forked from OSchip/llvm-project
2501 lines
95 KiB
C++
2501 lines
95 KiB
C++
//===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the ARM implementation of TargetFrameLowering class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARMFrameLowering.h"
|
|
#include "ARMBaseInstrInfo.h"
|
|
#include "ARMBaseRegisterInfo.h"
|
|
#include "ARMConstantPoolValue.h"
|
|
#include "ARMMachineFunctionInfo.h"
|
|
#include "ARMSubtarget.h"
|
|
#include "MCTargetDesc/ARMAddressingModes.h"
|
|
#include "MCTargetDesc/ARMBaseInfo.h"
|
|
#include "Utils/ARMBaseInfo.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/RegisterScavenging.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetOpcodes.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCDwarf.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/Support/CodeGen.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#define DEBUG_TYPE "arm-frame-lowering"
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool>
|
|
SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true),
|
|
cl::desc("Align ARM NEON spills in prolog and epilog"));
|
|
|
|
static MachineBasicBlock::iterator
|
|
skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
|
|
unsigned NumAlignedDPRCS2Regs);
|
|
|
|
ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti)
|
|
: TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, 4),
|
|
STI(sti) {}
|
|
|
|
bool ARMFrameLowering::noFramePointerElim(const MachineFunction &MF) const {
|
|
// iOS always has a FP for backtracking, force other targets to keep their FP
|
|
// when doing FastISel. The emitted code is currently superior, and in cases
|
|
// like test-suite's lencod FastISel isn't quite correct when FP is eliminated.
|
|
return TargetFrameLowering::noFramePointerElim(MF) ||
|
|
MF.getSubtarget<ARMSubtarget>().useFastISel();
|
|
}
|
|
|
|
/// Returns true if the target can safely skip saving callee-saved registers
|
|
/// for noreturn nounwind functions.
|
|
bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const {
|
|
assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) &&
|
|
MF.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
|
|
!MF.getFunction().hasFnAttribute(Attribute::UWTable));
|
|
|
|
// Frame pointer and link register are not treated as normal CSR, thus we
|
|
// can always skip CSR saves for nonreturning functions.
|
|
return true;
|
|
}
|
|
|
|
/// hasFP - Return true if the specified function should have a dedicated frame
|
|
/// pointer register. This is true if the function has variable sized allocas
|
|
/// or if frame pointer elimination is disabled.
|
|
bool ARMFrameLowering::hasFP(const MachineFunction &MF) const {
|
|
const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
|
|
// ABI-required frame pointer.
|
|
if (MF.getTarget().Options.DisableFramePointerElim(MF))
|
|
return true;
|
|
|
|
// Frame pointer required for use within this function.
|
|
return (RegInfo->needsStackRealignment(MF) ||
|
|
MFI.hasVarSizedObjects() ||
|
|
MFI.isFrameAddressTaken());
|
|
}
|
|
|
|
/// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
|
|
/// not required, we reserve argument space for call sites in the function
|
|
/// immediately on entry to the current function. This eliminates the need for
|
|
/// add/sub sp brackets around call sites. Returns true if the call frame is
|
|
/// included as part of the stack frame.
|
|
bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
unsigned CFSize = MFI.getMaxCallFrameSize();
|
|
// It's not always a good idea to include the call frame as part of the
|
|
// stack frame. ARM (especially Thumb) has small immediate offset to
|
|
// address the stack frame. So a large call frame can cause poor codegen
|
|
// and may even makes it impossible to scavenge a register.
|
|
if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12
|
|
return false;
|
|
|
|
return !MFI.hasVarSizedObjects();
|
|
}
|
|
|
|
/// canSimplifyCallFramePseudos - If there is a reserved call frame, the
|
|
/// call frame pseudos can be simplified. Unlike most targets, having a FP
|
|
/// is not sufficient here since we still may reference some objects via SP
|
|
/// even when FP is available in Thumb2 mode.
|
|
bool
|
|
ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
|
|
return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects();
|
|
}
|
|
|
|
static bool isCSRestore(MachineInstr &MI, const ARMBaseInstrInfo &TII,
|
|
const MCPhysReg *CSRegs) {
|
|
// Integer spill area is handled with "pop".
|
|
if (isPopOpcode(MI.getOpcode())) {
|
|
// The first two operands are predicates. The last two are
|
|
// imp-def and imp-use of SP. Check everything in between.
|
|
for (int i = 5, e = MI.getNumOperands(); i != e; ++i)
|
|
if (!isCalleeSavedRegister(MI.getOperand(i).getReg(), CSRegs))
|
|
return false;
|
|
return true;
|
|
}
|
|
if ((MI.getOpcode() == ARM::LDR_POST_IMM ||
|
|
MI.getOpcode() == ARM::LDR_POST_REG ||
|
|
MI.getOpcode() == ARM::t2LDR_POST) &&
|
|
isCalleeSavedRegister(MI.getOperand(0).getReg(), CSRegs) &&
|
|
MI.getOperand(1).getReg() == ARM::SP)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void emitRegPlusImmediate(
|
|
bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
|
|
const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg,
|
|
unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags,
|
|
ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) {
|
|
if (isARM)
|
|
emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
|
|
Pred, PredReg, TII, MIFlags);
|
|
else
|
|
emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
|
|
Pred, PredReg, TII, MIFlags);
|
|
}
|
|
|
|
static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator &MBBI, const DebugLoc &dl,
|
|
const ARMBaseInstrInfo &TII, int NumBytes,
|
|
unsigned MIFlags = MachineInstr::NoFlags,
|
|
ARMCC::CondCodes Pred = ARMCC::AL,
|
|
unsigned PredReg = 0) {
|
|
emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes,
|
|
MIFlags, Pred, PredReg);
|
|
}
|
|
|
|
static int sizeOfSPAdjustment(const MachineInstr &MI) {
|
|
int RegSize;
|
|
switch (MI.getOpcode()) {
|
|
case ARM::VSTMDDB_UPD:
|
|
RegSize = 8;
|
|
break;
|
|
case ARM::STMDB_UPD:
|
|
case ARM::t2STMDB_UPD:
|
|
RegSize = 4;
|
|
break;
|
|
case ARM::t2STR_PRE:
|
|
case ARM::STR_PRE_IMM:
|
|
return 4;
|
|
default:
|
|
llvm_unreachable("Unknown push or pop like instruction");
|
|
}
|
|
|
|
int count = 0;
|
|
// ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
|
|
// pred) so the list starts at 4.
|
|
for (int i = MI.getNumOperands() - 1; i >= 4; --i)
|
|
count += RegSize;
|
|
return count;
|
|
}
|
|
|
|
static bool WindowsRequiresStackProbe(const MachineFunction &MF,
|
|
size_t StackSizeInBytes) {
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
const Function &F = MF.getFunction();
|
|
unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096;
|
|
if (F.hasFnAttribute("stack-probe-size"))
|
|
F.getFnAttribute("stack-probe-size")
|
|
.getValueAsString()
|
|
.getAsInteger(0, StackProbeSize);
|
|
return (StackSizeInBytes >= StackProbeSize) &&
|
|
!F.hasFnAttribute("no-stack-arg-probe");
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct StackAdjustingInsts {
|
|
struct InstInfo {
|
|
MachineBasicBlock::iterator I;
|
|
unsigned SPAdjust;
|
|
bool BeforeFPSet;
|
|
};
|
|
|
|
SmallVector<InstInfo, 4> Insts;
|
|
|
|
void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust,
|
|
bool BeforeFPSet = false) {
|
|
InstInfo Info = {I, SPAdjust, BeforeFPSet};
|
|
Insts.push_back(Info);
|
|
}
|
|
|
|
void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) {
|
|
auto Info =
|
|
llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; });
|
|
assert(Info != Insts.end() && "invalid sp adjusting instruction");
|
|
Info->SPAdjust += ExtraBytes;
|
|
}
|
|
|
|
void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl,
|
|
const ARMBaseInstrInfo &TII, bool HasFP) {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
unsigned CFAOffset = 0;
|
|
for (auto &Info : Insts) {
|
|
if (HasFP && !Info.BeforeFPSet)
|
|
return;
|
|
|
|
CFAOffset -= Info.SPAdjust;
|
|
unsigned CFIIndex = MF.addFrameInst(
|
|
MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset));
|
|
BuildMI(MBB, std::next(Info.I), dl,
|
|
TII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex)
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Emit an instruction sequence that will align the address in
|
|
/// register Reg by zero-ing out the lower bits. For versions of the
|
|
/// architecture that support Neon, this must be done in a single
|
|
/// instruction, since skipAlignedDPRCS2Spills assumes it is done in a
|
|
/// single instruction. That function only gets called when optimizing
|
|
/// spilling of D registers on a core with the Neon instruction set
|
|
/// present.
|
|
static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI,
|
|
const TargetInstrInfo &TII,
|
|
MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
const DebugLoc &DL, const unsigned Reg,
|
|
const unsigned Alignment,
|
|
const bool MustBeSingleInstruction) {
|
|
const ARMSubtarget &AST =
|
|
static_cast<const ARMSubtarget &>(MF.getSubtarget());
|
|
const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops();
|
|
const unsigned AlignMask = Alignment - 1;
|
|
const unsigned NrBitsToZero = countTrailingZeros(Alignment);
|
|
assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported");
|
|
if (!AFI->isThumbFunction()) {
|
|
// if the BFC instruction is available, use that to zero the lower
|
|
// bits:
|
|
// bfc Reg, #0, log2(Alignment)
|
|
// otherwise use BIC, if the mask to zero the required number of bits
|
|
// can be encoded in the bic immediate field
|
|
// bic Reg, Reg, Alignment-1
|
|
// otherwise, emit
|
|
// lsr Reg, Reg, log2(Alignment)
|
|
// lsl Reg, Reg, log2(Alignment)
|
|
if (CanUseBFC) {
|
|
BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg)
|
|
.addReg(Reg, RegState::Kill)
|
|
.addImm(~AlignMask)
|
|
.add(predOps(ARMCC::AL));
|
|
} else if (AlignMask <= 255) {
|
|
BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg)
|
|
.addReg(Reg, RegState::Kill)
|
|
.addImm(AlignMask)
|
|
.add(predOps(ARMCC::AL))
|
|
.add(condCodeOp());
|
|
} else {
|
|
assert(!MustBeSingleInstruction &&
|
|
"Shouldn't call emitAligningInstructions demanding a single "
|
|
"instruction to be emitted for large stack alignment for a target "
|
|
"without BFC.");
|
|
BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
|
|
.addReg(Reg, RegState::Kill)
|
|
.addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero))
|
|
.add(predOps(ARMCC::AL))
|
|
.add(condCodeOp());
|
|
BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
|
|
.addReg(Reg, RegState::Kill)
|
|
.addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero))
|
|
.add(predOps(ARMCC::AL))
|
|
.add(condCodeOp());
|
|
}
|
|
} else {
|
|
// Since this is only reached for Thumb-2 targets, the BFC instruction
|
|
// should always be available.
|
|
assert(CanUseBFC);
|
|
BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg)
|
|
.addReg(Reg, RegState::Kill)
|
|
.addImm(~AlignMask)
|
|
.add(predOps(ARMCC::AL));
|
|
}
|
|
}
|
|
|
|
/// We need the offset of the frame pointer relative to other MachineFrameInfo
|
|
/// offsets which are encoded relative to SP at function begin.
|
|
/// See also emitPrologue() for how the FP is set up.
|
|
/// Unfortunately we cannot determine this value in determineCalleeSaves() yet
|
|
/// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use
|
|
/// this to produce a conservative estimate that we check in an assert() later.
|
|
static int getMaxFPOffset(const Function &F, const ARMFunctionInfo &AFI) {
|
|
// This is a conservative estimation: Assume the frame pointer being r7 and
|
|
// pc("r15") up to r8 getting spilled before (= 8 registers).
