llvm-project/lld/MachO/InputFiles.cpp

695 lines
26 KiB
C++

//===- InputFiles.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains functions to parse Mach-O object files. In this comment,
// we describe the Mach-O file structure and how we parse it.
//
// Mach-O is not very different from ELF or COFF. The notion of symbols,
// sections and relocations exists in Mach-O as it does in ELF and COFF.
//
// Perhaps the notion that is new to those who know ELF/COFF is "subsections".
// In ELF/COFF, sections are an atomic unit of data copied from input files to
// output files. When we merge or garbage-collect sections, we treat each
// section as an atomic unit. In Mach-O, that's not the case. Sections can
// consist of multiple subsections, and subsections are a unit of merging and
// garbage-collecting. Therefore, Mach-O's subsections are more similar to
// ELF/COFF's sections than Mach-O's sections are.
//
// A section can have multiple symbols. A symbol that does not have the
// N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
// definition, a symbol is always present at the beginning of each subsection. A
// symbol with N_ALT_ENTRY attribute does not start a new subsection and can
// point to a middle of a subsection.
//
// The notion of subsections also affects how relocations are represented in
// Mach-O. All references within a section need to be explicitly represented as
// relocations if they refer to different subsections, because we obviously need
// to fix up addresses if subsections are laid out in an output file differently
// than they were in object files. To represent that, Mach-O relocations can
// refer to an unnamed location via its address. Scattered relocations (those
// with the R_SCATTERED bit set) always refer to unnamed locations.
// Non-scattered relocations refer to an unnamed location if r_extern is not set
// and r_symbolnum is zero.
//
// Without the above differences, I think you can use your knowledge about ELF
// and COFF for Mach-O.
//
//===----------------------------------------------------------------------===//
#include "InputFiles.h"
#include "Config.h"
#include "Driver.h"
#include "Dwarf.h"
#include "ExportTrie.h"
#include "InputSection.h"
#include "MachOStructs.h"
#include "ObjC.h"
#include "OutputSection.h"
#include "OutputSegment.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "Target.h"
#include "lld/Common/DWARF.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Memory.h"
#include "lld/Common/Reproduce.h"
#include "llvm/ADT/iterator.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/LTO/LTO.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/TarWriter.h"
using namespace llvm;
using namespace llvm::MachO;
using namespace llvm::support::endian;
using namespace llvm::sys;
using namespace lld;
using namespace lld::macho;
// Returns "<internal>", "foo.a(bar.o)", or "baz.o".
std::string lld::toString(const InputFile *f) {
if (!f)
return "<internal>";
if (f->archiveName.empty())
return std::string(f->getName());
return (path::filename(f->archiveName) + "(" + path::filename(f->getName()) +
")")
.str();
}
SetVector<InputFile *> macho::inputFiles;
std::unique_ptr<TarWriter> macho::tar;
int InputFile::idCount = 0;
// Open a given file path and return it as a memory-mapped file.
Optional<MemoryBufferRef> macho::readFile(StringRef path) {
// Open a file.
auto mbOrErr = MemoryBuffer::getFile(path);
if (auto ec = mbOrErr.getError()) {
error("cannot open " + path + ": " + ec.message());
return None;
}
std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
MemoryBufferRef mbref = mb->getMemBufferRef();
make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
// If this is a regular non-fat file, return it.
const char *buf = mbref.getBufferStart();
auto *hdr = reinterpret_cast<const MachO::fat_header *>(buf);
if (read32be(&hdr->magic) != MachO::FAT_MAGIC) {
if (tar)
tar->append(relativeToRoot(path), mbref.getBuffer());
return mbref;
}
// Object files and archive files may be fat files, which contains
// multiple real files for different CPU ISAs. Here, we search for a
// file that matches with the current link target and returns it as
// a MemoryBufferRef.
