
// We expect a number of well-defined blocks, though we don't necessarily
|
|
// need to understand them all.
|
|
while (true) {
|
|
if (Stream.AtEndOfStream())
|
|
return "";
|
|
|
|
BitstreamEntry Entry = Stream.advance();
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::EndBlock:
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
|
|
case BitstreamEntry::SubBlock:
|
|
if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
|
|
return readIdentificationBlock(Stream);
|
|
|
|
// Ignore other sub-blocks.
|
|
if (Stream.SkipBlock())
|
|
return error("Malformed block");
|
|
continue;
|
|
case BitstreamEntry::Record:
|
|
Stream.skipRecord(Entry.ID);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
|
|
if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
// Read all the records for this module.
|
|
|
|
while (true) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
return false;
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record.
|
|
switch (Stream.readRecord(Entry.ID, Record)) {
|
|
default:
|
|
break; // Default behavior, ignore unknown content.
|
|
case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
|
|
std::string S;
|
|
if (convertToString(Record, 0, S))
|
|
return error("Invalid record");
|
|
// Check for the i386 and other (x86_64, ARM) conventions
|
|
if (S.find("__DATA,__objc_catlist") != std::string::npos ||
|
|
S.find("__OBJC,__category") != std::string::npos)
|
|
return true;
|
|
break;
|
|
}
|
|
}
|
|
Record.clear();
|
|
}
|
|
llvm_unreachable("Exit infinite loop");
|
|
}
|
|
|
|
static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
|
|
// We expect a number of well-defined blocks, though we don't necessarily
|
|
// need to understand them all.
|
|
while (true) {
|
|
BitstreamEntry Entry = Stream.advance();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
return false;
|
|
|
|
case BitstreamEntry::SubBlock:
|
|
if (Entry.ID == bitc::MODULE_BLOCK_ID)
|
|
return hasObjCCategoryInModule(Stream);
|
|
|
|
// Ignore other sub-blocks.
|
|
if (Stream.SkipBlock())
|
|
return error("Malformed block");
|
|
continue;
|
|
|
|
case BitstreamEntry::Record:
|
|
Stream.skipRecord(Entry.ID);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
|
|
if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
std::string Triple;
|
|
|
|
// Read all the records for this module.
|
|
while (true) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
return Triple;
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record.
|
|
switch (Stream.readRecord(Entry.ID, Record)) {
|
|
default: break; // Default behavior, ignore unknown content.
|
|
case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
|
|
std::string S;
|
|
if (convertToString(Record, 0, S))
|
|
return error("Invalid record");
|
|
Triple = S;
|
|
break;
|
|
}
|
|
}
|
|
Record.clear();
|
|
}
|
|
llvm_unreachable("Exit infinite loop");
|
|
}
|
|
|
|
static Expected<std::string> readTriple(BitstreamCursor &Stream) {
|
|
// We expect a number of well-defined blocks, though we don't necessarily
|
|
// need to understand them all.
|
|
while (true) {
|
|
BitstreamEntry Entry = Stream.advance();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
return "";
|
|
|
|
case BitstreamEntry::SubBlock:
|
|
if (Entry.ID == bitc::MODULE_BLOCK_ID)
|
|
return readModuleTriple(Stream);
|
|
|
|
// Ignore other sub-blocks.
|
|
if (Stream.SkipBlock())
|
|
return error("Malformed block");
|
|
continue;
|
|
|
|
case BitstreamEntry::Record:
|
|
Stream.skipRecord(Entry.ID);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
class BitcodeReaderBase {
|
|
protected:
|
|
BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
|
|
: Stream(std::move(Stream)), Strtab(Strtab) {
|
|
this->Stream.setBlockInfo(&BlockInfo);
|
|
}
|
|
|
|
BitstreamBlockInfo BlockInfo;
|
|
BitstreamCursor Stream;
|
|
StringRef Strtab;
|
|
|
|
/// In version 2 of the bitcode we store names of global values and comdats in
|
|
/// a string table rather than in the VST.
|
|
bool UseStrtab = false;
|
|
|
|
Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
|
|
|
|
/// If this module uses a string table, pop the reference to the string table
|
|
/// and return the referenced string and the rest of the record. Otherwise
|
|
/// just return the record itself.
|
|
std::pair<StringRef, ArrayRef<uint64_t>>
|
|
readNameFromStrtab(ArrayRef<uint64_t> Record);
|
|
|
|
bool readBlockInfo();
|
|
|
|
// Contains an arbitrary and optional string identifying the bitcode producer
|
|
std::string ProducerIdentification;
|
|
|
|
Error error(const Twine &Message);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
Error BitcodeReaderBase::error(const Twine &Message) {
|
|
std::string FullMsg = Message.str();
|
|
if (!ProducerIdentification.empty())
|
|
FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
|
|
LLVM_VERSION_STRING "')";
|
|
return ::error(FullMsg);
|
|
}
|
|
|
|
Expected<unsigned>
|
|
BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
|
|
if (Record.empty())
|
|
return error("Invalid record");
|
|
unsigned ModuleVersion = Record[0];
|
|
if (ModuleVersion > 2)
|
|
return error("Invalid value");
|
|
UseStrtab = ModuleVersion >= 2;
|
|
return ModuleVersion;
|
|
}
|
|
|
|
std::pair<StringRef, ArrayRef<uint64_t>>
|
|
BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
|
|
if (!UseStrtab)
|
|
return {"", Record};
|
|
// Invalid reference. Let the caller complain about the record being empty.
|
|
if (Record[0] + Record[1] > Strtab.size())
|
|
return {"", {}};
|
|
return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
|
|
}
|
|
|
|
namespace {
|
|
|
|
class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
|
|
LLVMContext &Context;
|
|
Module *TheModule = nullptr;
|
|
// Next offset to start scanning for lazy parsing of function bodies.
|
|
uint64_t NextUnreadBit = 0;
|
|
// Last function offset found in the VST.
|
|
uint64_t LastFunctionBlockBit = 0;
|
|
bool SeenValueSymbolTable = false;
|
|
uint64_t VSTOffset = 0;
|
|
|
|
std::vector<std::string> SectionTable;
|
|
std::vector<std::string> GCTable;
|
|
|
|
std::vector<Type*> TypeList;
|
|
BitcodeReaderValueList ValueList;
|
|
Optional<MetadataLoader> MDLoader;
|
|
std::vector<Comdat *> ComdatList;
|
|
SmallVector<Instruction *, 64> InstructionList;
|
|
|
|
std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
|
|
std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
|
|
std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
|
|
std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
|
|
std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
|
|
|
|
/// The set of attributes by index. Index zero in the file is for null, and
|
|
/// is thus not represented here. As such all indices are off by one.
|
|
std::vector<AttributeList> MAttributes;
|
|
|
|
/// The set of attribute groups.
|
|
std::map<unsigned, AttributeList> MAttributeGroups;
|
|
|
|
/// While parsing a function body, this is a list of the basic blocks for the
|
|
/// function.
|
|
std::vector<BasicBlock*> FunctionBBs;
|
|
|
|
// When reading the module header, this list is populated with functions that
|
|
// have bodies later in the file.
|
|
std::vector<Function*> FunctionsWithBodies;
|
|
|
|
// When intrinsic functions are encountered which require upgrading they are
|
|
// stored here with their replacement function.
|
|
using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
|
|
UpdatedIntrinsicMap UpgradedIntrinsics;
|
|
// Intrinsics which were remangled because of types rename
|
|
UpdatedIntrinsicMap RemangledIntrinsics;
|
|
|
|
// Several operations happen after the module header has been read, but
|
|
// before function bodies are processed. This keeps track of whether
|
|
// we've done this yet.
|
|
bool SeenFirstFunctionBody = false;
|
|
|
|
/// When function bodies are initially scanned, this map contains info about
|
|
/// where to find deferred function body in the stream.
|
|
DenseMap<Function*, uint64_t> DeferredFunctionInfo;
|
|
|
|
/// When Metadata block is initially scanned when parsing the module, we may
|
|
/// choose to defer parsing of the metadata. This vector contains info about
|
|
/// which Metadata blocks are deferred.
|
|
std::vector<uint64_t> DeferredMetadataInfo;
|
|
|
|
/// These are basic blocks forward-referenced by block addresses. They are
|
|
/// inserted lazily into functions when they're loaded. The basic block ID is
|
|
/// its index into the vector.
|
|
DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
|
|
std::deque<Function *> BasicBlockFwdRefQueue;
|
|
|
|
/// Indicates that we are using a new encoding for instruction operands where
|
|
/// most operands in the current FUNCTION_BLOCK are encoded relative to the
|
|
/// instruction number, for a more compact encoding. Some instruction
|
|
/// operands are not relative to the instruction ID: basic block numbers, and
|
|
/// types. Once the old style function blocks have been phased out, we would
|
|
/// not need this flag.
|
|
bool UseRelativeIDs = false;
|
|
|
|
/// True if all functions will be materialized, negating the need to process
|
|
/// (e.g.) blockaddress forward references.
|
|
bool WillMaterializeAllForwardRefs = false;
|
|
|
|
bool StripDebugInfo = false;
|
|
TBAAVerifier TBAAVerifyHelper;
|
|
|
|
std::vector<std::string> BundleTags;
|
|
SmallVector<SyncScope::ID, 8> SSIDs;
|
|
|
|
public:
|
|
BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
|
|
StringRef ProducerIdentification, LLVMContext &Context);
|
|
|
|
Error materializeForwardReferencedFunctions();
|
|
|
|
Error materialize(GlobalValue *GV) override;
|
|
Error materializeModule() override;
|
|
std::vector<StructType *> getIdentifiedStructTypes() const override;
|
|
|
|
/// Main interface to parsing a bitcode buffer.
|
|
/// \returns true if an error occurred.
|
|
Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
|
|
bool IsImporting = false);
|
|
|
|
static uint64_t decodeSignRotatedValue(uint64_t V);
|
|
|
|
/// Materialize any deferred Metadata block.
|
|
Error materializeMetadata() override;
|
|
|
|
void setStripDebugInfo() override;
|
|
|
|
private:
|
|
std::vector<StructType *> IdentifiedStructTypes;
|
|
StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
|
|
StructType *createIdentifiedStructType(LLVMContext &Context);
|
|
|
|
Type *getTypeByID(unsigned ID);
|
|
|
|
Value *getFnValueByID(unsigned ID, Type *Ty) {
|
|
if (Ty && Ty->isMetadataTy())
|
|
return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
|
|
return ValueList.getValueFwdRef(ID, Ty);
|
|
}
|
|
|
|
Metadata *getFnMetadataByID(unsigned ID) {
|
|
return MDLoader->getMetadataFwdRefOrLoad(ID);
|
|
}
|
|
|
|
BasicBlock *getBasicBlock(unsigned ID) const {
|
|
if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
|
|
return FunctionBBs[ID];
|
|
}
|
|
|
|
AttributeList getAttributes(unsigned i) const {
|
|
if (i-1 < MAttributes.size())
|
|
return MAttributes[i-1];
|
|
return AttributeList();
|
|
}
|
|
|
|
/// Read a value/type pair out of the specified record from slot 'Slot'.
|
|
/// Increment Slot past the number of slots used in the record. Return true on
|
|
/// failure.
|
|
bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
|
|
unsigned InstNum, Value *&ResVal) {
|
|
if (Slot == Record.size()) return true;
|
|
unsigned ValNo = (unsigned)Record[Slot++];
|
|
// Adjust the ValNo, if it was encoded relative to the InstNum.
|
|
if (UseRelativeIDs)
|
|
ValNo = InstNum - ValNo;
|
|
if (ValNo < InstNum) {
|
|
// If this is not a forward reference, just return the value we already
|
|
// have.
|
|
ResVal = getFnValueByID(ValNo, nullptr);
|
|
return ResVal == nullptr;
|
|
}
|
|
if (Slot == Record.size())
|
|
return true;
|
|
|
|
unsigned TypeNo = (unsigned)Record[Slot++];
|
|
ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
|
|
return ResVal == nullptr;
|
|
}
|
|
|
|
/// Read a value out of the specified record from slot 'Slot'. Increment Slot
|
|
/// past the number of slots used by the value in the record. Return true if
|
|
/// there is an error.
|
|
bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
|
|
unsigned InstNum, Type *Ty, Value *&ResVal) {
|
|
if (getValue(Record, Slot, InstNum, Ty, ResVal))
|
|
return true;
|
|
// All values currently take a single record slot.
|
|
++Slot;
|
|
return false;
|
|
}
|
|
|
|
/// Like popValue, but does not increment the Slot number.
|
|
bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
|
|
unsigned InstNum, Type *Ty, Value *&ResVal) {
|
|
ResVal = getValue(Record, Slot, InstNum, Ty);
|
|
return ResVal == nullptr;
|
|
}
|
|
|
|
/// Version of getValue that returns ResVal directly, or 0 if there is an
|
|
/// error.
|
|
Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
|
|
unsigned InstNum, Type *Ty) {
|
|
if (Slot == Record.size()) return nullptr;
|
|
unsigned ValNo = (unsigned)Record[Slot];
|
|
// Adjust the ValNo, if it was encoded relative to the InstNum.
|
|
if (UseRelativeIDs)
|
|
ValNo = InstNum - ValNo;
|
|
return getFnValueByID(ValNo, Ty);
|
|
}
|
|
|
|
/// Like getValue, but decodes signed VBRs.
|
|
Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
|
|
unsigned InstNum, Type *Ty) {
|
|
if (Slot == Record.size()) return nullptr;
|
|
unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
|
|
// Adjust the ValNo, if it was encoded relative to the InstNum.
|
|
if (UseRelativeIDs)
|
|
ValNo = InstNum - ValNo;
|
|
return getFnValueByID(ValNo, Ty);
|
|
}
|
|
|
|
/// Converts alignment exponent (i.e. power of two (or zero)) to the
|
|
/// corresponding alignment to use. If alignment is too large, returns
|
|
/// a corresponding error code.
|
|
Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
|
|
Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
|
|
Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
|
|
|
|
Error parseComdatRecord(ArrayRef<uint64_t> Record);
|
|
Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
|
|
Error parseFunctionRecord(ArrayRef<uint64_t> Record);
|
|
Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
|
|
ArrayRef<uint64_t> Record);
|
|
|
|
Error parseAttributeBlock();
|
|
Error parseAttributeGroupBlock();
|
|
Error parseTypeTable();
|
|
Error parseTypeTableBody();
|
|
Error parseOperandBundleTags();
|
|
Error parseSyncScopeNames();
|
|
|
|
Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
|
|
unsigned NameIndex, Triple &TT);
|
|
void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
|
|
ArrayRef<uint64_t> Record);
|
|
Error parseValueSymbolTable(uint64_t Offset = 0);
|
|
Error parseGlobalValueSymbolTable();
|
|
Error parseConstants();
|
|
Error rememberAndSkipFunctionBodies();
|
|
Error rememberAndSkipFunctionBody();
|
|
/// Save the positions of the Metadata blocks and skip parsing the blocks.
|
|
Error rememberAndSkipMetadata();
|
|
Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
|
|
Error parseFunctionBody(Function *F);
|
|
Error globalCleanup();
|
|
Error resolveGlobalAndIndirectSymbolInits();
|
|
Error parseUseLists();
|
|
Error findFunctionInStream(
|
|
Function *F,
|
|
DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
|
|
|
|
SyncScope::ID getDecodedSyncScopeID(unsigned Val);
|
|
};
|
|
|
|
/// Class to manage reading and parsing function summary index bitcode
|
|
/// files/sections.
|
|
class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
|
|
/// The module index built during parsing.
|
|
ModuleSummaryIndex &TheIndex;
|
|
|
|
/// Indicates whether we have encountered a global value summary section
|
|
/// yet during parsing.
|
|
bool SeenGlobalValSummary = false;
|
|
|
|
/// Indicates whether we have already parsed the VST, used for error checking.
|
|
bool SeenValueSymbolTable = false;
|
|
|
|
/// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
|
|
/// Used to enable on-demand parsing of the VST.
|
|
uint64_t VSTOffset = 0;
|
|
|
|
// Map to save ValueId to ValueInfo association that was recorded in the
|
|
// ValueSymbolTable. It is used after the VST is parsed to convert
|
|
// call graph edges read from the function summary from referencing
|
|
// callees by their ValueId to using the ValueInfo instead, which is how
|
|
// they are recorded in the summary index being built.
|
|
// We save a GUID which refers to the same global as the ValueInfo, but
|
|
// ignoring the linkage, i.e. for values other than local linkage they are
|
|
// identical.
|
|
DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
|
|
ValueIdToValueInfoMap;
|
|
|
|
/// Map populated during module path string table parsing, from the
|
|
/// module ID to a string reference owned by the index's module
|
|
/// path string table, used to correlate with combined index
|
|
/// summary records.
|
|
DenseMap<uint64_t, StringRef> ModuleIdMap;
|
|
|
|
/// Original source file name recorded in a bitcode record.
|
|
std::string SourceFileName;
|
|
|
|
/// The string identifier given to this module by the client, normally the
|
|
/// path to the bitcode file.
|
|
StringRef ModulePath;
|
|
|
|
/// For per-module summary indexes, the unique numerical identifier given to
|
|
/// this module by the client.
|
|
unsigned ModuleId;
|
|
|
|
public:
|
|
ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
|
|
ModuleSummaryIndex &TheIndex,
|
|
StringRef ModulePath, unsigned ModuleId);
|
|
|
|
Error parseModule();
|
|
|
|
private:
|
|
void setValueGUID(uint64_t ValueID, StringRef ValueName,
|
|
GlobalValue::LinkageTypes Linkage,
|
|
StringRef SourceFileName);
|
|
Error parseValueSymbolTable(
|
|
uint64_t Offset,
|
|
DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
|
|
std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
|
|
std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
|
|
bool IsOldProfileFormat,
|
|
bool HasProfile,
|
|
bool HasRelBF);
|
|
Error parseEntireSummary(unsigned ID);
|
|
Error parseModuleStringTable();
|
|
|
|
std::pair<ValueInfo, GlobalValue::GUID>
|
|
getValueInfoFromValueId(unsigned ValueId);
|
|
|
|
void addThisModule();
|
|
ModuleSummaryIndex::ModuleInfo *getThisModule();
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
|
|
Error Err) {
|
|
if (Err) {
|
|
std::error_code EC;
|
|
handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
|
|
EC = EIB.convertToErrorCode();
|
|
Ctx.emitError(EIB.message());
|
|
});
|
|
return EC;
|
|
}
|
|
return std::error_code();
|
|
}
|
|
|
|
BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
|
|
StringRef ProducerIdentification,
|
|
LLVMContext &Context)
|
|
: BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
|
|
ValueList(Context) {
|
|
this->ProducerIdentification = ProducerIdentification;
|
|
}
|
|
|
|
Error BitcodeReader::materializeForwardReferencedFunctions() {
|
|
if (WillMaterializeAllForwardRefs)
|
|
return Error::success();
|
|
|
|
// Prevent recursion.
|
|
WillMaterializeAllForwardRefs = true;
|
|
|
|
while (!BasicBlockFwdRefQueue.empty()) {
|
|
Function *F = BasicBlockFwdRefQueue.front();
|
|
BasicBlockFwdRefQueue.pop_front();
|
|
assert(F && "Expected valid function");
|
|
if (!BasicBlockFwdRefs.count(F))
|
|
// Already materialized.
|
|
continue;
|
|
|
|
// Check for a function that isn't materializable to prevent an infinite
|
|
// loop. When parsing a blockaddress stored in a global variable, there
|
|
// isn't a trivial way to check if a function will have a body without a
|
|
// linear search through FunctionsWithBodies, so just check it here.
|
|
if (!F->isMaterializable())
|
|
return error("Never resolved function from blockaddress");
|
|
|
|
// Try to materialize F.
|
|
if (Error Err = materialize(F))
|
|
return Err;
|
|
}
|
|
assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
|
|
|
|
// Reset state.
|
|
WillMaterializeAllForwardRefs = false;
|
|
return Error::success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper functions to implement forward reference resolution, etc.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool hasImplicitComdat(size_t Val) {
|
|
switch (Val) {
|
|
default:
|
|
return false;
|
|
case 1: // Old WeakAnyLinkage
|
|
case 4: // Old LinkOnceAnyLinkage
|
|
case 10: // Old WeakODRLinkage
|
|
case 11: // Old LinkOnceODRLinkage
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
|
|
switch (Val) {
|
|
default: // Map unknown/new linkages to external
|
|
case 0:
|
|
return GlobalValue::ExternalLinkage;
|
|
case 2:
|
|
return GlobalValue::AppendingLinkage;
|
|
case 3:
|
|
return GlobalValue::InternalLinkage;
|
|
case 5:
|
|
return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
|
|
case 6:
|
|
return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
|
|
case 7:
|
|
return GlobalValue::ExternalWeakLinkage;
|
|
case 8:
|
|
return GlobalValue::CommonLinkage;
|
|
case 9:
|
|
return GlobalValue::PrivateLinkage;
|
|
case 12:
|
|
return GlobalValue::AvailableExternallyLinkage;
|
|
case 13:
|
|
return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
|
|
case 14:
|
|
return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
|
|
case 15:
|
|
return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
|
|
case 1: // Old value with implicit comdat.
|
|
case 16:
|
|
return GlobalValue::WeakAnyLinkage;
|
|
case 10: // Old value with implicit comdat.
|
|
case 17:
|
|
return GlobalValue::WeakODRLinkage;
|
|
case 4: // Old value with implicit comdat.
|
|
case 18:
|
|
return GlobalValue::LinkOnceAnyLinkage;
|
|
case 11: // Old value with implicit comdat.
|
|
case 19:
|
|
return GlobalValue::LinkOnceODRLinkage;
|
|
}
|
|
}
|
|
|
|
static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
|
|
FunctionSummary::FFlags Flags;
|
|
Flags.ReadNone = RawFlags & 0x1;
|
|
Flags.ReadOnly = (RawFlags >> 1) & 0x1;
|
|
Flags.NoRecurse = (RawFlags >> 2) & 0x1;
|
|
Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
|
|
Flags.NoInline = (RawFlags >> 4) & 0x1;
|
|
return Flags;
|
|
}
|
|
|
|
/// Decode the flags for GlobalValue in the summary.
|
|
static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
|
|
uint64_t Version) {
|
|
// Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
|
|
// like getDecodedLinkage() above. Any future change to the linkage enum and
|
|
// to getDecodedLinkage() will need to be taken into account here as above.
|
|
auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
|
|
RawFlags = RawFlags >> 4;
|
|
bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
|
|
// The Live flag wasn't introduced until version 3. For dead stripping
|
|
// to work correctly on earlier versions, we must conservatively treat all
|
|
// values as live.
|
|
bool Live = (RawFlags & 0x2) || Version < 3;
|
|
bool Local = (RawFlags & 0x4);
|
|
bool AutoHide = (RawFlags & 0x8);
|
|
|
|
return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide);
|
|
}
|
|
|
|
// Decode the flags for GlobalVariable in the summary
|
|
static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
|
|
return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false);
|
|
}
|
|
|
|
static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
|
|
switch (Val) {
|
|
default: // Map unknown visibilities to default.
|
|
case 0: return GlobalValue::DefaultVisibility;
|
|
case 1: return GlobalValue::HiddenVisibility;
|
|
case 2: return GlobalValue::ProtectedVisibility;
|
|
}
|
|
}
|
|
|
|
static GlobalValue::DLLStorageClassTypes
|
|
getDecodedDLLStorageClass(unsigned Val) {
|
|
switch (Val) {
|
|
default: // Map unknown values to default.
|
|
case 0: return GlobalValue::DefaultStorageClass;
|
|
case 1: return GlobalValue::DLLImportStorageClass;
|
|
case 2: return GlobalValue::DLLExportStorageClass;
|
|
}
|
|
}
|
|
|
|
static bool getDecodedDSOLocal(unsigned Val) {
|
|
switch(Val) {
|
|
default: // Map unknown values to preemptable.
|
|
case 0: return false;
|
|
case 1: return true;
|
|
}
|
|
}
|
|
|
|
static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
|
|
switch (Val) {
|
|
case 0: return GlobalVariable::NotThreadLocal;
|
|
default: // Map unknown non-zero value to general dynamic.
|
|
case 1: return GlobalVariable::GeneralDynamicTLSModel;
|
|
case 2: return GlobalVariable::LocalDynamicTLSModel;
|
|
case 3: return GlobalVariable::InitialExecTLSModel;
|
|
case 4: return GlobalVariable::LocalExecTLSModel;
|
|
}
|
|
}
|
|
|
|
static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
|
|
switch (Val) {
|
|
default: // Map unknown to UnnamedAddr::None.
