forked from OSchip/llvm-project
580 lines
22 KiB
C++
580 lines
22 KiB
C++
//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
|
|
//
|
|
// This file implements sparse conditional constant propagation and merging:
|
|
//
|
|
// Specifically, this:
|
|
// * Assumes values are constant unless proven otherwise
|
|
// * Assumes BasicBlocks are dead unless proven otherwise
|
|
// * Proves values to be constant, and replaces them with constants
|
|
// * Proves conditional branches to be unconditional
|
|
//
|
|
// Notice that:
|
|
// * This pass has a habit of making definitions be dead. It is a good idea
|
|
// to to run a DCE pass sometime after running this pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/ConstantHandling.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/InstVisitor.h"
|
|
#include "Support/Debug.h"
|
|
#include "Support/Statistic.h"
|
|
#include "Support/STLExtras.h"
|
|
#include <algorithm>
|
|
#include <set>
|
|
|
|
// InstVal class - This class represents the different lattice values that an
|
|
// instruction may occupy. It is a simple class with value semantics.
|
|
//
|
|
namespace {
|
|
Statistic<> NumInstRemoved("sccp", "Number of instructions removed");
|
|
|
|
class InstVal {
|
|
enum {
|
|
undefined, // This instruction has no known value
|
|
constant, // This instruction has a constant value
|
|
overdefined // This instruction has an unknown value
|
|
} LatticeValue; // The current lattice position
|
|
Constant *ConstantVal; // If Constant value, the current value
|
|
public:
|
|
inline InstVal() : LatticeValue(undefined), ConstantVal(0) {}
|
|
|
|
// markOverdefined - Return true if this is a new status to be in...
|
|
inline bool markOverdefined() {
|
|
if (LatticeValue != overdefined) {
|
|
LatticeValue = overdefined;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// markConstant - Return true if this is a new status for us...
|
|
inline bool markConstant(Constant *V) {
|
|
if (LatticeValue != constant) {
|
|
LatticeValue = constant;
|
|
ConstantVal = V;
|
|
return true;
|
|
} else {
|
|
assert(ConstantVal == V && "Marking constant with different value");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
inline bool isUndefined() const { return LatticeValue == undefined; }
|
|
inline bool isConstant() const { return LatticeValue == constant; }
|
|
inline bool isOverdefined() const { return LatticeValue == overdefined; }
|
|
|
|
inline Constant *getConstant() const { return ConstantVal; }
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SCCP Class
|
|
//
|
|
// This class does all of the work of Sparse Conditional Constant Propagation.
|
|
//
|
|
namespace {
|
|
class SCCP : public FunctionPass, public InstVisitor<SCCP> {
|
|
std::set<BasicBlock*> BBExecutable;// The basic blocks that are executable
|
|
std::map<Value*, InstVal> ValueState; // The state each value is in...
|
|
|
|
std::vector<Instruction*> InstWorkList;// The instruction work list
|
|
std::vector<BasicBlock*> BBWorkList; // The BasicBlock work list
|
|
|
|
/// KnownFeasibleEdges - Entries in this set are edges which have already had
|
|
/// PHI nodes retriggered.
|
|
typedef std::pair<BasicBlock*,BasicBlock*> Edge;
|
|
std::set<Edge> KnownFeasibleEdges;
|
|
public:
|
|
|
|
// runOnFunction - Run the Sparse Conditional Constant Propagation algorithm,
|
|
// and return true if the function was modified.
|
|
//
|
|
bool runOnFunction(Function &F);
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
}
|
|
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// The implementation of this class
|
|
//
|
|
private:
|
|
friend class InstVisitor<SCCP>; // Allow callbacks from visitor
|
|
|
|
// markValueOverdefined - Make a value be marked as "constant". If the value
|
|
// is not already a constant, add it to the instruction work list so that
|
|
// the users of the instruction are updated later.