|
|
return -AFI.getArgRegsSaveSize() - (8 * 4);
|
|
}
|
|
|
|
void ARMFrameLowering::emitPrologue(MachineFunction &MF,
|
|
MachineBasicBlock &MBB) const {
|
|
MachineBasicBlock::iterator MBBI = MBB.begin();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
MachineModuleInfo &MMI = MF.getMMI();
|
|
MCContext &Context = MMI.getContext();
|
|
const TargetMachine &TM = MF.getTarget();
|
|
const MCRegisterInfo *MRI = Context.getRegisterInfo();
|
|
const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo();
|
|
const ARMBaseInstrInfo &TII = *STI.getInstrInfo();
|
|
assert(!AFI->isThumb1OnlyFunction() &&
|
|
"This emitPrologue does not support Thumb1!");
|
|
bool isARM = !AFI->isThumbFunction();
|
|
unsigned Align = STI.getFrameLowering()->getStackAlignment();
|
|
unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
|
|
unsigned NumBytes = MFI.getStackSize();
|
|
const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
|
|
|
|
// Debug location must be unknown since the first debug location is used
|
|
// to determine the end of the prologue.
|
|
DebugLoc dl;
|
|
|
|
unsigned FramePtr = RegInfo->getFrameRegister(MF);
|
|
|
|
// Determine the sizes of each callee-save spill areas and record which frame
|
|
// belongs to which callee-save spill areas.
|
|
unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
|
|
int FramePtrSpillFI = 0;
|
|
int D8SpillFI = 0;
|
|
|
|
// All calls are tail calls in GHC calling conv, and functions have no
|
|
// prologue/epilogue.
|
|
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
|
|
return;
|
|
|
|
StackAdjustingInsts DefCFAOffsetCandidates;
|
|
bool HasFP = hasFP(MF);
|
|
|
|
// Allocate the vararg register save area.
|
|
if (ArgRegsSaveSize) {
|
|
emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize,
|
|
MachineInstr::FrameSetup);
|
|
DefCFAOffsetCandidates.addInst(std::prev(MBBI), ArgRegsSaveSize, true);
|
|
}
|
|
|
|
if (!AFI->hasStackFrame() &&
|
|
(!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) {
|
|
if (NumBytes - ArgRegsSaveSize != 0) {
|
|
emitSPUpdate(isARM, MBB, MBBI, dl, TII, -(NumBytes - ArgRegsSaveSize),
|
|
MachineInstr::FrameSetup);
|
|
DefCFAOffsetCandidates.addInst(std::prev(MBBI),
|
|
NumBytes - ArgRegsSaveSize, true);
|
|
}
|
|
DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
|
|
return;
|
|
}
|
|
|
|
// Determine spill area sizes.
|
|
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
|
|
unsigned Reg = CSI[i].getReg();
|
|
int FI = CSI[i].getFrameIdx();
|
|
switch (Reg) {
|
|
case ARM::R8:
|
|
case ARM::R9:
|
|
case ARM::R10:
|
|
case ARM::R11:
|
|
case ARM::R12:
|
|
if (STI.splitFramePushPop(MF)) {
|
|
GPRCS2Size += 4;
|
|
break;
|
|
}
|
|
LLVM_FALLTHROUGH;
|
|
case ARM::R0:
|
|
case ARM::R1:
|
|
case ARM::R2:
|
|
case ARM::R3:
|
|
case ARM::R4:
|
|
case ARM::R5:
|
|
case ARM::R6:
|
|
case ARM::R7:
|
|
case ARM::LR:
|
|
if (Reg == FramePtr)
|
|
FramePtrSpillFI = FI;
|
|
GPRCS1Size += 4;
|
|
break;
|
|
default:
|
|
// This is a DPR. Exclude the aligned DPRCS2 spills.
|
|
if (Reg == ARM::D8)
|
|
D8SpillFI = FI;
|
|
if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
|
|
DPRCSSize += 8;
|
|
}
|
|
}
|
|
|
|
// Move past area 1.
|
|
MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push;
|
|
if (GPRCS1Size > 0) {
|
|
GPRCS1Push = LastPush = MBBI++;
|
|
DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true);
|
|
}
|
|
|
|
// Determine starting offsets of spill areas.
|
|
unsigned GPRCS1Offset = NumBytes - ArgRegsSaveSize - GPRCS1Size;
|
|
unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size;
|
|
unsigned DPRAlign = DPRCSSize ? std::min(8U, Align) : 4U;
|
|
unsigned DPRGapSize = (GPRCS1Size + GPRCS2Size + ArgRegsSaveSize) % DPRAlign;
|
|
unsigned DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize;
|
|
int FramePtrOffsetInPush = 0;
|
|
if (HasFP) {
|
|
int FPOffset = MFI.getObjectOffset(FramePtrSpillFI);
|
|
assert(getMaxFPOffset(MF.getFunction(), *AFI) <= FPOffset &&
|
|
"Max FP estimation is wrong");
|
|
FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize;
|
|
AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) +
|
|
NumBytes);
|
|
}
|
|
AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
|
|
AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
|
|
AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
|
|
|
|
// Move past area 2.
|
|
if (GPRCS2Size > 0) {
|
|
GPRCS2Push = LastPush = MBBI++;
|
|
DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
|
|
}
|
|
|
|
// Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our
|
|
// .cfi_offset operations will reflect that.
|
|
if (DPRGapSize) {
|
|
assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs");
|
|
if (LastPush != MBB.end() &&
|
|
tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize))
|
|
DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize);
|
|
else {
|
|
emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize,
|
|
MachineInstr::FrameSetup);
|
|
DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize);
|
|
}
|
|
}
|
|
|
|
// Move past area 3.
|
|
if (DPRCSSize > 0) {
|
|
// Since vpush register list cannot have gaps, there may be multiple vpush
|
|
// instructions in the prologue.
|
|
while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) {
|
|
DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI));
|
|
LastPush = MBBI++;
|
|
}
|
|
}
|
|
|
|
// Move past the aligned DPRCS2 area.
|
|
if (AFI->getNumAlignedDPRCS2Regs() > 0) {
|
|
MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs());
|
|
// The code inserted by emitAlignedDPRCS2Spills realigns the stack, and
|
|
// leaves the stack pointer pointing to the DPRCS2 area.
|
|
//
|
|
// Adjust NumBytes to represent the stack slots below the DPRCS2 area.
|
|
NumBytes += MFI.getObjectOffset(D8SpillFI);
|
|
} else
|
|
NumBytes = DPRCSOffset;
|
|
|
|
if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) {
|
|
uint32_t NumWords = NumBytes >> 2;
|
|
|
|
if (NumWords < 65536)
|
|
BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
|
|
.addImm(NumWords)
|
|
.setMIFlags(MachineInstr::FrameSetup)
|
|
.add(predOps(ARMCC::AL));
|
|
else
|
|
BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R4)
|
|
.addImm(NumWords)
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
|
|
switch (TM.getCodeModel()) {
|
|
case CodeModel::Small:
|
|
case CodeModel::Medium:
|
|
case CodeModel::Kernel:
|
|
BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL))
|
|
.add(predOps(ARMCC::AL))
|
|
.addExternalSymbol("__chkstk")
|
|
.addReg(ARM::R4, RegState::Implicit)
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
break;
|
|
case CodeModel::Large:
|
|
BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12)
|
|
.addExternalSymbol("__chkstk")
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
|
|
BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr))
|
|
.add(predOps(ARMCC::AL))
|
|
.addReg(ARM::R12, RegState::Kill)
|
|
.addReg(ARM::R4, RegState::Implicit)
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
break;
|
|
}
|
|
|
|
BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP)
|
|
.addReg(ARM::SP, RegState::Kill)
|
|
.addReg(ARM::R4, RegState::Kill)
|
|
.setMIFlags(MachineInstr::FrameSetup)
|
|
.add(predOps(ARMCC::AL))
|
|
.add(condCodeOp());
|
|
NumBytes = 0;
|
|
}
|
|
|
|
if (NumBytes) {
|
|
// Adjust SP after all the callee-save spills.
|
|
if (AFI->getNumAlignedDPRCS2Regs() == 0 &&
|
|
tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes))
|
|
DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes);
|
|
else {
|
|
emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
|
|
MachineInstr::FrameSetup);
|
|
DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes);
|
|
}
|
|
|
|
if (HasFP && isARM)
|
|
// Restore from fp only in ARM mode: e.g. sub sp, r7, #24
|
|
// Note it's not safe to do this in Thumb2 mode because it would have
|
|
// taken two instructions:
|
|
// mov sp, r7
|
|
// sub sp, #24
|
|
// If an interrupt is taken between the two instructions, then sp is in
|
|
// an inconsistent state (pointing to the middle of callee-saved area).
|
|
// The interrupt handler can end up clobbering the registers.
|
|
AFI->setShouldRestoreSPFromFP(true);
|
|
}
|
|
|
|
// Set FP to point to the stack slot that contains the previous FP.
|
|
// For iOS, FP is R7, which has now been stored in spill area 1.
|
|
// Otherwise, if this is not iOS, all the callee-saved registers go
|
|
// into spill area 1, including the FP in R11. In either case, it
|
|
// is in area one and the adjustment needs to take place just after
|
|
// that push.
|
|
if (HasFP) {
|
|
MachineBasicBlock::iterator AfterPush = std::next(GPRCS1Push);
|
|
unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push);
|
|
emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush,
|
|
dl, TII, FramePtr, ARM::SP,
|
|
PushSize + FramePtrOffsetInPush,
|
|
MachineInstr::FrameSetup);
|
|
if (FramePtrOffsetInPush + PushSize != 0) {
|
|
unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfa(
|
|
nullptr, MRI->getDwarfRegNum(FramePtr, true),
|
|
-(ArgRegsSaveSize - FramePtrOffsetInPush)));
|
|
BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex)
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
} else {
|
|
unsigned CFIIndex =
|
|
MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(
|
|
nullptr, MRI->getDwarfRegNum(FramePtr, true)));
|
|
BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex)
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
}
|
|
}
|
|
|
|
// Now that the prologue's actual instructions are finalised, we can insert
|
|
// the necessary DWARF cf instructions to describe the situation. Start by
|
|
// recording where each register ended up:
|
|
if (GPRCS1Size > 0) {
|
|
MachineBasicBlock::iterator Pos = std::next(GPRCS1Push);
|
|
int CFIIndex;
|
|
for (const auto &Entry : CSI) {
|
|
unsigned Reg = Entry.getReg();
|
|
int FI = Entry.getFrameIdx();
|
|
switch (Reg) {
|
|
case ARM::R8:
|
|
case ARM::R9:
|
|
case ARM::R10:
|
|
case ARM::R11:
|
|
case ARM::R12:
|
|
if (STI.splitFramePushPop(MF))
|
|
break;
|
|
LLVM_FALLTHROUGH;
|
|
case ARM::R0:
|
|
case ARM::R1:
|
|
case ARM::R2:
|
|
case ARM::R3:
|
|
case ARM::R4:
|
|
case ARM::R5:
|
|
case ARM::R6:
|
|
case ARM::R7:
|
|
case ARM::LR:
|
|
CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
|
|
nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI)));
|
|
BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex)
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (GPRCS2Size > 0) {
|
|
MachineBasicBlock::iterator Pos = std::next(GPRCS2Push);
|
|
for (const auto &Entry : CSI) {
|
|
unsigned Reg = Entry.getReg();
|
|
int FI = Entry.getFrameIdx();
|
|
switch (Reg) {
|
|
case ARM::R8:
|
|
case ARM::R9:
|
|
case ARM::R10:
|
|
case ARM::R11:
|
|
case ARM::R12:
|
|
if (STI.splitFramePushPop(MF)) {
|
|
unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
|
|
unsigned Offset = MFI.getObjectOffset(FI);
|
|
unsigned CFIIndex = MF.addFrameInst(
|
|
MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
|
|
BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex)
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (DPRCSSize > 0) {
|
|
// Since vpush register list cannot have gaps, there may be multiple vpush
|
|
// instructions in the prologue.