|
|
case 0: return GlobalVariable::UnnamedAddr::None;
|
|
case 1: return GlobalVariable::UnnamedAddr::Global;
|
|
case 2: return GlobalVariable::UnnamedAddr::Local;
|
|
}
|
|
}
|
|
|
|
static int getDecodedCastOpcode(unsigned Val) {
|
|
switch (Val) {
|
|
default: return -1;
|
|
case bitc::CAST_TRUNC : return Instruction::Trunc;
|
|
case bitc::CAST_ZEXT : return Instruction::ZExt;
|
|
case bitc::CAST_SEXT : return Instruction::SExt;
|
|
case bitc::CAST_FPTOUI : return Instruction::FPToUI;
|
|
case bitc::CAST_FPTOSI : return Instruction::FPToSI;
|
|
case bitc::CAST_UITOFP : return Instruction::UIToFP;
|
|
case bitc::CAST_SITOFP : return Instruction::SIToFP;
|
|
case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
|
|
case bitc::CAST_FPEXT : return Instruction::FPExt;
|
|
case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
|
|
case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
|
|
case bitc::CAST_BITCAST : return Instruction::BitCast;
|
|
case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
|
|
}
|
|
}
|
|
|
|
static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
|
|
bool IsFP = Ty->isFPOrFPVectorTy();
|
|
// UnOps are only valid for int/fp or vector of int/fp types
|
|
if (!IsFP && !Ty->isIntOrIntVectorTy())
|
|
return -1;
|
|
|
|
switch (Val) {
|
|
default:
|
|
return -1;
|
|
case bitc::UNOP_NEG:
|
|
return IsFP ? Instruction::FNeg : -1;
|
|
}
|
|
}
|
|
|
|
static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
|
|
bool IsFP = Ty->isFPOrFPVectorTy();
|
|
// BinOps are only valid for int/fp or vector of int/fp types
|
|
if (!IsFP && !Ty->isIntOrIntVectorTy())
|
|
return -1;
|
|
|
|
switch (Val) {
|
|
default:
|
|
return -1;
|
|
case bitc::BINOP_ADD:
|
|
return IsFP ? Instruction::FAdd : Instruction::Add;
|
|
case bitc::BINOP_SUB:
|
|
return IsFP ? Instruction::FSub : Instruction::Sub;
|
|
case bitc::BINOP_MUL:
|
|
return IsFP ? Instruction::FMul : Instruction::Mul;
|
|
case bitc::BINOP_UDIV:
|
|
return IsFP ? -1 : Instruction::UDiv;
|
|
case bitc::BINOP_SDIV:
|
|
return IsFP ? Instruction::FDiv : Instruction::SDiv;
|
|
case bitc::BINOP_UREM:
|
|
return IsFP ? -1 : Instruction::URem;
|
|
case bitc::BINOP_SREM:
|
|
return IsFP ? Instruction::FRem : Instruction::SRem;
|
|
case bitc::BINOP_SHL:
|
|
return IsFP ? -1 : Instruction::Shl;
|
|
case bitc::BINOP_LSHR:
|
|
return IsFP ? -1 : Instruction::LShr;
|
|
case bitc::BINOP_ASHR:
|
|
return IsFP ? -1 : Instruction::AShr;
|
|
case bitc::BINOP_AND:
|
|
return IsFP ? -1 : Instruction::And;
|
|
case bitc::BINOP_OR:
|
|
return IsFP ? -1 : Instruction::Or;
|
|
case bitc::BINOP_XOR:
|
|
return IsFP ? -1 : Instruction::Xor;
|
|
}
|
|
}
|
|
|
|
static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
|
|
switch (Val) {
|
|
default: return AtomicRMWInst::BAD_BINOP;
|
|
case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
|
|
case bitc::RMW_ADD: return AtomicRMWInst::Add;
|
|
case bitc::RMW_SUB: return AtomicRMWInst::Sub;
|
|
case bitc::RMW_AND: return AtomicRMWInst::And;
|
|
case bitc::RMW_NAND: return AtomicRMWInst::Nand;
|
|
case bitc::RMW_OR: return AtomicRMWInst::Or;
|
|
case bitc::RMW_XOR: return AtomicRMWInst::Xor;
|
|
case bitc::RMW_MAX: return AtomicRMWInst::Max;
|
|
case bitc::RMW_MIN: return AtomicRMWInst::Min;
|
|
case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
|
|
case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
|
|
case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
|
|
case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
|
|
}
|
|
}
|
|
|
|
static AtomicOrdering getDecodedOrdering(unsigned Val) {
|
|
switch (Val) {
|
|
case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
|
|
case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
|
|
case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
|
|
case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
|
|
case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
|
|
case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
|
|
default: // Map unknown orderings to sequentially-consistent.
|
|
case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
|
|
}
|
|
}
|
|
|
|
static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
|
|
switch (Val) {
|
|
default: // Map unknown selection kinds to any.
|
|
case bitc::COMDAT_SELECTION_KIND_ANY:
|
|
return Comdat::Any;
|
|
case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
|
|
return Comdat::ExactMatch;
|
|
case bitc::COMDAT_SELECTION_KIND_LARGEST:
|
|
return Comdat::Largest;
|
|
case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
|
|
return Comdat::NoDuplicates;
|
|
case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
|
|
return Comdat::SameSize;
|
|
}
|
|
}
|
|
|
|
static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
|
|
FastMathFlags FMF;
|
|
if (0 != (Val & bitc::UnsafeAlgebra))
|
|
FMF.setFast();
|
|
if (0 != (Val & bitc::AllowReassoc))
|
|
FMF.setAllowReassoc();
|
|
if (0 != (Val & bitc::NoNaNs))
|
|
FMF.setNoNaNs();
|
|
if (0 != (Val & bitc::NoInfs))
|
|
FMF.setNoInfs();
|
|
if (0 != (Val & bitc::NoSignedZeros))
|
|
FMF.setNoSignedZeros();
|
|
if (0 != (Val & bitc::AllowReciprocal))
|
|
FMF.setAllowReciprocal();
|
|
if (0 != (Val & bitc::AllowContract))
|
|
FMF.setAllowContract(true);
|
|
if (0 != (Val & bitc::ApproxFunc))
|
|
FMF.setApproxFunc();
|
|
return FMF;
|
|
}
|
|
|
|
static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
|
|
switch (Val) {
|
|
case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
|
|
case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
|
|
}
|
|
}
|
|
|
|
Type *BitcodeReader::getTypeByID(unsigned ID) {
|
|
// The type table size is always specified correctly.
|
|
if (ID >= TypeList.size())
|
|
return nullptr;
|
|
|
|
if (Type *Ty = TypeList[ID])
|
|
return Ty;
|
|
|
|
// If we have a forward reference, the only possible case is when it is to a
|
|
// named struct. Just create a placeholder for now.
|
|
return TypeList[ID] = createIdentifiedStructType(Context);
|
|
}
|
|
|
|
StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
|
|
StringRef Name) {
|
|
auto *Ret = StructType::create(Context, Name);
|
|
IdentifiedStructTypes.push_back(Ret);
|
|
return Ret;
|
|
}
|
|
|
|
StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
|
|
auto *Ret = StructType::create(Context);
|
|
IdentifiedStructTypes.push_back(Ret);
|
|
return Ret;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Functions for parsing blocks from the bitcode file
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
|
|
switch (Val) {
|
|
case Attribute::EndAttrKinds:
|
|
llvm_unreachable("Synthetic enumerators which should never get here");
|
|
|
|
case Attribute::None: return 0;
|
|
case Attribute::ZExt: return 1 << 0;
|
|
case Attribute::SExt: return 1 << 1;
|
|
case Attribute::NoReturn: return 1 << 2;
|
|
case Attribute::InReg: return 1 << 3;
|
|
case Attribute::StructRet: return 1 << 4;
|
|
case Attribute::NoUnwind: return 1 << 5;
|
|
case Attribute::NoAlias: return 1 << 6;
|
|
case Attribute::ByVal: return 1 << 7;
|
|
case Attribute::Nest: return 1 << 8;
|
|
case Attribute::ReadNone: return 1 << 9;
|
|
case Attribute::ReadOnly: return 1 << 10;
|
|
case Attribute::NoInline: return 1 << 11;
|
|
case Attribute::AlwaysInline: return 1 << 12;
|
|
case Attribute::OptimizeForSize: return 1 << 13;
|
|
case Attribute::StackProtect: return 1 << 14;
|
|
case Attribute::StackProtectReq: return 1 << 15;
|
|
case Attribute::Alignment: return 31 << 16;
|
|
case Attribute::NoCapture: return 1 << 21;
|
|
case Attribute::NoRedZone: return 1 << 22;
|
|
case Attribute::NoImplicitFloat: return 1 << 23;
|
|
case Attribute::Naked: return 1 << 24;
|
|
case Attribute::InlineHint: return 1 << 25;
|
|
case Attribute::StackAlignment: return 7 << 26;
|
|
case Attribute::ReturnsTwice: return 1 << 29;
|
|
case Attribute::UWTable: return 1 << 30;
|
|
case Attribute::NonLazyBind: return 1U << 31;
|
|
case Attribute::SanitizeAddress: return 1ULL << 32;
|
|
case Attribute::MinSize: return 1ULL << 33;
|
|
case Attribute::NoDuplicate: return 1ULL << 34;
|
|
case Attribute::StackProtectStrong: return 1ULL << 35;
|
|
case Attribute::SanitizeThread: return 1ULL << 36;
|
|
case Attribute::SanitizeMemory: return 1ULL << 37;
|
|
case Attribute::NoBuiltin: return 1ULL << 38;
|
|
case Attribute::Returned: return 1ULL << 39;
|
|
case Attribute::Cold: return 1ULL << 40;
|
|
case Attribute::Builtin: return 1ULL << 41;
|
|
case Attribute::OptimizeNone: return 1ULL << 42;
|
|
case Attribute::InAlloca: return 1ULL << 43;
|
|
case Attribute::NonNull: return 1ULL << 44;
|
|
case Attribute::JumpTable: return 1ULL << 45;
|
|
case Attribute::Convergent: return 1ULL << 46;
|
|
case Attribute::SafeStack: return 1ULL << 47;
|
|
case Attribute::NoRecurse: return 1ULL << 48;
|
|
case Attribute::InaccessibleMemOnly: return 1ULL << 49;
|
|
case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
|
|
case Attribute::SwiftSelf: return 1ULL << 51;
|
|
case Attribute::SwiftError: return 1ULL << 52;
|
|
case Attribute::WriteOnly: return 1ULL << 53;
|
|
case Attribute::Speculatable: return 1ULL << 54;
|
|
case Attribute::StrictFP: return 1ULL << 55;
|
|
case Attribute::SanitizeHWAddress: return 1ULL << 56;
|
|
case Attribute::NoCfCheck: return 1ULL << 57;
|
|
case Attribute::OptForFuzzing: return 1ULL << 58;
|
|
case Attribute::ShadowCallStack: return 1ULL << 59;
|
|
case Attribute::SpeculativeLoadHardening:
|
|
return 1ULL << 60;
|
|
case Attribute::ImmArg:
|
|
return 1ULL << 61;
|
|
case Attribute::Dereferenceable:
|
|
llvm_unreachable("dereferenceable attribute not supported in raw format");
|
|
break;
|
|
case Attribute::DereferenceableOrNull:
|
|
llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
|
|
"format");
|
|
break;
|
|
case Attribute::ArgMemOnly:
|
|
llvm_unreachable("argmemonly attribute not supported in raw format");
|
|
break;
|
|
case Attribute::AllocSize:
|
|
llvm_unreachable("allocsize not supported in raw format");
|
|
break;
|
|
}
|
|
llvm_unreachable("Unsupported attribute type");
|
|
}
|
|
|
|
static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
|
|
if (!Val) return;
|
|
|
|
for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
|
|
I = Attribute::AttrKind(I + 1)) {
|
|
if (I == Attribute::Dereferenceable ||
|
|
I == Attribute::DereferenceableOrNull ||
|
|
I == Attribute::ArgMemOnly ||
|
|
I == Attribute::AllocSize)
|
|
continue;
|
|
if (uint64_t A = (Val & getRawAttributeMask(I))) {
|
|
if (I == Attribute::Alignment)
|
|
B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
|
|
else if (I == Attribute::StackAlignment)
|
|
B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
|
|
else
|
|
B.addAttribute(I);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// This fills an AttrBuilder object with the LLVM attributes that have
|
|
/// been decoded from the given integer. This function must stay in sync with
|
|
/// 'encodeLLVMAttributesForBitcode'.
|
|
static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
|
|
uint64_t EncodedAttrs) {
|
|
// FIXME: Remove in 4.0.
|
|
|
|
// The alignment is stored as a 16-bit raw value from bits 31--16. We shift
|
|
// the bits above 31 down by 11 bits.
|
|
unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
|
|
assert((!Alignment || isPowerOf2_32(Alignment)) &&
|
|
"Alignment must be a power of two.");
|
|
|
|
if (Alignment)
|
|
B.addAlignmentAttr(Alignment);
|
|
addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
|
|
(EncodedAttrs & 0xffff));
|
|
}
|
|
|
|
Error BitcodeReader::parseAttributeBlock() {
|
|
if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
if (!MAttributes.empty())
|
|
return error("Invalid multiple blocks");
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
SmallVector<AttributeList, 8> Attrs;
|
|
|
|
// Read all the records.
|
|
while (true) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
return Error::success();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record.
|
|
Record.clear();
|
|
switch (Stream.readRecord(Entry.ID, Record)) {
|
|
default: // Default behavior: ignore.
|
|
break;
|
|
case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
|
|
// FIXME: Remove in 4.0.
|
|
if (Record.size() & 1)
|
|
return error("Invalid record");
|
|
|
|
for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
|
|
AttrBuilder B;
|
|
decodeLLVMAttributesForBitcode(B, Record[i+1]);
|
|
Attrs.push_back(AttributeList::get(Context, Record[i], B));
|
|
}
|
|
|
|
MAttributes.push_back(AttributeList::get(Context, Attrs));
|
|
Attrs.clear();
|
|
break;
|
|
case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
|
|
for (unsigned i = 0, e = Record.size(); i != e; ++i)
|
|
Attrs.push_back(MAttributeGroups[Record[i]]);
|
|
|
|
MAttributes.push_back(AttributeList::get(Context, Attrs));
|
|
Attrs.clear();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns Attribute::None on unrecognized codes.
|
|
static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
|
|
switch (Code) {
|
|
default:
|
|
return Attribute::None;
|
|
case bitc::ATTR_KIND_ALIGNMENT:
|
|
return Attribute::Alignment;
|
|
case bitc::ATTR_KIND_ALWAYS_INLINE:
|
|
return Attribute::AlwaysInline;
|
|
case bitc::ATTR_KIND_ARGMEMONLY:
|
|
return Attribute::ArgMemOnly;
|
|
case bitc::ATTR_KIND_BUILTIN:
|
|
return Attribute::Builtin;
|
|
case bitc::ATTR_KIND_BY_VAL:
|
|
return Attribute::ByVal;
|
|
case bitc::ATTR_KIND_IN_ALLOCA:
|
|
return Attribute::InAlloca;
|
|
case bitc::ATTR_KIND_COLD:
|
|
return Attribute::Cold;
|
|
case bitc::ATTR_KIND_CONVERGENT:
|
|
return Attribute::Convergent;
|
|
case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
|
|
return Attribute::InaccessibleMemOnly;
|
|
case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
|
|
return Attribute::InaccessibleMemOrArgMemOnly;
|
|
case bitc::ATTR_KIND_INLINE_HINT:
|
|
return Attribute::InlineHint;
|
|
case bitc::ATTR_KIND_IN_REG:
|
|
return Attribute::InReg;
|
|
case bitc::ATTR_KIND_JUMP_TABLE:
|
|
return Attribute::JumpTable;
|
|
case bitc::ATTR_KIND_MIN_SIZE:
|
|
return Attribute::MinSize;
|
|
case bitc::ATTR_KIND_NAKED:
|
|
return Attribute::Naked;
|
|
case bitc::ATTR_KIND_NEST:
|
|
return Attribute::Nest;
|
|
case bitc::ATTR_KIND_NO_ALIAS:
|
|
return Attribute::NoAlias;
|
|
case bitc::ATTR_KIND_NO_BUILTIN:
|
|
return Attribute::NoBuiltin;
|
|
case bitc::ATTR_KIND_NO_CAPTURE:
|
|
return Attribute::NoCapture;
|
|
case bitc::ATTR_KIND_NO_DUPLICATE:
|
|
return Attribute::NoDuplicate;
|
|
case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
|
|
return Attribute::NoImplicitFloat;
|
|
case bitc::ATTR_KIND_NO_INLINE:
|
|
return Attribute::NoInline;
|
|
case bitc::ATTR_KIND_NO_RECURSE:
|
|
return Attribute::NoRecurse;
|
|
case bitc::ATTR_KIND_NON_LAZY_BIND:
|
|
return Attribute::NonLazyBind;
|
|
case bitc::ATTR_KIND_NON_NULL:
|
|
return Attribute::NonNull;
|
|
case bitc::ATTR_KIND_DEREFERENCEABLE:
|
|
return Attribute::Dereferenceable;
|
|
case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
|
|
return Attribute::DereferenceableOrNull;
|
|
case bitc::ATTR_KIND_ALLOC_SIZE:
|
|
return Attribute::AllocSize;
|
|
case bitc::ATTR_KIND_NO_RED_ZONE:
|
|
return Attribute::NoRedZone;
|
|
case bitc::ATTR_KIND_NO_RETURN:
|
|
return Attribute::NoReturn;
|
|
case bitc::ATTR_KIND_NOCF_CHECK:
|
|
return Attribute::NoCfCheck;
|
|
case bitc::ATTR_KIND_NO_UNWIND:
|
|
return Attribute::NoUnwind;
|
|
case bitc::ATTR_KIND_OPT_FOR_FUZZING:
|
|
return Attribute::OptForFuzzing;
|
|
case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
|
|
return Attribute::OptimizeForSize;
|
|
case bitc::ATTR_KIND_OPTIMIZE_NONE:
|
|
return Attribute::OptimizeNone;
|
|
case bitc::ATTR_KIND_READ_NONE:
|
|
return Attribute::ReadNone;
|
|
case bitc::ATTR_KIND_READ_ONLY:
|
|
return Attribute::ReadOnly;
|
|
case bitc::ATTR_KIND_RETURNED:
|
|
return Attribute::Returned;
|
|
case bitc::ATTR_KIND_RETURNS_TWICE:
|
|
return Attribute::ReturnsTwice;
|
|
case bitc::ATTR_KIND_S_EXT:
|
|
return Attribute::SExt;
|
|
case bitc::ATTR_KIND_SPECULATABLE:
|
|
return Attribute::Speculatable;
|
|
case bitc::ATTR_KIND_STACK_ALIGNMENT:
|
|
return Attribute::StackAlignment;
|
|
case bitc::ATTR_KIND_STACK_PROTECT:
|
|
return Attribute::StackProtect;
|
|
case bitc::ATTR_KIND_STACK_PROTECT_REQ:
|
|
return Attribute::StackProtectReq;
|
|
case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
|
|
return Attribute::StackProtectStrong;
|
|
case bitc::ATTR_KIND_SAFESTACK:
|
|
return Attribute::SafeStack;
|
|
case bitc::ATTR_KIND_SHADOWCALLSTACK:
|
|
return Attribute::ShadowCallStack;
|
|
case bitc::ATTR_KIND_STRICT_FP:
|
|
return Attribute::StrictFP;
|
|
case bitc::ATTR_KIND_STRUCT_RET:
|
|
return Attribute::StructRet;
|
|
case bitc::ATTR_KIND_SANITIZE_ADDRESS:
|
|
return Attribute::SanitizeAddress;
|
|
case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
|
|
return Attribute::SanitizeHWAddress;
|
|
case bitc::ATTR_KIND_SANITIZE_THREAD:
|
|
return Attribute::SanitizeThread;
|
|
case bitc::ATTR_KIND_SANITIZE_MEMORY:
|
|
return Attribute::SanitizeMemory;
|
|
case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
|
|
return Attribute::SpeculativeLoadHardening;
|
|
case bitc::ATTR_KIND_SWIFT_ERROR:
|
|
return Attribute::SwiftError;
|
|
case bitc::ATTR_KIND_SWIFT_SELF:
|
|
return Attribute::SwiftSelf;
|
|
case bitc::ATTR_KIND_UW_TABLE:
|
|
return Attribute::UWTable;
|
|
case bitc::ATTR_KIND_WRITEONLY:
|
|
return Attribute::WriteOnly;
|
|
case bitc::ATTR_KIND_Z_EXT:
|
|
return Attribute::ZExt;
|
|
case bitc::ATTR_KIND_IMMARG:
|
|
return Attribute::ImmArg;
|
|
}
|
|
}
|
|
|
|
Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
|
|
unsigned &Alignment) {
|
|
// Note: Alignment in bitcode files is incremented by 1, so that zero
|
|
// can be used for default alignment.
|
|
if (Exponent > Value::MaxAlignmentExponent + 1)
|
|
return error("Invalid alignment value");
|
|
Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
|
|
return Error::success();
|
|
}
|
|
|
|
Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
|
|
*Kind = getAttrFromCode(Code);
|
|
if (*Kind == Attribute::None)
|
|
return error("Unknown attribute kind (" + Twine(Code) + ")");
|
|
return Error::success();
|
|
}
|
|
|
|
Error BitcodeReader::parseAttributeGroupBlock() {
|
|
if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
if (!MAttributeGroups.empty())
|
|
return error("Invalid multiple blocks");
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
// Read all the records.
|
|
while (true) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
return Error::success();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record.
|
|
Record.clear();
|
|
switch (Stream.readRecord(Entry.ID, Record)) {
|
|
default: // Default behavior: ignore.
|
|
break;
|
|
case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
|
|
if (Record.size() < 3)
|
|
return error("Invalid record");
|
|
|
|
uint64_t GrpID = Record[0];
|
|
uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
|
|
|
|
AttrBuilder B;
|
|
for (unsigned i = 2, e = Record.size(); i != e; ++i) {
|
|
if (Record[i] == 0) { // Enum attribute
|
|
Attribute::AttrKind Kind;
|
|
if (Error Err = parseAttrKind(Record[++i], &Kind))
|
|
return Err;
|
|
|
|
B.addAttribute(Kind);
|
|
} else if (Record[i] == 1) { // Integer attribute
|
|
Attribute::AttrKind Kind;
|
|
if (Error Err = parseAttrKind(Record[++i], &Kind))
|
|
return Err;
|
|
if (Kind == Attribute::Alignment)
|
|
B.addAlignmentAttr(Record[++i]);
|
|
else if (Kind == Attribute::StackAlignment)
|
|
B.addStackAlignmentAttr(Record[++i]);
|
|
else if (Kind == Attribute::Dereferenceable)
|
|
B.addDereferenceableAttr(Record[++i]);
|
|
else if (Kind == Attribute::DereferenceableOrNull)
|
|
B.addDereferenceableOrNullAttr(Record[++i]);
|
|
else if (Kind == Attribute::AllocSize)
|
|
B.addAllocSizeAttrFromRawRepr(Record[++i]);
|
|
} else { // String attribute
|
|
assert((Record[i] == 3 || Record[i] == 4) &&
|
|
"Invalid attribute group entry");
|
|
bool HasValue = (Record[i++] == 4);
|
|
SmallString<64> KindStr;
|
|
SmallString<64> ValStr;
|
|
|
|
while (Record[i] != 0 && i != e)
|
|
KindStr += Record[i++];
|
|
assert(Record[i] == 0 && "Kind string not null terminated");
|
|
|
|
if (HasValue) {
|
|
// Has a value associated with it.
|
|
++i; // Skip the '0' that terminates the "kind" string.
|
|
while (Record[i] != 0 && i != e)
|
|
ValStr += Record[i++];
|
|
assert(Record[i] == 0 && "Value string not null terminated");
|
|
}
|
|
|
|
B.addAttribute(KindStr.str(), ValStr.str());
|
|
}
|
|
}
|
|
|
|
MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Error BitcodeReader::parseTypeTable() {
|
|
if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
|
|
return error("Invalid record");
|
|
|
|
return parseTypeTableBody();
|
|
}
|
|
|
|
Error BitcodeReader::parseTypeTableBody() {
|
|
if (!TypeList.empty())
|
|
return error("Invalid multiple blocks");
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
unsigned NumRecords = 0;
|
|
|
|
SmallString<64> TypeName;
|
|
|
|
// Read all the records for this type table.
|
|
while (true) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
if (NumRecords != TypeList.size())
|
|
return error("Malformed block");
|
|
return Error::success();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record.
|
|
Record.clear();
|
|
Type *ResultTy = nullptr;
|
|
switch (Stream.readRecord(Entry.ID, Record)) {
|
|
default:
|
|
return error("Invalid value");
|
|
case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
|
|
// TYPE_CODE_NUMENTRY contains a count of the number of types in the
|
|
// type list. This allows us to reserve space.
|
|
if (Record.size() < 1)
|
|
return error("Invalid record");
|
|
TypeList.resize(Record[0]);
|
|
continue;
|
|
case bitc::TYPE_CODE_VOID: // VOID
|
|
ResultTy = Type::getVoidTy(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_HALF: // HALF
|
|
ResultTy = Type::getHalfTy(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_FLOAT: // FLOAT
|
|
ResultTy = Type::getFloatTy(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_DOUBLE: // DOUBLE
|
|
ResultTy = Type::getDoubleTy(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_X86_FP80: // X86_FP80
|
|
ResultTy = Type::getX86_FP80Ty(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_FP128: // FP128
|
|
ResultTy = Type::getFP128Ty(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
|
|
ResultTy = Type::getPPC_FP128Ty(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_LABEL: // LABEL
|
|
ResultTy = Type::getLabelTy(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_METADATA: // METADATA
|
|
ResultTy = Type::getMetadataTy(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_X86_MMX: // X86_MMX
|
|
ResultTy = Type::getX86_MMXTy(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_TOKEN: // TOKEN
|
|
ResultTy = Type::getTokenTy(Context);
|
|
break;
|
|
case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
|
|
if (Record.size() < 1)
|
|
return error("Invalid record");
|
|
|
|
uint64_t NumBits = Record[0];
|
|
if (NumBits < IntegerType::MIN_INT_BITS ||
|
|
NumBits > IntegerType::MAX_INT_BITS)
|
|
return error("Bitwidth for integer type out of range");
|
|
ResultTy = IntegerType::get(Context, NumBits);
|
|
break;
|
|
}
|
|
case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
|
|
// [pointee type, address space]
|
|
if (Record.size() < 1)
|
|
return error("Invalid record");
|
|
unsigned AddressSpace = 0;
|
|
if (Record.size() == 2)
|
|
AddressSpace = Record[1];
|
|
ResultTy = getTypeByID(Record[0]);
|
|
if (!ResultTy ||
|
|
!PointerType::isValidElementType(ResultTy))
|
|
return error("Invalid type");
|
|
ResultTy = PointerType::get(ResultTy, AddressSpace);
|
|
break;
|
|
}
|
|
case bitc::TYPE_CODE_FUNCTION_OLD: {
|
|
// FIXME: attrid is dead, remove it in LLVM 4.0
|
|
// FUNCTION: [vararg, attrid, retty, paramty x N]
|
|
if (Record.size() < 3)
|
|
return error("Invalid record");
|
|
SmallVector<Type*, 8> ArgTys;
|
|
for (unsigned i = 3, e = Record.size(); i != e; ++i) {
|
|
if (Type *T = getTypeByID(Record[i]))
|
|
ArgTys.push_back(T);
|
|
else
|
|
break;
|
|
}
|
|
|
|
ResultTy = getTypeByID(Record[2]);
|
|
if (!ResultTy || ArgTys.size() < Record.size()-3)
|
|
return error("Invalid type");
|
|
|
|
ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
|
|
break;
|
|
}
|
|
case bitc::TYPE_CODE_FUNCTION: {
|
|
// FUNCTION: [vararg, retty, paramty x N]
|
|
if (Record.size() < 2)
|
|
return error("Invalid record");
|
|
SmallVector<Type*, 8> ArgTys;
|
|
for (unsigned i = 2, e = Record.size(); i != e; ++i) {
|
|
if (Type *T = getTypeByID(Record[i])) {
|
|
if (!FunctionType::isValidArgumentType(T))
|
|
return error("Invalid function argument type");
|
|
ArgTys.push_back(T);
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
|
|
ResultTy = getTypeByID(Record[1]);
|
|
if (!ResultTy || ArgTys.size() < Record.size()-2)
|
|
return error("Invalid type");
|
|
|
|
ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
|
|
break;
|
|
}
|
|
case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
|
|
if (Record.size() < 1)
|
|
return error("Invalid record");
|
|
SmallVector<Type*, 8> EltTys;
|
|
for (unsigned i = 1, e = Record.size(); i != e; ++i) {
|
|
if (Type *T = getTypeByID(Record[i]))
|
|
EltTys.push_back(T);
|
|
else
|
|
break;
|
|
}
|
|
if (EltTys.size() != Record.size()-1)
|
|
return error("Invalid type");
|
|
ResultTy = StructType::get(Context, EltTys, Record[0]);
|
|
break;
|
|
}
|
|
case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
|
|
if (convertToString(Record, 0, TypeName))
|
|
return error("Invalid record");
|
|
continue;
|
|
|
|
case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
|
|
if (Record.size() < 1)
|
|
return error("Invalid record");
|
|
|
|
if (NumRecords >= TypeList.size())
|
|
return error("Invalid TYPE table");
|
|
|
|
// Check to see if this was forward referenced, if so fill in the temp.
