llvm-project/compiler-rt/lib/dfsan/dfsan_allocator.cpp

292 lines
9.2 KiB
C++

//===-- dfsan_allocator.cpp -------------------------- --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of DataflowSanitizer.
//
// DataflowSanitizer allocator.
//===----------------------------------------------------------------------===//
#include "dfsan_allocator.h"
#include "dfsan.h"
#include "dfsan_flags.h"
#include "dfsan_thread.h"
#include "sanitizer_common/sanitizer_allocator.h"
#include "sanitizer_common/sanitizer_allocator_checks.h"
#include "sanitizer_common/sanitizer_allocator_interface.h"
#include "sanitizer_common/sanitizer_allocator_report.h"
#include "sanitizer_common/sanitizer_errno.h"
namespace __dfsan {
struct Metadata {
uptr requested_size;
};
struct DFsanMapUnmapCallback {
void OnMap(uptr p, uptr size) const { dfsan_set_label(0, (void *)p, size); }
void OnUnmap(uptr p, uptr size) const { dfsan_set_label(0, (void *)p, size); }
};
static const uptr kMaxAllowedMallocSize = 8UL << 30;
struct AP64 { // Allocator64 parameters. Deliberately using a short name.
// TODO: DFSan assumes application memory starts from 0x700000008000. For
// unknown reason, the sanitizer allocator does not support any start address
// between 0x701000000000 and 0x700000008000. After switching to fast8labels
// mode, DFSan memory layout will be changed to the same to MSan's. Then we
// set the start address to 0x700000000000 as MSan.
static const uptr kSpaceBeg = 0x701000000000ULL;
static const uptr kSpaceSize = 0x40000000000; // 4T.
static const uptr kMetadataSize = sizeof(Metadata);
typedef DefaultSizeClassMap SizeClassMap;
typedef DFsanMapUnmapCallback MapUnmapCallback;
static const uptr kFlags = 0;
using AddressSpaceView = LocalAddressSpaceView;
};
typedef SizeClassAllocator64<AP64> PrimaryAllocator;
typedef CombinedAllocator<PrimaryAllocator> Allocator;
typedef Allocator::AllocatorCache AllocatorCache;
static Allocator allocator;
static AllocatorCache fallback_allocator_cache;
static StaticSpinMutex fallback_mutex;
static uptr max_malloc_size;
void dfsan_allocator_init() {
SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
allocator.Init(common_flags()->allocator_release_to_os_interval_ms);
if (common_flags()->max_allocation_size_mb)
max_malloc_size = Min(common_flags()->max_allocation_size_mb << 20,
kMaxAllowedMallocSize);
else
max_malloc_size = kMaxAllowedMallocSize;
}
AllocatorCache *GetAllocatorCache(DFsanThreadLocalMallocStorage *ms) {
CHECK(ms);
CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator_cache));
return reinterpret_cast<AllocatorCache *>(ms->allocator_cache);
}
void DFsanThreadLocalMallocStorage::CommitBack() {
allocator.SwallowCache(GetAllocatorCache(this));
}
static void *DFsanAllocate(uptr size, uptr alignment, bool zeroise) {
if (size > max_malloc_size) {
if (AllocatorMayReturnNull()) {
Report("WARNING: DataflowSanitizer failed to allocate 0x%zx bytes\n",
size);
return nullptr;
}
BufferedStackTrace stack;
ReportAllocationSizeTooBig(size, max_malloc_size, &stack);
}
DFsanThread *t = GetCurrentThread();
void *allocated;
if (t) {
AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
allocated = allocator.Allocate(cache, size, alignment);
} else {
SpinMutexLock l(&fallback_mutex);
AllocatorCache *cache = &fallback_allocator_cache;
allocated = allocator.Allocate(cache, size, alignment);
}
if (UNLIKELY(!allocated)) {
SetAllocatorOutOfMemory();
if (AllocatorMayReturnNull())
return nullptr;
BufferedStackTrace stack;
ReportOutOfMemory(size, &stack);
}
Metadata *meta =
reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated));
meta->requested_size = size;
if (zeroise) {
internal_memset(allocated, 0, size);
dfsan_set_label(0, allocated, size);
} else if (flags().zero_in_malloc) {
dfsan_set_label(0, allocated, size);
}
return allocated;
}
void dfsan_deallocate(void *p) {
CHECK(p);
Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(p));
uptr size = meta->requested_size;
meta->requested_size = 0;
if (flags().zero_in_free)
dfsan_set_label(0, p, size);
DFsanThread *t = GetCurrentThread();
if (t) {
AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
allocator.Deallocate(cache, p);
} else {
SpinMutexLock l(&fallback_mutex);
AllocatorCache *cache = &fallback_allocator_cache;
allocator.Deallocate(cache, p);
}
}
void *DFsanReallocate(void *old_p, uptr new_size, uptr alignment) {
Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(old_p));
uptr old_size = meta->requested_size;
uptr actually_allocated_size = allocator.GetActuallyAllocatedSize(old_p);
if (new_size <= actually_allocated_size) {
// We are not reallocating here.