|
|
MachineBasicBlock::iterator Pos = std::next(LastPush);
|
|
for (const auto &Entry : CSI) {
|
|
unsigned Reg = Entry.getReg();
|
|
int FI = Entry.getFrameIdx();
|
|
if ((Reg >= ARM::D0 && Reg <= ARM::D31) &&
|
|
(Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) {
|
|
unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
|
|
unsigned Offset = MFI.getObjectOffset(FI);
|
|
unsigned CFIIndex = MF.addFrameInst(
|
|
MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
|
|
BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex)
|
|
.setMIFlags(MachineInstr::FrameSetup);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now we can emit descriptions of where the canonical frame address was
|
|
// throughout the process. If we have a frame pointer, it takes over the job
|
|
// half-way through, so only the first few .cfi_def_cfa_offset instructions
|
|
// actually get emitted.
|
|
DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
|
|
|
|
if (STI.isTargetELF() && hasFP(MF))
|
|
MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() -
|
|
AFI->getFramePtrSpillOffset());
|
|
|
|
AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
|
|
AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
|
|
AFI->setDPRCalleeSavedGapSize(DPRGapSize);
|
|
AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
|
|
|
|
// If we need dynamic stack realignment, do it here. Be paranoid and make
|
|
// sure if we also have VLAs, we have a base pointer for frame access.
|
|
// If aligned NEON registers were spilled, the stack has already been
|
|
// realigned.
|
|
if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->needsStackRealignment(MF)) {
|
|
unsigned MaxAlign = MFI.getMaxAlignment();
|
|
assert(!AFI->isThumb1OnlyFunction());
|
|
if (!AFI->isThumbFunction()) {
|
|
emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign,
|
|
false);
|
|
} else {
|
|
// We cannot use sp as source/dest register here, thus we're using r4 to
|
|
// perform the calculations. We're emitting the following sequence:
|
|
// mov r4, sp
|
|
// -- use emitAligningInstructions to produce best sequence to zero
|
|
// -- out lower bits in r4
|
|
// mov sp, r4
|
|
// FIXME: It will be better just to find spare register here.
|
|
BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4)
|
|
.addReg(ARM::SP, RegState::Kill)
|
|
.add(predOps(ARMCC::AL));
|
|
emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign,
|
|
false);
|
|
BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
|
|
.addReg(ARM::R4, RegState::Kill)
|
|
.add(predOps(ARMCC::AL));
|
|
}
|
|
|
|
AFI->setShouldRestoreSPFromFP(true);
|
|
}
|
|
|
|
// If we need a base pointer, set it up here. It's whatever the value
|
|
// of the stack pointer is at this point. Any variable size objects
|
|
// will be allocated after this, so we can still use the base pointer
|
|
// to reference locals.
|
|
// FIXME: Clarify FrameSetup flags here.
|
|
if (RegInfo->hasBasePointer(MF)) {
|
|
if (isARM)
|
|
BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister())
|
|
.addReg(ARM::SP)
|
|
.add(predOps(ARMCC::AL))
|
|
.add(condCodeOp());
|
|
else
|
|
BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister())
|
|
.addReg(ARM::SP)
|
|
.add(predOps(ARMCC::AL));
|
|
}
|
|
|
|
// If the frame has variable sized objects then the epilogue must restore
|
|
// the sp from fp. We can assume there's an FP here since hasFP already
|
|
// checks for hasVarSizedObjects.
|
|
if (MFI.hasVarSizedObjects())
|
|
AFI->setShouldRestoreSPFromFP(true);
|
|
}
|
|
|
|
void ARMFrameLowering::emitEpilogue(MachineFunction &MF,
|
|
MachineBasicBlock &MBB) const {
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
|
|
const ARMBaseInstrInfo &TII =
|
|
*static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
|
|
assert(!AFI->isThumb1OnlyFunction() &&
|
|
"This emitEpilogue does not support Thumb1!");
|
|
bool isARM = !AFI->isThumbFunction();
|
|
|
|
unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
|
|
int NumBytes = (int)MFI.getStackSize();
|
|
unsigned FramePtr = RegInfo->getFrameRegister(MF);
|
|
|
|
// All calls are tail calls in GHC calling conv, and functions have no
|
|
// prologue/epilogue.
|
|
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
|
|
return;
|
|
|
|
// First put ourselves on the first (from top) terminator instructions.
|
|
MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
|
|
DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
|
|
|
|
if (!AFI->hasStackFrame()) {
|
|
if (NumBytes - ArgRegsSaveSize != 0)
|
|
emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes - ArgRegsSaveSize);
|
|
} else {
|
|
// Unwind MBBI to point to first LDR / VLDRD.
|
|
const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
|
|
if (MBBI != MBB.begin()) {
|
|
do {
|
|
--MBBI;
|
|
} while (MBBI != MBB.begin() && isCSRestore(*MBBI, TII, CSRegs));
|
|
if (!isCSRestore(*MBBI, TII, CSRegs))
|
|
++MBBI;
|
|
}
|
|
|
|
// Move SP to start of FP callee save spill area.
|
|
NumBytes -= (ArgRegsSaveSize +
|
|
AFI->getGPRCalleeSavedArea1Size() +
|
|
AFI->getGPRCalleeSavedArea2Size() +
|
|
AFI->getDPRCalleeSavedGapSize() +
|
|
AFI->getDPRCalleeSavedAreaSize());
|
|
|
|
// Reset SP based on frame pointer only if the stack frame extends beyond
|
|
// frame pointer stack slot or target is ELF and the function has FP.
|
|
if (AFI->shouldRestoreSPFromFP()) {
|
|
NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
|
|
if (NumBytes) {
|
|
if (isARM)
|
|
emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes,
|
|
ARMCC::AL, 0, TII);
|
|
else {
|
|
// It's not possible to restore SP from FP in a single instruction.
|
|
// For iOS, this looks like:
|
|
// mov sp, r7
|
|
// sub sp, #24
|
|
// This is bad, if an interrupt is taken after the mov, sp is in an
|
|
// inconsistent state.
|
|
// Use the first callee-saved register as a scratch register.
|
|
assert(!MFI.getPristineRegs(MF).test(ARM::R4) &&
|
|
"No scratch register to restore SP from FP!");
|
|
emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes,
|
|
ARMCC::AL, 0, TII);
|
|
BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
|
|
.addReg(ARM::R4)
|
|
.add(predOps(ARMCC::AL));
|
|
}
|
|
} else {
|
|
// Thumb2 or ARM.
|
|
if (isARM)
|
|
BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP)
|
|
.addReg(FramePtr)
|
|
.add(predOps(ARMCC::AL))
|
|
.add(condCodeOp());
|
|
else
|
|
BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
|
|
.addReg(FramePtr)
|
|
.add(predOps(ARMCC::AL));
|
|
}
|
|
} else if (NumBytes &&
|
|
!tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes))
|
|
emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes);
|
|
|
|
// Increment past our save areas.
|
|
if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) {
|
|
MBBI++;
|
|
// Since vpop register list cannot have gaps, there may be multiple vpop
|
|
// instructions in the epilogue.
|
|
while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD)
|
|
MBBI++;
|
|
}
|
|
if (AFI->getDPRCalleeSavedGapSize()) {
|
|
assert(AFI->getDPRCalleeSavedGapSize() == 4 &&
|
|
"unexpected DPR alignment gap");
|
|
emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize());
|
|
}
|
|
|
|
if (AFI->getGPRCalleeSavedArea2Size()) MBBI++;
|
|
if (AFI->getGPRCalleeSavedArea1Size()) MBBI++;
|
|
}
|
|
|
|
if (ArgRegsSaveSize)
|
|
emitSPUpdate(isARM, MBB, MBBI, dl, TII, ArgRegsSaveSize);
|
|
}
|
|
|
|
/// getFrameIndexReference - Provide a base+offset reference to an FI slot for
|
|
/// debug info. It's the same as what we use for resolving the code-gen
|
|
/// references for now. FIXME: This can go wrong when references are
|
|
/// SP-relative and simple call frames aren't used.
|
|
int
|
|
ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
|
|
unsigned &FrameReg) const {
|
|
return ResolveFrameIndexReference(MF, FI, FrameReg, 0);
|
|
}
|
|
|
|
int
|
|
ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF,
|
|
int FI, unsigned &FrameReg,
|
|
int SPAdj) const {
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
|
|
MF.getSubtarget().getRegisterInfo());
|
|
const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize();
|
|
int FPOffset = Offset - AFI->getFramePtrSpillOffset();
|
|
bool isFixed = MFI.isFixedObjectIndex(FI);
|
|
|
|
FrameReg = ARM::SP;
|
|
Offset += SPAdj;
|
|
|
|
// SP can move around if there are allocas. We may also lose track of SP
|
|
// when emergency spilling inside a non-reserved call frame setup.
|
|
bool hasMovingSP = !hasReservedCallFrame(MF);
|
|
|
|
// When dynamically realigning the stack, use the frame pointer for
|
|
// parameters, and the stack/base pointer for locals.
|
|
if (RegInfo->needsStackRealignment(MF)) {
|
|
assert(hasFP(MF) && "dynamic stack realignment without a FP!");
|
|
if (isFixed) {
|
|
FrameReg = RegInfo->getFrameRegister(MF);
|
|
Offset = FPOffset;
|
|
} else if (hasMovingSP) {
|
|
assert(RegInfo->hasBasePointer(MF) &&
|
|
"VLAs and dynamic stack alignment, but missing base pointer!");
|
|
FrameReg = RegInfo->getBaseRegister();
|
|
}
|
|
return Offset;
|
|
}
|
|
|
|
// If there is a frame pointer, use it when we can.
|
|
if (hasFP(MF) && AFI->hasStackFrame()) {
|
|
// Use frame pointer to reference fixed objects. Use it for locals if
|
|
// there are VLAs (and thus the SP isn't reliable as a base).
|
|
if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) {
|
|
FrameReg = RegInfo->getFrameRegister(MF);
|
|
return FPOffset;
|
|
} else if (hasMovingSP) {
|
|
assert(RegInfo->hasBasePointer(MF) && "missing base pointer!");
|
|
if (AFI->isThumb2Function()) {
|
|
// Try to use the frame pointer if we can, else use the base pointer
|
|
// since it's available. This is handy for the emergency spill slot, in
|
|
// particular.
|
|
if (FPOffset >= -255 && FPOffset < 0) {
|
|
FrameReg = RegInfo->getFrameRegister(MF);
|
|
return FPOffset;
|
|
}
|
|
}
|
|
} else if (AFI->isThumbFunction()) {
|
|
// Prefer SP to base pointer, if the offset is suitably aligned and in
|
|
// range as the effective range of the immediate offset is bigger when
|
|
// basing off SP.
|
|
// Use add <rd>, sp, #<imm8>
|
|
// ldr <rd>, [sp, #<imm8>]
|
|
if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020)
|
|
return Offset;
|
|
// In Thumb2 mode, the negative offset is very limited. Try to avoid
|
|
// out of range references. ldr <rt>,[<rn>, #-<imm8>]
|
|
if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) {
|
|
FrameReg = RegInfo->getFrameRegister(MF);
|
|
return FPOffset;
|
|
}
|
|
} else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) {
|
|
// Otherwise, use SP or FP, whichever is closer to the stack slot.
|
|
FrameReg = RegInfo->getFrameRegister(MF);
|
|
return FPOffset;
|
|
}
|
|
}
|
|
// Use the base pointer if we have one.
|
|
if (RegInfo->hasBasePointer(MF))
|
|
FrameReg = RegInfo->getBaseRegister();
|
|
return Offset;
|
|
}
|
|
|
|
void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
const std::vector<CalleeSavedInfo> &CSI,
|
|
unsigned StmOpc, unsigned StrOpc,
|
|
bool NoGap,
|
|
bool(*Func)(unsigned, bool),
|
|
unsigned NumAlignedDPRCS2Regs,
|
|
unsigned MIFlags) const {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
|
|
const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
|
|
|
|
DebugLoc DL;
|
|
|
|
using RegAndKill = std::pair<unsigned, bool>;
|
|
|
|
SmallVector<RegAndKill, 4> Regs;
|
|
unsigned i = CSI.size();
|
|
while (i != 0) {
|
|
unsigned LastReg = 0;
|
|
for (; i != 0; --i) {
|
|
unsigned Reg = CSI[i-1].getReg();
|
|
if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
|
|
|
|
// D-registers in the aligned area DPRCS2 are NOT spilled here.