|
|
//
|
|
inline void markConstant(InstVal &IV, Instruction *I, Constant *C) {
|
|
if (IV.markConstant(C)) {
|
|
DEBUG(std::cerr << "markConstant: " << *C << ": " << *I);
|
|
InstWorkList.push_back(I);
|
|
}
|
|
}
|
|
inline void markConstant(Instruction *I, Constant *C) {
|
|
markConstant(ValueState[I], I, C);
|
|
}
|
|
|
|
// markValueOverdefined - Make a value be marked as "overdefined". If the
|
|
// value is not already overdefined, add it to the instruction work list so
|
|
// that the users of the instruction are updated later.
|
|
//
|
|
inline void markOverdefined(InstVal &IV, Instruction *I) {
|
|
if (IV.markOverdefined()) {
|
|
DEBUG(std::cerr << "markOverdefined: " << *I);
|
|
InstWorkList.push_back(I); // Only instructions go on the work list
|
|
}
|
|
}
|
|
inline void markOverdefined(Instruction *I) {
|
|
markOverdefined(ValueState[I], I);
|
|
}
|
|
|
|
// getValueState - Return the InstVal object that corresponds to the value.
|
|
// This function is necessary because not all values should start out in the
|
|
// underdefined state... Argument's should be overdefined, and
|
|
// constants should be marked as constants. If a value is not known to be an
|
|
// Instruction object, then use this accessor to get its value from the map.
|
|
//
|
|
inline InstVal &getValueState(Value *V) {
|
|
std::map<Value*, InstVal>::iterator I = ValueState.find(V);
|
|
if (I != ValueState.end()) return I->second; // Common case, in the map
|
|
|
|
if (Constant *CPV = dyn_cast<Constant>(V)) { // Constants are constant
|
|
ValueState[CPV].markConstant(CPV);
|
|
} else if (isa<Argument>(V)) { // Arguments are overdefined
|
|
ValueState[V].markOverdefined();
|
|
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
|
|
// The address of a global is a constant...
|
|
ValueState[V].markConstant(ConstantPointerRef::get(GV));
|
|
}
|
|
// All others are underdefined by default...
|
|
return ValueState[V];
|
|
}
|
|
|
|
// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
|
|
// work list if it is not already executable...
|
|
//
|
|
void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
|
|
if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
|
|
return; // This edge is already known to be executable!
|
|
|
|
if (BBExecutable.count(Dest)) {
|
|
DEBUG(std::cerr << "Marking Edge Executable: " << Source->getName()
|
|
<< " -> " << Dest->getName() << "\n");
|
|
|
|
// The destination is already executable, but we just made an edge
|
|
// feasible that wasn't before. Revisit the PHI nodes in the block
|
|
// because they have potentially new operands.
|
|
for (BasicBlock::iterator I = Dest->begin();
|
|
PHINode *PN = dyn_cast<PHINode>(I); ++I)
|
|
visitPHINode(*PN);
|
|
|
|
} else {
|
|
DEBUG(std::cerr << "Marking Block Executable: " << Dest->getName()<<"\n");
|
|
BBExecutable.insert(Dest); // Basic block is executable!
|
|
BBWorkList.push_back(Dest); // Add the block to the work list!
|
|
}
|
|
}
|
|
|
|
|
|
// visit implementations - Something changed in this instruction... Either an
|
|
// operand made a transition, or the instruction is newly executable. Change
|
|
// the value type of I to reflect these changes if appropriate.
|
|
//
|
|
void visitPHINode(PHINode &I);
|
|
|
|
// Terminators
|
|
void visitReturnInst(ReturnInst &I) { /*does not have an effect*/ }
|
|
void visitTerminatorInst(TerminatorInst &TI);
|
|
|
|
void visitCastInst(CastInst &I);
|
|
void visitBinaryOperator(Instruction &I);
|
|
void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); }
|
|
|
|
// Instructions that cannot be folded away...