auto *arch = reinterpret_cast<const MachO::fat_arch *>(buf + sizeof(*hdr));
for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
if (reinterpret_cast<const char *>(arch + i + 1) >
buf + mbref.getBufferSize()) {
error(path + ": fat_arch struct extends beyond end of file");
return None;
}
if (read32be(&arch[i].cputype) != target->cpuType ||
read32be(&arch[i].cpusubtype) != target->cpuSubtype)
continue;
uint32_t offset = read32be(&arch[i].offset);
uint32_t size = read32be(&arch[i].size);
if (offset + size > mbref.getBufferSize())
error(path + ": slice extends beyond end of file");
if (tar)
tar->append(relativeToRoot(path), mbref.getBuffer());
return MemoryBufferRef(StringRef(buf + offset, size), path.copy(bAlloc));
}
error("unable to find matching architecture in " + path);
return None;
}
const load_command *macho::findCommand(const mach_header_64 *hdr,
uint32_t type) {
const uint8_t *p =
reinterpret_cast<const uint8_t *>(hdr) + sizeof(mach_header_64);
for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
auto *cmd = reinterpret_cast<const load_command *>(p);
if (cmd->cmd == type)
return cmd;
p += cmd->cmdsize;
}
return nullptr;
}
void ObjFile::parseSections(ArrayRef<section_64> sections) {
subsections.reserve(sections.size());
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
for (const section_64 &sec : sections) {
InputSection *isec = make<InputSection>();
isec->file = this;
isec->name =
StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname)));
isec->segname =
StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname)));
isec->data = {isZeroFill(sec.flags) ? nullptr : buf + sec.offset,
static_cast<size_t>(sec.size)};
if (sec.align >= 32)
error("alignment " + std::to_string(sec.align) + " of section " +
isec->name + " is too large");
else
isec->align = 1 << sec.align;
isec->flags = sec.flags;
if (!(isDebugSection(isec->flags) &&
isec->segname == segment_names::dwarf)) {
subsections.push_back({{0, isec}});
} else {
// Instead of emitting DWARF sections, we emit STABS symbols to the
// object files that contain them. We filter them out early to avoid
// parsing their relocations unnecessarily. But we must still push an
// empty map to ensure the indices line up for the remaining sections.
subsections.push_back({});
debugSections.push_back(isec);
}
}
}
// Find the subsection corresponding to the greatest section offset that is <=
// that of the given offset.
//
// offset: an offset relative to the start of the original InputSection (before
// any subsection splitting has occurred). It will be updated to represent the
// same location as an offset relative to the start of the containing
// subsection.
static InputSection *findContainingSubsection(SubsectionMap &map,
uint32_t *offset) {
auto it = std::prev(map.upper_bound(*offset));
*offset -= it->first;
return it->second;
}
void ObjFile::parseRelocations(const section_64 &sec,
SubsectionMap &subsecMap) {
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
ArrayRef<any_relocation_info> anyRelInfos(
reinterpret_cast<const any_relocation_info *>(buf + sec.reloff),
sec.nreloc);
for (const any_relocation_info &anyRelInfo : anyRelInfos) {
if (anyRelInfo.r_word0 & R_SCATTERED)
fatal("TODO: Scattered relocations not supported");
auto relInfo = reinterpret_cast<const relocation_info &>(anyRelInfo);
Reloc r;
r.type = relInfo.r_type;
r.pcrel = relInfo.r_pcrel;
r.length = relInfo.r_length;
uint64_t rawAddend = target->getImplicitAddend(mb, sec, relInfo);
if (relInfo.r_extern) {
r.referent = symbols[relInfo.r_symbolnum];
r.addend = rawAddend;
} else {
if (relInfo.r_symbolnum == 0 || relInfo.r_symbolnum > subsections.size())
fatal("invalid section index in relocation for offset " +
std::to_string(r.offset) + " in section " + sec.sectname +
" of " + getName());
SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1];
const section_64 &referentSec = sectionHeaders[relInfo.r_symbolnum - 1];
uint32_t referentOffset;
if (relInfo.r_pcrel) {
// The implicit addend for pcrel section relocations is the pcrel offset
// in terms of the addresses in the input file. Here we adjust it so
// that it describes the offset from the start of the referent section.