|
|
if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
|
|
continue;
|
|
|
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
bool isLiveIn = MRI.isLiveIn(Reg);
|
|
if (!isLiveIn && !MRI.isReserved(Reg))
|
|
MBB.addLiveIn(Reg);
|
|
// If NoGap is true, push consecutive registers and then leave the rest
|
|
// for other instructions. e.g.
|
|
// vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11}
|
|
if (NoGap && LastReg && LastReg != Reg-1)
|
|
break;
|
|
LastReg = Reg;
|
|
// Do not set a kill flag on values that are also marked as live-in. This
|
|
// happens with the @llvm-returnaddress intrinsic and with arguments
|
|
// passed in callee saved registers.
|
|
// Omitting the kill flags is conservatively correct even if the live-in
|
|
// is not used after all.
|
|
Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn));
|
|
}
|
|
|
|
if (Regs.empty())
|
|
continue;
|
|
|
|
llvm::sort(Regs.begin(), Regs.end(), [&](const RegAndKill &LHS,
|
|
const RegAndKill &RHS) {
|
|
return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first);
|
|
});
|
|
|
|
if (Regs.size() > 1 || StrOpc== 0) {
|
|
MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP)
|
|
.addReg(ARM::SP)
|
|
.setMIFlags(MIFlags)
|
|
.add(predOps(ARMCC::AL));
|
|
for (unsigned i = 0, e = Regs.size(); i < e; ++i)
|
|
MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second));
|
|
} else if (Regs.size() == 1) {
|
|
BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP)
|
|
.addReg(Regs[0].first, getKillRegState(Regs[0].second))
|
|
.addReg(ARM::SP)
|
|
.setMIFlags(MIFlags)
|
|
.addImm(-4)
|
|
.add(predOps(ARMCC::AL));
|
|
}
|
|
Regs.clear();
|
|
|
|
// Put any subsequent vpush instructions before this one: they will refer to
|
|
// higher register numbers so need to be pushed first in order to preserve
|
|
// monotonicity.
|
|
if (MI != MBB.begin())
|
|
--MI;
|
|
}
|
|
}
|
|
|
|
void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
std::vector<CalleeSavedInfo> &CSI,
|
|
unsigned LdmOpc, unsigned LdrOpc,
|
|
bool isVarArg, bool NoGap,
|
|
bool(*Func)(unsigned, bool),
|
|
unsigned NumAlignedDPRCS2Regs) const {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
|
|
const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
DebugLoc DL;
|
|
bool isTailCall = false;
|
|
bool isInterrupt = false;
|
|
bool isTrap = false;
|
|
if (MBB.end() != MI) {
|
|
DL = MI->getDebugLoc();
|
|
unsigned RetOpcode = MI->getOpcode();
|
|
isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri);
|
|
isInterrupt =
|
|
RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR;
|
|
isTrap =
|
|
RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl ||
|
|
RetOpcode == ARM::tTRAP;
|
|
}
|
|
|
|
SmallVector<unsigned, 4> Regs;
|
|
unsigned i = CSI.size();
|
|
while (i != 0) {
|
|
unsigned LastReg = 0;
|
|
bool DeleteRet = false;
|
|
for (; i != 0; --i) {
|
|
CalleeSavedInfo &Info = CSI[i-1];
|
|
unsigned Reg = Info.getReg();
|
|
if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
|
|
|
|
// The aligned reloads from area DPRCS2 are not inserted here.
|
|
if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
|
|
continue;
|
|
|
|
if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt &&
|
|
!isTrap && STI.hasV5TOps()) {
|
|
if (MBB.succ_empty()) {
|
|
Reg = ARM::PC;
|
|
// Fold the return instruction into the LDM.
|
|
DeleteRet = true;
|
|
LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET;
|
|
// We 'restore' LR into PC so it is not live out of the return block:
|
|
// Clear Restored bit.
|
|
Info.setRestored(false);
|
|
} else
|
|
LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
|
|
}
|
|
|
|
// If NoGap is true, pop consecutive registers and then leave the rest
|
|
// for other instructions. e.g.
|
|
// vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11}
|
|
if (NoGap && LastReg && LastReg != Reg-1)
|
|
break;
|
|
|
|
LastReg = Reg;
|
|
Regs.push_back(Reg);
|
|
}
|
|
|
|
if (Regs.empty())
|
|
continue;
|
|
|
|
llvm::sort(Regs.begin(), Regs.end(), [&](unsigned LHS, unsigned RHS) {
|
|
return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS);
|
|
});
|
|
|
|
if (Regs.size() > 1 || LdrOpc == 0) {
|
|
MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP)
|
|
.addReg(ARM::SP)
|
|
.add(predOps(ARMCC::AL));
|
|
for (unsigned i = 0, e = Regs.size(); i < e; ++i)
|
|
MIB.addReg(Regs[i], getDefRegState(true));
|
|
if (DeleteRet) {
|
|
if (MI != MBB.end()) {
|
|
MIB.copyImplicitOps(*MI);
|
|
MI->eraseFromParent();
|
|
}
|
|
}
|
|
MI = MIB;
|
|
} else if (Regs.size() == 1) {
|
|
// If we adjusted the reg to PC from LR above, switch it back here. We
|
|
// only do that for LDM.
|
|
if (Regs[0] == ARM::PC)
|
|
Regs[0] = ARM::LR;
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0])
|
|
.addReg(ARM::SP, RegState::Define)
|
|
.addReg(ARM::SP);
|
|
// ARM mode needs an extra reg0 here due to addrmode2. Will go away once
|
|
// that refactoring is complete (eventually).
|
|
if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) {
|
|
MIB.addReg(0);
|
|
MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift));
|
|
} else
|
|
MIB.addImm(4);
|
|
MIB.add(predOps(ARMCC::AL));
|
|
}
|
|
Regs.clear();
|
|
|
|
// Put any subsequent vpop instructions after this one: they will refer to
|
|
// higher register numbers so need to be popped afterwards.
|
|
if (MI != MBB.end())
|
|
++MI;
|
|
}
|
|
}
|
|
|
|
/// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers
|
|
/// starting from d8. Also insert stack realignment code and leave the stack
|
|
/// pointer pointing to the d8 spill slot.
|
|
static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
unsigned NumAlignedDPRCS2Regs,
|
|
const std::vector<CalleeSavedInfo> &CSI,
|
|
const TargetRegisterInfo *TRI) {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
|
|
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
|
|
// Mark the D-register spill slots as properly aligned. Since MFI computes
|
|
// stack slot layout backwards, this can actually mean that the d-reg stack
|
|
// slot offsets can be wrong. The offset for d8 will always be correct.
|
|
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
|
|
unsigned DNum = CSI[i].getReg() - ARM::D8;
|
|
if (DNum > NumAlignedDPRCS2Regs - 1)
|
|
continue;
|
|
int FI = CSI[i].getFrameIdx();
|
|
// The even-numbered registers will be 16-byte aligned, the odd-numbered
|
|
// registers will be 8-byte aligned.
|
|
MFI.setObjectAlignment(FI, DNum % 2 ? 8 : 16);
|
|
|
|
// The stack slot for D8 needs to be maximally aligned because this is
|
|
// actually the point where we align the stack pointer. MachineFrameInfo
|
|
// computes all offsets relative to the incoming stack pointer which is a
|
|
// bit weird when realigning the stack. Any extra padding for this
|
|
// over-alignment is not realized because the code inserted below adjusts
|
|
// the stack pointer by numregs * 8 before aligning the stack pointer.
|
|
if (DNum == 0)
|
|
MFI.setObjectAlignment(FI, MFI.getMaxAlignment());
|
|
}
|
|
|
|
// Move the stack pointer to the d8 spill slot, and align it at the same
|
|
// time. Leave the stack slot address in the scratch register r4.
|
|
//
|
|
// sub r4, sp, #numregs * 8
|
|
// bic r4, r4, #align - 1
|
|
// mov sp, r4
|
|
//
|
|
bool isThumb = AFI->isThumbFunction();
|
|
assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
|
|
AFI->setShouldRestoreSPFromFP(true);
|
|
|
|
// sub r4, sp, #numregs * 8
|
|
// The immediate is <= 64, so it doesn't need any special encoding.
|
|
unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri;
|
|
BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
|
|
.addReg(ARM::SP)
|
|
.addImm(8 * NumAlignedDPRCS2Regs)
|
|
.add(predOps(ARMCC::AL))
|
|
.add(condCodeOp());
|
|
|
|
unsigned MaxAlign = MF.getFrameInfo().getMaxAlignment();
|
|
// We must set parameter MustBeSingleInstruction to true, since
|
|
// skipAlignedDPRCS2Spills expects exactly 3 instructions to perform
|
|
// stack alignment. Luckily, this can always be done since all ARM
|
|
// architecture versions that support Neon also support the BFC
|
|
// instruction.
|
|
emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true);
|
|
|
|
// mov sp, r4
|
|
// The stack pointer must be adjusted before spilling anything, otherwise
|
|
// the stack slots could be clobbered by an interrupt handler.
|
|
// Leave r4 live, it is used below.
|
|
Opc = isThumb ? ARM::tMOVr : ARM::MOVr;
|
|
MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP)
|
|
.addReg(ARM::R4)
|
|
.add(predOps(ARMCC::AL));
|
|
if (!isThumb)
|
|
MIB.add(condCodeOp());
|
|
|
|
// Now spill NumAlignedDPRCS2Regs registers starting from d8.
|
|
// r4 holds the stack slot address.
|
|
unsigned NextReg = ARM::D8;
|
|
|
|
// 16-byte aligned vst1.64 with 4 d-regs and address writeback.
|
|
// The writeback is only needed when emitting two vst1.64 instructions.
|
|
if (NumAlignedDPRCS2Regs >= 6) {
|
|
unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
|
|
&ARM::QQPRRegClass);
|
|
MBB.addLiveIn(SupReg);
|
|
BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4)
|
|
.addReg(ARM::R4, RegState::Kill)
|
|
.addImm(16)
|
|
.addReg(NextReg)
|
|
.addReg(SupReg, RegState::ImplicitKill)
|
|
.add(predOps(ARMCC::AL));
|
|
NextReg += 4;
|
|
NumAlignedDPRCS2Regs -= 4;
|
|
}
|
|
|
|
// We won't modify r4 beyond this point. It currently points to the next
|
|
// register to be spilled.
|
|
unsigned R4BaseReg = NextReg;
|
|
|
|
// 16-byte aligned vst1.64 with 4 d-regs, no writeback.
|
|
if (NumAlignedDPRCS2Regs >= 4) {
|
|
unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
|
|
&ARM::QQPRRegClass);
|
|
MBB.addLiveIn(SupReg);
|
|
BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q))
|
|
.addReg(ARM::R4)
|
|
.addImm(16)
|
|
.addReg(NextReg)
|
|
.addReg(SupReg, RegState::ImplicitKill)
|
|
.add(predOps(ARMCC::AL));
|
|
NextReg += 4;
|
|
NumAlignedDPRCS2Regs -= 4;
|
|
}
|
|
|
|
// 16-byte aligned vst1.64 with 2 d-regs.
|
|
if (NumAlignedDPRCS2Regs >= 2) {
|
|
unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
|
|
&ARM::QPRRegClass);
|
|
MBB.addLiveIn(SupReg);
|
|
BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64))
|
|
.addReg(ARM::R4)
|
|
.addImm(16)
|
|
.addReg(SupReg)
|
|
.add(predOps(ARMCC::AL));
|
|
NextReg += 2;
|
|
NumAlignedDPRCS2Regs -= 2;
|
|
}
|
|
|
|
// Finally, use a vanilla vstr.64 for the odd last register.
|
|
if (NumAlignedDPRCS2Regs) {
|
|
MBB.addLiveIn(NextReg);
|
|
// vstr.64 uses addrmode5 which has an offset scale of 4.