|
|
void visitStoreInst (Instruction &I) { /*returns void*/ }
|
|
void visitLoadInst (Instruction &I) { markOverdefined(&I); }
|
|
void visitGetElementPtrInst(GetElementPtrInst &I);
|
|
void visitCallInst (Instruction &I) { markOverdefined(&I); }
|
|
void visitInvokeInst (TerminatorInst &I) {
|
|
if (I.getType() != Type::VoidTy) markOverdefined(&I);
|
|
visitTerminatorInst(I);
|
|
}
|
|
void visitUnwindInst (TerminatorInst &I) { /*returns void*/ }
|
|
void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
|
|
void visitVarArgInst (Instruction &I) { markOverdefined(&I); }
|
|
void visitFreeInst (Instruction &I) { /*returns void*/ }
|
|
|
|
void visitInstruction(Instruction &I) {
|
|
// If a new instruction is added to LLVM that we don't handle...
|
|
std::cerr << "SCCP: Don't know how to handle: " << I;
|
|
markOverdefined(&I); // Just in case
|
|
}
|
|
|
|
// getFeasibleSuccessors - Return a vector of booleans to indicate which
|
|
// successors are reachable from a given terminator instruction.
|
|
//
|
|
void getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs);
|
|
|
|
// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
|
|
// block to the 'To' basic block is currently feasible...
|
|
//
|
|
bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
|
|
|
|
// OperandChangedState - This method is invoked on all of the users of an
|
|
// instruction that was just changed state somehow.... Based on this
|
|
// information, we need to update the specified user of this instruction.
|
|
//
|
|
void OperandChangedState(User *U) {
|
|
// Only instructions use other variable values!
|
|
Instruction &I = cast<Instruction>(*U);
|
|
if (BBExecutable.count(I.getParent())) // Inst is executable?
|
|
visit(I);
|
|
}
|
|
};
|
|
|
|
RegisterOpt<SCCP> X("sccp", "Sparse Conditional Constant Propagation");
|
|
} // end anonymous namespace
|
|
|
|
|
|
// createSCCPPass - This is the public interface to this file...
|
|
//
|
|
Pass *createSCCPPass() {
|
|
return new SCCP();
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SCCP Class Implementation
|
|
|
|
|
|
// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
|
|
// and return true if the function was modified.
|
|
//
|
|
bool SCCP::runOnFunction(Function &F) {
|
|
// Mark the first block of the function as being executable...
|
|
BBExecutable.insert(F.begin()); // Basic block is executable!
|
|
BBWorkList.push_back(F.begin()); // Add the block to the work list!
|
|
|
|
// Process the work lists until their are empty!
|
|
while (!BBWorkList.empty() || !InstWorkList.empty()) {
|
|
// Process the instruction work list...
|
|
while (!InstWorkList.empty()) {
|
|
Instruction *I = InstWorkList.back();
|
|
InstWorkList.pop_back();
|
|
|
|
DEBUG(std::cerr << "\nPopped off I-WL: " << I);
|
|
|
|
// "I" got into the work list because it either made the transition from
|
|
// bottom to constant, or to Overdefined.
|
|
//
|
|
// Update all of the users of this instruction's value...
|
|
//
|
|
for_each(I->use_begin(), I->use_end(),
|
|
bind_obj(this, &SCCP::OperandChangedState));
|
|
}
|
|
|
|
// Process the basic block work list...
|
|
while (!BBWorkList.empty()) {
|
|
BasicBlock *BB = BBWorkList.back();
|
|
BBWorkList.pop_back();
|
|
|
|
DEBUG(std::cerr << "\nPopped off BBWL: " << BB);
|
|
|
|
// Notify all instructions in this basic block that they are newly
|
|
// executable.