// TODO: The offset of 4 is probably not right for ARM64, nor for
// relocations with r_length != 2.
referentOffset =
sec.addr + relInfo.r_address + 4 + rawAddend - referentSec.addr;
} else {
// The addend for a non-pcrel relocation is its absolute address.
referentOffset = rawAddend - referentSec.addr;
}
r.referent = findContainingSubsection(referentSubsecMap, &referentOffset);
r.addend = referentOffset;
}
r.offset = relInfo.r_address;
InputSection *subsec = findContainingSubsection(subsecMap, &r.offset);
subsec->relocs.push_back(r);
}
}
static macho::Symbol *createDefined(const structs::nlist_64 &sym,
StringRef name, InputSection *isec,
uint32_t value) {
if (sym.n_type & N_EXT)
// Global defined symbol
return symtab->addDefined(name, isec, value, sym.n_desc & N_WEAK_DEF);
// Local defined symbol
return make<Defined>(name, isec, value, sym.n_desc & N_WEAK_DEF,
/*isExternal=*/false);
}
// Absolute symbols are defined symbols that do not have an associated
// InputSection. They cannot be weak.
static macho::Symbol *createAbsolute(const structs::nlist_64 &sym,
StringRef name) {
if (sym.n_type & N_EXT)
return symtab->addDefined(name, nullptr, sym.n_value, /*isWeakDef=*/false);
return make<Defined>(name, nullptr, sym.n_value, /*isWeakDef=*/false,
/*isExternal=*/false);
}
macho::Symbol *ObjFile::parseNonSectionSymbol(const structs::nlist_64 &sym,
StringRef name) {
uint8_t type = sym.n_type & N_TYPE;
switch (type) {
case N_UNDF:
return sym.n_value == 0
? symtab->addUndefined(name, sym.n_desc & N_WEAK_REF)
: symtab->addCommon(name, this, sym.n_value,
1 << GET_COMM_ALIGN(sym.n_desc));
case N_ABS:
return createAbsolute(sym, name);
case N_PBUD:
case N_INDR:
error("TODO: support symbols of type " + std::to_string(type));
return nullptr;
case N_SECT:
llvm_unreachable(
"N_SECT symbols should not be passed to parseNonSectionSymbol");
default:
llvm_unreachable("invalid symbol type");
}
}
void ObjFile::parseSymbols(ArrayRef<structs::nlist_64> nList,
const char *strtab, bool subsectionsViaSymbols) {
// resize(), not reserve(), because we are going to create N_ALT_ENTRY symbols
// out-of-sequence.
symbols.resize(nList.size());
std::vector<size_t> altEntrySymIdxs;
for (size_t i = 0, n = nList.size(); i < n; ++i) {
const structs::nlist_64 &sym = nList[i];
StringRef name = strtab + sym.n_strx;
if ((sym.n_type & N_TYPE) != N_SECT) {
symbols[i] = parseNonSectionSymbol(sym, name);
continue;
}
const section_64 &sec = sectionHeaders[sym.n_sect - 1];
SubsectionMap &subsecMap = subsections[sym.n_sect - 1];
assert(!subsecMap.empty());
uint64_t offset = sym.n_value - sec.addr;
// If the input file does not use subsections-via-symbols, all symbols can
// use the same subsection. Otherwise, we must split the sections along
// symbol boundaries.
if (!subsectionsViaSymbols) {
symbols[i] = createDefined(sym, name, subsecMap[0], offset);
continue;
}
// nList entries aren't necessarily arranged in address order. Therefore,
// we can't create alt-entry symbols at this point because a later symbol
// may split its section, which may affect which subsection the alt-entry
// symbol is assigned to. So we need to handle them in a second pass below.