|
|
BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD))
|
|
.addReg(NextReg)
|
|
.addReg(ARM::R4)
|
|
.addImm((NextReg - R4BaseReg) * 2)
|
|
.add(predOps(ARMCC::AL));
|
|
}
|
|
|
|
// The last spill instruction inserted should kill the scratch register r4.
|
|
std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
|
|
}
|
|
|
|
/// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an
|
|
/// iterator to the following instruction.
|
|
static MachineBasicBlock::iterator
|
|
skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
|
|
unsigned NumAlignedDPRCS2Regs) {
|
|
// sub r4, sp, #numregs * 8
|
|
// bic r4, r4, #align - 1
|
|
// mov sp, r4
|
|
++MI; ++MI; ++MI;
|
|
assert(MI->mayStore() && "Expecting spill instruction");
|
|
|
|
// These switches all fall through.
|
|
switch(NumAlignedDPRCS2Regs) {
|
|
case 7:
|
|
++MI;
|
|
assert(MI->mayStore() && "Expecting spill instruction");
|
|
LLVM_FALLTHROUGH;
|
|
default:
|
|
++MI;
|
|
assert(MI->mayStore() && "Expecting spill instruction");
|
|
LLVM_FALLTHROUGH;
|
|
case 1:
|
|
case 2:
|
|
case 4:
|
|
assert(MI->killsRegister(ARM::R4) && "Missed kill flag");
|
|
++MI;
|
|
}
|
|
return MI;
|
|
}
|
|
|
|
/// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers
|
|
/// starting from d8. These instructions are assumed to execute while the
|
|
/// stack is still aligned, unlike the code inserted by emitPopInst.
|
|
static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
unsigned NumAlignedDPRCS2Regs,
|
|
const std::vector<CalleeSavedInfo> &CSI,
|
|
const TargetRegisterInfo *TRI) {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
|
|
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
|
|
|
|
// Find the frame index assigned to d8.
|
|
int D8SpillFI = 0;
|
|
for (unsigned i = 0, e = CSI.size(); i != e; ++i)
|
|
if (CSI[i].getReg() == ARM::D8) {
|
|
D8SpillFI = CSI[i].getFrameIdx();
|
|
break;
|
|
}
|
|
|
|
// Materialize the address of the d8 spill slot into the scratch register r4.
|
|
// This can be fairly complicated if the stack frame is large, so just use
|
|
// the normal frame index elimination mechanism to do it. This code runs as
|
|
// the initial part of the epilog where the stack and base pointers haven't
|
|
// been changed yet.
|
|
bool isThumb = AFI->isThumbFunction();
|
|
assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
|
|
|
|
unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
|
|
BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
|
|
.addFrameIndex(D8SpillFI)
|
|
.addImm(0)
|
|
.add(predOps(ARMCC::AL))
|
|
.add(condCodeOp());
|
|
|
|
// Now restore NumAlignedDPRCS2Regs registers starting from d8.
|
|
unsigned NextReg = ARM::D8;
|
|
|
|
// 16-byte aligned vld1.64 with 4 d-regs and writeback.
|
|
if (NumAlignedDPRCS2Regs >= 6) {
|
|
unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
|
|
&ARM::QQPRRegClass);
|
|
BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg)
|
|
.addReg(ARM::R4, RegState::Define)
|
|
.addReg(ARM::R4, RegState::Kill)
|
|
.addImm(16)
|
|
.addReg(SupReg, RegState::ImplicitDefine)
|
|
.add(predOps(ARMCC::AL));
|
|
NextReg += 4;
|
|
NumAlignedDPRCS2Regs -= 4;
|
|
}
|
|
|
|
// We won't modify r4 beyond this point. It currently points to the next
|
|
// register to be spilled.
|
|
unsigned R4BaseReg = NextReg;
|
|
|
|
// 16-byte aligned vld1.64 with 4 d-regs, no writeback.
|
|
if (NumAlignedDPRCS2Regs >= 4) {
|
|
unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
|
|
&ARM::QQPRRegClass);
|
|
BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg)
|
|
.addReg(ARM::R4)
|
|
.addImm(16)
|
|
.addReg(SupReg, RegState::ImplicitDefine)
|
|
.add(predOps(ARMCC::AL));
|
|
NextReg += 4;
|
|
NumAlignedDPRCS2Regs -= 4;
|
|
}
|
|
|
|
// 16-byte aligned vld1.64 with 2 d-regs.
|
|
if (NumAlignedDPRCS2Regs >= 2) {
|
|
unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
|
|
&ARM::QPRRegClass);
|
|
BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg)
|
|
.addReg(ARM::R4)
|
|
.addImm(16)
|
|
.add(predOps(ARMCC::AL));
|
|
NextReg += 2;
|
|
NumAlignedDPRCS2Regs -= 2;
|
|
}
|
|
|
|
// Finally, use a vanilla vldr.64 for the remaining odd register.
|
|
if (NumAlignedDPRCS2Regs)
|
|
BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg)
|
|
.addReg(ARM::R4)
|
|
.addImm(2 * (NextReg - R4BaseReg))
|
|
.add(predOps(ARMCC::AL));
|
|
|
|
// Last store kills r4.
|
|
std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
|
|
}
|
|
|
|
bool ARMFrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
const std::vector<CalleeSavedInfo> &CSI,
|
|
const TargetRegisterInfo *TRI) const {
|
|
if (CSI.empty())
|
|
return false;
|
|
|
|
MachineFunction &MF = *MBB.getParent();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
|
|
unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD;
|
|
unsigned PushOneOpc = AFI->isThumbFunction() ?
|
|
ARM::t2STR_PRE : ARM::STR_PRE_IMM;
|
|
unsigned FltOpc = ARM::VSTMDDB_UPD;
|
|
unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
|
|
emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0,
|
|
MachineInstr::FrameSetup);
|
|
emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0,
|
|
MachineInstr::FrameSetup);
|
|
emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
|
|
NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
|
|
|
|
// The code above does not insert spill code for the aligned DPRCS2 registers.
|
|
// The stack realignment code will be inserted between the push instructions
|
|
// and these spills.
|
|
if (NumAlignedDPRCS2Regs)
|
|
emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ARMFrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
std::vector<CalleeSavedInfo> &CSI,
|
|
const TargetRegisterInfo *TRI) const {
|
|
if (CSI.empty())
|
|
return false;
|
|
|
|
MachineFunction &MF = *MBB.getParent();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
bool isVarArg = AFI->getArgRegsSaveSize() > 0;
|
|
unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
|
|
|
|
// The emitPopInst calls below do not insert reloads for the aligned DPRCS2
|
|
// registers. Do that here instead.
|
|
if (NumAlignedDPRCS2Regs)
|
|
emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
|
|
|
|
unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
|
|
unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST :ARM::LDR_POST_IMM;
|
|
unsigned FltOpc = ARM::VLDMDIA_UPD;
|
|
emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
|
|
NumAlignedDPRCS2Regs);
|
|
emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
|
|
&isARMArea2Register, 0);
|
|
emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
|
|
&isARMArea1Register, 0);
|
|
|
|
return true;
|
|
}
|
|
|
|
// FIXME: Make generic?
|
|
static unsigned GetFunctionSizeInBytes(const MachineFunction &MF,
|
|
const ARMBaseInstrInfo &TII) {
|
|
unsigned FnSize = 0;
|
|
for (auto &MBB : MF) {
|
|
for (auto &MI : MBB)
|
|
FnSize += TII.getInstSizeInBytes(MI);
|
|
}
|
|
return FnSize;
|
|
}
|
|
|
|
/// estimateRSStackSizeLimit - Look at each instruction that references stack
|
|
/// frames and return the stack size limit beyond which some of these
|
|
/// instructions will require a scratch register during their expansion later.
|
|
// FIXME: Move to TII?
|
|
static unsigned estimateRSStackSizeLimit(MachineFunction &MF,
|
|
const TargetFrameLowering *TFI) {
|
|
const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
unsigned Limit = (1 << 12) - 1;
|
|
for (auto &MBB : MF) {
|
|
for (auto &MI : MBB) {
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
if (!MI.getOperand(i).isFI())
|
|
continue;
|
|
|
|
// When using ADDri to get the address of a stack object, 255 is the
|
|
// largest offset guaranteed to fit in the immediate offset.
|
|
if (MI.getOpcode() == ARM::ADDri) {
|
|
Limit = std::min(Limit, (1U << 8) - 1);
|
|
break;
|
|
}
|
|
|
|
// Otherwise check the addressing mode.
|
|
switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) {
|
|
case ARMII::AddrMode3:
|
|
case ARMII::AddrModeT2_i8:
|
|
Limit = std::min(Limit, (1U << 8) - 1);
|
|
break;
|
|
case ARMII::AddrMode5:
|
|
case ARMII::AddrModeT2_i8s4:
|
|
Limit = std::min(Limit, ((1U << 8) - 1) * 4);
|
|
break;
|
|
case ARMII::AddrModeT2_i12:
|
|
// i12 supports only positive offset so these will be converted to
|
|
// i8 opcodes. See llvm::rewriteT2FrameIndex.
|
|
if (TFI->hasFP(MF) && AFI->hasStackFrame())
|
|
Limit = std::min(Limit, (1U << 8) - 1);
|
|
break;
|
|
case ARMII::AddrMode4:
|
|
case ARMII::AddrMode6:
|
|
// Addressing modes 4 & 6 (load/store) instructions can't encode an
|
|
// immediate offset for stack references.
|
|
return 0;
|
|
default:
|
|
break;
|
|
}
|
|
break; // At most one FI per instruction
|
|
}
|
|
}
|
|
}
|
|
|
|
return Limit;
|
|
}
|
|
|
|
// In functions that realign the stack, it can be an advantage to spill the
|
|
// callee-saved vector registers after realigning the stack. The vst1 and vld1
|
|
// instructions take alignment hints that can improve performance.
|
|
static void
|
|
checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) {
|
|
MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0);
|
|
if (!SpillAlignedNEONRegs)
|
|
return;
|
|
|
|
// Naked functions don't spill callee-saved registers.
|
|
if (MF.getFunction().hasFnAttribute(Attribute::Naked))
|
|
return;
|
|
|
|
// We are planning to use NEON instructions vst1 / vld1.
|
|
if (!static_cast<const ARMSubtarget &>(MF.getSubtarget()).hasNEON())
|
|
return;
|
|
|
|
// Don't bother if the default stack alignment is sufficiently high.
|
|
if (MF.getSubtarget().getFrameLowering()->getStackAlignment() >= 8)
|
|
return;
|
|
|
|
// Aligned spills require stack realignment.
|
|
if (!static_cast<const ARMBaseRegisterInfo *>(
|
|
MF.getSubtarget().getRegisterInfo())->canRealignStack(MF))
|
|
return;
|
|
|
|
// We always spill contiguous d-registers starting from d8. Count how many
|
|
// needs spilling. The register allocator will almost always use the
|
|
// callee-saved registers in order, but it can happen that there are holes in
|
|
// the range. Registers above the hole will be spilled to the standard DPRCS
|
|
// area.
|
|
unsigned NumSpills = 0;
|
|
for (; NumSpills < 8; ++NumSpills)
|
|
if (!SavedRegs.test(ARM::D8 + NumSpills))
|
|
break;
|
|
|
|
// Don't do this for just one d-register. It's not worth it.
|
|
if (NumSpills < 2)
|
|
return;
|
|
|
|
// Spill the first NumSpills D-registers after realigning the stack.
|
|
MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills);
|
|
|
|
// A scratch register is required for the vst1 / vld1 instructions.
|
|
SavedRegs.set(ARM::R4);
|
|
}
|
|
|
|
void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF,
|
|
BitVector &SavedRegs,
|
|
RegScavenger *RS) const {
|
|
TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
|
|
// This tells PEI to spill the FP as if it is any other callee-save register
|
|
// to take advantage the eliminateFrameIndex machinery. This also ensures it
|
|
// is spilled in the order specified by getCalleeSavedRegs() to make it easier
|
|
// to combine multiple loads / stores.
