forked from OSchip/llvm-project
902 lines
25 KiB
C++
902 lines
25 KiB
C++
//===- STLExtrasTest.cpp - Unit tests for STL extras ----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
#include <list>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
int f(rank<0>) { return 0; }
|
|
int f(rank<1>) { return 1; }
|
|
int f(rank<2>) { return 2; }
|
|
int f(rank<4>) { return 4; }
|
|
|
|
TEST(STLExtrasTest, Rank) {
|
|
// We shouldn't get ambiguities and should select the overload of the same
|
|
// rank as the argument.
|
|
EXPECT_EQ(0, f(rank<0>()));
|
|
EXPECT_EQ(1, f(rank<1>()));
|
|
EXPECT_EQ(2, f(rank<2>()));
|
|
|
|
// This overload is missing so we end up back at 2.
|
|
EXPECT_EQ(2, f(rank<3>()));
|
|
|
|
// But going past 3 should work fine.
|
|
EXPECT_EQ(4, f(rank<4>()));
|
|
|
|
// And we can even go higher and just fall back to the last overload.
|
|
EXPECT_EQ(4, f(rank<5>()));
|
|
EXPECT_EQ(4, f(rank<6>()));
|
|
}
|
|
|
|
TEST(STLExtrasTest, EnumerateLValue) {
|
|
// Test that a simple LValue can be enumerated and gives correct results with
|
|
// multiple types, including the empty container.
|
|
std::vector<char> foo = {'a', 'b', 'c'};
|
|
typedef std::pair<std::size_t, char> CharPairType;
|
|
std::vector<CharPairType> CharResults;
|
|
|
|
for (auto X : llvm::enumerate(foo)) {
|
|
CharResults.emplace_back(X.index(), X.value());
|
|
}
|
|
ASSERT_EQ(3u, CharResults.size());
|
|
EXPECT_EQ(CharPairType(0u, 'a'), CharResults[0]);
|
|
EXPECT_EQ(CharPairType(1u, 'b'), CharResults[1]);
|
|
EXPECT_EQ(CharPairType(2u, 'c'), CharResults[2]);
|
|
|
|
// Test a const range of a different type.
|
|
typedef std::pair<std::size_t, int> IntPairType;
|
|
std::vector<IntPairType> IntResults;
|
|
const std::vector<int> bar = {1, 2, 3};
|
|
for (auto X : llvm::enumerate(bar)) {
|
|
IntResults.emplace_back(X.index(), X.value());
|
|
}
|
|
ASSERT_EQ(3u, IntResults.size());
|
|
EXPECT_EQ(IntPairType(0u, 1), IntResults[0]);
|
|
EXPECT_EQ(IntPairType(1u, 2), IntResults[1]);
|
|
EXPECT_EQ(IntPairType(2u, 3), IntResults[2]);
|
|
|
|
// Test an empty range.
|
|
IntResults.clear();
|
|
const std::vector<int> baz{};
|
|
for (auto X : llvm::enumerate(baz)) {
|
|
IntResults.emplace_back(X.index(), X.value());
|
|
}
|
|
EXPECT_TRUE(IntResults.empty());
|
|
}
|
|
|
|
TEST(STLExtrasTest, EnumerateModifyLValue) {
|
|
// Test that you can modify the underlying entries of an lvalue range through
|
|
// the enumeration iterator.
|
|
std::vector<char> foo = {'a', 'b', 'c'};
|
|
|
|
for (auto X : llvm::enumerate(foo)) {
|
|
++X.value();
|
|
}
|
|
EXPECT_EQ('b', foo[0]);
|
|
EXPECT_EQ('c', foo[1]);
|
|
EXPECT_EQ('d', foo[2]);
|
|
}
|
|
|
|
TEST(STLExtrasTest, EnumerateRValueRef) {
|
|
// Test that an rvalue can be enumerated.
|
|
typedef std::pair<std::size_t, int> PairType;
|
|
std::vector<PairType> Results;
|
|
|
|
auto Enumerator = llvm::enumerate(std::vector<int>{1, 2, 3});
|
|
|
|
for (auto X : llvm::enumerate(std::vector<int>{1, 2, 3})) {
|
|
Results.emplace_back(X.index(), X.value());
|
|
}
|
|
|
|
ASSERT_EQ(3u, Results.size());
|
|
EXPECT_EQ(PairType(0u, 1), Results[0]);
|
|
EXPECT_EQ(PairType(1u, 2), Results[1]);
|
|
EXPECT_EQ(PairType(2u, 3), Results[2]);
|
|
}
|
|
|
|
TEST(STLExtrasTest, EnumerateModifyRValue) {
|
|
// Test that when enumerating an rvalue, modification still works (even if
|
|
// this isn't terribly useful, it at least shows that we haven't snuck an
|
|
// extra const in there somewhere.