|
|
StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
|
|
if (Res) {
|
|
Res->setName(TypeName);
|
|
TypeList[NumRecords] = nullptr;
|
|
} else // Otherwise, create a new struct.
|
|
Res = createIdentifiedStructType(Context, TypeName);
|
|
TypeName.clear();
|
|
|
|
SmallVector<Type*, 8> EltTys;
|
|
for (unsigned i = 1, e = Record.size(); i != e; ++i) {
|
|
if (Type *T = getTypeByID(Record[i]))
|
|
EltTys.push_back(T);
|
|
else
|
|
break;
|
|
}
|
|
if (EltTys.size() != Record.size()-1)
|
|
return error("Invalid record");
|
|
Res->setBody(EltTys, Record[0]);
|
|
ResultTy = Res;
|
|
break;
|
|
}
|
|
case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
|
|
if (Record.size() != 1)
|
|
return error("Invalid record");
|
|
|
|
if (NumRecords >= TypeList.size())
|
|
return error("Invalid TYPE table");
|
|
|
|
// Check to see if this was forward referenced, if so fill in the temp.
|
|
StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
|
|
if (Res) {
|
|
Res->setName(TypeName);
|
|
TypeList[NumRecords] = nullptr;
|
|
} else // Otherwise, create a new struct with no body.
|
|
Res = createIdentifiedStructType(Context, TypeName);
|
|
TypeName.clear();
|
|
ResultTy = Res;
|
|
break;
|
|
}
|
|
case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
|
|
if (Record.size() < 2)
|
|
return error("Invalid record");
|
|
ResultTy = getTypeByID(Record[1]);
|
|
if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
|
|
return error("Invalid type");
|
|
ResultTy = ArrayType::get(ResultTy, Record[0]);
|
|
break;
|
|
case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
|
|
if (Record.size() < 2)
|
|
return error("Invalid record");
|
|
if (Record[0] == 0)
|
|
return error("Invalid vector length");
|
|
ResultTy = getTypeByID(Record[1]);
|
|
if (!ResultTy || !StructType::isValidElementType(ResultTy))
|
|
return error("Invalid type");
|
|
ResultTy = VectorType::get(ResultTy, Record[0]);
|
|
break;
|
|
}
|
|
|
|
if (NumRecords >= TypeList.size())
|
|
return error("Invalid TYPE table");
|
|
if (TypeList[NumRecords])
|
|
return error(
|
|
"Invalid TYPE table: Only named structs can be forward referenced");
|
|
assert(ResultTy && "Didn't read a type?");
|
|
TypeList[NumRecords++] = ResultTy;
|
|
}
|
|
}
|
|
|
|
Error BitcodeReader::parseOperandBundleTags() {
|
|
if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
if (!BundleTags.empty())
|
|
return error("Invalid multiple blocks");
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
while (true) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
return Error::success();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Tags are implicitly mapped to integers by their order.
|
|
|
|
if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
|
|
return error("Invalid record");
|
|
|
|
// OPERAND_BUNDLE_TAG: [strchr x N]
|
|
BundleTags.emplace_back();
|
|
if (convertToString(Record, 0, BundleTags.back()))
|
|
return error("Invalid record");
|
|
Record.clear();
|
|
}
|
|
}
|
|
|
|
Error BitcodeReader::parseSyncScopeNames() {
|
|
if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
if (!SSIDs.empty())
|
|
return error("Invalid multiple synchronization scope names blocks");
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
while (true) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
if (SSIDs.empty())
|
|
return error("Invalid empty synchronization scope names block");
|
|
return Error::success();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Synchronization scope names are implicitly mapped to synchronization
|
|
// scope IDs by their order.
|
|
|
|
if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME)
|
|
return error("Invalid record");
|
|
|
|
SmallString<16> SSN;
|
|
if (convertToString(Record, 0, SSN))
|
|
return error("Invalid record");
|
|
|
|
SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
|
|
Record.clear();
|
|
}
|
|
}
|
|
|
|
/// Associate a value with its name from the given index in the provided record.
|
|
Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
|
|
unsigned NameIndex, Triple &TT) {
|
|
SmallString<128> ValueName;
|
|
if (convertToString(Record, NameIndex, ValueName))
|
|
return error("Invalid record");
|
|
unsigned ValueID = Record[0];
|
|
if (ValueID >= ValueList.size() || !ValueList[ValueID])
|
|
return error("Invalid record");
|
|
Value *V = ValueList[ValueID];
|
|
|
|
StringRef NameStr(ValueName.data(), ValueName.size());
|
|
if (NameStr.find_first_of(0) != StringRef::npos)
|
|
return error("Invalid value name");
|
|
V->setName(NameStr);
|
|
auto *GO = dyn_cast<GlobalObject>(V);
|
|
if (GO) {
|
|
if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
|
|
if (TT.supportsCOMDAT())
|
|
GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
|
|
else
|
|
GO->setComdat(nullptr);
|
|
}
|
|
}
|
|
return V;
|
|
}
|
|
|
|
/// Helper to note and return the current location, and jump to the given
|
|
/// offset.
|
|
static uint64_t jumpToValueSymbolTable(uint64_t Offset,
|
|
BitstreamCursor &Stream) {
|
|
// Save the current parsing location so we can jump back at the end
|
|
// of the VST read.
|
|
uint64_t CurrentBit = Stream.GetCurrentBitNo();
|
|
Stream.JumpToBit(Offset * 32);
|
|
#ifndef NDEBUG
|
|
// Do some checking if we are in debug mode.
|
|
BitstreamEntry Entry = Stream.advance();
|
|
assert(Entry.Kind == BitstreamEntry::SubBlock);
|
|
assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
|
|
#else
|
|
// In NDEBUG mode ignore the output so we don't get an unused variable
|
|
// warning.
|
|
Stream.advance();
|
|
#endif
|
|
return CurrentBit;
|
|
}
|
|
|
|
void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
|
|
Function *F,
|
|
ArrayRef<uint64_t> Record) {
|
|
// Note that we subtract 1 here because the offset is relative to one word
|
|
// before the start of the identification or module block, which was
|
|
// historically always the start of the regular bitcode header.
|
|
uint64_t FuncWordOffset = Record[1] - 1;
|
|
uint64_t FuncBitOffset = FuncWordOffset * 32;
|
|
DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
|
|
// Set the LastFunctionBlockBit to point to the last function block.
|
|
// Later when parsing is resumed after function materialization,
|
|
// we can simply skip that last function block.
|
|
if (FuncBitOffset > LastFunctionBlockBit)
|
|
LastFunctionBlockBit = FuncBitOffset;
|
|
}
|
|
|
|
/// Read a new-style GlobalValue symbol table.
|
|
Error BitcodeReader::parseGlobalValueSymbolTable() {
|
|
unsigned FuncBitcodeOffsetDelta =
|
|
Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
|
|
|
|
if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
while (true) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock:
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
return Error::success();
|
|
case BitstreamEntry::Record:
|
|
break;
|
|
}
|
|
|
|
Record.clear();
|
|
switch (Stream.readRecord(Entry.ID, Record)) {
|
|
case bitc::VST_CODE_FNENTRY: // [valueid, offset]
|
|
setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
|
|
cast<Function>(ValueList[Record[0]]), Record);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Parse the value symbol table at either the current parsing location or
|
|
/// at the given bit offset if provided.
|
|
Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
|
|
uint64_t CurrentBit;
|
|
// Pass in the Offset to distinguish between calling for the module-level
|
|
// VST (where we want to jump to the VST offset) and the function-level
|
|
// VST (where we don't).
|
|
if (Offset > 0) {
|
|
CurrentBit = jumpToValueSymbolTable(Offset, Stream);
|
|
// If this module uses a string table, read this as a module-level VST.
|
|
if (UseStrtab) {
|
|
if (Error Err = parseGlobalValueSymbolTable())
|
|
return Err;
|
|
Stream.JumpToBit(CurrentBit);
|
|
return Error::success();
|
|
}
|
|
// Otherwise, the VST will be in a similar format to a function-level VST,
|
|
// and will contain symbol names.
|
|
}
|
|
|
|
// Compute the delta between the bitcode indices in the VST (the word offset
|
|
// to the word-aligned ENTER_SUBBLOCK for the function block, and that
|
|
// expected by the lazy reader. The reader's EnterSubBlock expects to have
|
|
// already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
|
|
// (size BlockIDWidth). Note that we access the stream's AbbrevID width here
|
|
// just before entering the VST subblock because: 1) the EnterSubBlock
|
|
// changes the AbbrevID width; 2) the VST block is nested within the same
|
|
// outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
|
|
// AbbrevID width before calling EnterSubBlock; and 3) when we want to
|
|
// jump to the FUNCTION_BLOCK using this offset later, we don't want
|
|
// to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
|
|
unsigned FuncBitcodeOffsetDelta =
|
|
Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
|
|
|
|
if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
Triple TT(TheModule->getTargetTriple());
|
|
|
|
// Read all the records for this value table.
|
|
SmallString<128> ValueName;
|
|
|
|
while (true) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
if (Offset > 0)
|
|
Stream.JumpToBit(CurrentBit);
|
|
return Error::success();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record.
|
|
Record.clear();
|
|
switch (Stream.readRecord(Entry.ID, Record)) {
|
|
default: // Default behavior: unknown type.
|
|
break;
|
|
case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
|
|
Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
|
|
if (Error Err = ValOrErr.takeError())
|
|
return Err;
|
|
ValOrErr.get();
|
|
break;
|
|
}
|
|
case bitc::VST_CODE_FNENTRY: {
|
|
// VST_CODE_FNENTRY: [valueid, offset, namechar x N]
|
|
Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
|
|
if (Error Err = ValOrErr.takeError())
|
|
return Err;
|
|
Value *V = ValOrErr.get();
|
|
|
|
// Ignore function offsets emitted for aliases of functions in older
|
|
// versions of LLVM.
|
|
if (auto *F = dyn_cast<Function>(V))
|
|
setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
|
|
break;
|
|
}
|
|
case bitc::VST_CODE_BBENTRY: {
|
|
if (convertToString(Record, 1, ValueName))
|
|
return error("Invalid record");
|
|
BasicBlock *BB = getBasicBlock(Record[0]);
|
|
if (!BB)
|
|
return error("Invalid record");
|
|
|
|
BB->setName(StringRef(ValueName.data(), ValueName.size()));
|
|
ValueName.clear();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Decode a signed value stored with the sign bit in the LSB for dense VBR
|
|
/// encoding.
|
|
uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
|
|
if ((V & 1) == 0)
|
|
return V >> 1;
|
|
if (V != 1)
|
|
return -(V >> 1);
|
|
// There is no such thing as -0 with integers. "-0" really means MININT.
|
|
return 1ULL << 63;
|
|
}
|
|
|
|
/// Resolve all of the initializers for global values and aliases that we can.
|
|
Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
|
|
std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
|
|
std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
|
|
IndirectSymbolInitWorklist;
|
|
std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
|
|
std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
|
|
std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
|
|
|
|
GlobalInitWorklist.swap(GlobalInits);
|
|
IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
|
|
FunctionPrefixWorklist.swap(FunctionPrefixes);
|
|
FunctionPrologueWorklist.swap(FunctionPrologues);
|
|
FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
|
|
|
|
while (!GlobalInitWorklist.empty()) {
|
|
unsigned ValID = GlobalInitWorklist.back().second;
|
|
if (ValID >= ValueList.size()) {
|
|
// Not ready to resolve this yet, it requires something later in the file.
|
|
GlobalInits.push_back(GlobalInitWorklist.back());
|
|
} else {
|
|
if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
|
|
GlobalInitWorklist.back().first->setInitializer(C);
|
|
else
|
|
return error("Expected a constant");
|
|
}
|
|
GlobalInitWorklist.pop_back();
|
|
}
|
|
|
|
while (!IndirectSymbolInitWorklist.empty()) {
|
|
unsigned ValID = IndirectSymbolInitWorklist.back().second;
|
|
if (ValID >= ValueList.size()) {
|
|
IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
|
|
} else {
|
|
Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
|
|
if (!C)
|
|
return error("Expected a constant");
|
|
GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
|
|
if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
|
|
return error("Alias and aliasee types don't match");
|
|
GIS->setIndirectSymbol(C);
|
|
}
|
|
IndirectSymbolInitWorklist.pop_back();
|
|
}
|
|
|
|
while (!FunctionPrefixWorklist.empty()) {
|
|
unsigned ValID = FunctionPrefixWorklist.back().second;
|
|
if (ValID >= ValueList.size()) {
|
|
FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
|
|
} else {
|
|
if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
|
|
FunctionPrefixWorklist.back().first->setPrefixData(C);
|
|
else
|
|
return error("Expected a constant");
|
|
}
|
|
FunctionPrefixWorklist.pop_back();
|
|
}
|
|
|
|
while (!FunctionPrologueWorklist.empty()) {
|
|
unsigned ValID = FunctionPrologueWorklist.back().second;
|
|
if (ValID >= ValueList.size()) {
|
|
FunctionPrologues.push_back(FunctionPrologueWorklist.back());
|
|
} else {
|
|
if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
|
|
FunctionPrologueWorklist.back().first->setPrologueData(C);
|
|
else
|
|
return error("Expected a constant");
|
|
}
|
|
FunctionPrologueWorklist.pop_back();
|
|
}
|
|
|
|
while (!FunctionPersonalityFnWorklist.empty()) {
|
|
unsigned ValID = FunctionPersonalityFnWorklist.back().second;
|
|
if (ValID >= ValueList.size()) {
|
|
FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
|
|
} else {
|
|
if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
|
|
FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
|
|
else
|
|
return error("Expected a constant");
|
|
}
|
|
FunctionPersonalityFnWorklist.pop_back();
|
|
}
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
|
|
SmallVector<uint64_t, 8> Words(Vals.size());
|
|
transform(Vals, Words.begin(),
|
|
BitcodeReader::decodeSignRotatedValue);
|
|
|
|
return APInt(TypeBits, Words);
|
|
}
|
|
|
|
Error BitcodeReader::parseConstants() {
|
|
if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
// Read all the records for this value table.
|
|
Type *CurTy = Type::getInt32Ty(Context);
|
|
unsigned NextCstNo = ValueList.size();
|
|
|
|
while (true) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
if (NextCstNo != ValueList.size())
|
|
return error("Invalid constant reference");
|
|
|
|
// Once all the constants have been read, go through and resolve forward
|
|
// references.
|
|
ValueList.resolveConstantForwardRefs();
|
|
return Error::success();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record.
|
|
Record.clear();
|
|
Type *VoidType = Type::getVoidTy(Context);
|
|
Value *V = nullptr;
|
|
unsigned BitCode = Stream.readRecord(Entry.ID, Record);
|
|
switch (BitCode) {
|
|
default: // Default behavior: unknown constant
|
|
case bitc::CST_CODE_UNDEF: // UNDEF
|
|
V = UndefValue::get(CurTy);
|
|
break;
|
|
case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
|
|
if (Record.empty())
|
|
return error("Invalid record");
|
|
if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
|
|
return error("Invalid record");
|
|
if (TypeList[Record[0]] == VoidType)
|
|
return error("Invalid constant type");
|
|
CurTy = TypeList[Record[0]];
|
|
continue; // Skip the ValueList manipulation.
|
|
case bitc::CST_CODE_NULL: // NULL
|
|
V = Constant::getNullValue(CurTy);
|
|
break;
|
|
case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
|
|
if (!CurTy->isIntegerTy() || Record.empty())
|
|
return error("Invalid record");
|
|
V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
|
|
break;
|
|
case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
|
|
if (!CurTy->isIntegerTy() || Record.empty())
|
|
return error("Invalid record");
|
|
|
|
APInt VInt =
|
|
readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
|
|
V = ConstantInt::get(Context, VInt);
|
|
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
|
|
if (Record.empty())
|
|
return error("Invalid record");
|
|
if (CurTy->isHalfTy())
|
|
V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
|
|
APInt(16, (uint16_t)Record[0])));
|
|
else if (CurTy->isFloatTy())
|
|
V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
|
|
APInt(32, (uint32_t)Record[0])));
|
|
else if (CurTy->isDoubleTy())
|
|
V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
|
|
APInt(64, Record[0])));
|
|
else if (CurTy->isX86_FP80Ty()) {
|
|
// Bits are not stored the same way as a normal i80 APInt, compensate.
|
|
uint64_t Rearrange[2];
|
|
Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
|
|
Rearrange[1] = Record[0] >> 48;
|
|
V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
|
|
APInt(80, Rearrange)));
|
|
} else if (CurTy->isFP128Ty())
|
|
V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
|
|
APInt(128, Record)));
|
|
else if (CurTy->isPPC_FP128Ty())
|
|
V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
|
|
APInt(128, Record)));
|
|
else
|
|
V = UndefValue::get(CurTy);
|
|
break;
|
|
}
|
|
|
|
case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
|
|
if (Record.empty())
|
|
return error("Invalid record");
|
|
|
|
unsigned Size = Record.size();
|
|
SmallVector<Constant*, 16> Elts;
|
|
|
|
if (StructType *STy = dyn_cast<StructType>(CurTy)) {
|
|
for (unsigned i = 0; i != Size; ++i)
|
|
Elts.push_back(ValueList.getConstantFwdRef(Record[i],
|
|
STy->getElementType(i)));
|
|
V = ConstantStruct::get(STy, Elts);
|
|
} else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
|
|
Type *EltTy = ATy->getElementType();
|
|
for (unsigned i = 0; i != Size; ++i)
|
|
Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
|
|
V = ConstantArray::get(ATy, Elts);
|
|
} else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
|
|
Type *EltTy = VTy->getElementType();
|
|
for (unsigned i = 0; i != Size; ++i)
|
|
Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
|
|
V = ConstantVector::get(Elts);
|
|
} else {
|
|
V = UndefValue::get(CurTy);
|
|
}
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_STRING: // STRING: [values]
|
|
case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
|
|
if (Record.empty())
|
|
return error("Invalid record");
|
|
|
|
SmallString<16> Elts(Record.begin(), Record.end());
|
|
V = ConstantDataArray::getString(Context, Elts,
|
|
BitCode == bitc::CST_CODE_CSTRING);
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_DATA: {// DATA: [n x value]
|
|
if (Record.empty())
|
|
return error("Invalid record");
|
|
|
|
Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
|
|
if (EltTy->isIntegerTy(8)) {
|
|
SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
|
|
if (isa<VectorType>(CurTy))
|
|
V = ConstantDataVector::get(Context, Elts);
|
|
else
|
|
V = ConstantDataArray::get(Context, Elts);
|
|
} else if (EltTy->isIntegerTy(16)) {
|
|
SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
|
|
if (isa<VectorType>(CurTy))
|
|
V = ConstantDataVector::get(Context, Elts);
|
|
else
|
|
V = ConstantDataArray::get(Context, Elts);
|
|
} else if (EltTy->isIntegerTy(32)) {
|
|
SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
|
|
if (isa<VectorType>(CurTy))
|
|
V = ConstantDataVector::get(Context, Elts);
|
|
else
|
|
V = ConstantDataArray::get(Context, Elts);
|
|
} else if (EltTy->isIntegerTy(64)) {
|
|
SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
|
|
if (isa<VectorType>(CurTy))
|
|
V = ConstantDataVector::get(Context, Elts);
|
|
else
|
|
V = ConstantDataArray::get(Context, Elts);
|
|
} else if (EltTy->isHalfTy()) {
|
|
SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
|
|
if (isa<VectorType>(CurTy))
|
|
V = ConstantDataVector::getFP(Context, Elts);
|
|
else
|
|
V = ConstantDataArray::getFP(Context, Elts);
|
|
} else if (EltTy->isFloatTy()) {
|
|
SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
|
|
if (isa<VectorType>(CurTy))
|
|
V = ConstantDataVector::getFP(Context, Elts);
|
|
else
|
|
V = ConstantDataArray::getFP(Context, Elts);
|
|
} else if (EltTy->isDoubleTy()) {
|
|
SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
|
|
if (isa<VectorType>(CurTy))
|
|
V = ConstantDataVector::getFP(Context, Elts);
|
|
else
|
|
V = ConstantDataArray::getFP(Context, Elts);
|
|
} else {
|
|
return error("Invalid type for value");
|
|
}
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval]
|
|
if (Record.size() < 2)
|
|
return error("Invalid record");
|
|
int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
|
|
if (Opc < 0) {
|
|
V = UndefValue::get(CurTy); // Unknown unop.
|
|
} else {
|
|
Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
|
|
unsigned Flags = 0;
|
|
V = ConstantExpr::get(Opc, LHS, Flags);
|
|
}
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
|
|
if (Record.size() < 3)
|
|
return error("Invalid record");
|
|
int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
|
|
if (Opc < 0) {
|
|
V = UndefValue::get(CurTy); // Unknown binop.
|
|
} else {
|
|
Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
|
|
Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
|
|
unsigned Flags = 0;
|
|
if (Record.size() >= 4) {
|
|
if (Opc == Instruction::Add ||
|
|
Opc == Instruction::Sub ||
|
|
Opc == Instruction::Mul ||
|
|
Opc == Instruction::Shl) {
|
|
if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
|
|
Flags |= OverflowingBinaryOperator::NoSignedWrap;
|
|
if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
|
|
Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
|
|
} else if (Opc == Instruction::SDiv ||
|
|
Opc == Instruction::UDiv ||
|
|
Opc == Instruction::LShr ||
|
|
Opc == Instruction::AShr) {
|
|
if (Record[3] & (1 << bitc::PEO_EXACT))
|
|
Flags |= SDivOperator::IsExact;
|
|
}
|
|
}
|
|
V = ConstantExpr::get(Opc, LHS, RHS, Flags);
|
|
}
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
|
|
if (Record.size() < 3)
|
|
return error("Invalid record");
|
|
int Opc = getDecodedCastOpcode(Record[0]);
|
|
if (Opc < 0) {
|
|
V = UndefValue::get(CurTy); // Unknown cast.
|
|
} else {
|
|
Type *OpTy = getTypeByID(Record[1]);
|
|
if (!OpTy)
|
|
return error("Invalid record");
|
|
Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
|
|
V = UpgradeBitCastExpr(Opc, Op, CurTy);
|
|
if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
|
|
}
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
|
|
case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
|
|
case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
|
|
// operands]
|
|
unsigned OpNum = 0;
|
|
Type *PointeeType = nullptr;
|
|
if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
|
|
Record.size() % 2)
|
|
PointeeType = getTypeByID(Record[OpNum++]);
|
|
|
|
bool InBounds = false;
|
|
Optional<unsigned> InRangeIndex;
|
|
if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
|
|
uint64_t Op = Record[OpNum++];
|
|
InBounds = Op & 1;
|
|
InRangeIndex = Op >> 1;
|
|
} else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
|
|
InBounds = true;
|
|
|
|
SmallVector<Constant*, 16> Elts;
|
|
while (OpNum != Record.size()) {
|
|
Type *ElTy = getTypeByID(Record[OpNum++]);
|
|
if (!ElTy)
|
|
return error("Invalid record");
|
|
Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
|
|
}
|
|
|
|
if (Elts.size() < 1)
|
|
return error("Invalid gep with no operands");
|
|
|
|
Type *ImplicitPointeeType =
|
|
cast<PointerType>(Elts[0]->getType()->getScalarType())
|
|
->getElementType();
|
|
if (!PointeeType)
|
|
PointeeType = ImplicitPointeeType;
|
|
else if (PointeeType != ImplicitPointeeType)
|
|
return error("Explicit gep operator type does not match pointee type "
|
|
"of pointer operand");
|
|
|
|
ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
|
|
V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
|
|
InBounds, InRangeIndex);
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#]
|
|
if (Record.size() < 3)
|
|
return error("Invalid record");
|
|
|
|
Type *SelectorTy = Type::getInt1Ty(Context);
|
|
|
|
// The selector might be an i1 or an <n x i1>
|
|
// Get the type from the ValueList before getting a forward ref.
