llvm-project/mlir/lib/IR/AffineMap.cpp

420 lines
15 KiB
C++

//===- AffineMap.cpp - MLIR Affine Map Classes ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/AffineMap.h"
#include "AffineMapDetail.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Support/MathExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
namespace {
// AffineExprConstantFolder evaluates an affine expression using constant
// operands passed in 'operandConsts'. Returns an IntegerAttr attribute
// representing the constant value of the affine expression evaluated on
// constant 'operandConsts', or nullptr if it can't be folded.
class AffineExprConstantFolder {
public:
AffineExprConstantFolder(unsigned numDims, ArrayRef<Attribute> operandConsts)
: numDims(numDims), operandConsts(operandConsts) {}
/// Attempt to constant fold the specified affine expr, or return null on
/// failure.
IntegerAttr constantFold(AffineExpr expr) {
if (auto result = constantFoldImpl(expr))
return IntegerAttr::get(IndexType::get(expr.getContext()), *result);
return nullptr;
}
private:
Optional<int64_t> constantFoldImpl(AffineExpr expr) {
switch (expr.getKind()) {
case AffineExprKind::Add:
return constantFoldBinExpr(
expr, [](int64_t lhs, int64_t rhs) { return lhs + rhs; });
case AffineExprKind::Mul:
return constantFoldBinExpr(
expr, [](int64_t lhs, int64_t rhs) { return lhs * rhs; });
case AffineExprKind::Mod:
return constantFoldBinExpr(
expr, [](int64_t lhs, int64_t rhs) { return mod(lhs, rhs); });
case AffineExprKind::FloorDiv:
return constantFoldBinExpr(
expr, [](int64_t lhs, int64_t rhs) { return floorDiv(lhs, rhs); });
case AffineExprKind::CeilDiv:
return constantFoldBinExpr(
expr, [](int64_t lhs, int64_t rhs) { return ceilDiv(lhs, rhs); });
case AffineExprKind::Constant:
return expr.cast<AffineConstantExpr>().getValue();
case AffineExprKind::DimId:
if (auto attr = operandConsts[expr.cast<AffineDimExpr>().getPosition()]
.dyn_cast_or_null<IntegerAttr>())
return attr.getInt();
return llvm::None;
case AffineExprKind::SymbolId:
if (auto attr = operandConsts[numDims +
expr.cast<AffineSymbolExpr>().getPosition()]
.dyn_cast_or_null<IntegerAttr>())
return attr.getInt();
return llvm::None;
}
llvm_unreachable("Unknown AffineExpr");
}
// TODO: Change these to operate on APInts too.
Optional<int64_t> constantFoldBinExpr(AffineExpr expr,
int64_t (*op)(int64_t, int64_t)) {
auto binOpExpr = expr.cast<AffineBinaryOpExpr>();
if (auto lhs = constantFoldImpl(binOpExpr.getLHS()))
if (auto rhs = constantFoldImpl(binOpExpr.getRHS()))
return op(*lhs, *rhs);
return llvm::None;
}
// The number of dimension operands in AffineMap containing this expression.
unsigned numDims;
// The constant valued operands used to evaluate this AffineExpr.
ArrayRef<Attribute> operandConsts;
};
} // end anonymous namespace
/// Returns a single constant result affine map.
AffineMap AffineMap::getConstantMap(int64_t val, MLIRContext *context) {
return get(/*dimCount=*/0, /*symbolCount=*/0,
{getAffineConstantExpr(val, context)});
}
/// Returns an AffineMap representing a permutation.