|
|
visit(BB);
|
|
}
|
|
}
|
|
|
|
if (DebugFlag) {
|
|
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
|
|
if (!BBExecutable.count(I))
|
|
std::cerr << "BasicBlock Dead:" << *I;
|
|
}
|
|
|
|
// Iterate over all of the instructions in a function, replacing them with
|
|
// constants if we have found them to be of constant values.
|
|
//
|
|
bool MadeChanges = false;
|
|
for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB)
|
|
for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) {
|
|
Instruction &Inst = *BI;
|
|
InstVal &IV = ValueState[&Inst];
|
|
if (IV.isConstant()) {
|
|
Constant *Const = IV.getConstant();
|
|
DEBUG(std::cerr << "Constant: " << Const << " = " << Inst);
|
|
|
|
// Replaces all of the uses of a variable with uses of the constant.
|
|
Inst.replaceAllUsesWith(Const);
|
|
|
|
// Remove the operator from the list of definitions... and delete it.
|
|
BI = BB->getInstList().erase(BI);
|
|
|
|
// Hey, we just changed something!
|
|
MadeChanges = true;
|
|
++NumInstRemoved;
|
|
} else {
|
|
++BI;
|
|
}
|
|
}
|
|
|
|
// Reset state so that the next invocation will have empty data structures
|
|
BBExecutable.clear();
|
|
ValueState.clear();
|
|
std::vector<Instruction*>().swap(InstWorkList);
|
|
std::vector<BasicBlock*>().swap(BBWorkList);
|
|
|
|
return MadeChanges;
|
|
}
|
|
|
|
|
|
// getFeasibleSuccessors - Return a vector of booleans to indicate which
|
|
// successors are reachable from a given terminator instruction.
|
|
//
|
|
void SCCP::getFeasibleSuccessors(TerminatorInst &TI, std::vector<bool> &Succs) {
|
|
Succs.resize(TI.getNumSuccessors());
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
|
|
if (BI->isUnconditional()) {
|
|
Succs[0] = true;
|
|
} else {
|
|
InstVal &BCValue = getValueState(BI->getCondition());
|
|
if (BCValue.isOverdefined()) {
|
|
// Overdefined condition variables mean the branch could go either way.
|
|
Succs[0] = Succs[1] = true;
|
|
} else if (BCValue.isConstant()) {
|
|
// Constant condition variables mean the branch can only go a single way
|
|
Succs[BCValue.getConstant() == ConstantBool::False] = true;
|
|
}
|
|
}
|
|
} else if (InvokeInst *II = dyn_cast<InvokeInst>(&TI)) {
|
|
// Invoke instructions successors are always executable.
|
|
Succs[0] = Succs[1] = true;
|
|
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
|
|
InstVal &SCValue = getValueState(SI->getCondition());
|
|
if (SCValue.isOverdefined()) { // Overdefined condition?
|
|
// All destinations are executable!
|
|
Succs.assign(TI.getNumSuccessors(), true);
|
|
} else if (SCValue.isConstant()) {
|
|
Constant *CPV = SCValue.getConstant();
|
|
// Make sure to skip the "default value" which isn't a value
|
|
for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) {
|
|
if (SI->getSuccessorValue(i) == CPV) {// Found the right branch...
|
|
Succs[i] = true;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Constant value not equal to any of the branches... must execute
|
|
// default branch then...
|
|
Succs[0] = true;
|
|
}
|
|
} else {
|
|
std::cerr << "SCCP: Don't know how to handle: " << TI;
|
|
Succs.assign(TI.getNumSuccessors(), true);
|
|
}
|
|
}
|
|
|
|
|
|
// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
|
|
// block to the 'To' basic block is currently feasible...
|
|
//
|
|
bool SCCP::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
|
|
assert(BBExecutable.count(To) && "Dest should always be alive!");
|
|
|
|
// Make sure the source basic block is executable!!
|
|
if (!BBExecutable.count(From)) return false;
|
|
|
|
// Check to make sure this edge itself is actually feasible now...