|
|
if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
|
|
if (Value *V = ValueList[Record[0]])
|
|
if (SelectorTy != V->getType())
|
|
SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
|
|
|
|
V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
|
|
SelectorTy),
|
|
ValueList.getConstantFwdRef(Record[1],CurTy),
|
|
ValueList.getConstantFwdRef(Record[2],CurTy));
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_CE_EXTRACTELT
|
|
: { // CE_EXTRACTELT: [opty, opval, opty, opval]
|
|
if (Record.size() < 3)
|
|
return error("Invalid record");
|
|
VectorType *OpTy =
|
|
dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
|
|
if (!OpTy)
|
|
return error("Invalid record");
|
|
Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
|
|
Constant *Op1 = nullptr;
|
|
if (Record.size() == 4) {
|
|
Type *IdxTy = getTypeByID(Record[2]);
|
|
if (!IdxTy)
|
|
return error("Invalid record");
|
|
Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
|
|
} else // TODO: Remove with llvm 4.0
|
|
Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
|
|
if (!Op1)
|
|
return error("Invalid record");
|
|
V = ConstantExpr::getExtractElement(Op0, Op1);
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_CE_INSERTELT
|
|
: { // CE_INSERTELT: [opval, opval, opty, opval]
|
|
VectorType *OpTy = dyn_cast<VectorType>(CurTy);
|
|
if (Record.size() < 3 || !OpTy)
|
|
return error("Invalid record");
|
|
Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
|
|
Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
|
|
OpTy->getElementType());
|
|
Constant *Op2 = nullptr;
|
|
if (Record.size() == 4) {
|
|
Type *IdxTy = getTypeByID(Record[2]);
|
|
if (!IdxTy)
|
|
return error("Invalid record");
|
|
Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
|
|
} else // TODO: Remove with llvm 4.0
|
|
Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
|
|
if (!Op2)
|
|
return error("Invalid record");
|
|
V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
|
|
VectorType *OpTy = dyn_cast<VectorType>(CurTy);
|
|
if (Record.size() < 3 || !OpTy)
|
|
return error("Invalid record");
|
|
Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
|
|
Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
|
|
Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
|
|
OpTy->getNumElements());
|
|
Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
|
|
V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
|
|
VectorType *RTy = dyn_cast<VectorType>(CurTy);
|
|
VectorType *OpTy =
|
|
dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
|
|
if (Record.size() < 4 || !RTy || !OpTy)
|
|
return error("Invalid record");
|
|
Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
|
|
Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
|
|
Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
|
|
RTy->getNumElements());
|
|
Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
|
|
V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
|
|
if (Record.size() < 4)
|
|
return error("Invalid record");
|
|
Type *OpTy = getTypeByID(Record[0]);
|
|
if (!OpTy)
|
|
return error("Invalid record");
|
|
Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
|
|
Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
|
|
|
|
if (OpTy->isFPOrFPVectorTy())
|
|
V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
|
|
else
|
|
V = ConstantExpr::getICmp(Record[3], Op0, Op1);
|
|
break;
|
|
}
|
|
// This maintains backward compatibility, pre-asm dialect keywords.
|
|
// FIXME: Remove with the 4.0 release.
|
|
case bitc::CST_CODE_INLINEASM_OLD: {
|
|
if (Record.size() < 2)
|
|
return error("Invalid record");
|
|
std::string AsmStr, ConstrStr;
|
|
bool HasSideEffects = Record[0] & 1;
|
|
bool IsAlignStack = Record[0] >> 1;
|
|
unsigned AsmStrSize = Record[1];
|
|
if (2+AsmStrSize >= Record.size())
|
|
return error("Invalid record");
|
|
unsigned ConstStrSize = Record[2+AsmStrSize];
|
|
if (3+AsmStrSize+ConstStrSize > Record.size())
|
|
return error("Invalid record");
|
|
|
|
for (unsigned i = 0; i != AsmStrSize; ++i)
|
|
AsmStr += (char)Record[2+i];
|
|
for (unsigned i = 0; i != ConstStrSize; ++i)
|
|
ConstrStr += (char)Record[3+AsmStrSize+i];
|
|
PointerType *PTy = cast<PointerType>(CurTy);
|
|
UpgradeInlineAsmString(&AsmStr);
|
|
V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
|
|
AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
|
|
break;
|
|
}
|
|
// This version adds support for the asm dialect keywords (e.g.,
|
|
// inteldialect).
|
|
case bitc::CST_CODE_INLINEASM: {
|
|
if (Record.size() < 2)
|
|
return error("Invalid record");
|
|
std::string AsmStr, ConstrStr;
|
|
bool HasSideEffects = Record[0] & 1;
|
|
bool IsAlignStack = (Record[0] >> 1) & 1;
|
|
unsigned AsmDialect = Record[0] >> 2;
|
|
unsigned AsmStrSize = Record[1];
|
|
if (2+AsmStrSize >= Record.size())
|
|
return error("Invalid record");
|
|
unsigned ConstStrSize = Record[2+AsmStrSize];
|
|
if (3+AsmStrSize+ConstStrSize > Record.size())
|
|
return error("Invalid record");
|
|
|
|
for (unsigned i = 0; i != AsmStrSize; ++i)
|
|
AsmStr += (char)Record[2+i];
|
|
for (unsigned i = 0; i != ConstStrSize; ++i)
|
|
ConstrStr += (char)Record[3+AsmStrSize+i];
|
|
PointerType *PTy = cast<PointerType>(CurTy);
|
|
UpgradeInlineAsmString(&AsmStr);
|
|
V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
|
|
AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
|
|
InlineAsm::AsmDialect(AsmDialect));
|
|
break;
|
|
}
|
|
case bitc::CST_CODE_BLOCKADDRESS:{
|
|
if (Record.size() < 3)
|
|
return error("Invalid record");
|
|
Type *FnTy = getTypeByID(Record[0]);
|
|
if (!FnTy)
|
|
return error("Invalid record");
|
|
Function *Fn =
|
|
dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
|
|
if (!Fn)
|
|
return error("Invalid record");
|
|
|
|
// If the function is already parsed we can insert the block address right
|
|
// away.
|
|
BasicBlock *BB;
|
|
unsigned BBID = Record[2];
|
|
if (!BBID)
|
|
// Invalid reference to entry block.
|
|
return error("Invalid ID");
|
|
if (!Fn->empty()) {
|
|
Function::iterator BBI = Fn->begin(), BBE = Fn->end();
|
|
for (size_t I = 0, E = BBID; I != E; ++I) {
|
|
if (BBI == BBE)
|
|
return error("Invalid ID");
|
|
++BBI;
|
|
}
|
|
BB = &*BBI;
|
|
} else {
|
|
// Otherwise insert a placeholder and remember it so it can be inserted
|
|
// when the function is parsed.
|
|
auto &FwdBBs = BasicBlockFwdRefs[Fn];
|
|
if (FwdBBs.empty())
|
|
BasicBlockFwdRefQueue.push_back(Fn);
|
|
if (FwdBBs.size() < BBID + 1)
|
|
FwdBBs.resize(BBID + 1);
|
|
if (!FwdBBs[BBID])
|
|
FwdBBs[BBID] = BasicBlock::Create(Context);
|
|
BB = FwdBBs[BBID];
|
|
}
|
|
V = BlockAddress::get(Fn, BB);
|
|
break;
|
|
}
|
|
}
|
|
|
|
ValueList.assignValue(V, NextCstNo);
|
|
++NextCstNo;
|
|
}
|
|
}
|
|
|
|
Error BitcodeReader::parseUseLists() {
|
|
if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
// Read all the records.
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
while (true) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
return Error::success();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a use list record.
|
|
Record.clear();
|
|
bool IsBB = false;
|
|
switch (Stream.readRecord(Entry.ID, Record)) {
|
|
default: // Default behavior: unknown type.
|
|
break;
|
|
case bitc::USELIST_CODE_BB:
|
|
IsBB = true;
|
|
LLVM_FALLTHROUGH;
|
|
case bitc::USELIST_CODE_DEFAULT: {
|
|
unsigned RecordLength = Record.size();
|
|
if (RecordLength < 3)
|
|
// Records should have at least an ID and two indexes.
|
|
return error("Invalid record");
|
|
unsigned ID = Record.back();
|
|
Record.pop_back();
|
|
|
|
Value *V;
|
|
if (IsBB) {
|
|
assert(ID < FunctionBBs.size() && "Basic block not found");
|
|
V = FunctionBBs[ID];
|
|
} else
|
|
V = ValueList[ID];
|
|
unsigned NumUses = 0;
|
|
SmallDenseMap<const Use *, unsigned, 16> Order;
|
|
for (const Use &U : V->materialized_uses()) {
|
|
if (++NumUses > Record.size())
|
|
break;
|
|
Order[&U] = Record[NumUses - 1];
|
|
}
|
|
if (Order.size() != Record.size() || NumUses > Record.size())
|
|
// Mismatches can happen if the functions are being materialized lazily
|
|
// (out-of-order), or a value has been upgraded.
|
|
break;
|
|
|
|
V->sortUseList([&](const Use &L, const Use &R) {
|
|
return Order.lookup(&L) < Order.lookup(&R);
|
|
});
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// When we see the block for metadata, remember where it is and then skip it.
|
|
/// This lets us lazily deserialize the metadata.
|
|
Error BitcodeReader::rememberAndSkipMetadata() {
|
|
// Save the current stream state.
|
|
uint64_t CurBit = Stream.GetCurrentBitNo();
|
|
DeferredMetadataInfo.push_back(CurBit);
|
|
|
|
// Skip over the block for now.
|
|
if (Stream.SkipBlock())
|
|
return error("Invalid record");
|
|
return Error::success();
|
|
}
|
|
|
|
Error BitcodeReader::materializeMetadata() {
|
|
for (uint64_t BitPos : DeferredMetadataInfo) {
|
|
// Move the bit stream to the saved position.
|
|
Stream.JumpToBit(BitPos);
|
|
if (Error Err = MDLoader->parseModuleMetadata())
|
|
return Err;
|
|
}
|
|
|
|
// Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
|
|
// metadata.
|
|
if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
|
|
NamedMDNode *LinkerOpts =
|
|
TheModule->getOrInsertNamedMetadata("llvm.linker.options");
|
|
for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
|
|
LinkerOpts->addOperand(cast<MDNode>(MDOptions));
|
|
}
|
|
|
|
DeferredMetadataInfo.clear();
|
|
return Error::success();
|
|
}
|
|
|
|
void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
|
|
|
|
/// When we see the block for a function body, remember where it is and then
|
|
/// skip it. This lets us lazily deserialize the functions.
|
|
Error BitcodeReader::rememberAndSkipFunctionBody() {
|
|
// Get the function we are talking about.
|
|
if (FunctionsWithBodies.empty())
|
|
return error("Insufficient function protos");
|
|
|
|
Function *Fn = FunctionsWithBodies.back();
|
|
FunctionsWithBodies.pop_back();
|
|
|
|
// Save the current stream state.
|
|
uint64_t CurBit = Stream.GetCurrentBitNo();
|
|
assert(
|
|
(DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
|
|
"Mismatch between VST and scanned function offsets");
|
|
DeferredFunctionInfo[Fn] = CurBit;
|
|
|
|
// Skip over the function block for now.
|
|
if (Stream.SkipBlock())
|
|
return error("Invalid record");
|
|
return Error::success();
|
|
}
|
|
|
|
Error BitcodeReader::globalCleanup() {
|
|
// Patch the initializers for globals and aliases up.
|
|
if (Error Err = resolveGlobalAndIndirectSymbolInits())
|
|
return Err;
|
|
if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
|
|
return error("Malformed global initializer set");
|
|
|
|
// Look for intrinsic functions which need to be upgraded at some point
|
|
for (Function &F : *TheModule) {
|
|
MDLoader->upgradeDebugIntrinsics(F);
|
|
Function *NewFn;
|
|
if (UpgradeIntrinsicFunction(&F, NewFn))
|
|
UpgradedIntrinsics[&F] = NewFn;
|
|
else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
|
|
// Some types could be renamed during loading if several modules are
|
|
// loaded in the same LLVMContext (LTO scenario). In this case we should
|
|
// remangle intrinsics names as well.
|
|
RemangledIntrinsics[&F] = Remangled.getValue();
|
|
}
|
|
|
|
// Look for global variables which need to be renamed.
|
|
std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
|
|
for (GlobalVariable &GV : TheModule->globals())
|
|
if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
|
|
UpgradedVariables.emplace_back(&GV, Upgraded);
|
|
for (auto &Pair : UpgradedVariables) {
|
|
Pair.first->eraseFromParent();
|
|
TheModule->getGlobalList().push_back(Pair.second);
|
|
}
|
|
|
|
// Force deallocation of memory for these vectors to favor the client that
|
|
// want lazy deserialization.
|
|
std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
|
|
std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
|
|
IndirectSymbolInits);
|
|
return Error::success();
|
|
}
|
|
|
|
/// Support for lazy parsing of function bodies. This is required if we
|
|
/// either have an old bitcode file without a VST forward declaration record,
|
|
/// or if we have an anonymous function being materialized, since anonymous
|
|
/// functions do not have a name and are therefore not in the VST.
|
|
Error BitcodeReader::rememberAndSkipFunctionBodies() {
|
|
Stream.JumpToBit(NextUnreadBit);
|
|
|
|
if (Stream.AtEndOfStream())
|
|
return error("Could not find function in stream");
|
|
|
|
if (!SeenFirstFunctionBody)
|
|
return error("Trying to materialize functions before seeing function blocks");
|
|
|
|
// An old bitcode file with the symbol table at the end would have
|
|
// finished the parse greedily.
|
|
assert(SeenValueSymbolTable);
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
while (true) {
|
|
BitstreamEntry Entry = Stream.advance();
|
|
switch (Entry.Kind) {
|
|
default:
|
|
return error("Expect SubBlock");
|
|
case BitstreamEntry::SubBlock:
|
|
switch (Entry.ID) {
|
|
default:
|
|
return error("Expect function block");
|
|
case bitc::FUNCTION_BLOCK_ID:
|
|
if (Error Err = rememberAndSkipFunctionBody())
|
|
return Err;
|
|
NextUnreadBit = Stream.GetCurrentBitNo();
|
|
return Error::success();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool BitcodeReaderBase::readBlockInfo() {
|
|
Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock();
|
|
if (!NewBlockInfo)
|
|
return true;
|
|
BlockInfo = std::move(*NewBlockInfo);
|
|
return false;
|
|
}
|
|
|
|
Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
|
|
// v1: [selection_kind, name]
|
|
// v2: [strtab_offset, strtab_size, selection_kind]
|
|
StringRef Name;
|
|
std::tie(Name, Record) = readNameFromStrtab(Record);
|
|
|
|
if (Record.empty())
|
|
return error("Invalid record");
|
|
Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
|
|
std::string OldFormatName;
|
|
if (!UseStrtab) {
|
|
if (Record.size() < 2)
|
|
return error("Invalid record");
|
|
unsigned ComdatNameSize = Record[1];
|
|
OldFormatName.reserve(ComdatNameSize);
|
|
for (unsigned i = 0; i != ComdatNameSize; ++i)
|
|
OldFormatName += (char)Record[2 + i];
|
|
Name = OldFormatName;
|
|
}
|
|
Comdat *C = TheModule->getOrInsertComdat(Name);
|
|
C->setSelectionKind(SK);
|
|
ComdatList.push_back(C);
|
|
return Error::success();
|
|
}
|
|
|
|
static void inferDSOLocal(GlobalValue *GV) {
|
|
// infer dso_local from linkage and visibility if it is not encoded.
|
|
if (GV->hasLocalLinkage() ||
|
|
(!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
|
|
GV->setDSOLocal(true);
|
|
}
|
|
|
|
Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
|
|
// v1: [pointer type, isconst, initid, linkage, alignment, section,
|
|
// visibility, threadlocal, unnamed_addr, externally_initialized,
|
|
// dllstorageclass, comdat, attributes, preemption specifier] (name in VST)
|
|
// v2: [strtab_offset, strtab_size, v1]
|
|
StringRef Name;
|
|
std::tie(Name, Record) = readNameFromStrtab(Record);
|
|
|
|
if (Record.size() < 6)
|
|
return error("Invalid record");
|
|
Type *Ty = getTypeByID(Record[0]);
|
|
if (!Ty)
|
|
return error("Invalid record");
|
|
bool isConstant = Record[1] & 1;
|
|
bool explicitType = Record[1] & 2;
|
|
unsigned AddressSpace;
|
|
if (explicitType) {
|
|
AddressSpace = Record[1] >> 2;
|
|
} else {
|
|
if (!Ty->isPointerTy())
|
|
return error("Invalid type for value");
|
|
AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
|
|
Ty = cast<PointerType>(Ty)->getElementType();
|
|
}
|
|
|
|
uint64_t RawLinkage = Record[3];
|
|
GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
|
|
unsigned Alignment;
|
|
if (Error Err = parseAlignmentValue(Record[4], Alignment))
|
|
return Err;
|
|
std::string Section;
|
|
if (Record[5]) {
|
|
if (Record[5] - 1 >= SectionTable.size())
|
|
return error("Invalid ID");
|
|
Section = SectionTable[Record[5] - 1];
|
|
}
|
|
GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
|
|
// Local linkage must have default visibility.
|
|
if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
|
|
// FIXME: Change to an error if non-default in 4.0.
|
|
Visibility = getDecodedVisibility(Record[6]);
|
|
|
|
GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
|
|
if (Record.size() > 7)
|
|
TLM = getDecodedThreadLocalMode(Record[7]);
|
|
|
|
GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
|
|
if (Record.size() > 8)
|
|
UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
|
|
|
|
bool ExternallyInitialized = false;
|
|
if (Record.size() > 9)
|
|
ExternallyInitialized = Record[9];
|
|
|
|
GlobalVariable *NewGV =
|
|
new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
|
|
nullptr, TLM, AddressSpace, ExternallyInitialized);
|
|
NewGV->setAlignment(Alignment);
|
|
if (!Section.empty())
|
|
NewGV->setSection(Section);
|
|
NewGV->setVisibility(Visibility);
|
|
NewGV->setUnnamedAddr(UnnamedAddr);
|
|
|
|
if (Record.size() > 10)
|
|
NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
|
|
else
|
|
upgradeDLLImportExportLinkage(NewGV, RawLinkage);
|
|
|
|
ValueList.push_back(NewGV);
|
|
|
|
// Remember which value to use for the global initializer.
|
|
if (unsigned InitID = Record[2])
|
|
GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
|
|
|
|
if (Record.size() > 11) {
|
|
if (unsigned ComdatID = Record[11]) {
|
|
if (ComdatID > ComdatList.size())
|
|
return error("Invalid global variable comdat ID");
|
|
NewGV->setComdat(ComdatList[ComdatID - 1]);
|
|
}
|
|
} else if (hasImplicitComdat(RawLinkage)) {
|
|
NewGV->setComdat(reinterpret_cast<Comdat *>(1));
|
|
}
|
|
|
|
if (Record.size() > 12) {
|
|
auto AS = getAttributes(Record[12]).getFnAttributes();
|
|
NewGV->setAttributes(AS);
|
|
}
|
|
|
|
if (Record.size() > 13) {
|
|
NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
|
|
}
|
|
inferDSOLocal(NewGV);
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
|
|
// v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
|
|
// visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
|
|
// prefixdata, personalityfn, preemption specifier, addrspace] (name in VST)
|
|
// v2: [strtab_offset, strtab_size, v1]
|
|
StringRef Name;
|
|
std::tie(Name, Record) = readNameFromStrtab(Record);
|
|
|
|
if (Record.size() < 8)
|
|
return error("Invalid record");
|
|
Type *Ty = getTypeByID(Record[0]);
|
|
if (!Ty)
|
|
return error("Invalid record");
|
|
if (auto *PTy = dyn_cast<PointerType>(Ty))
|
|
Ty = PTy->getElementType();
|
|
auto *FTy = dyn_cast<FunctionType>(Ty);
|
|
if (!FTy)
|
|
return error("Invalid type for value");
|
|
auto CC = static_cast<CallingConv::ID>(Record[1]);
|
|
if (CC & ~CallingConv::MaxID)
|
|
return error("Invalid calling convention ID");
|
|
|
|
unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
|
|
if (Record.size() > 16)
|
|
AddrSpace = Record[16];
|
|
|
|
Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
|
|
AddrSpace, Name, TheModule);
|
|
|
|
Func->setCallingConv(CC);
|
|
bool isProto = Record[2];
|
|
uint64_t RawLinkage = Record[3];
|
|
Func->setLinkage(getDecodedLinkage(RawLinkage));
|
|
Func->setAttributes(getAttributes(Record[4]));
|
|
|
|
unsigned Alignment;
|
|
if (Error Err = parseAlignmentValue(Record[5], Alignment))
|
|
return Err;
|
|
Func->setAlignment(Alignment);
|
|
if (Record[6]) {
|
|
if (Record[6] - 1 >= SectionTable.size())
|
|
return error("Invalid ID");
|
|
Func->setSection(SectionTable[Record[6] - 1]);
|
|
}
|
|
// Local linkage must have default visibility.
|
|
if (!Func->hasLocalLinkage())
|
|
// FIXME: Change to an error if non-default in 4.0.
|
|
Func->setVisibility(getDecodedVisibility(Record[7]));
|
|
if (Record.size() > 8 && Record[8]) {
|
|
if (Record[8] - 1 >= GCTable.size())
|
|
return error("Invalid ID");
|
|
Func->setGC(GCTable[Record[8] - 1]);
|
|
}
|
|
GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
|
|
if (Record.size() > 9)
|
|
UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
|
|
Func->setUnnamedAddr(UnnamedAddr);
|
|
if (Record.size() > 10 && Record[10] != 0)
|
|
FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
|
|
|
|
if (Record.size() > 11)
|
|
Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
|
|
else
|
|
upgradeDLLImportExportLinkage(Func, RawLinkage);
|
|
|
|
if (Record.size() > 12) {
|
|
if (unsigned ComdatID = Record[12]) {
|
|
if (ComdatID > ComdatList.size())
|
|
return error("Invalid function comdat ID");
|
|
Func->setComdat(ComdatList[ComdatID - 1]);
|
|
}
|
|
} else if (hasImplicitComdat(RawLinkage)) {
|
|
Func->setComdat(reinterpret_cast<Comdat *>(1));
|
|
}
|
|
|
|
if (Record.size() > 13 && Record[13] != 0)
|
|
FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
|
|
|
|
if (Record.size() > 14 && Record[14] != 0)
|
|
FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
|
|
|
|
if (Record.size() > 15) {
|
|
Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
|
|
}
|
|
inferDSOLocal(Func);
|
|
|
|
ValueList.push_back(Func);
|
|
|
|
// If this is a function with a body, remember the prototype we are
|
|
// creating now, so that we can match up the body with them later.
|
|
if (!isProto) {
|
|
Func->setIsMaterializable(true);
|
|
FunctionsWithBodies.push_back(Func);
|
|
DeferredFunctionInfo[Func] = 0;
|
|
}
|
|
return Error::success();
|
|
}
|
|
|
|
Error BitcodeReader::parseGlobalIndirectSymbolRecord(
|
|
unsigned BitCode, ArrayRef<uint64_t> Record) {
|
|
// v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
|
|
// v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
|
|
// dllstorageclass, threadlocal, unnamed_addr,
|
|
// preemption specifier] (name in VST)
|
|
// v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
|
|
// visibility, dllstorageclass, threadlocal, unnamed_addr,
|
|
// preemption specifier] (name in VST)
|
|
// v2: [strtab_offset, strtab_size, v1]
|
|
StringRef Name;
|
|
std::tie(Name, Record) = readNameFromStrtab(Record);
|
|
|
|
bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
|
|
if (Record.size() < (3 + (unsigned)NewRecord))
|
|
return error("Invalid record");
|
|
unsigned OpNum = 0;
|
|
Type *Ty = getTypeByID(Record[OpNum++]);
|
|
if (!Ty)
|
|
return error("Invalid record");
|
|
|
|
unsigned AddrSpace;
|
|
if (!NewRecord) {
|
|
auto *PTy = dyn_cast<PointerType>(Ty);
|
|
if (!PTy)
|
|
return error("Invalid type for value");
|
|
Ty = PTy->getElementType();
|
|
AddrSpace = PTy->getAddressSpace();
|
|
} else {
|
|
AddrSpace = Record[OpNum++];
|
|
}
|
|
|
|
auto Val = Record[OpNum++];
|
|
auto Linkage = Record[OpNum++];
|
|
GlobalIndirectSymbol *NewGA;
|
|
if (BitCode == bitc::MODULE_CODE_ALIAS ||
|
|
BitCode == bitc::MODULE_CODE_ALIAS_OLD)
|
|
NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
|
|
TheModule);
|
|
else
|
|
NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
|
|
nullptr, TheModule);
|
|
// Old bitcode files didn't have visibility field.
|
|
// Local linkage must have default visibility.
|
|
if (OpNum != Record.size()) {
|
|
auto VisInd = OpNum++;
|
|
if (!NewGA->hasLocalLinkage())
|
|
// FIXME: Change to an error if non-default in 4.0.
|
|
NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
|
|
}
|
|
if (BitCode == bitc::MODULE_CODE_ALIAS ||
|
|
BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
|
|
if (OpNum != Record.size())
|
|
NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
|
|
else
|
|
upgradeDLLImportExportLinkage(NewGA, Linkage);
|
|
if (OpNum != Record.size())
|
|
NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
|
|
if (OpNum != Record.size())
|
|
NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
|
|
}
|
|
if (OpNum != Record.size())
|
|
NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
|
|
inferDSOLocal(NewGA);
|
|
|
|
ValueList.push_back(NewGA);
|
|
IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
|
|
return Error::success();
|
|
}
|
|
|
|
Error BitcodeReader::parseModule(uint64_t ResumeBit,
|
|
bool ShouldLazyLoadMetadata) {
|
|
if (ResumeBit)
|
|
Stream.JumpToBit(ResumeBit);
|
|
else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
// Read all the records for this module.