if (sym.n_desc & N_ALT_ENTRY) {
altEntrySymIdxs.push_back(i);
continue;
}
// Find the subsection corresponding to the greatest section offset that is
// <= that of the current symbol. The subsection that we find either needs
// to be used directly or split in two.
uint32_t firstSize = offset;
InputSection *firstIsec = findContainingSubsection(subsecMap, &firstSize);
if (firstSize == 0) {
// Alias of an existing symbol, or the first symbol in the section. These
// are handled by reusing the existing section.
symbols[i] = createDefined(sym, name, firstIsec, 0);
continue;
}
// We saw a symbol definition at a new offset. Split the section into two
// subsections. The new symbol uses the second subsection.
auto *secondIsec = make<InputSection>(*firstIsec);
secondIsec->data = firstIsec->data.slice(firstSize);
firstIsec->data = firstIsec->data.slice(0, firstSize);
// TODO: ld64 appears to preserve the original alignment as well as each
// subsection's offset from the last aligned address. We should consider
// emulating that behavior.
secondIsec->align = MinAlign(firstIsec->align, offset);
subsecMap[offset] = secondIsec;
// By construction, the symbol will be at offset zero in the new section.
symbols[i] = createDefined(sym, name, secondIsec, 0);
}
for (size_t idx : altEntrySymIdxs) {
const structs::nlist_64 &sym = nList[idx];
StringRef name = strtab + sym.n_strx;
SubsectionMap &subsecMap = subsections[sym.n_sect - 1];
uint32_t off = sym.n_value - sectionHeaders[sym.n_sect - 1].addr;
InputSection *subsec = findContainingSubsection(subsecMap, &off);
symbols[idx] = createDefined(sym, name, subsec, off);
}
}
OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName,
StringRef sectName)
: InputFile(OpaqueKind, mb) {
InputSection *isec = make<InputSection>();
isec->file = this;
isec->name = sectName.take_front(16);
isec->segname = segName.take_front(16);
const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
isec->data = {buf, mb.getBufferSize()};
subsections.push_back({{0, isec}});
}
ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName)
: InputFile(ObjKind, mb), modTime(modTime) {
this->archiveName = std::string(archiveName);
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart());
if (const load_command *cmd = findCommand(hdr, LC_LINKER_OPTION)) {
auto *c = reinterpret_cast<const linker_option_command *>(cmd);
StringRef data{reinterpret_cast<const char *>(c + 1),
c->cmdsize - sizeof(linker_option_command)};
parseLCLinkerOption(this, c->count, data);
}
if (const load_command *cmd = findCommand(hdr, LC_SEGMENT_64)) {
auto *c = reinterpret_cast<const segment_command_64 *>(cmd);
sectionHeaders = ArrayRef<section_64>{
reinterpret_cast<const section_64 *>(c + 1), c->nsects};
parseSections(sectionHeaders);
}
// TODO: Error on missing LC_SYMTAB?
if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
auto *c = reinterpret_cast<const symtab_command *>(cmd);
ArrayRef<structs::nlist_64> nList(
reinterpret_cast<const structs::nlist_64 *>(buf + c->symoff), c->nsyms);
const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
parseSymbols(nList, strtab, subsectionsViaSymbols);
}
// The relocations may refer to the symbols, so we parse them after we have
// parsed all the symbols.
for (size_t i = 0, n = subsections.size(); i < n; ++i)
if (!subsections[i].empty())
parseRelocations(sectionHeaders[i], subsections[i]);
parseDebugInfo();
}
void ObjFile::parseDebugInfo() {
std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this);
if (!dObj)
return;
auto *ctx = make<DWARFContext>(
std::move(dObj), "",
[&](Error err) {
warn(toString(this) + ": " + toString(std::move(err)));
},
[&](Error warning) {
warn(toString(this) + ": " + toString(std::move(warning)));
});
// TODO: Since object files can contain a lot of DWARF info, we should verify
// that we are parsing just the info we need
const DWARFContext::compile_unit_range &units = ctx->compile_units();
auto it = units.begin();
compileUnit = it->get();
assert(std::next(it) == units.end());
}
// The path can point to either a dylib or a .tbd file.