meta->requested_size = new_size;
if (new_size > old_size && flags().zero_in_malloc)
dfsan_set_label(0, (char *)old_p + old_size, new_size - old_size);
return old_p;
}
uptr memcpy_size = Min(new_size, old_size);
void *new_p = DFsanAllocate(new_size, alignment, false /*zeroise*/);
if (new_p) {
dfsan_copy_memory(new_p, old_p, memcpy_size);
dfsan_deallocate(old_p);
}
return new_p;
}
void *DFsanCalloc(uptr nmemb, uptr size) {
if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
if (AllocatorMayReturnNull())
return nullptr;
BufferedStackTrace stack;
ReportCallocOverflow(nmemb, size, &stack);
}
return DFsanAllocate(nmemb * size, sizeof(u64), true /*zeroise*/);
}
static uptr AllocationSize(const void *p) {
if (!p)
return 0;
const void *beg = allocator.GetBlockBegin(p);
if (beg != p)
return 0;
Metadata *b = (Metadata *)allocator.GetMetaData(p);
return b->requested_size;
}
void *dfsan_malloc(uptr size) {
return SetErrnoOnNull(DFsanAllocate(size, sizeof(u64), false /*zeroise*/));
}
void *dfsan_calloc(uptr nmemb, uptr size) {
return SetErrnoOnNull(DFsanCalloc(nmemb, size));
}
void *dfsan_realloc(void *ptr, uptr size) {
if (!ptr)
return SetErrnoOnNull(DFsanAllocate(size, sizeof(u64), false /*zeroise*/));
if (size == 0) {
dfsan_deallocate(ptr);
return nullptr;
}
return SetErrnoOnNull(DFsanReallocate(ptr, size, sizeof(u64)));
}
void *dfsan_reallocarray(void *ptr, uptr nmemb, uptr size) {
if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
errno = errno_ENOMEM;
if (AllocatorMayReturnNull())
return nullptr;
BufferedStackTrace stack;
ReportReallocArrayOverflow(nmemb, size, &stack);
}
return dfsan_realloc(ptr, nmemb * size);
}
void *dfsan_valloc(uptr size) {
return SetErrnoOnNull(
DFsanAllocate(size, GetPageSizeCached(), false /*zeroise*/));
}
void *dfsan_pvalloc(uptr size) {
uptr PageSize = GetPageSizeCached();
if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
errno = errno_ENOMEM;
if (AllocatorMayReturnNull())
return nullptr;
BufferedStackTrace stack;
ReportPvallocOverflow(size, &stack);
}
// pvalloc(0) should allocate one page.
size = size ? RoundUpTo(size, PageSize) : PageSize;
return SetErrnoOnNull(DFsanAllocate(size, PageSize, false /*zeroise*/));
}
void *dfsan_aligned_alloc(uptr alignment, uptr size) {
if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
errno = errno_EINVAL;
if (AllocatorMayReturnNull())
return nullptr;
BufferedStackTrace stack;
ReportInvalidAlignedAllocAlignment(size, alignment, &stack);
}
return SetErrnoOnNull(DFsanAllocate(size, alignment, false /*zeroise*/));
}
void *dfsan_memalign(uptr alignment, uptr size) {
if (UNLIKELY(!IsPowerOfTwo(alignment))) {
errno = errno_EINVAL;
if (AllocatorMayReturnNull())
return nullptr;
BufferedStackTrace stack;
ReportInvalidAllocationAlignment(alignment, &stack);
}
return SetErrnoOnNull(DFsanAllocate(size, alignment, false /*zeroise*/));
}
int dfsan_posix_memalign(void **memptr, uptr alignment, uptr size) {
if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
if (AllocatorMayReturnNull())
return errno_EINVAL;
BufferedStackTrace stack;
ReportInvalidPosixMemalignAlignment(alignment, &stack);
}
void *ptr = DFsanAllocate(size, alignment, false /*zeroise*/);
if (UNLIKELY(!ptr))
// OOM error is already taken care of by DFsanAllocate.
return errno_ENOMEM;
CHECK(IsAligned((uptr)ptr, alignment));
*memptr = ptr;
return 0;
}
} // namespace __dfsan
using namespace __dfsan;
uptr __sanitizer_get_current_allocated_bytes() {
uptr stats[AllocatorStatCount];
allocator.GetStats(stats);
return stats[AllocatorStatAllocated];
}
uptr __sanitizer_get_heap_size() {
uptr stats[AllocatorStatCount];
allocator.GetStats(stats);
return stats[AllocatorStatMapped];
}
uptr __sanitizer_get_free_bytes() { return 1; }
uptr __sanitizer_get_unmapped_bytes() { return 1; }
uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; }
uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); }