|
|
TerminatorInst *TI = From->getTerminator();
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
|
|
if (BI->isUnconditional())
|
|
return true;
|
|
else {
|
|
InstVal &BCValue = getValueState(BI->getCondition());
|
|
if (BCValue.isOverdefined()) {
|
|
// Overdefined condition variables mean the branch could go either way.
|
|
return true;
|
|
} else if (BCValue.isConstant()) {
|
|
// Constant condition variables mean the branch can only go a single way
|
|
return BI->getSuccessor(BCValue.getConstant() ==
|
|
ConstantBool::False) == To;
|
|
}
|
|
return false;
|
|
}
|
|
} else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
|
|
// Invoke instructions successors are always executable.
|
|
return true;
|
|
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
|
|
InstVal &SCValue = getValueState(SI->getCondition());
|
|
if (SCValue.isOverdefined()) { // Overdefined condition?
|
|
// All destinations are executable!
|
|
return true;
|
|
} else if (SCValue.isConstant()) {
|
|
Constant *CPV = SCValue.getConstant();
|
|
// Make sure to skip the "default value" which isn't a value
|
|
for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
|
|
if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
|
|
return SI->getSuccessor(i) == To;
|
|
|
|
// Constant value not equal to any of the branches... must execute
|
|
// default branch then...
|
|
return SI->getDefaultDest() == To;
|
|
}
|
|
return false;
|
|
} else {
|
|
std::cerr << "Unknown terminator instruction: " << *TI;
|
|
abort();
|
|
}
|
|
}
|
|
|
|
// visit Implementations - Something changed in this instruction... Either an
|
|
// operand made a transition, or the instruction is newly executable. Change
|
|
// the value type of I to reflect these changes if appropriate. This method
|
|
// makes sure to do the following actions:
|
|
//
|
|
// 1. If a phi node merges two constants in, and has conflicting value coming
|
|
// from different branches, or if the PHI node merges in an overdefined
|
|
// value, then the PHI node becomes overdefined.
|
|
// 2. If a phi node merges only constants in, and they all agree on value, the
|
|
// PHI node becomes a constant value equal to that.
|
|
// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
|
|
// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
|
|
// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
|
|
// 6. If a conditional branch has a value that is constant, make the selected
|
|
// destination executable
|
|
// 7. If a conditional branch has a value that is overdefined, make all
|
|
// successors executable.
|
|
//
|
|
void SCCP::visitPHINode(PHINode &PN) {
|
|
InstVal &PNIV = getValueState(&PN);
|
|
if (PNIV.isOverdefined()) return; // Quick exit
|
|
|
|
// Look at all of the executable operands of the PHI node. If any of them
|
|
// are overdefined, the PHI becomes overdefined as well. If they are all
|
|
// constant, and they agree with each other, the PHI becomes the identical
|
|
// constant. If they are constant and don't agree, the PHI is overdefined.
|
|
// If there are no executable operands, the PHI remains undefined.
|
|
//
|
|
Constant *OperandVal = 0;
|
|
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
|
|
InstVal &IV = getValueState(PN.getIncomingValue(i));
|
|
if (IV.isUndefined()) continue; // Doesn't influence PHI node.
|
|
|
|
if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
|
|
if (IV.isOverdefined()) { // PHI node becomes overdefined!
|
|
markOverdefined(PNIV, &PN);
|
|
return;
|
|
}
|
|
|
|
if (OperandVal == 0) { // Grab the first value...
|
|
OperandVal = IV.getConstant();
|
|
} else { // Another value is being merged in!
|
|
// There is already a reachable operand. If we conflict with it,
|
|
// then the PHI node becomes overdefined. If we agree with it, we
|
|
// can continue on.
|
|
|
|
// Check to see if there are two different constants merging...
|
|
if (IV.getConstant() != OperandVal) {
|
|
// Yes there is. This means the PHI node is not constant.
|
|
// You must be overdefined poor PHI.