AffineMap AffineMap::getPermutationMap(ArrayRef<unsigned> permutation,
MLIRContext *context) {
assert(!permutation.empty() &&
"Cannot create permutation map from empty permutation vector");
SmallVector<AffineExpr, 4> affExprs;
for (auto index : permutation)
affExprs.push_back(getAffineDimExpr(index, context));
auto m = std::max_element(permutation.begin(), permutation.end());
auto permutationMap = AffineMap::get(*m + 1, 0, affExprs, context);
assert(permutationMap.isPermutation() && "Invalid permutation vector");
return permutationMap;
}
template <typename AffineExprContainer>
static void getMaxDimAndSymbol(ArrayRef<AffineExprContainer> exprsList,
int64_t &maxDim, int64_t &maxSym) {
for (const auto &exprs : exprsList) {
for (auto expr : exprs) {
expr.walk([&maxDim, &maxSym](AffineExpr e) {
if (auto d = e.dyn_cast<AffineDimExpr>())
maxDim = std::max(maxDim, static_cast<int64_t>(d.getPosition()));
if (auto s = e.dyn_cast<AffineSymbolExpr>())
maxSym = std::max(maxSym, static_cast<int64_t>(s.getPosition()));
});
}
}
}
template <typename AffineExprContainer>
static SmallVector<AffineMap, 4>
inferFromExprList(ArrayRef<AffineExprContainer> exprsList) {
assert(!exprsList.empty());
assert(!exprsList[0].empty());
auto context = exprsList[0][0].getContext();
int64_t maxDim = -1, maxSym = -1;
getMaxDimAndSymbol(exprsList, maxDim, maxSym);
SmallVector<AffineMap, 4> maps;
maps.reserve(exprsList.size());
for (const auto &exprs : exprsList)
maps.push_back(AffineMap::get(/*dimCount=*/maxDim + 1,
/*symbolCount=*/maxSym + 1, exprs, context));
return maps;
}
SmallVector<AffineMap, 4>
AffineMap::inferFromExprList(ArrayRef<ArrayRef<AffineExpr>> exprsList) {
return ::inferFromExprList(exprsList);
}
SmallVector<AffineMap, 4>
AffineMap::inferFromExprList(ArrayRef<SmallVector<AffineExpr, 4>> exprsList) {
return ::inferFromExprList(exprsList);
}
AffineMap AffineMap::getMultiDimIdentityMap(unsigned numDims,
MLIRContext *context) {
SmallVector<AffineExpr, 4> dimExprs;
dimExprs.reserve(numDims);
for (unsigned i = 0; i < numDims; ++i)
dimExprs.push_back(mlir::getAffineDimExpr(i, context));
return get(/*dimCount=*/numDims, /*symbolCount=*/0, dimExprs, context);
}
MLIRContext *AffineMap::getContext() const { return map->context; }
bool AffineMap::isIdentity() const {
if (getNumDims() != getNumResults())
return false;
ArrayRef<AffineExpr> results = getResults();
for (unsigned i = 0, numDims = getNumDims(); i < numDims; ++i) {
auto expr = results[i].dyn_cast<AffineDimExpr>();
if (!expr || expr.getPosition() != i)
return false;
}
return true;
}
bool AffineMap::isEmpty() const {
return getNumDims() == 0 && getNumSymbols() == 0 && getNumResults() == 0;
}
bool AffineMap::isSingleConstant() const {
return getNumResults() == 1 && getResult(0).isa<AffineConstantExpr>();
}
int64_t AffineMap::getSingleConstantResult() const {
assert(isSingleConstant() && "map must have a single constant result");
return getResult(0).cast<AffineConstantExpr>().getValue();
}
unsigned AffineMap::getNumDims() const {
assert(map && "uninitialized map storage");
return map->numDims;
}
unsigned AffineMap::getNumSymbols() const {
assert(map && "uninitialized map storage");
return map->numSymbols;
}
unsigned AffineMap::getNumResults() const {
assert(map && "uninitialized map storage");
return map->results.size();
}
unsigned AffineMap::getNumInputs() const {
assert(map && "uninitialized map storage");
return map->numDims + map->numSymbols;
}
ArrayRef<AffineExpr> AffineMap::getResults() const {
assert(map && "uninitialized map storage");
return map->results;
}
AffineExpr AffineMap::getResult(unsigned idx) const {
assert(map && "uninitialized map storage");
return map->results[idx];
}
/// Folds the results of the application of an affine map on the provided
/// operands to a constant if possible. Returns false if the folding happens,
/// true otherwise.