|
|
while (true) {
|
|
BitstreamEntry Entry = Stream.advance();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
return globalCleanup();
|
|
|
|
case BitstreamEntry::SubBlock:
|
|
switch (Entry.ID) {
|
|
default: // Skip unknown content.
|
|
if (Stream.SkipBlock())
|
|
return error("Invalid record");
|
|
break;
|
|
case bitc::BLOCKINFO_BLOCK_ID:
|
|
if (readBlockInfo())
|
|
return error("Malformed block");
|
|
break;
|
|
case bitc::PARAMATTR_BLOCK_ID:
|
|
if (Error Err = parseAttributeBlock())
|
|
return Err;
|
|
break;
|
|
case bitc::PARAMATTR_GROUP_BLOCK_ID:
|
|
if (Error Err = parseAttributeGroupBlock())
|
|
return Err;
|
|
break;
|
|
case bitc::TYPE_BLOCK_ID_NEW:
|
|
if (Error Err = parseTypeTable())
|
|
return Err;
|
|
break;
|
|
case bitc::VALUE_SYMTAB_BLOCK_ID:
|
|
if (!SeenValueSymbolTable) {
|
|
// Either this is an old form VST without function index and an
|
|
// associated VST forward declaration record (which would have caused
|
|
// the VST to be jumped to and parsed before it was encountered
|
|
// normally in the stream), or there were no function blocks to
|
|
// trigger an earlier parsing of the VST.
|
|
assert(VSTOffset == 0 || FunctionsWithBodies.empty());
|
|
if (Error Err = parseValueSymbolTable())
|
|
return Err;
|
|
SeenValueSymbolTable = true;
|
|
} else {
|
|
// We must have had a VST forward declaration record, which caused
|
|
// the parser to jump to and parse the VST earlier.
|
|
assert(VSTOffset > 0);
|
|
if (Stream.SkipBlock())
|
|
return error("Invalid record");
|
|
}
|
|
break;
|
|
case bitc::CONSTANTS_BLOCK_ID:
|
|
if (Error Err = parseConstants())
|
|
return Err;
|
|
if (Error Err = resolveGlobalAndIndirectSymbolInits())
|
|
return Err;
|
|
break;
|
|
case bitc::METADATA_BLOCK_ID:
|
|
if (ShouldLazyLoadMetadata) {
|
|
if (Error Err = rememberAndSkipMetadata())
|
|
return Err;
|
|
break;
|
|
}
|
|
assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
|
|
if (Error Err = MDLoader->parseModuleMetadata())
|
|
return Err;
|
|
break;
|
|
case bitc::METADATA_KIND_BLOCK_ID:
|
|
if (Error Err = MDLoader->parseMetadataKinds())
|
|
return Err;
|
|
break;
|
|
case bitc::FUNCTION_BLOCK_ID:
|
|
// If this is the first function body we've seen, reverse the
|
|
// FunctionsWithBodies list.
|
|
if (!SeenFirstFunctionBody) {
|
|
std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
|
|
if (Error Err = globalCleanup())
|
|
return Err;
|
|
SeenFirstFunctionBody = true;
|
|
}
|
|
|
|
if (VSTOffset > 0) {
|
|
// If we have a VST forward declaration record, make sure we
|
|
// parse the VST now if we haven't already. It is needed to
|
|
// set up the DeferredFunctionInfo vector for lazy reading.
|
|
if (!SeenValueSymbolTable) {
|
|
if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
|
|
return Err;
|
|
SeenValueSymbolTable = true;
|
|
// Fall through so that we record the NextUnreadBit below.
|
|
// This is necessary in case we have an anonymous function that
|
|
// is later materialized. Since it will not have a VST entry we
|
|
// need to fall back to the lazy parse to find its offset.
|
|
} else {
|
|
// If we have a VST forward declaration record, but have already
|
|
// parsed the VST (just above, when the first function body was
|
|
// encountered here), then we are resuming the parse after
|
|
// materializing functions. The ResumeBit points to the
|
|
// start of the last function block recorded in the
|
|
// DeferredFunctionInfo map. Skip it.
|
|
if (Stream.SkipBlock())
|
|
return error("Invalid record");
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Support older bitcode files that did not have the function
|
|
// index in the VST, nor a VST forward declaration record, as
|
|
// well as anonymous functions that do not have VST entries.
|
|
// Build the DeferredFunctionInfo vector on the fly.
|
|
if (Error Err = rememberAndSkipFunctionBody())
|
|
return Err;
|
|
|
|
// Suspend parsing when we reach the function bodies. Subsequent
|
|
// materialization calls will resume it when necessary. If the bitcode
|
|
// file is old, the symbol table will be at the end instead and will not
|
|
// have been seen yet. In this case, just finish the parse now.
|
|
if (SeenValueSymbolTable) {
|
|
NextUnreadBit = Stream.GetCurrentBitNo();
|
|
// After the VST has been parsed, we need to make sure intrinsic name
|
|
// are auto-upgraded.
|
|
return globalCleanup();
|
|
}
|
|
break;
|
|
case bitc::USELIST_BLOCK_ID:
|
|
if (Error Err = parseUseLists())
|
|
return Err;
|
|
break;
|
|
case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
|
|
if (Error Err = parseOperandBundleTags())
|
|
return Err;
|
|
break;
|
|
case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
|
|
if (Error Err = parseSyncScopeNames())
|
|
return Err;
|
|
break;
|
|
}
|
|
continue;
|
|
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record.
|
|
auto BitCode = Stream.readRecord(Entry.ID, Record);
|
|
switch (BitCode) {
|
|
default: break; // Default behavior, ignore unknown content.
|
|
case bitc::MODULE_CODE_VERSION: {
|
|
Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
|
|
if (!VersionOrErr)
|
|
return VersionOrErr.takeError();
|
|
UseRelativeIDs = *VersionOrErr >= 1;
|
|
break;
|
|
}
|
|
case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
|
|
std::string S;
|
|
if (convertToString(Record, 0, S))
|
|
return error("Invalid record");
|
|
TheModule->setTargetTriple(S);
|
|
break;
|
|
}
|
|
case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
|
|
std::string S;
|
|
if (convertToString(Record, 0, S))
|
|
return error("Invalid record");
|
|
TheModule->setDataLayout(S);
|
|
break;
|
|
}
|
|
case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
|
|
std::string S;
|
|
if (convertToString(Record, 0, S))
|
|
return error("Invalid record");
|
|
TheModule->setModuleInlineAsm(S);
|
|
break;
|
|
}
|
|
case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
|
|
// FIXME: Remove in 4.0.
|
|
std::string S;
|
|
if (convertToString(Record, 0, S))
|
|
return error("Invalid record");
|
|
// Ignore value.
|
|
break;
|
|
}
|
|
case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
|
|
std::string S;
|
|
if (convertToString(Record, 0, S))
|
|
return error("Invalid record");
|
|
SectionTable.push_back(S);
|
|
break;
|
|
}
|
|
case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
|
|
std::string S;
|
|
if (convertToString(Record, 0, S))
|
|
return error("Invalid record");
|
|
GCTable.push_back(S);
|
|
break;
|
|
}
|
|
case bitc::MODULE_CODE_COMDAT:
|
|
if (Error Err = parseComdatRecord(Record))
|
|
return Err;
|
|
break;
|
|
case bitc::MODULE_CODE_GLOBALVAR:
|
|
if (Error Err = parseGlobalVarRecord(Record))
|
|
return Err;
|
|
break;
|
|
case bitc::MODULE_CODE_FUNCTION:
|
|
if (Error Err = parseFunctionRecord(Record))
|
|
return Err;
|
|
break;
|
|
case bitc::MODULE_CODE_IFUNC:
|
|
case bitc::MODULE_CODE_ALIAS:
|
|
case bitc::MODULE_CODE_ALIAS_OLD:
|
|
if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
|
|
return Err;
|
|
break;
|
|
/// MODULE_CODE_VSTOFFSET: [offset]
|
|
case bitc::MODULE_CODE_VSTOFFSET:
|
|
if (Record.size() < 1)
|
|
return error("Invalid record");
|
|
// Note that we subtract 1 here because the offset is relative to one word
|
|
// before the start of the identification or module block, which was
|
|
// historically always the start of the regular bitcode header.
|
|
VSTOffset = Record[0] - 1;
|
|
break;
|
|
/// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
|
|
case bitc::MODULE_CODE_SOURCE_FILENAME:
|
|
SmallString<128> ValueName;
|
|
if (convertToString(Record, 0, ValueName))
|
|
return error("Invalid record");
|
|
TheModule->setSourceFileName(ValueName);
|
|
break;
|
|
}
|
|
Record.clear();
|
|
}
|
|
}
|
|
|
|
Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
|
|
bool IsImporting) {
|
|
TheModule = M;
|
|
MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
|
|
[&](unsigned ID) { return getTypeByID(ID); });
|
|
return parseModule(0, ShouldLazyLoadMetadata);
|
|
}
|
|
|
|
Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
|
|
if (!isa<PointerType>(PtrType))
|
|
return error("Load/Store operand is not a pointer type");
|
|
Type *ElemType = cast<PointerType>(PtrType)->getElementType();
|
|
|
|
if (ValType && ValType != ElemType)
|
|
return error("Explicit load/store type does not match pointee "
|
|
"type of pointer operand");
|
|
if (!PointerType::isLoadableOrStorableType(ElemType))
|
|
return error("Cannot load/store from pointer");
|
|
return Error::success();
|
|
}
|
|
|
|
/// Lazily parse the specified function body block.
|
|
Error BitcodeReader::parseFunctionBody(Function *F) {
|
|
if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
// Unexpected unresolved metadata when parsing function.
|
|
if (MDLoader->hasFwdRefs())
|
|
return error("Invalid function metadata: incoming forward references");
|
|
|
|
InstructionList.clear();
|
|
unsigned ModuleValueListSize = ValueList.size();
|
|
unsigned ModuleMDLoaderSize = MDLoader->size();
|
|
|
|
// Add all the function arguments to the value table.
|
|
for (Argument &I : F->args())
|
|
ValueList.push_back(&I);
|
|
|
|
unsigned NextValueNo = ValueList.size();
|
|
BasicBlock *CurBB = nullptr;
|
|
unsigned CurBBNo = 0;
|
|
|
|
DebugLoc LastLoc;
|
|
auto getLastInstruction = [&]() -> Instruction * {
|
|
if (CurBB && !CurBB->empty())
|
|
return &CurBB->back();
|
|
else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
|
|
!FunctionBBs[CurBBNo - 1]->empty())
|
|
return &FunctionBBs[CurBBNo - 1]->back();
|
|
return nullptr;
|
|
};
|
|
|
|
std::vector<OperandBundleDef> OperandBundles;
|
|
|
|
// Read all the records.
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
while (true) {
|
|
BitstreamEntry Entry = Stream.advance();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
goto OutOfRecordLoop;
|
|
|
|
case BitstreamEntry::SubBlock:
|
|
switch (Entry.ID) {
|
|
default: // Skip unknown content.
|
|
if (Stream.SkipBlock())
|
|
return error("Invalid record");
|
|
break;
|
|
case bitc::CONSTANTS_BLOCK_ID:
|
|
if (Error Err = parseConstants())
|
|
return Err;
|
|
NextValueNo = ValueList.size();
|
|
break;
|
|
case bitc::VALUE_SYMTAB_BLOCK_ID:
|
|
if (Error Err = parseValueSymbolTable())
|
|
return Err;
|
|
break;
|
|
case bitc::METADATA_ATTACHMENT_ID:
|
|
if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
|
|
return Err;
|
|
break;
|
|
case bitc::METADATA_BLOCK_ID:
|
|
assert(DeferredMetadataInfo.empty() &&
|
|
"Must read all module-level metadata before function-level");
|
|
if (Error Err = MDLoader->parseFunctionMetadata())
|
|
return Err;
|
|
break;
|
|
case bitc::USELIST_BLOCK_ID:
|
|
if (Error Err = parseUseLists())
|
|
return Err;
|
|
break;
|
|
}
|
|
continue;
|
|
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record.
|
|
Record.clear();
|
|
Instruction *I = nullptr;
|
|
unsigned BitCode = Stream.readRecord(Entry.ID, Record);
|
|
switch (BitCode) {
|
|
default: // Default behavior: reject
|
|
return error("Invalid value");
|
|
case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks]
|
|
if (Record.size() < 1 || Record[0] == 0)
|
|
return error("Invalid record");
|
|
// Create all the basic blocks for the function.
|
|
FunctionBBs.resize(Record[0]);
|
|
|
|
// See if anything took the address of blocks in this function.
|
|
auto BBFRI = BasicBlockFwdRefs.find(F);
|
|
if (BBFRI == BasicBlockFwdRefs.end()) {
|
|
for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
|
|
FunctionBBs[i] = BasicBlock::Create(Context, "", F);
|
|
} else {
|
|
auto &BBRefs = BBFRI->second;
|
|
// Check for invalid basic block references.
|
|
if (BBRefs.size() > FunctionBBs.size())
|
|
return error("Invalid ID");
|
|
assert(!BBRefs.empty() && "Unexpected empty array");
|
|
assert(!BBRefs.front() && "Invalid reference to entry block");
|
|
for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
|
|
++I)
|
|
if (I < RE && BBRefs[I]) {
|
|
BBRefs[I]->insertInto(F);
|
|
FunctionBBs[I] = BBRefs[I];
|
|
} else {
|
|
FunctionBBs[I] = BasicBlock::Create(Context, "", F);
|
|
}
|
|
|
|
// Erase from the table.
|
|
BasicBlockFwdRefs.erase(BBFRI);
|
|
}
|
|
|
|
CurBB = FunctionBBs[0];
|
|
continue;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
|
|
// This record indicates that the last instruction is at the same
|
|
// location as the previous instruction with a location.
|
|
I = getLastInstruction();
|
|
|
|
if (!I)
|
|
return error("Invalid record");
|
|
I->setDebugLoc(LastLoc);
|
|
I = nullptr;
|
|
continue;
|
|
|
|
case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
|
|
I = getLastInstruction();
|
|
if (!I || Record.size() < 4)
|
|
return error("Invalid record");
|
|
|
|
unsigned Line = Record[0], Col = Record[1];
|
|
unsigned ScopeID = Record[2], IAID = Record[3];
|
|
bool isImplicitCode = Record.size() == 5 && Record[4];
|
|
|
|
MDNode *Scope = nullptr, *IA = nullptr;
|
|
if (ScopeID) {
|
|
Scope = dyn_cast_or_null<MDNode>(
|
|
MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
|
|
if (!Scope)
|
|
return error("Invalid record");
|
|
}
|
|
if (IAID) {
|
|
IA = dyn_cast_or_null<MDNode>(
|
|
MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
|
|
if (!IA)
|
|
return error("Invalid record");
|
|
}
|
|
LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode);
|
|
I->setDebugLoc(LastLoc);
|
|
I = nullptr;
|
|
continue;
|
|
}
|
|
case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode]
|
|
unsigned OpNum = 0;
|
|
Value *LHS;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
|
|
OpNum+1 > Record.size())
|
|
return error("Invalid record");
|
|
|
|
int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
|
|
if (Opc == -1)
|
|
return error("Invalid record");
|
|
I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
|
|
InstructionList.push_back(I);
|
|
if (OpNum < Record.size()) {
|
|
if (isa<FPMathOperator>(I)) {
|
|
FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
|
|
if (FMF.any())
|
|
I->setFastMathFlags(FMF);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
|
|
unsigned OpNum = 0;
|
|
Value *LHS, *RHS;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
|
|
popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
|
|
OpNum+1 > Record.size())
|
|
return error("Invalid record");
|
|
|
|
int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
|
|
if (Opc == -1)
|
|
return error("Invalid record");
|
|
I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
|
|
InstructionList.push_back(I);
|
|
if (OpNum < Record.size()) {
|
|
if (Opc == Instruction::Add ||
|
|
Opc == Instruction::Sub ||
|
|
Opc == Instruction::Mul ||
|
|
Opc == Instruction::Shl) {
|
|
if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
|
|
cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
|
|
if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
|
|
cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
|
|
} else if (Opc == Instruction::SDiv ||
|
|
Opc == Instruction::UDiv ||
|
|
Opc == Instruction::LShr ||
|
|
Opc == Instruction::AShr) {
|
|
if (Record[OpNum] & (1 << bitc::PEO_EXACT))
|
|
cast<BinaryOperator>(I)->setIsExact(true);
|
|
} else if (isa<FPMathOperator>(I)) {
|
|
FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
|
|
if (FMF.any())
|
|
I->setFastMathFlags(FMF);
|
|
}
|
|
|
|
}
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
|
|
unsigned OpNum = 0;
|
|
Value *Op;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
|
|
OpNum+2 != Record.size())
|
|
return error("Invalid record");
|
|
|
|
Type *ResTy = getTypeByID(Record[OpNum]);
|
|
int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
|
|
if (Opc == -1 || !ResTy)
|
|
return error("Invalid record");
|
|
Instruction *Temp = nullptr;
|
|
if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
|
|
if (Temp) {
|
|
InstructionList.push_back(Temp);
|
|
CurBB->getInstList().push_back(Temp);
|
|
}
|
|
} else {
|
|
auto CastOp = (Instruction::CastOps)Opc;
|
|
if (!CastInst::castIsValid(CastOp, Op, ResTy))
|
|
return error("Invalid cast");
|
|
I = CastInst::Create(CastOp, Op, ResTy);
|
|
}
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
|
|
case bitc::FUNC_CODE_INST_GEP_OLD:
|
|
case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
|
|
unsigned OpNum = 0;
|
|
|
|
Type *Ty;
|
|
bool InBounds;
|
|
|
|
if (BitCode == bitc::FUNC_CODE_INST_GEP) {
|
|
InBounds = Record[OpNum++];
|
|
Ty = getTypeByID(Record[OpNum++]);
|
|
} else {
|
|
InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
|
|
Ty = nullptr;
|
|
}
|
|
|
|
Value *BasePtr;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
|
|
return error("Invalid record");
|
|
|
|
if (!Ty)
|
|
Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
|
|
->getElementType();
|
|
else if (Ty !=
|
|
cast<PointerType>(BasePtr->getType()->getScalarType())
|
|
->getElementType())
|
|
return error(
|
|
"Explicit gep type does not match pointee type of pointer operand");
|
|
|
|
SmallVector<Value*, 16> GEPIdx;
|
|
while (OpNum != Record.size()) {
|
|
Value *Op;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
|
|
return error("Invalid record");
|
|
GEPIdx.push_back(Op);
|
|
}
|
|
|
|
I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
|
|
|
|
InstructionList.push_back(I);
|
|
if (InBounds)
|
|
cast<GetElementPtrInst>(I)->setIsInBounds(true);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_EXTRACTVAL: {
|
|
// EXTRACTVAL: [opty, opval, n x indices]
|
|
unsigned OpNum = 0;
|
|
Value *Agg;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
|
|
return error("Invalid record");
|
|
|
|
unsigned RecSize = Record.size();
|
|
if (OpNum == RecSize)
|
|
return error("EXTRACTVAL: Invalid instruction with 0 indices");
|
|
|
|
SmallVector<unsigned, 4> EXTRACTVALIdx;
|
|
Type *CurTy = Agg->getType();
|
|
for (; OpNum != RecSize; ++OpNum) {
|
|
bool IsArray = CurTy->isArrayTy();
|
|
bool IsStruct = CurTy->isStructTy();
|
|
uint64_t Index = Record[OpNum];
|
|
|
|
if (!IsStruct && !IsArray)
|
|
return error("EXTRACTVAL: Invalid type");
|
|
if ((unsigned)Index != Index)
|
|
return error("Invalid value");
|
|
if (IsStruct && Index >= CurTy->getStructNumElements())
|
|
return error("EXTRACTVAL: Invalid struct index");
|
|
if (IsArray && Index >= CurTy->getArrayNumElements())
|
|
return error("EXTRACTVAL: Invalid array index");
|
|
EXTRACTVALIdx.push_back((unsigned)Index);
|
|
|
|
if (IsStruct)
|
|
CurTy = CurTy->getStructElementType(Index);
|
|
else
|
|
CurTy = CurTy->getArrayElementType();
|
|
}
|
|
|
|
I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_INSERTVAL: {
|
|
// INSERTVAL: [opty, opval, opty, opval, n x indices]
|
|
unsigned OpNum = 0;
|
|
Value *Agg;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
|
|
return error("Invalid record");
|
|
Value *Val;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Val))
|
|
return error("Invalid record");
|
|
|
|
unsigned RecSize = Record.size();
|
|
if (OpNum == RecSize)
|
|
return error("INSERTVAL: Invalid instruction with 0 indices");
|
|
|
|
SmallVector<unsigned, 4> INSERTVALIdx;
|
|
Type *CurTy = Agg->getType();
|
|
for (; OpNum != RecSize; ++OpNum) {
|
|
bool IsArray = CurTy->isArrayTy();
|
|
bool IsStruct = CurTy->isStructTy();
|
|
uint64_t Index = Record[OpNum];
|
|
|
|
if (!IsStruct && !IsArray)
|
|
return error("INSERTVAL: Invalid type");
|
|
if ((unsigned)Index != Index)
|
|
return error("Invalid value");
|
|
if (IsStruct && Index >= CurTy->getStructNumElements())
|
|
return error("INSERTVAL: Invalid struct index");
|
|
if (IsArray && Index >= CurTy->getArrayNumElements())
|
|
return error("INSERTVAL: Invalid array index");
|
|
|
|
INSERTVALIdx.push_back((unsigned)Index);
|
|
if (IsStruct)
|
|
CurTy = CurTy->getStructElementType(Index);
|
|
else
|
|
CurTy = CurTy->getArrayElementType();
|
|
}
|
|
|
|
if (CurTy != Val->getType())
|
|
return error("Inserted value type doesn't match aggregate type");
|
|
|
|
I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
|
|
// obsolete form of select
|
|
// handles select i1 ... in old bitcode
|
|
unsigned OpNum = 0;
|
|
Value *TrueVal, *FalseVal, *Cond;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
|
|
popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
|
|
popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
|
|
return error("Invalid record");
|
|
|
|
I = SelectInst::Create(Cond, TrueVal, FalseVal);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
|
|
// new form of select
|
|
// handles select i1 or select [N x i1]
|
|
unsigned OpNum = 0;
|
|
Value *TrueVal, *FalseVal, *Cond;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
|
|
popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
|
|
getValueTypePair(Record, OpNum, NextValueNo, Cond))
|
|
return error("Invalid record");
|
|
|
|
// select condition can be either i1 or [N x i1]
|
|
if (VectorType* vector_type =
|
|
dyn_cast<VectorType>(Cond->getType())) {
|
|
// expect <n x i1>
|
|
if (vector_type->getElementType() != Type::getInt1Ty(Context))
|
|
return error("Invalid type for value");
|
|
} else {
|
|
// expect i1
|
|
if (Cond->getType() != Type::getInt1Ty(Context))
|
|
return error("Invalid type for value");
|
|
}
|
|
|
|
I = SelectInst::Create(Cond, TrueVal, FalseVal);
|
|
InstructionList.push_back(I);
|
|
if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
|
|
FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
|
|
if (FMF.any())
|
|
I->setFastMathFlags(FMF);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
|
|
unsigned OpNum = 0;
|
|
Value *Vec, *Idx;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
|
|
getValueTypePair(Record, OpNum, NextValueNo, Idx))
|
|
return error("Invalid record");
|
|
if (!Vec->getType()->isVectorTy())
|
|
return error("Invalid type for value");
|
|
I = ExtractElementInst::Create(Vec, Idx);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
|
|
unsigned OpNum = 0;
|
|
Value *Vec, *Elt, *Idx;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
|
|
return error("Invalid record");
|
|
if (!Vec->getType()->isVectorTy())
|
|
return error("Invalid type for value");
|
|
if (popValue(Record, OpNum, NextValueNo,
|
|
cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
|
|
getValueTypePair(Record, OpNum, NextValueNo, Idx))
|
|
return error("Invalid record");
|
|
I = InsertElementInst::Create(Vec, Elt, Idx);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
|
|
unsigned OpNum = 0;
|
|
Value *Vec1, *Vec2, *Mask;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
|
|
popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
|
|
return error("Invalid record");
|
|
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
|
|
return error("Invalid record");
|
|
if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
|
|
return error("Invalid type for value");
|
|
I = new ShuffleVectorInst(Vec1, Vec2, Mask);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
|
|
// Old form of ICmp/FCmp returning bool
|
|
// Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
|
|
// both legal on vectors but had different behaviour.