|
|
bool CanEliminateFrame = true;
|
|
bool CS1Spilled = false;
|
|
bool LRSpilled = false;
|
|
unsigned NumGPRSpills = 0;
|
|
unsigned NumFPRSpills = 0;
|
|
SmallVector<unsigned, 4> UnspilledCS1GPRs;
|
|
SmallVector<unsigned, 4> UnspilledCS2GPRs;
|
|
const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
|
|
MF.getSubtarget().getRegisterInfo());
|
|
const ARMBaseInstrInfo &TII =
|
|
*static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
|
|
(void)TRI; // Silence unused warning in non-assert builds.
|
|
unsigned FramePtr = RegInfo->getFrameRegister(MF);
|
|
|
|
// Spill R4 if Thumb2 function requires stack realignment - it will be used as
|
|
// scratch register. Also spill R4 if Thumb2 function has varsized objects,
|
|
// since it's not always possible to restore sp from fp in a single
|
|
// instruction.
|
|
// FIXME: It will be better just to find spare register here.
|
|
if (AFI->isThumb2Function() &&
|
|
(MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF)))
|
|
SavedRegs.set(ARM::R4);
|
|
|
|
// If a stack probe will be emitted, spill R4 and LR, since they are
|
|
// clobbered by the stack probe call.
|
|
// This estimate should be a safe, conservative estimate. The actual
|
|
// stack probe is enabled based on the size of the local objects;
|
|
// this estimate also includes the varargs store size.
|
|
if (STI.isTargetWindows() &&
|
|
WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) {
|
|
SavedRegs.set(ARM::R4);
|
|
SavedRegs.set(ARM::LR);
|
|
}
|
|
|
|
if (AFI->isThumb1OnlyFunction()) {
|
|
// Spill LR if Thumb1 function uses variable length argument lists.
|
|
if (AFI->getArgRegsSaveSize() > 0)
|
|
SavedRegs.set(ARM::LR);
|
|
|
|
// Spill R4 if Thumb1 epilogue has to restore SP from FP or the function
|
|
// requires stack alignment. We don't know for sure what the stack size
|
|
// will be, but for this, an estimate is good enough. If there anything
|
|
// changes it, it'll be a spill, which implies we've used all the registers
|
|
// and so R4 is already used, so not marking it here will be OK.
|
|
// FIXME: It will be better just to find spare register here.
|
|
if (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF) ||
|
|
MFI.estimateStackSize(MF) > 508)
|
|
SavedRegs.set(ARM::R4);
|
|
}
|
|
|
|
// See if we can spill vector registers to aligned stack.
|
|
checkNumAlignedDPRCS2Regs(MF, SavedRegs);
|
|
|
|
// Spill the BasePtr if it's used.
|
|
if (RegInfo->hasBasePointer(MF))
|
|
SavedRegs.set(RegInfo->getBaseRegister());
|
|
|
|
// Don't spill FP if the frame can be eliminated. This is determined
|
|
// by scanning the callee-save registers to see if any is modified.
|
|
const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
|
|
for (unsigned i = 0; CSRegs[i]; ++i) {
|
|
unsigned Reg = CSRegs[i];
|
|
bool Spilled = false;
|
|
if (SavedRegs.test(Reg)) {
|
|
Spilled = true;
|
|
CanEliminateFrame = false;
|
|
}
|
|
|
|
if (!ARM::GPRRegClass.contains(Reg)) {
|
|
if (Spilled) {
|
|
if (ARM::SPRRegClass.contains(Reg))
|
|
NumFPRSpills++;
|
|
else if (ARM::DPRRegClass.contains(Reg))
|
|
NumFPRSpills += 2;
|
|
else if (ARM::QPRRegClass.contains(Reg))
|
|
NumFPRSpills += 4;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (Spilled) {
|
|
NumGPRSpills++;
|
|
|
|
if (!STI.splitFramePushPop(MF)) {
|
|
if (Reg == ARM::LR)
|
|
LRSpilled = true;
|
|
CS1Spilled = true;
|
|
continue;
|
|
}
|
|
|
|
// Keep track if LR and any of R4, R5, R6, and R7 is spilled.
|
|
switch (Reg) {
|
|
case ARM::LR:
|
|
LRSpilled = true;
|
|
LLVM_FALLTHROUGH;
|
|
case ARM::R0: case ARM::R1:
|
|
case ARM::R2: case ARM::R3:
|
|
case ARM::R4: case ARM::R5:
|
|
case ARM::R6: case ARM::R7:
|
|
CS1Spilled = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
} else {
|
|
if (!STI.splitFramePushPop(MF)) {
|
|
UnspilledCS1GPRs.push_back(Reg);
|
|
continue;
|
|
}
|
|
|
|
switch (Reg) {
|
|
case ARM::R0: case ARM::R1:
|
|
case ARM::R2: case ARM::R3:
|
|
case ARM::R4: case ARM::R5:
|
|
case ARM::R6: case ARM::R7:
|
|
case ARM::LR:
|
|
UnspilledCS1GPRs.push_back(Reg);
|
|
break;
|
|
default:
|
|
UnspilledCS2GPRs.push_back(Reg);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool ForceLRSpill = false;
|
|
if (!LRSpilled && AFI->isThumb1OnlyFunction()) {
|
|
unsigned FnSize = GetFunctionSizeInBytes(MF, TII);
|
|
// Force LR to be spilled if the Thumb function size is > 2048. This enables
|
|
// use of BL to implement far jump. If it turns out that it's not needed
|
|
// then the branch fix up path will undo it.
|
|
if (FnSize >= (1 << 11)) {
|
|
CanEliminateFrame = false;
|
|
ForceLRSpill = true;
|
|
}
|
|
}
|
|
|
|
// If any of the stack slot references may be out of range of an immediate
|
|
// offset, make sure a register (or a spill slot) is available for the
|
|
// register scavenger. Note that if we're indexing off the frame pointer, the
|
|
// effective stack size is 4 bytes larger since the FP points to the stack
|
|
// slot of the previous FP. Also, if we have variable sized objects in the
|
|
// function, stack slot references will often be negative, and some of
|
|
// our instructions are positive-offset only, so conservatively consider
|
|
// that case to want a spill slot (or register) as well. Similarly, if
|
|
// the function adjusts the stack pointer during execution and the
|
|
// adjustments aren't already part of our stack size estimate, our offset
|
|
// calculations may be off, so be conservative.
|
|
// FIXME: We could add logic to be more precise about negative offsets
|
|
// and which instructions will need a scratch register for them. Is it
|
|
// worth the effort and added fragility?
|
|
unsigned EstimatedStackSize =
|
|
MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills);
|
|
|
|
// Determine biggest (positive) SP offset in MachineFrameInfo.
|
|
int MaxFixedOffset = 0;
|
|
for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
|
|
int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I);
|
|
MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset);
|
|
}
|
|
|
|
bool HasFP = hasFP(MF);
|
|
if (HasFP) {
|
|
if (AFI->hasStackFrame())
|
|
EstimatedStackSize += 4;
|
|
} else {
|
|
// If FP is not used, SP will be used to access arguments, so count the
|
|
// size of arguments into the estimation.
|
|
EstimatedStackSize += MaxFixedOffset;
|
|
}
|
|
EstimatedStackSize += 16; // For possible paddings.
|
|
|
|
unsigned EstimatedRSStackSizeLimit = estimateRSStackSizeLimit(MF, this);
|
|
int MaxFPOffset = getMaxFPOffset(MF.getFunction(), *AFI);
|
|
bool BigFrameOffsets = EstimatedStackSize >= EstimatedRSStackSizeLimit ||
|
|
MFI.hasVarSizedObjects() ||
|
|
(MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF)) ||
|
|
// For large argument stacks fp relative addressed may overflow.
|
|
(HasFP && (MaxFixedOffset - MaxFPOffset) >= (int)EstimatedRSStackSizeLimit);
|
|
if (BigFrameOffsets ||
|
|
!CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) {
|
|
AFI->setHasStackFrame(true);
|
|
|
|
if (HasFP) {
|
|
SavedRegs.set(FramePtr);
|
|
// If the frame pointer is required by the ABI, also spill LR so that we
|
|
// emit a complete frame record.
|
|
if (MF.getTarget().Options.DisableFramePointerElim(MF) && !LRSpilled) {
|
|
SavedRegs.set(ARM::LR);
|
|
LRSpilled = true;
|
|
NumGPRSpills++;
|
|
auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR);
|
|
if (LRPos != UnspilledCS1GPRs.end())
|
|
UnspilledCS1GPRs.erase(LRPos);
|
|
}
|
|
auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr);
|
|
if (FPPos != UnspilledCS1GPRs.end())
|
|
UnspilledCS1GPRs.erase(FPPos);
|
|
NumGPRSpills++;
|
|
if (FramePtr == ARM::R7)
|
|
CS1Spilled = true;
|
|
}
|
|
|
|
// This is true when we inserted a spill for an unused register that can now
|
|
// be used for register scavenging.
|
|
bool ExtraCSSpill = false;
|
|
|
|
if (AFI->isThumb1OnlyFunction()) {
|
|
// For Thumb1-only targets, we need some low registers when we save and
|
|
// restore the high registers (which aren't allocatable, but could be
|
|
// used by inline assembly) because the push/pop instructions can not
|
|
// access high registers. If necessary, we might need to push more low
|
|
// registers to ensure that there is at least one free that can be used
|
|
// for the saving & restoring, and preferably we should ensure that as
|
|
// many as are needed are available so that fewer push/pop instructions
|
|
// are required.
|
|
|
|
// Low registers which are not currently pushed, but could be (r4-r7).
|
|
SmallVector<unsigned, 4> AvailableRegs;
|
|
|
|
// Unused argument registers (r0-r3) can be clobbered in the prologue for
|
|
// free.
|
|
int EntryRegDeficit = 0;
|
|
for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) {
|
|
if (!MF.getRegInfo().isLiveIn(Reg)) {
|
|
--EntryRegDeficit;
|
|
LLVM_DEBUG(dbgs()
|
|
<< printReg(Reg, TRI)
|
|
<< " is unused argument register, EntryRegDeficit = "
|
|
<< EntryRegDeficit << "\n");
|
|
}
|
|
}
|
|
|
|
// Unused return registers can be clobbered in the epilogue for free.
|
|
int ExitRegDeficit = AFI->getReturnRegsCount() - 4;
|
|
LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount()
|
|
<< " return regs used, ExitRegDeficit = "
|
|
<< ExitRegDeficit << "\n");
|
|
|
|
int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit);
|
|
LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n");
|
|
|
|
// r4-r6 can be used in the prologue if they are pushed by the first push
|
|
// instruction.
|
|
for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) {
|
|
if (SavedRegs.test(Reg)) {
|
|
--RegDeficit;
|
|
LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
|
|
<< " is saved low register, RegDeficit = "
|
|
<< RegDeficit << "\n");
|
|
} else {
|
|
AvailableRegs.push_back(Reg);
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< printReg(Reg, TRI)
|
|
<< " is non-saved low register, adding to AvailableRegs\n");
|
|
}
|
|
}
|
|
|
|
// r7 can be used if it is not being used as the frame pointer.
|
|
if (!HasFP) {
|
|
if (SavedRegs.test(ARM::R7)) {
|
|
--RegDeficit;
|
|
LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = "
|
|
<< RegDeficit << "\n");
|
|
} else {
|
|
AvailableRegs.push_back(ARM::R7);
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< "%r7 is non-saved low register, adding to AvailableRegs\n");
|
|
}
|
|
}
|
|
|
|
// Each of r8-r11 needs to be copied to a low register, then pushed.
|
|
for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) {
|
|
if (SavedRegs.test(Reg)) {
|
|
++RegDeficit;
|
|
LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
|
|
<< " is saved high register, RegDeficit = "
|
|
<< RegDeficit << "\n");
|
|
}
|
|
}
|
|
|
|
// LR can only be used by PUSH, not POP, and can't be used at all if the
|
|
// llvm.returnaddress intrinsic is used. This is only worth doing if we
|
|
// are more limited at function entry than exit.