|
|
typedef std::pair<std::size_t, char> PairType;
|
|
std::vector<PairType> Results;
|
|
|
|
for (auto X : llvm::enumerate(std::vector<char>{'1', '2', '3'})) {
|
|
++X.value();
|
|
Results.emplace_back(X.index(), X.value());
|
|
}
|
|
|
|
ASSERT_EQ(3u, Results.size());
|
|
EXPECT_EQ(PairType(0u, '2'), Results[0]);
|
|
EXPECT_EQ(PairType(1u, '3'), Results[1]);
|
|
EXPECT_EQ(PairType(2u, '4'), Results[2]);
|
|
}
|
|
|
|
template <bool B> struct CanMove {};
|
|
template <> struct CanMove<false> {
|
|
CanMove(CanMove &&) = delete;
|
|
|
|
CanMove() = default;
|
|
CanMove(const CanMove &) = default;
|
|
};
|
|
|
|
template <bool B> struct CanCopy {};
|
|
template <> struct CanCopy<false> {
|
|
CanCopy(const CanCopy &) = delete;
|
|
|
|
CanCopy() = default;
|
|
CanCopy(CanCopy &&) = default;
|
|
};
|
|
|
|
template <bool Moveable, bool Copyable>
|
|
class Counted : CanMove<Moveable>, CanCopy<Copyable> {
|
|
int &C;
|
|
int &M;
|
|
int &D;
|
|
|
|
public:
|
|
explicit Counted(int &C, int &M, int &D) : C(C), M(M), D(D) {}
|
|
Counted(const Counted &O) : CanCopy<Copyable>(O), C(O.C), M(O.M), D(O.D) {
|
|
++C;
|
|
}
|
|
Counted(Counted &&O)
|
|
: CanMove<Moveable>(std::move(O)), C(O.C), M(O.M), D(O.D) {
|
|
++M;
|
|
}
|
|
~Counted() { ++D; }
|
|
};
|
|
|
|
template <bool Moveable, bool Copyable>
|
|
struct Range : Counted<Moveable, Copyable> {
|
|
using Counted<Moveable, Copyable>::Counted;
|
|
int *begin() { return nullptr; }
|
|
int *end() { return nullptr; }
|
|
};
|
|
|
|
TEST(STLExtrasTest, EnumerateLifetimeSemanticsPRValue) {
|
|
int Copies = 0;
|
|
int Moves = 0;
|
|
int Destructors = 0;
|
|
{
|
|
auto E = enumerate(Range<true, false>(Copies, Moves, Destructors));
|
|
(void)E;
|
|
// Doesn't compile. rvalue ranges must be moveable.
|
|
// auto E2 = enumerate(Range<false, true>(Copies, Moves, Destructors));
|
|
EXPECT_EQ(0, Copies);
|
|
EXPECT_EQ(1, Moves);
|
|
EXPECT_EQ(1, Destructors);
|
|
}
|
|
EXPECT_EQ(0, Copies);
|
|
EXPECT_EQ(1, Moves);
|
|
EXPECT_EQ(2, Destructors);
|
|
}
|
|
|
|
TEST(STLExtrasTest, EnumerateLifetimeSemanticsRValue) {
|
|
// With an rvalue, it should not be destroyed until the end of the scope.
|
|
int Copies = 0;
|
|
int Moves = 0;
|
|
int Destructors = 0;
|
|
{
|
|
Range<true, false> R(Copies, Moves, Destructors);
|
|
{
|
|
auto E = enumerate(std::move(R));
|
|
(void)E;
|
|
// Doesn't compile. rvalue ranges must be moveable.