static Optional<DylibFile *> loadDylib(StringRef path, DylibFile *umbrella) {
Optional<MemoryBufferRef> mbref = readFile(path);
if (!mbref) {
error("could not read dylib file at " + path);
return {};
}
return loadDylib(*mbref, umbrella);
}
// TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
// the first document storing child pointers to the rest of them. When we are
// processing a given TBD file, we store that top-level document here. When
// processing re-exports, we search its children for potentially matching
// documents in the same TBD file. Note that the children themselves don't
// point to further documents, i.e. this is a two-level tree.
//
// ld64 allows a TAPI re-export to reference documents nested within other TBD
// files, but that seems like a strange design, so this is an intentional
// deviation.
const InterfaceFile *currentTopLevelTapi = nullptr;
// Re-exports can either refer to on-disk files, or to documents within .tbd
// files.
static Optional<DylibFile *> loadReexportHelper(StringRef path,
DylibFile *umbrella) {
if (path::is_absolute(path, path::Style::posix))
for (StringRef root : config->systemLibraryRoots)
if (Optional<std::string> dylibPath =
resolveDylibPath((root + path).str()))
return loadDylib(*dylibPath, umbrella);
// TODO: Expand @loader_path, @executable_path etc
if (currentTopLevelTapi) {
for (InterfaceFile &child :
make_pointee_range(currentTopLevelTapi->documents())) {
if (path == child.getInstallName())
return make<DylibFile>(child, umbrella);
assert(child.documents().empty());
}
}
if (Optional<std::string> dylibPath = resolveDylibPath(path))
return loadDylib(*dylibPath, umbrella);
error("unable to locate re-export with install name " + path);
return {};
}
// If a re-exported dylib is public (lives in /usr/lib or
// /System/Library/Frameworks), then it is considered implicitly linked: we
// should bind to its symbols directly instead of via the re-exporting umbrella
// library.
static bool isImplicitlyLinked(StringRef path) {
if (!config->implicitDylibs)
return false;
if (path::parent_path(path) == "/usr/lib")
return true;
// Match /System/Library/Frameworks/$FOO.framework/**/$FOO
if (path.consume_front("/System/Library/Frameworks/")) {
StringRef frameworkName = path.take_until([](char c) { return c == '.'; });
return path::filename(path) == frameworkName;
}
return false;
}
void loadReexport(StringRef path, DylibFile *umbrella) {
Optional<DylibFile *> reexport = loadReexportHelper(path, umbrella);
if (reexport && isImplicitlyLinked(path))
inputFiles.insert(*reexport);
}
DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella)
: InputFile(DylibKind, mb) {
if (umbrella == nullptr)
umbrella = this;
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
auto *hdr = reinterpret_cast<const mach_header_64 *>(mb.getBufferStart());
// Initialize dylibName.
if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
auto *c = reinterpret_cast<const dylib_command *>(cmd);
currentVersion = read32le(&c->dylib.current_version);
compatibilityVersion = read32le(&c->dylib.compatibility_version);
dylibName = reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
} else {
error("dylib " + toString(this) + " missing LC_ID_DYLIB load command");
return;
}
// Initialize symbols.
DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella;
if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) {
auto *c = reinterpret_cast<const dyld_info_command *>(cmd);
parseTrie(buf + c->export_off, c->export_size,
[&](const Twine &name, uint64_t flags) {
bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL;
symbols.push_back(symtab->addDylib(
saver.save(name), exportingFile, isWeakDef, isTlv));
});
} else {
error("LC_DYLD_INFO_ONLY not found in " + toString(this));
return;
}
if (hdr->flags & MH_NO_REEXPORTED_DYLIBS)
return;
const uint8_t *p =
reinterpret_cast<const uint8_t *>(hdr) + sizeof(mach_header_64);
for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
auto *cmd = reinterpret_cast<const load_command *>(p);
p += cmd->cmdsize;
if (cmd->cmd != LC_REEXPORT_DYLIB)
continue;
auto *c = reinterpret_cast<const dylib_command *>(cmd);
StringRef reexportPath =
reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
loadReexport(reexportPath, umbrella);
}
}
DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella)
: InputFile(DylibKind, interface) {
if (umbrella == nullptr)
umbrella = this;
dylibName = saver.save(interface.getInstallName());
compatibilityVersion = interface.getCompatibilityVersion().rawValue();
currentVersion = interface.getCurrentVersion().rawValue();
DylibFile *exportingFile = isImplicitlyLinked(dylibName) ? this : umbrella;
auto addSymbol = [&](const Twine &name) -> void {
symbols.push_back(symtab->addDylib(saver.save(name), exportingFile,
/*isWeakDef=*/false,
/*isTlv=*/false));
};
// TODO(compnerd) filter out symbols based on the target platform
// TODO: handle weak defs, thread locals
for (const auto symbol : interface.symbols()) {
if (!symbol->getArchitectures().has(config->arch))
continue;
switch (symbol->getKind()) {
case SymbolKind::GlobalSymbol:
addSymbol(symbol->getName());
break;
case SymbolKind::ObjectiveCClass:
// XXX ld64 only creates these symbols when -ObjC is passed in. We may
// want to emulate that.
addSymbol(objc::klass + symbol->getName());
addSymbol(objc::metaclass + symbol->getName());
break;
case SymbolKind::ObjectiveCClassEHType:
addSymbol(objc::ehtype + symbol->getName());
break;
case SymbolKind::ObjectiveCInstanceVariable:
addSymbol(objc::ivar + symbol->getName());
break;
}
}
bool isTopLevelTapi = false;
if (currentTopLevelTapi == nullptr) {
currentTopLevelTapi = &interface;
isTopLevelTapi = true;
}
for (InterfaceFileRef intfRef : interface.reexportedLibraries())
loadReexport(intfRef.getInstallName(), umbrella);
if (isTopLevelTapi)
currentTopLevelTapi = nullptr;
}
ArchiveFile::ArchiveFile(std::unique_ptr<llvm::object::Archive> &&f)
: InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {
for (const object::Archive::Symbol &sym : file->symbols())
symtab->addLazy(sym.getName(), this, sym);
}
void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
object::Archive::Child c =
CHECK(sym.getMember(), toString(this) +
": could not get the member for symbol " +
toMachOString(sym));
if (!seen.insert(c.getChildOffset()).second)
return;
MemoryBufferRef mb =
CHECK(c.getMemoryBufferRef(),
toString(this) +
": could not get the buffer for the member defining symbol " +
toMachOString(sym));
if (tar && c.getParent()->isThin())
tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer());
uint32_t modTime = toTimeT(
CHECK(c.getLastModified(), toString(this) +
": could not get the modification time "
"for the member defining symbol " +
toMachOString(sym)));
// `sym` is owned by a LazySym, which will be replace<>() by make<ObjFile>
// and become invalid after that call. Copy it to the stack so we can refer
// to it later.
const object::Archive::Symbol sym_copy = sym;
InputFile *file;
switch (identify_magic(mb.getBuffer())) {
case file_magic::macho_object:
file = make<ObjFile>(mb, modTime, getName());
break;
case file_magic::bitcode:
file = make<BitcodeFile>(mb);
break;
default:
StringRef bufname =
CHECK(c.getName(), toString(this) + ": could not get buffer name");
error(toString(this) + ": archive member " + bufname +
" has unhandled file type");
return;
}
inputFiles.insert(file);
// ld64 doesn't demangle sym here even with -demangle. Match that, so
// intentionally no call to toMachOString() here.
printArchiveMemberLoad(sym_copy.getName(), file);
}
BitcodeFile::BitcodeFile(MemoryBufferRef mbref)
: InputFile(BitcodeKind, mbref) {
obj = check(lto::InputFile::create(mbref));
}