|
|
if ((EntryRegDeficit > ExitRegDeficit) &&
|
|
!(MF.getRegInfo().isLiveIn(ARM::LR) &&
|
|
MF.getFrameInfo().isReturnAddressTaken())) {
|
|
if (SavedRegs.test(ARM::LR)) {
|
|
--RegDeficit;
|
|
LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = "
|
|
<< RegDeficit << "\n");
|
|
} else {
|
|
AvailableRegs.push_back(ARM::LR);
|
|
LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n");
|
|
}
|
|
}
|
|
|
|
// If there are more high registers that need pushing than low registers
|
|
// available, push some more low registers so that we can use fewer push
|
|
// instructions. This might not reduce RegDeficit all the way to zero,
|
|
// because we can only guarantee that r4-r6 are available, but r8-r11 may
|
|
// need saving.
|
|
LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n");
|
|
for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) {
|
|
unsigned Reg = AvailableRegs.pop_back_val();
|
|
LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
|
|
<< " to make up reg deficit\n");
|
|
SavedRegs.set(Reg);
|
|
NumGPRSpills++;
|
|
CS1Spilled = true;
|
|
assert(!MRI.isReserved(Reg) && "Should not be reserved");
|
|
if (!MRI.isPhysRegUsed(Reg))
|
|
ExtraCSSpill = true;
|
|
UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg));
|
|
if (Reg == ARM::LR)
|
|
LRSpilled = true;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit
|
|
<< "\n");
|
|
}
|
|
|
|
// If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
|
|
// Spill LR as well so we can fold BX_RET to the registers restore (LDM).
|
|
if (!LRSpilled && CS1Spilled) {
|
|
SavedRegs.set(ARM::LR);
|
|
NumGPRSpills++;
|
|
SmallVectorImpl<unsigned>::iterator LRPos;
|
|
LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR);
|
|
if (LRPos != UnspilledCS1GPRs.end())
|
|
UnspilledCS1GPRs.erase(LRPos);
|
|
|
|
ForceLRSpill = false;
|
|
if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR))
|
|
ExtraCSSpill = true;
|
|
}
|
|
|
|
// If stack and double are 8-byte aligned and we are spilling an odd number
|
|
// of GPRs, spill one extra callee save GPR so we won't have to pad between
|
|
// the integer and double callee save areas.
|
|
LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n");
|
|
unsigned TargetAlign = getStackAlignment();
|
|
if (TargetAlign >= 8 && (NumGPRSpills & 1)) {
|
|
if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
|
|
for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) {
|
|
unsigned Reg = UnspilledCS1GPRs[i];
|
|
// Don't spill high register if the function is thumb. In the case of
|
|
// Windows on ARM, accept R11 (frame pointer)
|
|
if (!AFI->isThumbFunction() ||
|
|
(STI.isTargetWindows() && Reg == ARM::R11) ||
|
|
isARMLowRegister(Reg) || Reg == ARM::LR) {
|
|
SavedRegs.set(Reg);
|
|
LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
|
|
<< " to make up alignment\n");
|
|
if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg))
|
|
ExtraCSSpill = true;
|
|
break;
|
|
}
|
|
}
|
|
} else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) {
|
|
unsigned Reg = UnspilledCS2GPRs.front();
|
|
SavedRegs.set(Reg);
|
|
LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
|
|
<< " to make up alignment\n");
|
|
if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg))
|
|
ExtraCSSpill = true;
|
|
}
|
|
}
|
|
|
|
// Estimate if we might need to scavenge a register at some point in order
|
|
// to materialize a stack offset. If so, either spill one additional
|
|
// callee-saved register or reserve a special spill slot to facilitate
|
|
// register scavenging. Thumb1 needs a spill slot for stack pointer
|
|
// adjustments also, even when the frame itself is small.
|
|
if (BigFrameOffsets && !ExtraCSSpill) {
|
|
// If any non-reserved CS register isn't spilled, just spill one or two
|
|
// extra. That should take care of it!
|
|
unsigned NumExtras = TargetAlign / 4;
|
|
SmallVector<unsigned, 2> Extras;
|
|
while (NumExtras && !UnspilledCS1GPRs.empty()) {
|
|
unsigned Reg = UnspilledCS1GPRs.back();
|
|
UnspilledCS1GPRs.pop_back();
|
|
if (!MRI.isReserved(Reg) &&
|
|
(!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg) ||
|
|
Reg == ARM::LR)) {
|
|
Extras.push_back(Reg);
|
|
NumExtras--;
|
|
}
|
|
}
|
|
// For non-Thumb1 functions, also check for hi-reg CS registers
|
|
if (!AFI->isThumb1OnlyFunction()) {
|
|
while (NumExtras && !UnspilledCS2GPRs.empty()) {
|
|
unsigned Reg = UnspilledCS2GPRs.back();
|
|
UnspilledCS2GPRs.pop_back();
|
|
if (!MRI.isReserved(Reg)) {
|
|
Extras.push_back(Reg);
|
|
NumExtras--;
|
|
}
|
|
}
|
|
}
|
|
if (NumExtras == 0) {
|
|
for (unsigned Reg : Extras) {
|
|
SavedRegs.set(Reg);
|
|
if (!MRI.isPhysRegUsed(Reg))
|
|
ExtraCSSpill = true;
|
|
}
|
|
}
|
|
if (!ExtraCSSpill && !AFI->isThumb1OnlyFunction()) {
|
|
// note: Thumb1 functions spill to R12, not the stack. Reserve a slot
|
|
// closest to SP or frame pointer.
|
|
assert(RS && "Register scavenging not provided");
|
|
const TargetRegisterClass &RC = ARM::GPRRegClass;
|
|
unsigned Size = TRI->getSpillSize(RC);
|
|
unsigned Align = TRI->getSpillAlignment(RC);
|
|
RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Align, false));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ForceLRSpill) {
|
|
SavedRegs.set(ARM::LR);
|
|
AFI->setLRIsSpilledForFarJump(true);
|
|
}
|
|
}
|
|
|
|
MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr(
|
|
MachineFunction &MF, MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I) const {
|
|
const ARMBaseInstrInfo &TII =
|
|
*static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
|
|
if (!hasReservedCallFrame(MF)) {
|
|
// If we have alloca, convert as follows:
|
|
// ADJCALLSTACKDOWN -> sub, sp, sp, amount
|
|
// ADJCALLSTACKUP -> add, sp, sp, amount
|
|
MachineInstr &Old = *I;
|
|
DebugLoc dl = Old.getDebugLoc();
|
|
unsigned Amount = TII.getFrameSize(Old);
|
|
if (Amount != 0) {
|
|
// We need to keep the stack aligned properly. To do this, we round the
|
|
// amount of space needed for the outgoing arguments up to the next
|
|
// alignment boundary.
|
|
Amount = alignSPAdjust(Amount);
|
|
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
assert(!AFI->isThumb1OnlyFunction() &&
|
|
"This eliminateCallFramePseudoInstr does not support Thumb1!");
|
|
bool isARM = !AFI->isThumbFunction();
|
|
|
|
// Replace the pseudo instruction with a new instruction...
|
|
unsigned Opc = Old.getOpcode();
|
|
int PIdx = Old.findFirstPredOperandIdx();
|
|
ARMCC::CondCodes Pred =
|
|
(PIdx == -1) ? ARMCC::AL
|
|
: (ARMCC::CondCodes)Old.getOperand(PIdx).getImm();
|
|
unsigned PredReg = TII.getFramePred(Old);
|
|
if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
|
|
emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags,
|
|
Pred, PredReg);
|
|
} else {
|
|
assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
|
|
emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags,
|
|
Pred, PredReg);
|
|
}
|
|
}
|
|
}
|
|
return MBB.erase(I);
|
|
}
|
|
|
|
/// Get the minimum constant for ARM that is greater than or equal to the
|
|
/// argument. In ARM, constants can have any value that can be produced by
|
|
/// rotating an 8-bit value to the right by an even number of bits within a
|
|
/// 32-bit word.
|
|
static uint32_t alignToARMConstant(uint32_t Value) {
|
|
unsigned Shifted = 0;
|
|
|
|
if (Value == 0)
|
|
return 0;
|
|
|
|
while (!(Value & 0xC0000000)) {
|
|
Value = Value << 2;
|
|
Shifted += 2;
|
|
}
|
|
|
|
bool Carry = (Value & 0x00FFFFFF);
|
|
Value = ((Value & 0xFF000000) >> 24) + Carry;
|
|
|
|
if (Value & 0x0000100)
|
|
Value = Value & 0x000001FC;
|
|
|
|
if (Shifted > 24)
|
|
Value = Value >> (Shifted - 24);
|
|
else
|
|
Value = Value << (24 - Shifted);
|
|
|
|
return Value;
|
|
}
|
|
|
|
// The stack limit in the TCB is set to this many bytes above the actual
|
|
// stack limit.
|
|
static const uint64_t kSplitStackAvailable = 256;
|
|
|
|
// Adjust the function prologue to enable split stacks. This currently only
|
|
// supports android and linux.
|
|
//
|
|
// The ABI of the segmented stack prologue is a little arbitrarily chosen, but
|
|
// must be well defined in order to allow for consistent implementations of the
|
|
// __morestack helper function. The ABI is also not a normal ABI in that it
|
|
// doesn't follow the normal calling conventions because this allows the
|
|
// prologue of each function to be optimized further.
|
|
//
|
|
// Currently, the ABI looks like (when calling __morestack)
|
|
//
|
|
// * r4 holds the minimum stack size requested for this function call
|
|
// * r5 holds the stack size of the arguments to the function
|
|
// * the beginning of the function is 3 instructions after the call to
|
|
// __morestack
|
|
//
|
|
// Implementations of __morestack should use r4 to allocate a new stack, r5 to
|
|
// place the arguments on to the new stack, and the 3-instruction knowledge to
|
|
// jump directly to the body of the function when working on the new stack.
|
|
//
|
|
// An old (and possibly no longer compatible) implementation of __morestack for
|
|
// ARM can be found at [1].
|
|
//
|
|
// [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S
|
|
void ARMFrameLowering::adjustForSegmentedStacks(
|
|
MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
|
|
unsigned Opcode;
|
|
unsigned CFIIndex;
|
|
const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>();
|
|
bool Thumb = ST->isThumb();
|
|
|
|
// Sadly, this currently doesn't support varargs, platforms other than
|
|
// android/linux. Note that thumb1/thumb2 are support for android/linux.
|
|
if (MF.getFunction().isVarArg())
|
|
report_fatal_error("Segmented stacks do not support vararg functions.");
|
|
if (!ST->isTargetAndroid() && !ST->isTargetLinux())
|
|
report_fatal_error("Segmented stacks not supported on this platform.");
|
|
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
MachineModuleInfo &MMI = MF.getMMI();
|
|
MCContext &Context = MMI.getContext();
|
|
const MCRegisterInfo *MRI = Context.getRegisterInfo();
|
|
const ARMBaseInstrInfo &TII =
|
|
*static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
|
|
ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>();
|
|
DebugLoc DL;
|
|
|
|
uint64_t StackSize = MFI.getStackSize();
|
|
|
|
// Do not generate a prologue for leaf functions with a stack of size zero.
|
|
// For non-leaf functions we have to allow for the possibility that the
|
|
// call is to a non-split function, as in PR37807.
|
|
if (StackSize == 0 && !MFI.hasTailCall())
|
|
return;
|
|
|
|
// Use R4 and R5 as scratch registers.
|
|
// We save R4 and R5 before use and restore them before leaving the function.
|
|
unsigned ScratchReg0 = ARM::R4;
|
|
unsigned ScratchReg1 = ARM::R5;
|
|
uint64_t AlignedStackSize;
|
|
|
|
MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock();
|
|
MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock();
|
|
MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock();
|
|
MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock();
|
|
MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock();
|
|
|
|
// Grab everything that reaches PrologueMBB to update there liveness as well.
|
|
SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion;
|
|
SmallVector<MachineBasicBlock *, 2> WalkList;
|
|
WalkList.push_back(&PrologueMBB);
|
|
|
|
do {
|
|
MachineBasicBlock *CurMBB = WalkList.pop_back_val();
|
|
for (MachineBasicBlock *PredBB : CurMBB->predecessors()) {
|
|
if (BeforePrologueRegion.insert(PredBB).second)
|
|
WalkList.push_back(PredBB);
|
|
}
|
|
} while (!WalkList.empty());
|
|
|
|
// The order in that list is important.