|
|
// auto E2 = enumerate(Range<false, true>(Copies, Moves, Destructors));
|
|
EXPECT_EQ(0, Copies);
|
|
EXPECT_EQ(1, Moves);
|
|
EXPECT_EQ(0, Destructors);
|
|
}
|
|
EXPECT_EQ(0, Copies);
|
|
EXPECT_EQ(1, Moves);
|
|
EXPECT_EQ(1, Destructors);
|
|
}
|
|
EXPECT_EQ(0, Copies);
|
|
EXPECT_EQ(1, Moves);
|
|
EXPECT_EQ(2, Destructors);
|
|
}
|
|
|
|
TEST(STLExtrasTest, EnumerateLifetimeSemanticsLValue) {
|
|
// With an lvalue, it should not be destroyed even after the end of the scope.
|
|
// lvalue ranges need be neither copyable nor moveable.
|
|
int Copies = 0;
|
|
int Moves = 0;
|
|
int Destructors = 0;
|
|
{
|
|
Range<false, false> R(Copies, Moves, Destructors);
|
|
{
|
|
auto E = enumerate(R);
|
|
(void)E;
|
|
EXPECT_EQ(0, Copies);
|
|
EXPECT_EQ(0, Moves);
|
|
EXPECT_EQ(0, Destructors);
|
|
}
|
|
EXPECT_EQ(0, Copies);
|
|
EXPECT_EQ(0, Moves);
|
|
EXPECT_EQ(0, Destructors);
|
|
}
|
|
EXPECT_EQ(0, Copies);
|
|
EXPECT_EQ(0, Moves);
|
|
EXPECT_EQ(1, Destructors);
|
|
}
|
|
|
|
TEST(STLExtrasTest, ApplyTuple) {
|
|
auto T = std::make_tuple(1, 3, 7);
|
|
auto U = llvm::apply_tuple(
|
|
[](int A, int B, int C) { return std::make_tuple(A - B, B - C, C - A); },
|
|
T);
|
|
|
|
EXPECT_EQ(-2, std::get<0>(U));
|
|
EXPECT_EQ(-4, std::get<1>(U));
|
|
EXPECT_EQ(6, std::get<2>(U));
|
|
|
|
auto V = llvm::apply_tuple(
|
|
[](int A, int B, int C) {
|
|
return std::make_tuple(std::make_pair(A, char('A' + A)),
|
|
std::make_pair(B, char('A' + B)),
|
|
std::make_pair(C, char('A' + C)));
|
|
},
|
|
T);
|
|
|
|
EXPECT_EQ(std::make_pair(1, 'B'), std::get<0>(V));
|
|
EXPECT_EQ(std::make_pair(3, 'D'), std::get<1>(V));
|
|
EXPECT_EQ(std::make_pair(7, 'H'), std::get<2>(V));
|
|
}
|
|
|
|
class apply_variadic {
|
|
static int apply_one(int X) { return X + 1; }
|
|
static char apply_one(char C) { return C + 1; }
|
|
static StringRef apply_one(StringRef S) { return S.drop_back(); }
|
|
|
|
public:
|
|
template <typename... Ts> auto operator()(Ts &&... Items) {
|
|
return std::make_tuple(apply_one(Items)...);
|
|
}
|
|
};
|
|
|
|
TEST(STLExtrasTest, ApplyTupleVariadic) {
|
|
auto Items = std::make_tuple(1, llvm::StringRef("Test"), 'X');
|
|
auto Values = apply_tuple(apply_variadic(), Items);
|
|
|
|
EXPECT_EQ(2, std::get<0>(Values));
|
|
EXPECT_EQ("Tes", std::get<1>(Values));
|
|
EXPECT_EQ('Y', std::get<2>(Values));
|
|
}
|
|
|
|
TEST(STLExtrasTest, CountAdaptor) {
|
|
std::vector<int> v;
|
|
|
|
v.push_back(1);
|
|
v.push_back(2);
|
|
v.push_back(1);
|
|
v.push_back(4);
|
|
v.push_back(3);
|
|
v.push_back(2);
|
|
v.push_back(1);
|
|
|
|
EXPECT_EQ(3, count(v, 1));
|
|
EXPECT_EQ(2, count(v, 2));
|
|
EXPECT_EQ(1, count(v, 3));
|
|
EXPECT_EQ(1, count(v, 4));
|
|
}
|
|
|
|
TEST(STLExtrasTest, for_each) {
|
|
std::vector<int> v{0, 1, 2, 3, 4};
|
|
int count = 0;
|
|
|
|
llvm::for_each(v, [&count](int) { ++count; });
|
|
EXPECT_EQ(5, count);
|
|
}
|
|
|
|
TEST(STLExtrasTest, ToVector) {
|
|
std::vector<char> v = {'a', 'b', 'c'};
|
|
auto Enumerated = to_vector<4>(enumerate(v));
|
|
ASSERT_EQ(3u, Enumerated.size());
|
|
for (size_t I = 0; I < v.size(); ++I) {
|
|
EXPECT_EQ(I, Enumerated[I].index());
|
|
EXPECT_EQ(v[I], Enumerated[I].value());
|
|
}
|
|
}
|
|
|
|
TEST(STLExtrasTest, ConcatRange) {
|
|
std::vector<int> Expected = {1, 2, 3, 4, 5, 6, 7, 8};
|
|
std::vector<int> Test;
|
|
|
|
std::vector<int> V1234 = {1, 2, 3, 4};
|
|
std::list<int> L56 = {5, 6};
|
|
SmallVector<int, 2> SV78 = {7, 8};
|
|
|
|
// Use concat across different sized ranges of different types with different
|
|
// iterators.