|
|
case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
|
|
// FCmp/ICmp returning bool or vector of bool
|
|
|
|
unsigned OpNum = 0;
|
|
Value *LHS, *RHS;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
|
|
popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
|
|
return error("Invalid record");
|
|
|
|
unsigned PredVal = Record[OpNum];
|
|
bool IsFP = LHS->getType()->isFPOrFPVectorTy();
|
|
FastMathFlags FMF;
|
|
if (IsFP && Record.size() > OpNum+1)
|
|
FMF = getDecodedFastMathFlags(Record[++OpNum]);
|
|
|
|
if (OpNum+1 != Record.size())
|
|
return error("Invalid record");
|
|
|
|
if (LHS->getType()->isFPOrFPVectorTy())
|
|
I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
|
|
else
|
|
I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
|
|
|
|
if (FMF.any())
|
|
I->setFastMathFlags(FMF);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
|
|
{
|
|
unsigned Size = Record.size();
|
|
if (Size == 0) {
|
|
I = ReturnInst::Create(Context);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
unsigned OpNum = 0;
|
|
Value *Op = nullptr;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
|
|
return error("Invalid record");
|
|
if (OpNum != Record.size())
|
|
return error("Invalid record");
|
|
|
|
I = ReturnInst::Create(Context, Op);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
|
|
if (Record.size() != 1 && Record.size() != 3)
|
|
return error("Invalid record");
|
|
BasicBlock *TrueDest = getBasicBlock(Record[0]);
|
|
if (!TrueDest)
|
|
return error("Invalid record");
|
|
|
|
if (Record.size() == 1) {
|
|
I = BranchInst::Create(TrueDest);
|
|
InstructionList.push_back(I);
|
|
}
|
|
else {
|
|
BasicBlock *FalseDest = getBasicBlock(Record[1]);
|
|
Value *Cond = getValue(Record, 2, NextValueNo,
|
|
Type::getInt1Ty(Context));
|
|
if (!FalseDest || !Cond)
|
|
return error("Invalid record");
|
|
I = BranchInst::Create(TrueDest, FalseDest, Cond);
|
|
InstructionList.push_back(I);
|
|
}
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
|
|
if (Record.size() != 1 && Record.size() != 2)
|
|
return error("Invalid record");
|
|
unsigned Idx = 0;
|
|
Value *CleanupPad =
|
|
getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
|
|
if (!CleanupPad)
|
|
return error("Invalid record");
|
|
BasicBlock *UnwindDest = nullptr;
|
|
if (Record.size() == 2) {
|
|
UnwindDest = getBasicBlock(Record[Idx++]);
|
|
if (!UnwindDest)
|
|
return error("Invalid record");
|
|
}
|
|
|
|
I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
|
|
if (Record.size() != 2)
|
|
return error("Invalid record");
|
|
unsigned Idx = 0;
|
|
Value *CatchPad =
|
|
getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
|
|
if (!CatchPad)
|
|
return error("Invalid record");
|
|
BasicBlock *BB = getBasicBlock(Record[Idx++]);
|
|
if (!BB)
|
|
return error("Invalid record");
|
|
|
|
I = CatchReturnInst::Create(CatchPad, BB);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
|
|
// We must have, at minimum, the outer scope and the number of arguments.
|
|
if (Record.size() < 2)
|
|
return error("Invalid record");
|
|
|
|
unsigned Idx = 0;
|
|
|
|
Value *ParentPad =
|
|
getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
|
|
|
|
unsigned NumHandlers = Record[Idx++];
|
|
|
|
SmallVector<BasicBlock *, 2> Handlers;
|
|
for (unsigned Op = 0; Op != NumHandlers; ++Op) {
|
|
BasicBlock *BB = getBasicBlock(Record[Idx++]);
|
|
if (!BB)
|
|
return error("Invalid record");
|
|
Handlers.push_back(BB);
|
|
}
|
|
|
|
BasicBlock *UnwindDest = nullptr;
|
|
if (Idx + 1 == Record.size()) {
|
|
UnwindDest = getBasicBlock(Record[Idx++]);
|
|
if (!UnwindDest)
|
|
return error("Invalid record");
|
|
}
|
|
|
|
if (Record.size() != Idx)
|
|
return error("Invalid record");
|
|
|
|
auto *CatchSwitch =
|
|
CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
|
|
for (BasicBlock *Handler : Handlers)
|
|
CatchSwitch->addHandler(Handler);
|
|
I = CatchSwitch;
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_CATCHPAD:
|
|
case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
|
|
// We must have, at minimum, the outer scope and the number of arguments.
|
|
if (Record.size() < 2)
|
|
return error("Invalid record");
|
|
|
|
unsigned Idx = 0;
|
|
|
|
Value *ParentPad =
|
|
getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
|
|
|
|
unsigned NumArgOperands = Record[Idx++];
|
|
|
|
SmallVector<Value *, 2> Args;
|
|
for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
|
|
Value *Val;
|
|
if (getValueTypePair(Record, Idx, NextValueNo, Val))
|
|
return error("Invalid record");
|
|
Args.push_back(Val);
|
|
}
|
|
|
|
if (Record.size() != Idx)
|
|
return error("Invalid record");
|
|
|
|
if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
|
|
I = CleanupPadInst::Create(ParentPad, Args);
|
|
else
|
|
I = CatchPadInst::Create(ParentPad, Args);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
|
|
// Check magic
|
|
if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
|
|
// "New" SwitchInst format with case ranges. The changes to write this
|
|
// format were reverted but we still recognize bitcode that uses it.
|
|
// Hopefully someday we will have support for case ranges and can use
|
|
// this format again.
|
|
|
|
Type *OpTy = getTypeByID(Record[1]);
|
|
unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
|
|
|
|
Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
|
|
BasicBlock *Default = getBasicBlock(Record[3]);
|
|
if (!OpTy || !Cond || !Default)
|
|
return error("Invalid record");
|
|
|
|
unsigned NumCases = Record[4];
|
|
|
|
SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
|
|
InstructionList.push_back(SI);
|
|
|
|
unsigned CurIdx = 5;
|
|
for (unsigned i = 0; i != NumCases; ++i) {
|
|
SmallVector<ConstantInt*, 1> CaseVals;
|
|
unsigned NumItems = Record[CurIdx++];
|
|
for (unsigned ci = 0; ci != NumItems; ++ci) {
|
|
bool isSingleNumber = Record[CurIdx++];
|
|
|
|
APInt Low;
|
|
unsigned ActiveWords = 1;
|
|
if (ValueBitWidth > 64)
|
|
ActiveWords = Record[CurIdx++];
|
|
Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
|
|
ValueBitWidth);
|
|
CurIdx += ActiveWords;
|
|
|
|
if (!isSingleNumber) {
|
|
ActiveWords = 1;
|
|
if (ValueBitWidth > 64)
|
|
ActiveWords = Record[CurIdx++];
|
|
APInt High = readWideAPInt(
|
|
makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
|
|
CurIdx += ActiveWords;
|
|
|
|
// FIXME: It is not clear whether values in the range should be
|
|
// compared as signed or unsigned values. The partially
|
|
// implemented changes that used this format in the past used
|
|
// unsigned comparisons.
|
|
for ( ; Low.ule(High); ++Low)
|
|
CaseVals.push_back(ConstantInt::get(Context, Low));
|
|
} else
|
|
CaseVals.push_back(ConstantInt::get(Context, Low));
|
|
}
|
|
BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
|
|
for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
|
|
cve = CaseVals.end(); cvi != cve; ++cvi)
|
|
SI->addCase(*cvi, DestBB);
|
|
}
|
|
I = SI;
|
|
break;
|
|
}
|
|
|
|
// Old SwitchInst format without case ranges.
|
|
|
|
if (Record.size() < 3 || (Record.size() & 1) == 0)
|
|
return error("Invalid record");
|
|
Type *OpTy = getTypeByID(Record[0]);
|
|
Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
|
|
BasicBlock *Default = getBasicBlock(Record[2]);
|
|
if (!OpTy || !Cond || !Default)
|
|
return error("Invalid record");
|
|
unsigned NumCases = (Record.size()-3)/2;
|
|
SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
|
|
InstructionList.push_back(SI);
|
|
for (unsigned i = 0, e = NumCases; i != e; ++i) {
|
|
ConstantInt *CaseVal =
|
|
dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
|
|
BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
|
|
if (!CaseVal || !DestBB) {
|
|
delete SI;
|
|
return error("Invalid record");
|
|
}
|
|
SI->addCase(CaseVal, DestBB);
|
|
}
|
|
I = SI;
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
|
|
if (Record.size() < 2)
|
|
return error("Invalid record");
|
|
Type *OpTy = getTypeByID(Record[0]);
|
|
Value *Address = getValue(Record, 1, NextValueNo, OpTy);
|
|
if (!OpTy || !Address)
|
|
return error("Invalid record");
|
|
unsigned NumDests = Record.size()-2;
|
|
IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
|
|
InstructionList.push_back(IBI);
|
|
for (unsigned i = 0, e = NumDests; i != e; ++i) {
|
|
if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
|
|
IBI->addDestination(DestBB);
|
|
} else {
|
|
delete IBI;
|
|
return error("Invalid record");
|
|
}
|
|
}
|
|
I = IBI;
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_INVOKE: {
|
|
// INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
|
|
if (Record.size() < 4)
|
|
return error("Invalid record");
|
|
unsigned OpNum = 0;
|
|
AttributeList PAL = getAttributes(Record[OpNum++]);
|
|
unsigned CCInfo = Record[OpNum++];
|
|
BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
|
|
BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
|
|
|
|
FunctionType *FTy = nullptr;
|
|
if (CCInfo >> 13 & 1 &&
|
|
!(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
|
|
return error("Explicit invoke type is not a function type");
|
|
|
|
Value *Callee;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
|
|
return error("Invalid record");
|
|
|
|
PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
|
|
if (!CalleeTy)
|
|
return error("Callee is not a pointer");
|
|
if (!FTy) {
|
|
FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
|
|
if (!FTy)
|
|
return error("Callee is not of pointer to function type");
|
|
} else if (CalleeTy->getElementType() != FTy)
|
|
return error("Explicit invoke type does not match pointee type of "
|
|
"callee operand");
|
|
if (Record.size() < FTy->getNumParams() + OpNum)
|
|
return error("Insufficient operands to call");
|
|
|
|
SmallVector<Value*, 16> Ops;
|
|
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
|
|
Ops.push_back(getValue(Record, OpNum, NextValueNo,
|
|
FTy->getParamType(i)));
|
|
if (!Ops.back())
|
|
return error("Invalid record");
|
|
}
|
|
|
|
if (!FTy->isVarArg()) {
|
|
if (Record.size() != OpNum)
|
|
return error("Invalid record");
|
|
} else {
|
|
// Read type/value pairs for varargs params.
|
|
while (OpNum != Record.size()) {
|
|
Value *Op;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
|
|
return error("Invalid record");
|
|
Ops.push_back(Op);
|
|
}
|
|
}
|
|
|
|
I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
|
|
OperandBundles);
|
|
OperandBundles.clear();
|
|
InstructionList.push_back(I);
|
|
cast<InvokeInst>(I)->setCallingConv(
|
|
static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
|
|
cast<InvokeInst>(I)->setAttributes(PAL);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
|
|
unsigned Idx = 0;
|
|
Value *Val = nullptr;
|
|
if (getValueTypePair(Record, Idx, NextValueNo, Val))
|
|
return error("Invalid record");
|
|
I = ResumeInst::Create(Val);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_CALLBR: {
|
|
// CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
|
|
unsigned OpNum = 0;
|
|
AttributeList PAL = getAttributes(Record[OpNum++]);
|
|
unsigned CCInfo = Record[OpNum++];
|
|
|
|
BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
|
|
unsigned NumIndirectDests = Record[OpNum++];
|
|
SmallVector<BasicBlock *, 16> IndirectDests;
|
|
for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
|
|
IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
|
|
|
|
FunctionType *FTy = nullptr;
|
|
if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
|
|
!(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
|
|
return error("Explicit call type is not a function type");
|
|
|
|
Value *Callee;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
|
|
return error("Invalid record");
|
|
|
|
PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
|
|
if (!OpTy)
|
|
return error("Callee is not a pointer type");
|
|
if (!FTy) {
|
|
FTy = dyn_cast<FunctionType>(OpTy->getElementType());
|
|
if (!FTy)
|
|
return error("Callee is not of pointer to function type");
|
|
} else if (OpTy->getElementType() != FTy)
|
|
return error("Explicit call type does not match pointee type of "
|
|
"callee operand");
|
|
if (Record.size() < FTy->getNumParams() + OpNum)
|
|
return error("Insufficient operands to call");
|
|
|
|
SmallVector<Value*, 16> Args;
|
|
// Read the fixed params.
|
|
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
|
|
if (FTy->getParamType(i)->isLabelTy())
|
|
Args.push_back(getBasicBlock(Record[OpNum]));
|
|
else
|
|
Args.push_back(getValue(Record, OpNum, NextValueNo,
|
|
FTy->getParamType(i)));
|
|
if (!Args.back())
|
|
return error("Invalid record");
|
|
}
|
|
|
|
// Read type/value pairs for varargs params.
|
|
if (!FTy->isVarArg()) {
|
|
if (OpNum != Record.size())
|
|
return error("Invalid record");
|
|
} else {
|
|
while (OpNum != Record.size()) {
|
|
Value *Op;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
|
|
return error("Invalid record");
|
|
Args.push_back(Op);
|
|
}
|
|
}
|
|
|
|
I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
|
|
OperandBundles);
|
|
OperandBundles.clear();
|
|
InstructionList.push_back(I);
|
|
cast<CallBrInst>(I)->setCallingConv(
|
|
static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
|
|
cast<CallBrInst>(I)->setAttributes(PAL);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
|
|
I = new UnreachableInst(Context);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
|
|
if (Record.size() < 1 || ((Record.size()-1)&1))
|
|
return error("Invalid record");
|
|
Type *Ty = getTypeByID(Record[0]);
|
|
if (!Ty)
|
|
return error("Invalid record");
|
|
|
|
PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
|
|
InstructionList.push_back(PN);
|
|
|
|
for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
|
|
Value *V;
|
|
// With the new function encoding, it is possible that operands have
|
|
// negative IDs (for forward references). Use a signed VBR
|
|
// representation to keep the encoding small.
|
|
if (UseRelativeIDs)
|
|
V = getValueSigned(Record, 1+i, NextValueNo, Ty);
|
|
else
|
|
V = getValue(Record, 1+i, NextValueNo, Ty);
|
|
BasicBlock *BB = getBasicBlock(Record[2+i]);
|
|
if (!V || !BB)
|
|
return error("Invalid record");
|
|
PN->addIncoming(V, BB);
|
|
}
|
|
I = PN;
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_LANDINGPAD:
|
|
case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
|
|
// LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
|
|
unsigned Idx = 0;
|
|
if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
|
|
if (Record.size() < 3)
|
|
return error("Invalid record");
|
|
} else {
|
|
assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
|
|
if (Record.size() < 4)
|
|
return error("Invalid record");
|
|
}
|
|
Type *Ty = getTypeByID(Record[Idx++]);
|
|
if (!Ty)
|
|
return error("Invalid record");
|
|
if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
|
|
Value *PersFn = nullptr;
|
|
if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
|
|
return error("Invalid record");
|
|
|
|
if (!F->hasPersonalityFn())
|
|
F->setPersonalityFn(cast<Constant>(PersFn));
|
|
else if (F->getPersonalityFn() != cast<Constant>(PersFn))
|
|
return error("Personality function mismatch");
|
|
}
|
|
|
|
bool IsCleanup = !!Record[Idx++];
|
|
unsigned NumClauses = Record[Idx++];
|
|
LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
|
|
LP->setCleanup(IsCleanup);
|
|
for (unsigned J = 0; J != NumClauses; ++J) {
|
|
LandingPadInst::ClauseType CT =
|
|
LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
|
|
Value *Val;
|
|
|
|
if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
|
|
delete LP;
|
|
return error("Invalid record");
|
|
}
|
|
|
|
assert((CT != LandingPadInst::Catch ||
|
|
!isa<ArrayType>(Val->getType())) &&
|
|
"Catch clause has a invalid type!");
|
|
assert((CT != LandingPadInst::Filter ||
|
|
isa<ArrayType>(Val->getType())) &&
|
|
"Filter clause has invalid type!");
|
|
LP->addClause(cast<Constant>(Val));
|
|
}
|
|
|
|
I = LP;
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
|
|
if (Record.size() != 4)
|
|
return error("Invalid record");
|
|
uint64_t AlignRecord = Record[3];
|
|
const uint64_t InAllocaMask = uint64_t(1) << 5;
|
|
const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
|
|
const uint64_t SwiftErrorMask = uint64_t(1) << 7;
|
|
const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
|
|
SwiftErrorMask;
|
|
bool InAlloca = AlignRecord & InAllocaMask;
|
|
bool SwiftError = AlignRecord & SwiftErrorMask;
|
|
Type *Ty = getTypeByID(Record[0]);
|
|
if ((AlignRecord & ExplicitTypeMask) == 0) {
|
|
auto *PTy = dyn_cast_or_null<PointerType>(Ty);
|
|
if (!PTy)
|
|
return error("Old-style alloca with a non-pointer type");
|
|
Ty = PTy->getElementType();
|
|
}
|
|
Type *OpTy = getTypeByID(Record[1]);
|
|
Value *Size = getFnValueByID(Record[2], OpTy);
|
|
unsigned Align;
|
|
if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
|
|
return Err;
|
|
}
|
|
if (!Ty || !Size)
|
|
return error("Invalid record");
|
|
|
|
// FIXME: Make this an optional field.
|
|
const DataLayout &DL = TheModule->getDataLayout();
|
|
unsigned AS = DL.getAllocaAddrSpace();
|
|
|
|
AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
|
|
AI->setUsedWithInAlloca(InAlloca);
|
|
AI->setSwiftError(SwiftError);
|
|
I = AI;
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
|
|
unsigned OpNum = 0;
|
|
Value *Op;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
|
|
(OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
|
|
return error("Invalid record");
|
|
|
|
Type *Ty = nullptr;
|
|
if (OpNum + 3 == Record.size())
|
|
Ty = getTypeByID(Record[OpNum++]);
|
|
if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
|
|
return Err;
|
|
if (!Ty)
|
|
Ty = cast<PointerType>(Op->getType())->getElementType();
|
|
|
|
unsigned Align;
|
|
if (Error Err = parseAlignmentValue(Record[OpNum], Align))
|
|
return Err;
|
|
I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
|
|
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_LOADATOMIC: {
|
|
// LOADATOMIC: [opty, op, align, vol, ordering, ssid]
|
|
unsigned OpNum = 0;
|
|
Value *Op;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
|
|
(OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
|
|
return error("Invalid record");
|
|
|
|
Type *Ty = nullptr;
|
|
if (OpNum + 5 == Record.size())
|
|
Ty = getTypeByID(Record[OpNum++]);
|
|
if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
|
|
return Err;
|
|
if (!Ty)
|
|
Ty = cast<PointerType>(Op->getType())->getElementType();
|
|
|
|
AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
|
|
if (Ordering == AtomicOrdering::NotAtomic ||
|
|
Ordering == AtomicOrdering::Release ||
|
|
Ordering == AtomicOrdering::AcquireRelease)
|
|
return error("Invalid record");
|
|
if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
|
|
return error("Invalid record");
|
|
SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
|
|
|
|
unsigned Align;
|
|
if (Error Err = parseAlignmentValue(Record[OpNum], Align))
|
|
return Err;
|
|
I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID);
|
|
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_STORE:
|
|
case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
|
|
unsigned OpNum = 0;
|
|
Value *Val, *Ptr;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
|
|
(BitCode == bitc::FUNC_CODE_INST_STORE
|
|
? getValueTypePair(Record, OpNum, NextValueNo, Val)
|
|
: popValue(Record, OpNum, NextValueNo,
|
|
cast<PointerType>(Ptr->getType())->getElementType(),
|
|
Val)) ||
|
|
OpNum + 2 != Record.size())
|
|
return error("Invalid record");
|
|
|
|
if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
|
|
return Err;
|
|
unsigned Align;
|
|
if (Error Err = parseAlignmentValue(Record[OpNum], Align))
|
|
return Err;
|
|
I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_STOREATOMIC:
|
|
case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
|
|
// STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
|
|
unsigned OpNum = 0;
|
|
Value *Val, *Ptr;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
|
|
!isa<PointerType>(Ptr->getType()) ||
|
|
(BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
|
|
? getValueTypePair(Record, OpNum, NextValueNo, Val)
|
|
: popValue(Record, OpNum, NextValueNo,
|
|
cast<PointerType>(Ptr->getType())->getElementType(),
|
|
Val)) ||
|
|
OpNum + 4 != Record.size())
|
|
return error("Invalid record");
|
|
|
|
if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
|
|
return Err;
|
|
AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
|
|
if (Ordering == AtomicOrdering::NotAtomic ||
|
|
Ordering == AtomicOrdering::Acquire ||
|
|
Ordering == AtomicOrdering::AcquireRelease)
|
|
return error("Invalid record");
|
|
SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
|
|
if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
|
|
return error("Invalid record");
|
|
|
|
unsigned Align;
|
|
if (Error Err = parseAlignmentValue(Record[OpNum], Align))
|
|
return Err;
|
|
I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
|
|
case bitc::FUNC_CODE_INST_CMPXCHG: {
|
|
// CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
|
|
// failureordering?, isweak?]
|
|
unsigned OpNum = 0;
|
|
Value *Ptr, *Cmp, *New;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
|
|
(BitCode == bitc::FUNC_CODE_INST_CMPXCHG
|
|
? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
|
|
: popValue(Record, OpNum, NextValueNo,
|
|
cast<PointerType>(Ptr->getType())->getElementType(),
|
|
Cmp)) ||
|
|
popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
|
|
Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
|
|
return error("Invalid record");
|
|
AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
|
|
if (SuccessOrdering == AtomicOrdering::NotAtomic ||
|
|
SuccessOrdering == AtomicOrdering::Unordered)
|
|
return error("Invalid record");
|
|
SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
|
|
|
|
if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
|
|
return Err;
|
|
AtomicOrdering FailureOrdering;
|
|
if (Record.size() < 7)
|
|
FailureOrdering =
|
|
AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
|
|
else
|
|
FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
|
|
|
|
I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
|
|
SSID);
|
|
cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
|
|
|
|
if (Record.size() < 8) {
|
|
// Before weak cmpxchgs existed, the instruction simply returned the
|
|
// value loaded from memory, so bitcode files from that era will be
|
|
// expecting the first component of a modern cmpxchg.
|
|
CurBB->getInstList().push_back(I);
|
|
I = ExtractValueInst::Create(I, 0);
|
|
} else {
|
|
cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
|
|
}
|
|
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_ATOMICRMW: {
|
|
// ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
|
|
unsigned OpNum = 0;
|
|
Value *Ptr, *Val;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
|
|
!isa<PointerType>(Ptr->getType()) ||
|
|
popValue(Record, OpNum, NextValueNo,
|
|
cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
|
|
OpNum+4 != Record.size())
|
|
return error("Invalid record");
|
|
AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
|
|
if (Operation < AtomicRMWInst::FIRST_BINOP ||
|
|
Operation > AtomicRMWInst::LAST_BINOP)
|
|
return error("Invalid record");
|
|
AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
|
|
if (Ordering == AtomicOrdering::NotAtomic ||
|
|
Ordering == AtomicOrdering::Unordered)
|
|
return error("Invalid record");
|
|
SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
|
|
I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
|
|
cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
|
|
if (2 != Record.size())
|
|
return error("Invalid record");
|
|
AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
|
|
if (Ordering == AtomicOrdering::NotAtomic ||
|
|
Ordering == AtomicOrdering::Unordered ||
|
|
Ordering == AtomicOrdering::Monotonic)
|
|
return error("Invalid record");
|
|
SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
|
|
I = new FenceInst(Context, Ordering, SSID);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_CALL: {
|
|
// CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
|
|
if (Record.size() < 3)
|
|
return error("Invalid record");
|
|
|
|
unsigned OpNum = 0;
|
|
AttributeList PAL = getAttributes(Record[OpNum++]);
|
|
unsigned CCInfo = Record[OpNum++];
|
|
|
|
FastMathFlags FMF;
|
|
if ((CCInfo >> bitc::CALL_FMF) & 1) {
|
|
FMF = getDecodedFastMathFlags(Record[OpNum++]);
|
|
if (!FMF.any())
|
|
return error("Fast math flags indicator set for call with no FMF");
|
|
}
|
|
|
|
FunctionType *FTy = nullptr;
|
|
if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
|
|
!(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
|
|
return error("Explicit call type is not a function type");
|
|
|
|
Value *Callee;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
|
|
return error("Invalid record");
|
|
|
|
PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
|
|
if (!OpTy)
|
|
return error("Callee is not a pointer type");
|
|
if (!FTy) {
|
|
FTy = dyn_cast<FunctionType>(OpTy->getElementType());
|
|
if (!FTy)
|
|
return error("Callee is not of pointer to function type");
|
|
} else if (OpTy->getElementType() != FTy)
|
|
return error("Explicit call type does not match pointee type of "
|
|
"callee operand");
|
|
if (Record.size() < FTy->getNumParams() + OpNum)
|
|
return error("Insufficient operands to call");
|
|
|
|
SmallVector<Value*, 16> Args;
|
|
// Read the fixed params.
|
|
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
|
|
if (FTy->getParamType(i)->isLabelTy())
|
|
Args.push_back(getBasicBlock(Record[OpNum]));
|
|
else
|
|
Args.push_back(getValue(Record, OpNum, NextValueNo,
|
|
FTy->getParamType(i)));
|
|
if (!Args.back())
|
|
return error("Invalid record");
|
|
}
|
|
|
|
// Read type/value pairs for varargs params.
|
|
if (!FTy->isVarArg()) {
|
|
if (OpNum != Record.size())
|
|
return error("Invalid record");
|
|
} else {
|
|
while (OpNum != Record.size()) {
|
|
Value *Op;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
|
|
return error("Invalid record");
|
|
Args.push_back(Op);
|
|
}
|
|
}
|
|
|
|
I = CallInst::Create(FTy, Callee, Args, OperandBundles);
|
|
OperandBundles.clear();
|
|
InstructionList.push_back(I);
|
|
cast<CallInst>(I)->setCallingConv(
|
|
static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
|
|
CallInst::TailCallKind TCK = CallInst::TCK_None;
|
|
if (CCInfo & 1 << bitc::CALL_TAIL)
|
|
TCK = CallInst::TCK_Tail;
|
|
if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
|
|
TCK = CallInst::TCK_MustTail;
|
|
if (CCInfo & (1 << bitc::CALL_NOTAIL))
|
|
TCK = CallInst::TCK_NoTail;
|
|
cast<CallInst>(I)->setTailCallKind(TCK);
|
|
cast<CallInst>(I)->setAttributes(PAL);
|
|
if (FMF.any()) {
|
|
if (!isa<FPMathOperator>(I))
|
|
return error("Fast-math-flags specified for call without "
|
|
"floating-point scalar or vector return type");
|
|
I->setFastMathFlags(FMF);
|
|
}
|
|
break;
|
|
}
|
|
case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
|
|
if (Record.size() < 3)
|
|
return error("Invalid record");
|
|
Type *OpTy = getTypeByID(Record[0]);
|
|
Value *Op = getValue(Record, 1, NextValueNo, OpTy);
|
|
Type *ResTy = getTypeByID(Record[2]);
|
|
if (!OpTy || !Op || !ResTy)
|
|
return error("Invalid record");
|
|
I = new VAArgInst(Op, ResTy);
|
|
InstructionList.push_back(I);
|
|
break;
|
|
}
|
|
|
|
case bitc::FUNC_CODE_OPERAND_BUNDLE: {
|
|
// A call or an invoke can be optionally prefixed with some variable
|
|
// number of operand bundle blocks. These blocks are read into
|
|
// OperandBundles and consumed at the next call or invoke instruction.