LogicalResult
AffineMap::constantFold(ArrayRef<Attribute> operandConstants,
SmallVectorImpl<Attribute> &results) const {
assert(getNumInputs() == operandConstants.size());
// Fold each of the result expressions.
AffineExprConstantFolder exprFolder(getNumDims(), operandConstants);
// Constant fold each AffineExpr in AffineMap and add to 'results'.
for (auto expr : getResults()) {
auto folded = exprFolder.constantFold(expr);
// If we didn't fold to a constant, then folding fails.
if (!folded)
return failure();
results.push_back(folded);
}
assert(results.size() == getNumResults() &&
"constant folding produced the wrong number of results");
return success();
}
/// Walk all of the AffineExpr's in this mapping. Each node in an expression
/// tree is visited in postorder.
void AffineMap::walkExprs(std::function<void(AffineExpr)> callback) const {
for (auto expr : getResults())
expr.walk(callback);
}
/// This method substitutes any uses of dimensions and symbols (e.g.
/// dim#0 with dimReplacements[0]) in subexpressions and returns the modified
/// expression mapping. Because this can be used to eliminate dims and
/// symbols, the client needs to specify the number of dims and symbols in
/// the result. The returned map always has the same number of results.
AffineMap AffineMap::replaceDimsAndSymbols(ArrayRef<AffineExpr> dimReplacements,
ArrayRef<AffineExpr> symReplacements,
unsigned numResultDims,
unsigned numResultSyms) {
SmallVector<AffineExpr, 8> results;
results.reserve(getNumResults());
for (auto expr : getResults())
results.push_back(
expr.replaceDimsAndSymbols(dimReplacements, symReplacements));
return get(numResultDims, numResultSyms, results, getContext());
}
AffineMap AffineMap::compose(AffineMap map) {
assert(getNumDims() == map.getNumResults() && "Number of results mismatch");
// Prepare `map` by concatenating the symbols and rewriting its exprs.
unsigned numDims = map.getNumDims();
unsigned numSymbolsThisMap = getNumSymbols();
unsigned numSymbols = numSymbolsThisMap + map.getNumSymbols();
SmallVector<AffineExpr, 8> newDims(numDims);
for (unsigned idx = 0; idx < numDims; ++idx) {
newDims[idx] = getAffineDimExpr(idx, getContext());
}
SmallVector<AffineExpr, 8> newSymbols(numSymbols);
for (unsigned idx = numSymbolsThisMap; idx < numSymbols; ++idx) {
newSymbols[idx - numSymbolsThisMap] =
getAffineSymbolExpr(idx, getContext());
}
auto newMap =
map.replaceDimsAndSymbols(newDims, newSymbols, numDims, numSymbols);
SmallVector<AffineExpr, 8> exprs;
exprs.reserve(getResults().size());
for (auto expr : getResults())
exprs.push_back(expr.compose(newMap));
return AffineMap::get(numDims, numSymbols, exprs, map.getContext());
}
bool AffineMap::isProjectedPermutation() {
if (getNumSymbols() > 0)
return false;
SmallVector<bool, 8> seen(getNumInputs(), false);
for (auto expr : getResults()) {
if (auto dim = expr.dyn_cast<AffineDimExpr>()) {
if (seen[dim.getPosition()])
return false;
seen[dim.getPosition()] = true;
continue;
}
return false;
}
return true;
}
bool AffineMap::isPermutation() {
if (getNumDims() != getNumResults())
return false;
return isProjectedPermutation();
}
AffineMap AffineMap::getSubMap(ArrayRef<unsigned> resultPos) {
SmallVector<AffineExpr, 4> exprs;
exprs.reserve(resultPos.size());
for (auto idx : resultPos) {
exprs.push_back(getResult(idx));
}