|
|
for (int &i : concat<int>(V1234, L56, SV78))
|
|
Test.push_back(i);
|
|
EXPECT_EQ(Expected, Test);
|
|
|
|
// Use concat between a temporary, an L-value, and an R-value to make sure
|
|
// complex lifetimes work well.
|
|
Test.clear();
|
|
for (int &i : concat<int>(std::vector<int>(V1234), L56, std::move(SV78)))
|
|
Test.push_back(i);
|
|
EXPECT_EQ(Expected, Test);
|
|
}
|
|
|
|
TEST(STLExtrasTest, PartitionAdaptor) {
|
|
std::vector<int> V = {1, 2, 3, 4, 5, 6, 7, 8};
|
|
|
|
auto I = partition(V, [](int i) { return i % 2 == 0; });
|
|
ASSERT_EQ(V.begin() + 4, I);
|
|
|
|
// Sort the two halves as partition may have messed with the order.
|
|
llvm::sort(V.begin(), I);
|
|
llvm::sort(I, V.end());
|
|
|
|
EXPECT_EQ(2, V[0]);
|
|
EXPECT_EQ(4, V[1]);
|
|
EXPECT_EQ(6, V[2]);
|
|
EXPECT_EQ(8, V[3]);
|
|
EXPECT_EQ(1, V[4]);
|
|
EXPECT_EQ(3, V[5]);
|
|
EXPECT_EQ(5, V[6]);
|
|
EXPECT_EQ(7, V[7]);
|
|
}
|
|
|
|
TEST(STLExtrasTest, EraseIf) {
|
|
std::vector<int> V = {1, 2, 3, 4, 5, 6, 7, 8};
|
|
|
|
erase_if(V, [](int i) { return i % 2 == 0; });
|
|
EXPECT_EQ(4u, V.size());
|
|
EXPECT_EQ(1, V[0]);
|
|
EXPECT_EQ(3, V[1]);
|
|
EXPECT_EQ(5, V[2]);
|
|
EXPECT_EQ(7, V[3]);
|
|
}
|
|
|
|
TEST(STLExtrasTest, AppendRange) {
|
|
auto AppendVals = {3};
|
|
std::vector<int> V = {1, 2};
|
|
append_range(V, AppendVals);
|
|
EXPECT_EQ(1, V[0]);
|
|
EXPECT_EQ(2, V[1]);
|
|
EXPECT_EQ(3, V[2]);
|
|
}
|
|
|
|
namespace some_namespace {
|
|
struct some_struct {
|
|
std::vector<int> data;
|
|
std::string swap_val;
|
|
};
|
|
|
|
std::vector<int>::const_iterator begin(const some_struct &s) {
|
|
return s.data.begin();
|
|
}
|
|
|
|
std::vector<int>::const_iterator end(const some_struct &s) {
|
|
return s.data.end();
|
|
}
|
|
|
|
void swap(some_struct &lhs, some_struct &rhs) {
|
|
// make swap visible as non-adl swap would even seem to
|
|
// work with std::swap which defaults to moving
|
|
lhs.swap_val = "lhs";
|
|
rhs.swap_val = "rhs";
|
|
}
|
|
} // namespace some_namespace
|
|
|
|
TEST(STLExtrasTest, ADLTest) {
|
|
some_namespace::some_struct s{{1, 2, 3, 4, 5}, ""};
|
|
some_namespace::some_struct s2{{2, 4, 6, 8, 10}, ""};
|
|
|
|
EXPECT_EQ(*adl_begin(s), 1);
|
|
EXPECT_EQ(*(adl_end(s) - 1), 5);
|
|
|
|
adl_swap(s, s2);
|
|
EXPECT_EQ(s.swap_val, "lhs");
|
|
EXPECT_EQ(s2.swap_val, "rhs");
|
|
|
|
int count = 0;
|
|
llvm::for_each(s, [&count](int) { ++count; });