|
|
|
|
if (Record.size() < 1 || Record[0] >= BundleTags.size())
|
|
return error("Invalid record");
|
|
|
|
std::vector<Value *> Inputs;
|
|
|
|
unsigned OpNum = 1;
|
|
while (OpNum != Record.size()) {
|
|
Value *Op;
|
|
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
|
|
return error("Invalid record");
|
|
Inputs.push_back(Op);
|
|
}
|
|
|
|
OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Add instruction to end of current BB. If there is no current BB, reject
|
|
// this file.
|
|
if (!CurBB) {
|
|
I->deleteValue();
|
|
return error("Invalid instruction with no BB");
|
|
}
|
|
if (!OperandBundles.empty()) {
|
|
I->deleteValue();
|
|
return error("Operand bundles found with no consumer");
|
|
}
|
|
CurBB->getInstList().push_back(I);
|
|
|
|
// If this was a terminator instruction, move to the next block.
|
|
if (I->isTerminator()) {
|
|
++CurBBNo;
|
|
CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
|
|
}
|
|
|
|
// Non-void values get registered in the value table for future use.
|
|
if (I && !I->getType()->isVoidTy())
|
|
ValueList.assignValue(I, NextValueNo++);
|
|
}
|
|
|
|
OutOfRecordLoop:
|
|
|
|
if (!OperandBundles.empty())
|
|
return error("Operand bundles found with no consumer");
|
|
|
|
// Check the function list for unresolved values.
|
|
if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
|
|
if (!A->getParent()) {
|
|
// We found at least one unresolved value. Nuke them all to avoid leaks.
|
|
for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
|
|
if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
|
|
A->replaceAllUsesWith(UndefValue::get(A->getType()));
|
|
delete A;
|
|
}
|
|
}
|
|
return error("Never resolved value found in function");
|
|
}
|
|
}
|
|
|
|
// Unexpected unresolved metadata about to be dropped.
|
|
if (MDLoader->hasFwdRefs())
|
|
return error("Invalid function metadata: outgoing forward refs");
|
|
|
|
// Trim the value list down to the size it was before we parsed this function.
|
|
ValueList.shrinkTo(ModuleValueListSize);
|
|
MDLoader->shrinkTo(ModuleMDLoaderSize);
|
|
std::vector<BasicBlock*>().swap(FunctionBBs);
|
|
return Error::success();
|
|
}
|
|
|
|
/// Find the function body in the bitcode stream
|
|
Error BitcodeReader::findFunctionInStream(
|
|
Function *F,
|
|
DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
|
|
while (DeferredFunctionInfoIterator->second == 0) {
|
|
// This is the fallback handling for the old format bitcode that
|
|
// didn't contain the function index in the VST, or when we have
|
|
// an anonymous function which would not have a VST entry.
|
|
// Assert that we have one of those two cases.
|
|
assert(VSTOffset == 0 || !F->hasName());
|
|
// Parse the next body in the stream and set its position in the
|
|
// DeferredFunctionInfo map.
|
|
if (Error Err = rememberAndSkipFunctionBodies())
|
|
return Err;
|
|
}
|
|
return Error::success();
|
|
}
|
|
|
|
SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
|
|
if (Val == SyncScope::SingleThread || Val == SyncScope::System)
|
|
return SyncScope::ID(Val);
|
|
if (Val >= SSIDs.size())
|
|
return SyncScope::System; // Map unknown synchronization scopes to system.
|
|
return SSIDs[Val];
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GVMaterializer implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Error BitcodeReader::materialize(GlobalValue *GV) {
|
|
Function *F = dyn_cast<Function>(GV);
|
|
// If it's not a function or is already material, ignore the request.
|
|
if (!F || !F->isMaterializable())
|
|
return Error::success();
|
|
|
|
DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
|
|
assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
|
|
// If its position is recorded as 0, its body is somewhere in the stream
|
|
// but we haven't seen it yet.
|
|
if (DFII->second == 0)
|
|
if (Error Err = findFunctionInStream(F, DFII))
|
|
return Err;
|
|
|
|
// Materialize metadata before parsing any function bodies.
|
|
if (Error Err = materializeMetadata())
|
|
return Err;
|
|
|
|
// Move the bit stream to the saved position of the deferred function body.
|
|
Stream.JumpToBit(DFII->second);
|
|
|
|
if (Error Err = parseFunctionBody(F))
|
|
return Err;
|
|
F->setIsMaterializable(false);
|
|
|
|
if (StripDebugInfo)
|
|
stripDebugInfo(*F);
|
|
|
|
// Upgrade any old intrinsic calls in the function.
|
|
for (auto &I : UpgradedIntrinsics) {
|
|
for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
|
|
UI != UE;) {
|
|
User *U = *UI;
|
|
++UI;
|
|
if (CallInst *CI = dyn_cast<CallInst>(U))
|
|
UpgradeIntrinsicCall(CI, I.second);
|
|
}
|
|
}
|
|
|
|
// Update calls to the remangled intrinsics
|
|
for (auto &I : RemangledIntrinsics)
|
|
for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
|
|
UI != UE;)
|
|
// Don't expect any other users than call sites
|
|
CallSite(*UI++).setCalledFunction(I.second);
|
|
|
|
// Finish fn->subprogram upgrade for materialized functions.
|
|
if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
|
|
F->setSubprogram(SP);
|
|
|
|
// Check if the TBAA Metadata are valid, otherwise we will need to strip them.
|
|
if (!MDLoader->isStrippingTBAA()) {
|
|
for (auto &I : instructions(F)) {
|
|
MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
|
|
if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
|
|
continue;
|
|
MDLoader->setStripTBAA(true);
|
|
stripTBAA(F->getParent());
|
|
}
|
|
}
|
|
|
|
// Bring in any functions that this function forward-referenced via
|
|
// blockaddresses.
|
|
return materializeForwardReferencedFunctions();
|
|
}
|
|
|
|
Error BitcodeReader::materializeModule() {
|
|
if (Error Err = materializeMetadata())
|
|
return Err;
|
|
|
|
// Promise to materialize all forward references.
|
|
WillMaterializeAllForwardRefs = true;
|
|
|
|
// Iterate over the module, deserializing any functions that are still on
|
|
// disk.
|
|
for (Function &F : *TheModule) {
|
|
if (Error Err = materialize(&F))
|
|
return Err;
|
|
}
|
|
// At this point, if there are any function bodies, parse the rest of
|
|
// the bits in the module past the last function block we have recorded
|
|
// through either lazy scanning or the VST.
|
|
if (LastFunctionBlockBit || NextUnreadBit)
|
|
if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
|
|
? LastFunctionBlockBit
|
|
: NextUnreadBit))
|
|
return Err;
|
|
|
|
// Check that all block address forward references got resolved (as we
|
|
// promised above).
|
|
if (!BasicBlockFwdRefs.empty())
|
|
return error("Never resolved function from blockaddress");
|
|
|
|
// Upgrade any intrinsic calls that slipped through (should not happen!) and
|
|
// delete the old functions to clean up. We can't do this unless the entire
|
|
// module is materialized because there could always be another function body
|
|
// with calls to the old function.
|
|
for (auto &I : UpgradedIntrinsics) {
|
|
for (auto *U : I.first->users()) {
|
|
if (CallInst *CI = dyn_cast<CallInst>(U))
|
|
UpgradeIntrinsicCall(CI, I.second);
|
|
}
|
|
if (!I.first->use_empty())
|
|
I.first->replaceAllUsesWith(I.second);
|
|
I.first->eraseFromParent();
|
|
}
|
|
UpgradedIntrinsics.clear();
|
|
// Do the same for remangled intrinsics
|
|
for (auto &I : RemangledIntrinsics) {
|
|
I.first->replaceAllUsesWith(I.second);
|
|
I.first->eraseFromParent();
|
|
}
|
|
RemangledIntrinsics.clear();
|
|
|
|
UpgradeDebugInfo(*TheModule);
|
|
|
|
UpgradeModuleFlags(*TheModule);
|
|
|
|
UpgradeRetainReleaseMarker(*TheModule);
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
|
|
return IdentifiedStructTypes;
|
|
}
|
|
|
|
ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
|
|
BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
|
|
StringRef ModulePath, unsigned ModuleId)
|
|
: BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
|
|
ModulePath(ModulePath), ModuleId(ModuleId) {}
|
|
|
|
void ModuleSummaryIndexBitcodeReader::addThisModule() {
|
|
TheIndex.addModule(ModulePath, ModuleId);
|
|
}
|
|
|
|
ModuleSummaryIndex::ModuleInfo *
|
|
ModuleSummaryIndexBitcodeReader::getThisModule() {
|
|
return TheIndex.getModule(ModulePath);
|
|
}
|
|
|
|
std::pair<ValueInfo, GlobalValue::GUID>
|
|
ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
|
|
auto VGI = ValueIdToValueInfoMap[ValueId];
|
|
assert(VGI.first);
|
|
return VGI;
|
|
}
|
|
|
|
void ModuleSummaryIndexBitcodeReader::setValueGUID(
|
|
uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
|
|
StringRef SourceFileName) {
|
|
std::string GlobalId =
|
|
GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
|
|
auto ValueGUID = GlobalValue::getGUID(GlobalId);
|
|
auto OriginalNameID = ValueGUID;
|
|
if (GlobalValue::isLocalLinkage(Linkage))
|
|
OriginalNameID = GlobalValue::getGUID(ValueName);
|
|
if (PrintSummaryGUIDs)
|
|
dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
|
|
<< ValueName << "\n";
|
|
|
|
// UseStrtab is false for legacy summary formats and value names are
|
|
// created on stack. In that case we save the name in a string saver in
|
|
// the index so that the value name can be recorded.
|
|
ValueIdToValueInfoMap[ValueID] = std::make_pair(
|
|
TheIndex.getOrInsertValueInfo(
|
|
ValueGUID,
|
|
UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
|
|
OriginalNameID);
|
|
}
|
|
|
|
// Specialized value symbol table parser used when reading module index
|
|
// blocks where we don't actually create global values. The parsed information
|
|
// is saved in the bitcode reader for use when later parsing summaries.
|
|
Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
|
|
uint64_t Offset,
|
|
DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
|
|
// With a strtab the VST is not required to parse the summary.
|
|
if (UseStrtab)
|
|
return Error::success();
|
|
|
|
assert(Offset > 0 && "Expected non-zero VST offset");
|
|
uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
|
|
|
|
if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
// Read all the records for this value table.
|
|
SmallString<128> ValueName;
|
|
|
|
while (true) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
// Done parsing VST, jump back to wherever we came from.
|
|
Stream.JumpToBit(CurrentBit);
|
|
return Error::success();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record.
|
|
Record.clear();
|
|
switch (Stream.readRecord(Entry.ID, Record)) {
|
|
default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
|
|
break;
|
|
case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
|
|
if (convertToString(Record, 1, ValueName))
|
|
return error("Invalid record");
|
|
unsigned ValueID = Record[0];
|
|
assert(!SourceFileName.empty());
|
|
auto VLI = ValueIdToLinkageMap.find(ValueID);
|
|
assert(VLI != ValueIdToLinkageMap.end() &&
|
|
"No linkage found for VST entry?");
|
|
auto Linkage = VLI->second;
|
|
setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
|
|
ValueName.clear();
|
|
break;
|
|
}
|
|
case bitc::VST_CODE_FNENTRY: {
|
|
// VST_CODE_FNENTRY: [valueid, offset, namechar x N]
|
|
if (convertToString(Record, 2, ValueName))
|
|
return error("Invalid record");
|
|
unsigned ValueID = Record[0];
|
|
assert(!SourceFileName.empty());
|
|
auto VLI = ValueIdToLinkageMap.find(ValueID);
|
|
assert(VLI != ValueIdToLinkageMap.end() &&
|
|
"No linkage found for VST entry?");
|
|
auto Linkage = VLI->second;
|
|
setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
|
|
ValueName.clear();
|
|
break;
|
|
}
|
|
case bitc::VST_CODE_COMBINED_ENTRY: {
|
|
// VST_CODE_COMBINED_ENTRY: [valueid, refguid]
|
|
unsigned ValueID = Record[0];
|
|
GlobalValue::GUID RefGUID = Record[1];
|
|
// The "original name", which is the second value of the pair will be
|
|
// overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
|
|
ValueIdToValueInfoMap[ValueID] =
|
|
std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Parse just the blocks needed for building the index out of the module.
|
|
// At the end of this routine the module Index is populated with a map
|
|
// from global value id to GlobalValueSummary objects.
|
|
Error ModuleSummaryIndexBitcodeReader::parseModule() {
|
|
if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
|
|
unsigned ValueId = 0;
|
|
|
|
// Read the index for this module.
|
|
while (true) {
|
|
BitstreamEntry Entry = Stream.advance();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
return Error::success();
|
|
|
|
case BitstreamEntry::SubBlock:
|
|
switch (Entry.ID) {
|
|
default: // Skip unknown content.
|
|
if (Stream.SkipBlock())
|
|
return error("Invalid record");
|
|
break;
|
|
case bitc::BLOCKINFO_BLOCK_ID:
|
|
// Need to parse these to get abbrev ids (e.g. for VST)
|
|
if (readBlockInfo())
|
|
return error("Malformed block");
|
|
break;
|
|
case bitc::VALUE_SYMTAB_BLOCK_ID:
|
|
// Should have been parsed earlier via VSTOffset, unless there
|
|
// is no summary section.
|
|
assert(((SeenValueSymbolTable && VSTOffset > 0) ||
|
|
!SeenGlobalValSummary) &&
|
|
"Expected early VST parse via VSTOffset record");
|
|
if (Stream.SkipBlock())
|
|
return error("Invalid record");
|
|
break;
|
|
case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
|
|
case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
|
|
// Add the module if it is a per-module index (has a source file name).
|
|
if (!SourceFileName.empty())
|
|
addThisModule();
|
|
assert(!SeenValueSymbolTable &&
|
|
"Already read VST when parsing summary block?");
|
|
// We might not have a VST if there were no values in the
|
|
// summary. An empty summary block generated when we are
|
|
// performing ThinLTO compiles so we don't later invoke
|
|
// the regular LTO process on them.
|
|
if (VSTOffset > 0) {
|
|
if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
|
|
return Err;
|
|
SeenValueSymbolTable = true;
|
|
}
|
|
SeenGlobalValSummary = true;
|
|
if (Error Err = parseEntireSummary(Entry.ID))
|
|
return Err;
|
|
break;
|
|
case bitc::MODULE_STRTAB_BLOCK_ID:
|
|
if (Error Err = parseModuleStringTable())
|
|
return Err;
|
|
break;
|
|
}
|
|
continue;
|
|
|
|
case BitstreamEntry::Record: {
|
|
Record.clear();
|
|
auto BitCode = Stream.readRecord(Entry.ID, Record);
|
|
switch (BitCode) {
|
|
default:
|
|
break; // Default behavior, ignore unknown content.
|
|
case bitc::MODULE_CODE_VERSION: {
|
|
if (Error Err = parseVersionRecord(Record).takeError())
|
|
return Err;
|
|
break;
|
|
}
|
|
/// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
|
|
case bitc::MODULE_CODE_SOURCE_FILENAME: {
|
|
SmallString<128> ValueName;
|
|
if (convertToString(Record, 0, ValueName))
|
|
return error("Invalid record");
|
|
SourceFileName = ValueName.c_str();
|
|
break;
|
|
}
|
|
/// MODULE_CODE_HASH: [5*i32]
|
|
case bitc::MODULE_CODE_HASH: {
|
|
if (Record.size() != 5)
|
|
return error("Invalid hash length " + Twine(Record.size()).str());
|
|
auto &Hash = getThisModule()->second.second;
|
|
int Pos = 0;
|
|
for (auto &Val : Record) {
|
|
assert(!(Val >> 32) && "Unexpected high bits set");
|
|
Hash[Pos++] = Val;
|
|
}
|
|
break;
|
|
}
|
|
/// MODULE_CODE_VSTOFFSET: [offset]
|
|
case bitc::MODULE_CODE_VSTOFFSET:
|
|
if (Record.size() < 1)
|
|
return error("Invalid record");
|
|
// Note that we subtract 1 here because the offset is relative to one
|
|
// word before the start of the identification or module block, which
|
|
// was historically always the start of the regular bitcode header.
|
|
VSTOffset = Record[0] - 1;
|
|
break;
|
|
// v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...]
|
|
// v1 FUNCTION: [type, callingconv, isproto, linkage, ...]
|
|
// v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...]
|
|
// v2: [strtab offset, strtab size, v1]
|
|
case bitc::MODULE_CODE_GLOBALVAR:
|
|
case bitc::MODULE_CODE_FUNCTION:
|
|
case bitc::MODULE_CODE_ALIAS: {
|
|
StringRef Name;
|
|
ArrayRef<uint64_t> GVRecord;
|
|
std::tie(Name, GVRecord) = readNameFromStrtab(Record);
|
|
if (GVRecord.size() <= 3)
|
|
return error("Invalid record");
|
|
uint64_t RawLinkage = GVRecord[3];
|
|
GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
|
|
if (!UseStrtab) {
|
|
ValueIdToLinkageMap[ValueId++] = Linkage;
|
|
break;
|
|
}
|
|
|
|
setValueGUID(ValueId++, Name, Linkage, SourceFileName);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<ValueInfo>
|
|
ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
|
|
std::vector<ValueInfo> Ret;
|
|
Ret.reserve(Record.size());
|
|
for (uint64_t RefValueId : Record)
|
|
Ret.push_back(getValueInfoFromValueId(RefValueId).first);
|
|
return Ret;
|
|
}
|
|
|
|
std::vector<FunctionSummary::EdgeTy>
|
|
ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
|
|
bool IsOldProfileFormat,
|
|
bool HasProfile, bool HasRelBF) {
|
|
std::vector<FunctionSummary::EdgeTy> Ret;
|
|
Ret.reserve(Record.size());
|
|
for (unsigned I = 0, E = Record.size(); I != E; ++I) {
|
|
CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
|
|
uint64_t RelBF = 0;
|
|
ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
|
|
if (IsOldProfileFormat) {
|
|
I += 1; // Skip old callsitecount field
|
|
if (HasProfile)
|
|
I += 1; // Skip old profilecount field
|
|
} else if (HasProfile)
|
|
Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
|
|
else if (HasRelBF)
|
|
RelBF = Record[++I];
|
|
Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
|
|
}
|
|
return Ret;
|
|
}
|
|
|
|
static void
|
|
parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
|
|
WholeProgramDevirtResolution &Wpd) {
|
|
uint64_t ArgNum = Record[Slot++];
|
|
WholeProgramDevirtResolution::ByArg &B =
|
|
Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
|
|
Slot += ArgNum;
|
|
|
|
B.TheKind =
|
|
static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
|
|
B.Info = Record[Slot++];
|
|
B.Byte = Record[Slot++];
|
|
B.Bit = Record[Slot++];
|
|
}
|
|
|
|
static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
|
|
StringRef Strtab, size_t &Slot,
|
|
TypeIdSummary &TypeId) {
|
|
uint64_t Id = Record[Slot++];
|
|
WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
|
|
|
|
Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
|
|
Wpd.SingleImplName = {Strtab.data() + Record[Slot],
|
|
static_cast<size_t>(Record[Slot + 1])};
|
|
Slot += 2;
|
|
|
|
uint64_t ResByArgNum = Record[Slot++];
|
|
for (uint64_t I = 0; I != ResByArgNum; ++I)
|
|
parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
|
|
}
|
|
|
|
static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
|
|
StringRef Strtab,
|
|
ModuleSummaryIndex &TheIndex) {
|
|
size_t Slot = 0;
|
|
TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
|
|
{Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
|
|
Slot += 2;
|
|
|
|
TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
|
|
TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
|
|
TypeId.TTRes.AlignLog2 = Record[Slot++];
|
|
TypeId.TTRes.SizeM1 = Record[Slot++];
|
|
TypeId.TTRes.BitMask = Record[Slot++];
|
|
TypeId.TTRes.InlineBits = Record[Slot++];
|
|
|
|
while (Slot < Record.size())
|
|
parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
|
|
}
|
|
|
|
static void setImmutableRefs(std::vector<ValueInfo> &Refs, unsigned Count) {
|
|
// Read-only refs are in the end of the refs list.
|
|
for (unsigned RefNo = Refs.size() - Count; RefNo < Refs.size(); ++RefNo)
|
|
Refs[RefNo].setReadOnly();
|
|
}
|
|
|
|
// Eagerly parse the entire summary block. This populates the GlobalValueSummary
|
|
// objects in the index.
|
|
Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
|
|
if (Stream.EnterSubBlock(ID))
|
|
return error("Invalid record");
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
// Parse version
|
|
{
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
if (Entry.Kind != BitstreamEntry::Record)
|
|
return error("Invalid Summary Block: record for version expected");
|
|
if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
|
|
return error("Invalid Summary Block: version expected");
|
|
}
|
|
const uint64_t Version = Record[0];
|
|
const bool IsOldProfileFormat = Version == 1;
|
|
if (Version < 1 || Version > 6)
|
|
return error("Invalid summary version " + Twine(Version) +
|
|
". Version should be in the range [1-6].");
|
|
Record.clear();
|
|
|
|
// Keep around the last seen summary to be used when we see an optional
|
|
// "OriginalName" attachement.
|
|
GlobalValueSummary *LastSeenSummary = nullptr;
|
|
GlobalValue::GUID LastSeenGUID = 0;
|
|
|
|
// We can expect to see any number of type ID information records before
|
|
// each function summary records; these variables store the information
|
|
// collected so far so that it can be used to create the summary object.
|
|
std::vector<GlobalValue::GUID> PendingTypeTests;
|
|
std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
|
|
PendingTypeCheckedLoadVCalls;
|
|
std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
|
|
PendingTypeCheckedLoadConstVCalls;
|
|
|
|
while (true) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
return Error::success();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Read a record. The record format depends on whether this
|
|
// is a per-module index or a combined index file. In the per-module
|
|
// case the records contain the associated value's ID for correlation
|
|
// with VST entries. In the combined index the correlation is done
|
|
// via the bitcode offset of the summary records (which were saved
|
|
// in the combined index VST entries). The records also contain
|
|
// information used for ThinLTO renaming and importing.
|
|
Record.clear();
|
|
auto BitCode = Stream.readRecord(Entry.ID, Record);
|
|
switch (BitCode) {
|
|
default: // Default behavior: ignore.
|
|
break;
|
|
case bitc::FS_FLAGS: { // [flags]
|
|
uint64_t Flags = Record[0];
|
|
// Scan flags.
|
|
assert(Flags <= 0x1f && "Unexpected bits in flag");
|
|
|
|
// 1 bit: WithGlobalValueDeadStripping flag.
|
|
// Set on combined index only.
|
|
if (Flags & 0x1)
|
|
TheIndex.setWithGlobalValueDeadStripping();
|
|
// 1 bit: SkipModuleByDistributedBackend flag.
|
|
// Set on combined index only.
|
|
if (Flags & 0x2)
|
|
TheIndex.setSkipModuleByDistributedBackend();
|
|
// 1 bit: HasSyntheticEntryCounts flag.
|
|
// Set on combined index only.
|
|
if (Flags & 0x4)
|
|
TheIndex.setHasSyntheticEntryCounts();
|
|
// 1 bit: DisableSplitLTOUnit flag.
|
|
// Set on per module indexes. It is up to the client to validate
|
|
// the consistency of this flag across modules being linked.
|
|
if (Flags & 0x8)
|
|
TheIndex.setEnableSplitLTOUnit();
|
|
// 1 bit: PartiallySplitLTOUnits flag.
|
|
// Set on combined index only.
|
|
if (Flags & 0x10)
|
|
TheIndex.setPartiallySplitLTOUnits();
|
|
break;
|
|
}
|
|
case bitc::FS_VALUE_GUID: { // [valueid, refguid]
|
|
uint64_t ValueID = Record[0];
|
|
GlobalValue::GUID RefGUID = Record[1];
|
|
ValueIdToValueInfoMap[ValueID] =
|
|
std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
|
|
break;
|
|
}
|
|
// FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
|
|
// numrefs x valueid, n x (valueid)]
|
|
// FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
|
|
// numrefs x valueid,
|
|
// n x (valueid, hotness)]
|
|
// FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
|
|
// numrefs x valueid,
|
|
// n x (valueid, relblockfreq)]
|
|
case bitc::FS_PERMODULE:
|
|
case bitc::FS_PERMODULE_RELBF:
|
|
case bitc::FS_PERMODULE_PROFILE: {
|
|
unsigned ValueID = Record[0];
|
|
uint64_t RawFlags = Record[1];
|
|
unsigned InstCount = Record[2];
|
|
uint64_t RawFunFlags = 0;
|
|
unsigned NumRefs = Record[3];
|
|
unsigned NumImmutableRefs = 0;
|
|
int RefListStartIndex = 4;
|
|
if (Version >= 4) {
|
|
RawFunFlags = Record[3];
|
|
NumRefs = Record[4];
|
|
RefListStartIndex = 5;
|
|
if (Version >= 5) {
|
|
NumImmutableRefs = Record[5];
|
|
RefListStartIndex = 6;
|
|
}
|
|
}
|
|
|
|
auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
|
|
// The module path string ref set in the summary must be owned by the
|
|
// index's module string table. Since we don't have a module path
|
|
// string table section in the per-module index, we create a single
|
|
// module path string table entry with an empty (0) ID to take
|
|
// ownership.