|
|
//
|
|
markOverdefined(PNIV, &PN); // The PHI node now becomes overdefined
|
|
return; // I'm done analyzing you
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we exited the loop, this means that the PHI node only has constant
|
|
// arguments that agree with each other(and OperandVal is the constant) or
|
|
// OperandVal is null because there are no defined incoming arguments. If
|
|
// this is the case, the PHI remains undefined.
|
|
//
|
|
if (OperandVal)
|
|
markConstant(PNIV, &PN, OperandVal); // Acquire operand value
|
|
}
|
|
|
|
void SCCP::visitTerminatorInst(TerminatorInst &TI) {
|
|
std::vector<bool> SuccFeasible;
|
|
getFeasibleSuccessors(TI, SuccFeasible);
|
|
|
|
BasicBlock *BB = TI.getParent();
|
|
|
|
// Mark all feasible successors executable...
|
|
for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
|
|
if (SuccFeasible[i])
|
|
markEdgeExecutable(BB, TI.getSuccessor(i));
|
|
}
|
|
|
|
void SCCP::visitCastInst(CastInst &I) {
|
|
Value *V = I.getOperand(0);
|
|
InstVal &VState = getValueState(V);
|
|
if (VState.isOverdefined()) { // Inherit overdefinedness of operand
|
|
markOverdefined(&I);
|
|
} else if (VState.isConstant()) { // Propagate constant value
|
|
Constant *Result =
|
|
ConstantFoldCastInstruction(VState.getConstant(), I.getType());
|
|
|
|
if (Result) // If this instruction constant folds!
|
|
markConstant(&I, Result);
|
|
else
|
|
markOverdefined(&I); // Don't know how to fold this instruction. :(
|
|
}
|
|
}
|
|
|
|
// Handle BinaryOperators and Shift Instructions...
|
|
void SCCP::visitBinaryOperator(Instruction &I) {
|
|
InstVal &V1State = getValueState(I.getOperand(0));
|
|
InstVal &V2State = getValueState(I.getOperand(1));
|
|
if (V1State.isOverdefined() || V2State.isOverdefined()) {
|
|
markOverdefined(&I);
|
|
} else if (V1State.isConstant() && V2State.isConstant()) {
|
|
Constant *Result = 0;
|
|
if (isa<BinaryOperator>(I))
|
|
Result = ConstantFoldBinaryInstruction(I.getOpcode(),
|
|
V1State.getConstant(),
|
|
V2State.getConstant());
|
|
else if (isa<ShiftInst>(I))
|
|
Result = ConstantFoldShiftInstruction(I.getOpcode(),
|
|
V1State.getConstant(),
|
|
V2State.getConstant());
|
|
if (Result)
|
|
markConstant(&I, Result); // This instruction constant folds!
|
|
else
|
|
markOverdefined(&I); // Don't know how to fold this instruction. :(
|
|
}
|
|
}
|
|
|
|
// Handle getelementptr instructions... if all operands are constants then we
|
|
// can turn this into a getelementptr ConstantExpr.
|
|
//
|
|
void SCCP::visitGetElementPtrInst(GetElementPtrInst &I) {
|
|
std::vector<Constant*> Operands;
|
|
Operands.reserve(I.getNumOperands());
|
|
|
|
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
|
|
InstVal &State = getValueState(I.getOperand(i));
|
|
if (State.isUndefined())
|
|
return; // Operands are not resolved yet...
|
|
else if (State.isOverdefined()) {
|
|
markOverdefined(&I);
|
|
return;
|
|
}
|
|
assert(State.isConstant() && "Unknown state!");
|
|
Operands.push_back(State.getConstant());
|
|
}
|
|
|
|
Constant *Ptr = Operands[0];
|
|
Operands.erase(Operands.begin()); // Erase the pointer from idx list...
|
|
|
|
markConstant(&I, ConstantExpr::getGetElementPtr(Ptr, Operands));
|
|
}
|