|
|
// The blocks will all be inserted before PrologueMBB using that order.
|
|
// Therefore the block that should appear first in the CFG should appear
|
|
// first in the list.
|
|
MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB,
|
|
PostStackMBB};
|
|
|
|
for (MachineBasicBlock *B : AddedBlocks)
|
|
BeforePrologueRegion.insert(B);
|
|
|
|
for (const auto &LI : PrologueMBB.liveins()) {
|
|
for (MachineBasicBlock *PredBB : BeforePrologueRegion)
|
|
PredBB->addLiveIn(LI);
|
|
}
|
|
|
|
// Remove the newly added blocks from the list, since we know
|
|
// we do not have to do the following updates for them.
|
|
for (MachineBasicBlock *B : AddedBlocks) {
|
|
BeforePrologueRegion.erase(B);
|
|
MF.insert(PrologueMBB.getIterator(), B);
|
|
}
|
|
|
|
for (MachineBasicBlock *MBB : BeforePrologueRegion) {
|
|
// Make sure the LiveIns are still sorted and unique.
|
|
MBB->sortUniqueLiveIns();
|
|
// Replace the edges to PrologueMBB by edges to the sequences
|
|
// we are about to add.
|
|
MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]);
|
|
}
|
|
|
|
// The required stack size that is aligned to ARM constant criterion.
|
|
AlignedStackSize = alignToARMConstant(StackSize);
|
|
|
|
// When the frame size is less than 256 we just compare the stack
|
|
// boundary directly to the value of the stack pointer, per gcc.
|
|
bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable;
|
|
|
|
// We will use two of the callee save registers as scratch registers so we
|
|
// need to save those registers onto the stack.
|
|
// We will use SR0 to hold stack limit and SR1 to hold the stack size
|
|
// requested and arguments for __morestack().
|
|
// SR0: Scratch Register #0
|
|
// SR1: Scratch Register #1
|
|
// push {SR0, SR1}
|
|
if (Thumb) {
|
|
BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH))
|
|
.add(predOps(ARMCC::AL))
|
|
.addReg(ScratchReg0)
|
|
.addReg(ScratchReg1);
|
|
} else {
|
|
BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD))
|
|
.addReg(ARM::SP, RegState::Define)
|
|
.addReg(ARM::SP)
|
|
.add(predOps(ARMCC::AL))
|
|
.addReg(ScratchReg0)
|
|
.addReg(ScratchReg1);
|
|
}
|
|
|
|
// Emit the relevant DWARF information about the change in stack pointer as
|
|
// well as where to find both r4 and r5 (the callee-save registers)
|
|
CFIIndex =
|
|
MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -8));
|
|
BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex);
|
|
CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
|
|
nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4));
|
|
BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex);
|
|
CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
|
|
nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8));
|
|
BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex);
|
|
|
|
// mov SR1, sp
|
|
if (Thumb) {
|
|
BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1)
|
|
.addReg(ARM::SP)
|
|
.add(predOps(ARMCC::AL));
|
|
} else if (CompareStackPointer) {
|
|
BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1)
|
|
.addReg(ARM::SP)
|
|
.add(predOps(ARMCC::AL))
|
|
.add(condCodeOp());
|
|
}
|
|
|
|
// sub SR1, sp, #StackSize
|
|
if (!CompareStackPointer && Thumb) {
|
|
BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1)
|
|
.add(condCodeOp())
|
|
.addReg(ScratchReg1)
|
|
.addImm(AlignedStackSize)
|
|
.add(predOps(ARMCC::AL));
|
|
} else if (!CompareStackPointer) {
|
|
BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1)
|
|
.addReg(ARM::SP)
|
|
.addImm(AlignedStackSize)
|
|
.add(predOps(ARMCC::AL))
|
|
.add(condCodeOp());
|
|
}
|
|
|
|
if (Thumb && ST->isThumb1Only()) {
|
|
unsigned PCLabelId = ARMFI->createPICLabelUId();
|
|
ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create(
|
|
MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0);
|
|
MachineConstantPool *MCP = MF.getConstantPool();
|
|
unsigned CPI = MCP->getConstantPoolIndex(NewCPV, 4);
|
|
|
|
// ldr SR0, [pc, offset(STACK_LIMIT)]
|
|
BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0)
|
|
.addConstantPoolIndex(CPI)
|
|
.add(predOps(ARMCC::AL));
|
|
|
|
// ldr SR0, [SR0]
|
|
BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0)
|
|
.addReg(ScratchReg0)
|
|
.addImm(0)
|
|
.add(predOps(ARMCC::AL));
|
|
} else {
|
|
// Get TLS base address from the coprocessor
|
|
// mrc p15, #0, SR0, c13, c0, #3
|
|
BuildMI(McrMBB, DL, TII.get(ARM::MRC), ScratchReg0)
|
|
.addImm(15)
|
|
.addImm(0)
|
|
.addImm(13)
|
|
.addImm(0)
|
|
.addImm(3)
|
|
.add(predOps(ARMCC::AL));
|
|
|
|
// Use the last tls slot on android and a private field of the TCP on linux.
|
|
assert(ST->isTargetAndroid() || ST->isTargetLinux());
|
|
unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1;
|
|
|
|
// Get the stack limit from the right offset
|
|
// ldr SR0, [sr0, #4 * TlsOffset]
|
|
BuildMI(GetMBB, DL, TII.get(ARM::LDRi12), ScratchReg0)
|
|
.addReg(ScratchReg0)
|
|
.addImm(4 * TlsOffset)
|
|
.add(predOps(ARMCC::AL));
|
|
}
|
|
|
|
// Compare stack limit with stack size requested.
|
|
// cmp SR0, SR1
|
|
Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr;
|
|
BuildMI(GetMBB, DL, TII.get(Opcode))
|
|
.addReg(ScratchReg0)
|
|
.addReg(ScratchReg1)
|
|
.add(predOps(ARMCC::AL));
|
|
|
|
// This jump is taken if StackLimit < SP - stack required.
|
|
Opcode = Thumb ? ARM::tBcc : ARM::Bcc;
|
|
BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB)
|
|
.addImm(ARMCC::LO)
|
|
.addReg(ARM::CPSR);
|
|
|
|
|
|
// Calling __morestack(StackSize, Size of stack arguments).
|
|
// __morestack knows that the stack size requested is in SR0(r4)
|
|
// and amount size of stack arguments is in SR1(r5).
|
|
|
|
// Pass first argument for the __morestack by Scratch Register #0.
|
|
// The amount size of stack required
|
|
if (Thumb) {
|
|
BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0)
|
|
.add(condCodeOp())
|
|
.addImm(AlignedStackSize)
|
|
.add(predOps(ARMCC::AL));
|
|
} else {
|
|
BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0)
|
|
.addImm(AlignedStackSize)
|
|
.add(predOps(ARMCC::AL))
|
|
.add(condCodeOp());
|
|
}
|
|
// Pass second argument for the __morestack by Scratch Register #1.
|
|
// The amount size of stack consumed to save function arguments.
|
|
if (Thumb) {
|
|
BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1)
|
|
.add(condCodeOp())
|
|
.addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
|
|
.add(predOps(ARMCC::AL));
|
|
} else {
|
|
BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1)
|
|
.addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
|
|
.add(predOps(ARMCC::AL))
|
|
.add(condCodeOp());
|
|
}
|
|
|
|
// push {lr} - Save return address of this function.
|
|
if (Thumb) {
|
|
BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH))
|
|
.add(predOps(ARMCC::AL))
|
|
.addReg(ARM::LR);
|
|
} else {
|
|
BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD))
|
|
.addReg(ARM::SP, RegState::Define)
|
|
.addReg(ARM::SP)
|
|
.add(predOps(ARMCC::AL))
|
|
.addReg(ARM::LR);
|
|
}
|
|
|
|
// Emit the DWARF info about the change in stack as well as where to find the
|
|
// previous link register
|
|
CFIIndex =
|
|
MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -12));
|
|
BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex);
|
|
CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
|
|
nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12));
|
|
BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex);
|
|
|
|
// Call __morestack().
|
|
if (Thumb) {
|
|
BuildMI(AllocMBB, DL, TII.get(ARM::tBL))
|
|
.add(predOps(ARMCC::AL))
|
|
.addExternalSymbol("__morestack");
|
|
} else {
|
|
BuildMI(AllocMBB, DL, TII.get(ARM::BL))
|
|
.addExternalSymbol("__morestack");
|
|
}
|
|
|
|
// pop {lr} - Restore return address of this original function.
|
|
if (Thumb) {
|
|
if (ST->isThumb1Only()) {
|
|
BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
|
|
.add(predOps(ARMCC::AL))
|
|
.addReg(ScratchReg0);
|
|
BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR)
|
|
.addReg(ScratchReg0)
|
|
.add(predOps(ARMCC::AL));
|
|
} else {
|
|
BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST))
|
|
.addReg(ARM::LR, RegState::Define)
|
|
.addReg(ARM::SP, RegState::Define)
|
|
.addReg(ARM::SP)
|
|
.addImm(4)
|
|
.add(predOps(ARMCC::AL));
|
|
}
|
|
} else {
|
|
BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
|
|
.addReg(ARM::SP, RegState::Define)
|
|
.addReg(ARM::SP)
|
|
.add(predOps(ARMCC::AL))
|
|
.addReg(ARM::LR);
|
|
}
|
|
|
|
// Restore SR0 and SR1 in case of __morestack() was called.
|
|
// __morestack() will skip PostStackMBB block so we need to restore
|
|
// scratch registers from here.
|
|
// pop {SR0, SR1}
|
|
if (Thumb) {
|
|
BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
|
|
.add(predOps(ARMCC::AL))
|
|
.addReg(ScratchReg0)
|
|
.addReg(ScratchReg1);
|
|
} else {
|
|
BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
|
|
.addReg(ARM::SP, RegState::Define)
|
|
.addReg(ARM::SP)
|
|
.add(predOps(ARMCC::AL))
|
|
.addReg(ScratchReg0)
|
|
.addReg(ScratchReg1);
|
|
}
|
|
|
|
// Update the CFA offset now that we've popped
|
|
CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0));
|
|
BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex);
|
|
|
|
// Return from this function.
|
|
BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL));
|
|
|
|
// Restore SR0 and SR1 in case of __morestack() was not called.
|
|
// pop {SR0, SR1}
|
|
if (Thumb) {
|
|
BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP))
|
|
.add(predOps(ARMCC::AL))
|
|
.addReg(ScratchReg0)
|
|
.addReg(ScratchReg1);
|
|
} else {
|
|
BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD))
|
|
.addReg(ARM::SP, RegState::Define)
|
|
.addReg(ARM::SP)
|
|
.add(predOps(ARMCC::AL))
|
|
.addReg(ScratchReg0)
|
|
.addReg(ScratchReg1);
|
|
}
|
|
|
|
// Update the CFA offset now that we've popped
|
|
CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0));
|
|
BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex);
|
|
|
|
// Tell debuggers that r4 and r5 are now the same as they were in the
|
|
// previous function, that they're the "Same Value".
|
|
CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
|
|
nullptr, MRI->getDwarfRegNum(ScratchReg0, true)));
|
|
BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex);
|
|
CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
|
|
nullptr, MRI->getDwarfRegNum(ScratchReg1, true)));
|
|
BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex);
|
|
|
|
// Organizing MBB lists
|
|
PostStackMBB->addSuccessor(&PrologueMBB);
|
|
|
|
AllocMBB->addSuccessor(PostStackMBB);
|
|
|
|
GetMBB->addSuccessor(PostStackMBB);
|
|
GetMBB->addSuccessor(AllocMBB);
|
|
|
|
McrMBB->addSuccessor(GetMBB);
|
|
|
|
PrevStackMBB->addSuccessor(McrMBB);
|
|
|
|
#ifdef EXPENSIVE_CHECKS
|
|
MF.verify();
|
|
#endif
|
|
}
|