|
|
int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
|
|
assert(Record.size() >= RefListStartIndex + NumRefs &&
|
|
"Record size inconsistent with number of references");
|
|
std::vector<ValueInfo> Refs = makeRefList(
|
|
ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
|
|
bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
|
|
bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
|
|
std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
|
|
ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
|
|
IsOldProfileFormat, HasProfile, HasRelBF);
|
|
setImmutableRefs(Refs, NumImmutableRefs);
|
|
auto FS = llvm::make_unique<FunctionSummary>(
|
|
Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
|
|
std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
|
|
std::move(PendingTypeTestAssumeVCalls),
|
|
std::move(PendingTypeCheckedLoadVCalls),
|
|
std::move(PendingTypeTestAssumeConstVCalls),
|
|
std::move(PendingTypeCheckedLoadConstVCalls));
|
|
PendingTypeTests.clear();
|
|
PendingTypeTestAssumeVCalls.clear();
|
|
PendingTypeCheckedLoadVCalls.clear();
|
|
PendingTypeTestAssumeConstVCalls.clear();
|
|
PendingTypeCheckedLoadConstVCalls.clear();
|
|
auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
|
|
FS->setModulePath(getThisModule()->first());
|
|
FS->setOriginalName(VIAndOriginalGUID.second);
|
|
TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
|
|
break;
|
|
}
|
|
// FS_ALIAS: [valueid, flags, valueid]
|
|
// Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
|
|
// they expect all aliasee summaries to be available.
|
|
case bitc::FS_ALIAS: {
|
|
unsigned ValueID = Record[0];
|
|
uint64_t RawFlags = Record[1];
|
|
unsigned AliaseeID = Record[2];
|
|
auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
|
|
auto AS = llvm::make_unique<AliasSummary>(Flags);
|
|
// The module path string ref set in the summary must be owned by the
|
|
// index's module string table. Since we don't have a module path
|
|
// string table section in the per-module index, we create a single
|
|
// module path string table entry with an empty (0) ID to take
|
|
// ownership.
|
|
AS->setModulePath(getThisModule()->first());
|
|
|
|
auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
|
|
auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
|
|
if (!AliaseeInModule)
|
|
return error("Alias expects aliasee summary to be parsed");
|
|
AS->setAliasee(AliaseeVI, AliaseeInModule);
|
|
|
|
auto GUID = getValueInfoFromValueId(ValueID);
|
|
AS->setOriginalName(GUID.second);
|
|
TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
|
|
break;
|
|
}
|
|
// FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
|
|
case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
|
|
unsigned ValueID = Record[0];
|
|
uint64_t RawFlags = Record[1];
|
|
unsigned RefArrayStart = 2;
|
|
GlobalVarSummary::GVarFlags GVF;
|
|
auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
|
|
if (Version >= 5) {
|
|
GVF = getDecodedGVarFlags(Record[2]);
|
|
RefArrayStart = 3;
|
|
}
|
|
std::vector<ValueInfo> Refs =
|
|
makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
|
|
auto FS =
|
|
llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
|
|
FS->setModulePath(getThisModule()->first());
|
|
auto GUID = getValueInfoFromValueId(ValueID);
|
|
FS->setOriginalName(GUID.second);
|
|
TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
|
|
break;
|
|
}
|
|
// FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
|
|
// numrefs x valueid, n x (valueid)]
|
|
// FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
|
|
// numrefs x valueid, n x (valueid, hotness)]
|
|
case bitc::FS_COMBINED:
|
|
case bitc::FS_COMBINED_PROFILE: {
|
|
unsigned ValueID = Record[0];
|
|
uint64_t ModuleId = Record[1];
|
|
uint64_t RawFlags = Record[2];
|
|
unsigned InstCount = Record[3];
|
|
uint64_t RawFunFlags = 0;
|
|
uint64_t EntryCount = 0;
|
|
unsigned NumRefs = Record[4];
|
|
unsigned NumImmutableRefs = 0;
|
|
int RefListStartIndex = 5;
|
|
|
|
if (Version >= 4) {
|
|
RawFunFlags = Record[4];
|
|
RefListStartIndex = 6;
|
|
size_t NumRefsIndex = 5;
|
|
if (Version >= 5) {
|
|
RefListStartIndex = 7;
|
|
if (Version >= 6) {
|
|
NumRefsIndex = 6;
|
|
EntryCount = Record[5];
|
|
RefListStartIndex = 8;
|
|
}
|
|
NumImmutableRefs = Record[RefListStartIndex - 1];
|
|
}
|
|
NumRefs = Record[NumRefsIndex];
|
|
}
|
|
|
|
auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
|
|
int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
|
|
assert(Record.size() >= RefListStartIndex + NumRefs &&
|
|
"Record size inconsistent with number of references");
|
|
std::vector<ValueInfo> Refs = makeRefList(
|
|
ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
|
|
bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
|
|
std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
|
|
ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
|
|
IsOldProfileFormat, HasProfile, false);
|
|
ValueInfo VI = getValueInfoFromValueId(ValueID).first;
|
|
setImmutableRefs(Refs, NumImmutableRefs);
|
|
auto FS = llvm::make_unique<FunctionSummary>(
|
|
Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
|
|
std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
|
|
std::move(PendingTypeTestAssumeVCalls),
|
|
std::move(PendingTypeCheckedLoadVCalls),
|
|
std::move(PendingTypeTestAssumeConstVCalls),
|
|
std::move(PendingTypeCheckedLoadConstVCalls));
|
|
PendingTypeTests.clear();
|
|
PendingTypeTestAssumeVCalls.clear();
|
|
PendingTypeCheckedLoadVCalls.clear();
|
|
PendingTypeTestAssumeConstVCalls.clear();
|
|
PendingTypeCheckedLoadConstVCalls.clear();
|
|
LastSeenSummary = FS.get();
|
|
LastSeenGUID = VI.getGUID();
|
|
FS->setModulePath(ModuleIdMap[ModuleId]);
|
|
TheIndex.addGlobalValueSummary(VI, std::move(FS));
|
|
break;
|
|
}
|
|
// FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
|
|
// Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
|
|
// they expect all aliasee summaries to be available.
|
|
case bitc::FS_COMBINED_ALIAS: {
|
|
unsigned ValueID = Record[0];
|
|
uint64_t ModuleId = Record[1];
|
|
uint64_t RawFlags = Record[2];
|
|
unsigned AliaseeValueId = Record[3];
|
|
auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
|
|
auto AS = llvm::make_unique<AliasSummary>(Flags);
|
|
LastSeenSummary = AS.get();
|
|
AS->setModulePath(ModuleIdMap[ModuleId]);
|
|
|
|
auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
|
|
auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
|
|
AS->setAliasee(AliaseeVI, AliaseeInModule);
|
|
|
|
ValueInfo VI = getValueInfoFromValueId(ValueID).first;
|
|
LastSeenGUID = VI.getGUID();
|
|
TheIndex.addGlobalValueSummary(VI, std::move(AS));
|
|
break;
|
|
}
|
|
// FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
|
|
case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
|
|
unsigned ValueID = Record[0];
|
|
uint64_t ModuleId = Record[1];
|
|
uint64_t RawFlags = Record[2];
|
|
unsigned RefArrayStart = 3;
|
|
GlobalVarSummary::GVarFlags GVF;
|
|
auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
|
|
if (Version >= 5) {
|
|
GVF = getDecodedGVarFlags(Record[3]);
|
|
RefArrayStart = 4;
|
|
}
|
|
std::vector<ValueInfo> Refs =
|
|
makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
|
|
auto FS =
|
|
llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
|
|
LastSeenSummary = FS.get();
|
|
FS->setModulePath(ModuleIdMap[ModuleId]);
|
|
ValueInfo VI = getValueInfoFromValueId(ValueID).first;
|
|
LastSeenGUID = VI.getGUID();
|
|
TheIndex.addGlobalValueSummary(VI, std::move(FS));
|
|
break;
|
|
}
|
|
// FS_COMBINED_ORIGINAL_NAME: [original_name]
|
|
case bitc::FS_COMBINED_ORIGINAL_NAME: {
|
|
uint64_t OriginalName = Record[0];
|
|
if (!LastSeenSummary)
|
|
return error("Name attachment that does not follow a combined record");
|
|
LastSeenSummary->setOriginalName(OriginalName);
|
|
TheIndex.addOriginalName(LastSeenGUID, OriginalName);
|
|
// Reset the LastSeenSummary
|
|
LastSeenSummary = nullptr;
|
|
LastSeenGUID = 0;
|
|
break;
|
|
}
|
|
case bitc::FS_TYPE_TESTS:
|
|
assert(PendingTypeTests.empty());
|
|
PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
|
|
Record.end());
|
|
break;
|
|
|
|
case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
|
|
assert(PendingTypeTestAssumeVCalls.empty());
|
|
for (unsigned I = 0; I != Record.size(); I += 2)
|
|
PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
|
|
break;
|
|
|
|
case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
|
|
assert(PendingTypeCheckedLoadVCalls.empty());
|
|
for (unsigned I = 0; I != Record.size(); I += 2)
|
|
PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
|
|
break;
|
|
|
|
case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
|
|
PendingTypeTestAssumeConstVCalls.push_back(
|
|
{{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
|
|
break;
|
|
|
|
case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
|
|
PendingTypeCheckedLoadConstVCalls.push_back(
|
|
{{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
|
|
break;
|
|
|
|
case bitc::FS_CFI_FUNCTION_DEFS: {
|
|
std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
|
|
for (unsigned I = 0; I != Record.size(); I += 2)
|
|
CfiFunctionDefs.insert(
|
|
{Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
|
|
break;
|
|
}
|
|
|
|
case bitc::FS_CFI_FUNCTION_DECLS: {
|
|
std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
|
|
for (unsigned I = 0; I != Record.size(); I += 2)
|
|
CfiFunctionDecls.insert(
|
|
{Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
|
|
break;
|
|
}
|
|
|
|
case bitc::FS_TYPE_ID:
|
|
parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
|
|
break;
|
|
}
|
|
}
|
|
llvm_unreachable("Exit infinite loop");
|
|
}
|
|
|
|
// Parse the module string table block into the Index.
|
|
// This populates the ModulePathStringTable map in the index.
|
|
Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
|
|
if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
SmallString<128> ModulePath;
|
|
ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
|
|
|
|
while (true) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
return Error::success();
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
Record.clear();
|
|
switch (Stream.readRecord(Entry.ID, Record)) {
|
|
default: // Default behavior: ignore.
|
|
break;
|
|
case bitc::MST_CODE_ENTRY: {
|
|
// MST_ENTRY: [modid, namechar x N]
|
|
uint64_t ModuleId = Record[0];
|
|
|
|
if (convertToString(Record, 1, ModulePath))
|
|
return error("Invalid record");
|
|
|
|
LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
|
|
ModuleIdMap[ModuleId] = LastSeenModule->first();
|
|
|
|
ModulePath.clear();
|
|
break;
|
|
}
|
|
/// MST_CODE_HASH: [5*i32]
|
|
case bitc::MST_CODE_HASH: {
|
|
if (Record.size() != 5)
|
|
return error("Invalid hash length " + Twine(Record.size()).str());
|
|
if (!LastSeenModule)
|
|
return error("Invalid hash that does not follow a module path");
|
|
int Pos = 0;
|
|
for (auto &Val : Record) {
|
|
assert(!(Val >> 32) && "Unexpected high bits set");
|
|
LastSeenModule->second.second[Pos++] = Val;
|
|
}
|
|
// Reset LastSeenModule to avoid overriding the hash unexpectedly.
|
|
LastSeenModule = nullptr;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
llvm_unreachable("Exit infinite loop");
|
|
}
|
|
|
|
namespace {
|
|
|
|
// FIXME: This class is only here to support the transition to llvm::Error. It
|
|
// will be removed once this transition is complete. Clients should prefer to
|
|
// deal with the Error value directly, rather than converting to error_code.
|
|
class BitcodeErrorCategoryType : public std::error_category {
|
|
const char *name() const noexcept override {
|
|
return "llvm.bitcode";
|
|
}
|
|
|
|
std::string message(int IE) const override {
|
|
BitcodeError E = static_cast<BitcodeError>(IE);
|
|
switch (E) {
|
|
case BitcodeError::CorruptedBitcode:
|
|
return "Corrupted bitcode";
|
|
}
|
|
llvm_unreachable("Unknown error type!");
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
|
|
|
|
const std::error_category &llvm::BitcodeErrorCategory() {
|
|
return *ErrorCategory;
|
|
}
|
|
|
|
static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
|
|
unsigned Block, unsigned RecordID) {
|
|
if (Stream.EnterSubBlock(Block))
|
|
return error("Invalid record");
|
|
|
|
StringRef Strtab;
|
|
while (true) {
|
|
BitstreamEntry Entry = Stream.advance();
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::EndBlock:
|
|
return Strtab;
|
|
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
|
|
case BitstreamEntry::SubBlock:
|
|
if (Stream.SkipBlock())
|
|
return error("Malformed block");
|
|
break;
|
|
|
|
case BitstreamEntry::Record:
|
|
StringRef Blob;
|
|
SmallVector<uint64_t, 1> Record;
|
|
if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID)
|
|
Strtab = Blob;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// External interface
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Expected<std::vector<BitcodeModule>>
|
|
llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
|
|
auto FOrErr = getBitcodeFileContents(Buffer);
|
|
if (!FOrErr)
|
|
return FOrErr.takeError();
|
|
return std::move(FOrErr->Mods);
|
|
}
|
|
|
|
Expected<BitcodeFileContents>
|
|
llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
|
|
Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
|
|
if (!StreamOrErr)
|
|
return StreamOrErr.takeError();
|
|
BitstreamCursor &Stream = *StreamOrErr;
|
|
|
|
BitcodeFileContents F;
|
|
while (true) {
|
|
uint64_t BCBegin = Stream.getCurrentByteNo();
|
|
|
|
// We may be consuming bitcode from a client that leaves garbage at the end
|
|
// of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
|
|
// the end that there cannot possibly be another module, stop looking.
|
|
if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
|
|
return F;
|
|
|
|
BitstreamEntry Entry = Stream.advance();
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::EndBlock:
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
|
|
case BitstreamEntry::SubBlock: {
|
|
uint64_t IdentificationBit = -1ull;
|
|
if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
|
|
IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
|
|
if (Stream.SkipBlock())
|
|
return error("Malformed block");
|
|
|
|
Entry = Stream.advance();
|
|
if (Entry.Kind != BitstreamEntry::SubBlock ||
|
|
Entry.ID != bitc::MODULE_BLOCK_ID)
|
|
return error("Malformed block");
|
|
}
|
|
|
|
if (Entry.ID == bitc::MODULE_BLOCK_ID) {
|
|
uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
|
|
if (Stream.SkipBlock())
|
|
return error("Malformed block");
|
|
|
|
F.Mods.push_back({Stream.getBitcodeBytes().slice(
|
|
BCBegin, Stream.getCurrentByteNo() - BCBegin),
|
|
Buffer.getBufferIdentifier(), IdentificationBit,
|
|
ModuleBit});
|
|
continue;
|
|
}
|
|
|
|
if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
|
|
Expected<StringRef> Strtab =
|
|
readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
|
|
if (!Strtab)
|
|
return Strtab.takeError();
|
|
// This string table is used by every preceding bitcode module that does
|
|
// not have its own string table. A bitcode file may have multiple
|
|
// string tables if it was created by binary concatenation, for example
|
|
// with "llvm-cat -b".
|
|
for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
|
|
if (!I->Strtab.empty())
|
|
break;
|
|
I->Strtab = *Strtab;
|
|
}
|
|
// Similarly, the string table is used by every preceding symbol table;
|
|
// normally there will be just one unless the bitcode file was created
|
|
// by binary concatenation.
|
|
if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
|
|
F.StrtabForSymtab = *Strtab;
|
|
continue;
|
|
}
|
|
|
|
if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
|
|
Expected<StringRef> SymtabOrErr =
|
|
readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
|
|
if (!SymtabOrErr)
|
|
return SymtabOrErr.takeError();
|
|
|
|
// We can expect the bitcode file to have multiple symbol tables if it
|
|
// was created by binary concatenation. In that case we silently
|
|
// ignore any subsequent symbol tables, which is fine because this is a
|
|
// low level function. The client is expected to notice that the number
|
|
// of modules in the symbol table does not match the number of modules
|
|
// in the input file and regenerate the symbol table.
|
|
if (F.Symtab.empty())
|
|
F.Symtab = *SymtabOrErr;
|
|
continue;
|
|
}
|
|
|
|
if (Stream.SkipBlock())
|
|
return error("Malformed block");
|
|
continue;
|
|
}
|
|
case BitstreamEntry::Record:
|
|
Stream.skipRecord(Entry.ID);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Get a lazy one-at-time loading module from bitcode.
|
|
///
|
|
/// This isn't always used in a lazy context. In particular, it's also used by
|
|
/// \a parseModule(). If this is truly lazy, then we need to eagerly pull
|
|
/// in forward-referenced functions from block address references.
|
|
///
|
|
/// \param[in] MaterializeAll Set to \c true if we should materialize
|
|
/// everything.
|
|
Expected<std::unique_ptr<Module>>
|
|
BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
|
|
bool ShouldLazyLoadMetadata, bool IsImporting) {
|
|
BitstreamCursor Stream(Buffer);
|
|
|
|
std::string ProducerIdentification;
|
|
if (IdentificationBit != -1ull) {
|
|
Stream.JumpToBit(IdentificationBit);
|
|
Expected<std::string> ProducerIdentificationOrErr =
|
|
readIdentificationBlock(Stream);
|
|
if (!ProducerIdentificationOrErr)
|
|
return ProducerIdentificationOrErr.takeError();
|
|
|
|
ProducerIdentification = *ProducerIdentificationOrErr;
|
|
}
|
|
|
|
Stream.JumpToBit(ModuleBit);
|
|
auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
|
|
Context);
|
|
|
|
std::unique_ptr<Module> M =
|
|
llvm::make_unique<Module>(ModuleIdentifier, Context);
|
|
M->setMaterializer(R);
|
|
|
|
// Delay parsing Metadata if ShouldLazyLoadMetadata is true.
|
|
if (Error Err =
|
|
R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
|
|
return std::move(Err);
|
|
|
|
if (MaterializeAll) {
|
|
// Read in the entire module, and destroy the BitcodeReader.
|
|
if (Error Err = M->materializeAll())
|
|
return std::move(Err);
|
|
} else {
|
|
// Resolve forward references from blockaddresses.
|
|
if (Error Err = R->materializeForwardReferencedFunctions())
|
|
return std::move(Err);
|
|
}
|
|
return std::move(M);
|
|
}
|
|
|
|
Expected<std::unique_ptr<Module>>
|
|
BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
|
|
bool IsImporting) {
|
|
return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
|
|
}
|
|
|
|
// Parse the specified bitcode buffer and merge the index into CombinedIndex.
|
|
// We don't use ModuleIdentifier here because the client may need to control the
|
|
// module path used in the combined summary (e.g. when reading summaries for
|
|
// regular LTO modules).
|
|
Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
|
|
StringRef ModulePath, uint64_t ModuleId) {
|
|
BitstreamCursor Stream(Buffer);
|
|
Stream.JumpToBit(ModuleBit);
|
|
|
|
ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
|
|
ModulePath, ModuleId);
|
|
return R.parseModule();
|
|
}
|
|
|
|
// Parse the specified bitcode buffer, returning the function info index.
|
|
Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
|
|
BitstreamCursor Stream(Buffer);
|
|
Stream.JumpToBit(ModuleBit);
|
|
|
|
auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
|
|
ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
|
|
ModuleIdentifier, 0);
|
|
|
|
if (Error Err = R.parseModule())
|
|
return std::move(Err);
|
|
|
|
return std::move(Index);
|
|
}
|
|
|
|
static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
|
|
unsigned ID) {
|
|
if (Stream.EnterSubBlock(ID))
|
|
return error("Invalid record");
|
|
SmallVector<uint64_t, 64> Record;
|
|
|
|
while (true) {
|
|
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::SubBlock: // Handled for us already.
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
// If no flags record found, conservatively return true to mimic
|
|
// behavior before this flag was added.
|
|
return true;
|
|
case BitstreamEntry::Record:
|
|
// The interesting case.
|
|
break;
|
|
}
|
|
|
|
// Look for the FS_FLAGS record.
|
|
Record.clear();
|
|
auto BitCode = Stream.readRecord(Entry.ID, Record);
|
|
switch (BitCode) {
|
|
default: // Default behavior: ignore.
|
|
break;
|
|
case bitc::FS_FLAGS: { // [flags]
|
|
uint64_t Flags = Record[0];
|
|
// Scan flags.
|
|
assert(Flags <= 0x1f && "Unexpected bits in flag");
|
|
|
|
return Flags & 0x8;
|
|
}
|
|
}
|
|
}
|
|
llvm_unreachable("Exit infinite loop");
|
|
}
|
|
|
|
// Check if the given bitcode buffer contains a global value summary block.
|
|
Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
|
|
BitstreamCursor Stream(Buffer);
|
|
Stream.JumpToBit(ModuleBit);
|
|
|
|
if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
|
|
return error("Invalid record");
|
|
|
|
while (true) {
|
|
BitstreamEntry Entry = Stream.advance();
|
|
|
|
switch (Entry.Kind) {
|
|
case BitstreamEntry::Error:
|
|
return error("Malformed block");
|
|
case BitstreamEntry::EndBlock:
|
|
return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
|
|
/*EnableSplitLTOUnit=*/false};
|
|
|
|
case BitstreamEntry::SubBlock:
|
|
if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
|
|
Expected<bool> EnableSplitLTOUnit =
|
|
getEnableSplitLTOUnitFlag(Stream, Entry.ID);
|
|
if (!EnableSplitLTOUnit)
|
|
return EnableSplitLTOUnit.takeError();
|
|
return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
|
|
*EnableSplitLTOUnit};
|
|
}
|
|
|
|
if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
|
|
Expected<bool> EnableSplitLTOUnit =
|
|
getEnableSplitLTOUnitFlag(Stream, Entry.ID);
|
|
if (!EnableSplitLTOUnit)
|
|
return EnableSplitLTOUnit.takeError();
|
|
return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
|
|
*EnableSplitLTOUnit};
|
|
}
|
|
|
|
// Ignore other sub-blocks.
|
|
if (Stream.SkipBlock())
|
|
return error("Malformed block");
|
|
continue;
|
|
|
|
case BitstreamEntry::Record:
|
|
Stream.skipRecord(Entry.ID);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
|
|
Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
|
|
if (!MsOrErr)
|
|
return MsOrErr.takeError();
|
|
|
|
if (MsOrErr->size() != 1)
|
|
return error("Expected a single module");
|
|
|
|
return (*MsOrErr)[0];
|
|
}
|
|
|
|
Expected<std::unique_ptr<Module>>
|
|
llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
|
|
bool ShouldLazyLoadMetadata, bool IsImporting) {
|
|
Expected<BitcodeModule> BM = getSingleModule(Buffer);
|
|
if (!BM)
|
|
return BM.takeError();
|
|
|
|
return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
|
|
}
|
|
|
|
Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
|
|
std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
|
|
bool ShouldLazyLoadMetadata, bool IsImporting) {
|
|
auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
|
|
IsImporting);
|
|
if (MOrErr)
|
|
(*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
|
|
return MOrErr;
|
|
}
|
|
|
|
Expected<std::unique_ptr<Module>>
|
|
BitcodeModule::parseModule(LLVMContext &Context) {
|
|
return getModuleImpl(Context, true, false, false);
|
|
// TODO: Restore the use-lists to the in-memory state when the bitcode was
|
|
// written. We must defer until the Module has been fully materialized.
|
|
}
|
|
|
|
Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
|
|
LLVMContext &Context) {
|
|
Expected<BitcodeModule> BM = getSingleModule(Buffer);
|
|
if (!BM)
|
|
return BM.takeError();
|
|
|
|
return BM->parseModule(Context);
|
|
}
|
|
|
|
Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
|
|
Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
|
|
if (!StreamOrErr)
|
|
return StreamOrErr.takeError();
|
|
|
|
return readTriple(*StreamOrErr);
|
|
}
|
|
|
|
Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
|
|
Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
|
|
if (!StreamOrErr)
|
|
return StreamOrErr.takeError();
|
|
|
|
return hasObjCCategory(*StreamOrErr);
|
|
}
|
|
|
|
Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
|
|
Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
|
|
if (!StreamOrErr)
|
|
return StreamOrErr.takeError();
|
|
|
|
return readIdentificationCode(*StreamOrErr);
|
|
}
|
|
|
|
Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
|
|
ModuleSummaryIndex &CombinedIndex,
|
|
uint64_t ModuleId) {
|
|
Expected<BitcodeModule> BM = getSingleModule(Buffer);
|
|
if (!BM)
|
|
return BM.takeError();
|
|
|
|
return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
|
|
}
|
|
|
|
Expected<std::unique_ptr<ModuleSummaryIndex>>
|
|
llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
|
|
Expected<BitcodeModule> BM = getSingleModule(Buffer);
|
|
if (!BM)
|
|
return BM.takeError();
|
|
|
|
return BM->getSummary();
|
|
}
|
|
|
|
Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
|
|
Expected<BitcodeModule> BM = getSingleModule(Buffer);
|
|
if (!BM)
|
|
return BM.takeError();
|
|
|
|
return BM->getLTOInfo();
|
|
}
|
|
|
|
Expected<std::unique_ptr<ModuleSummaryIndex>>
|
|
llvm::getModuleSummaryIndexForFile(StringRef Path,
|
|
bool IgnoreEmptyThinLTOIndexFile) {
|
|
ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
|
|
MemoryBuffer::getFileOrSTDIN(Path);
|
|
if (!FileOrErr)
|
|
return errorCodeToError(FileOrErr.getError());
|
|
if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
|
|
return nullptr;
|
|
return getModuleSummaryIndex(**FileOrErr);
|
|
}
|