|
|
EXPECT_EQ(5, count);
|
|
}
|
|
|
|
TEST(STLExtrasTest, EmptyTest) {
|
|
std::vector<void*> V;
|
|
EXPECT_TRUE(llvm::empty(V));
|
|
V.push_back(nullptr);
|
|
EXPECT_FALSE(llvm::empty(V));
|
|
|
|
std::initializer_list<int> E = {};
|
|
std::initializer_list<int> NotE = {7, 13, 42};
|
|
EXPECT_TRUE(llvm::empty(E));
|
|
EXPECT_FALSE(llvm::empty(NotE));
|
|
|
|
auto R0 = make_range(V.begin(), V.begin());
|
|
EXPECT_TRUE(llvm::empty(R0));
|
|
auto R1 = make_range(V.begin(), V.end());
|
|
EXPECT_FALSE(llvm::empty(R1));
|
|
}
|
|
|
|
TEST(STLExtrasTest, DropBeginTest) {
|
|
SmallVector<int, 5> vec{0, 1, 2, 3, 4};
|
|
|
|
for (int n = 0; n < 5; ++n) {
|
|
int i = n;
|
|
for (auto &v : drop_begin(vec, n)) {
|
|
EXPECT_EQ(v, i);
|
|
i += 1;
|
|
}
|
|
EXPECT_EQ(i, 5);
|
|
}
|
|
}
|
|
|
|
TEST(STLExtrasTest, DropBeginDefaultTest) {
|
|
SmallVector<int, 5> vec{0, 1, 2, 3, 4};
|
|
|
|
int i = 1;
|
|
for (auto &v : drop_begin(vec)) {
|
|
EXPECT_EQ(v, i);
|
|
i += 1;
|
|
}
|
|
EXPECT_EQ(i, 5);
|
|
}
|
|
|
|
TEST(STLExtrasTest, EarlyIncrementTest) {
|
|
std::list<int> L = {1, 2, 3, 4};
|
|
|
|
auto EIR = make_early_inc_range(L);
|
|
|
|
auto I = EIR.begin();
|
|
auto EI = EIR.end();
|
|
EXPECT_NE(I, EI);
|
|
|
|
EXPECT_EQ(1, *I);
|
|
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
|
|
#ifndef NDEBUG
|
|
// Repeated dereferences are not allowed.
|
|
EXPECT_DEATH(*I, "Cannot dereference");
|
|
// Comparison after dereference is not allowed.
|
|
EXPECT_DEATH((void)(I == EI), "Cannot compare");
|
|
EXPECT_DEATH((void)(I != EI), "Cannot compare");
|
|
#endif
|
|
#endif
|
|
|
|
++I;
|
|
EXPECT_NE(I, EI);
|
|
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
|
|
#ifndef NDEBUG
|
|
// You cannot increment prior to dereference.
|
|
EXPECT_DEATH(++I, "Cannot increment");
|
|
#endif
|
|
#endif
|
|
EXPECT_EQ(2, *I);
|
|
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
|
|
#ifndef NDEBUG
|
|
// Repeated dereferences are not allowed.
|
|
EXPECT_DEATH(*I, "Cannot dereference");
|
|
#endif
|
|
#endif
|
|
|
|
// Inserting shouldn't break anything. We should be able to keep dereferencing
|
|
// the currrent iterator and increment. The increment to go to the "next"
|
|
// iterator from before we inserted.
|
|
L.insert(std::next(L.begin(), 2), -1);
|
|
++I;
|
|
EXPECT_EQ(3, *I);
|
|
|
|
// Erasing the front including the current doesn't break incrementing.