return AffineMap::get(getNumDims(), getNumSymbols(), exprs, getContext());
}
AffineMap mlir::simplifyAffineMap(AffineMap map) {
SmallVector<AffineExpr, 8> exprs;
for (auto e : map.getResults()) {
exprs.push_back(
simplifyAffineExpr(e, map.getNumDims(), map.getNumSymbols()));
}
return AffineMap::get(map.getNumDims(), map.getNumSymbols(), exprs,
map.getContext());
}
AffineMap mlir::removeDuplicateExprs(AffineMap map) {
auto results = map.getResults();
SmallVector<AffineExpr, 4> uniqueExprs(results.begin(), results.end());
uniqueExprs.erase(std::unique(uniqueExprs.begin(), uniqueExprs.end()),
uniqueExprs.end());
return AffineMap::get(map.getNumDims(), map.getNumSymbols(), uniqueExprs,
map.getContext());
}
AffineMap mlir::inversePermutation(AffineMap map) {
if (map.isEmpty())
return map;
assert(map.getNumSymbols() == 0 && "expected map without symbols");
SmallVector<AffineExpr, 4> exprs(map.getNumDims());
for (auto en : llvm::enumerate(map.getResults())) {
auto expr = en.value();
// Skip non-permutations.
if (auto d = expr.dyn_cast<AffineDimExpr>()) {
if (exprs[d.getPosition()])
continue;
exprs[d.getPosition()] = getAffineDimExpr(en.index(), d.getContext());
}
}
SmallVector<AffineExpr, 4> seenExprs;
seenExprs.reserve(map.getNumDims());
for (auto expr : exprs)
if (expr)
seenExprs.push_back(expr);
if (seenExprs.size() != map.getNumInputs())
return AffineMap();
return AffineMap::get(map.getNumResults(), 0, seenExprs, map.getContext());
}
AffineMap mlir::concatAffineMaps(ArrayRef<AffineMap> maps) {
unsigned numResults = 0;
for (auto m : maps)
numResults += m.getNumResults();
unsigned numDims = 0;
SmallVector<AffineExpr, 8> results;
results.reserve(numResults);
for (auto m : maps) {
assert(m.getNumSymbols() == 0 && "expected map without symbols");
results.append(m.getResults().begin(), m.getResults().end());
numDims = std::max(m.getNumDims(), numDims);
}
return AffineMap::get(numDims, /*numSymbols=*/0, results,
maps.front().getContext());
}
//===----------------------------------------------------------------------===//
// MutableAffineMap.
//===----------------------------------------------------------------------===//
MutableAffineMap::MutableAffineMap(AffineMap map)
: numDims(map.getNumDims()), numSymbols(map.getNumSymbols()),
context(map.getContext()) {
for (auto result : map.getResults())
results.push_back(result);
}
void MutableAffineMap::reset(AffineMap map) {
results.clear();
numDims = map.getNumDims();
numSymbols = map.getNumSymbols();
context = map.getContext();
for (auto result : map.getResults())
results.push_back(result);
}
bool MutableAffineMap::isMultipleOf(unsigned idx, int64_t factor) const {
if (results[idx].isMultipleOf(factor))
return true;
// TODO(bondhugula): use simplifyAffineExpr and FlatAffineConstraints to
// complete this (for a more powerful analysis).
return false;
}
// Simplifies the result affine expressions of this map. The expressions have to
// be pure for the simplification implemented.
void MutableAffineMap::simplify() {
// Simplify each of the results if possible.
// TODO(ntv): functional-style map
for (unsigned i = 0, e = getNumResults(); i < e; i++) {
results[i] = simplifyAffineExpr(getResult(i), numDims, numSymbols);
}
}
AffineMap MutableAffineMap::getAffineMap() const {
return AffineMap::get(numDims, numSymbols, results, context);
}