|
|
L.erase(L.begin(), std::prev(L.end()));
|
|
++I;
|
|
EXPECT_EQ(4, *I);
|
|
++I;
|
|
EXPECT_EQ(EIR.end(), I);
|
|
}
|
|
|
|
// A custom iterator that returns a pointer when dereferenced. This is used to
|
|
// test make_early_inc_range with iterators that do not return a reference on
|
|
// dereferencing.
|
|
struct CustomPointerIterator
|
|
: public iterator_adaptor_base<CustomPointerIterator,
|
|
std::list<int>::iterator,
|
|
std::forward_iterator_tag> {
|
|
using base_type =
|
|
iterator_adaptor_base<CustomPointerIterator, std::list<int>::iterator,
|
|
std::forward_iterator_tag>;
|
|
|
|
explicit CustomPointerIterator(std::list<int>::iterator I) : base_type(I) {}
|
|
|
|
// Retrieve a pointer to the current int.
|
|
int *operator*() const { return &*base_type::wrapped(); }
|
|
};
|
|
|
|
// Make sure make_early_inc_range works with iterators that do not return a
|
|
// reference on dereferencing. The test is similar to EarlyIncrementTest, but
|
|
// uses CustomPointerIterator.
|
|
TEST(STLExtrasTest, EarlyIncrementTestCustomPointerIterator) {
|
|
std::list<int> L = {1, 2, 3, 4};
|
|
|
|
auto CustomRange = make_range(CustomPointerIterator(L.begin()),
|
|
CustomPointerIterator(L.end()));
|
|
auto EIR = make_early_inc_range(CustomRange);
|
|
|
|
auto I = EIR.begin();
|
|
auto EI = EIR.end();
|
|
EXPECT_NE(I, EI);
|
|
|
|
EXPECT_EQ(&*L.begin(), *I);
|
|
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
|
|
#ifndef NDEBUG
|
|
// Repeated dereferences are not allowed.
|
|
EXPECT_DEATH(*I, "Cannot dereference");
|
|
// Comparison after dereference is not allowed.
|
|
EXPECT_DEATH((void)(I == EI), "Cannot compare");
|
|
EXPECT_DEATH((void)(I != EI), "Cannot compare");
|
|
#endif
|
|
#endif
|
|
|
|
++I;
|
|
EXPECT_NE(I, EI);
|
|
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
|
|
#ifndef NDEBUG
|
|
// You cannot increment prior to dereference.
|
|
EXPECT_DEATH(++I, "Cannot increment");
|
|
#endif
|
|
#endif
|
|
EXPECT_EQ(&*std::next(L.begin()), *I);
|
|
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
|
|
#ifndef NDEBUG
|
|
// Repeated dereferences are not allowed.
|
|
EXPECT_DEATH(*I, "Cannot dereference");
|
|
#endif
|
|
#endif
|
|
|
|
// Inserting shouldn't break anything. We should be able to keep dereferencing
|
|
// the currrent iterator and increment. The increment to go to the "next"
|
|
// iterator from before we inserted.
|
|
L.insert(std::next(L.begin(), 2), -1);
|
|
++I;
|
|
EXPECT_EQ(&*std::next(L.begin(), 3), *I);
|
|
|
|
// Erasing the front including the current doesn't break incrementing.
|
|
L.erase(L.begin(), std::prev(L.end()));
|
|
++I;
|
|
EXPECT_EQ(&*L.begin(), *I);
|
|
++I;
|
|
EXPECT_EQ(EIR.end(), I);
|
|
}
|
|
|
|
TEST(STLExtrasTest, splat) {
|
|
std::vector<int> V;
|
|
EXPECT_FALSE(is_splat(V));
|
|
|
|
V.push_back(1);
|
|
EXPECT_TRUE(is_splat(V));
|
|
|
|
V.push_back(1);
|
|
V.push_back(1);
|
|
EXPECT_TRUE(is_splat(V));
|
|
|
|
V.push_back(2);
|
|
EXPECT_FALSE(is_splat(V));
|
|
}
|
|
|
|
TEST(STLExtrasTest, to_address) {
|
|
int *V1 = new int;
|
|
EXPECT_EQ(V1, to_address(V1));
|
|
|
|
// Check fancy pointer overload for unique_ptr
|
|
std::unique_ptr<int> V2 = std::make_unique<int>(0);
|
|
EXPECT_EQ(V2.get(), llvm::to_address(V2));
|
|
|
|
V2.reset(V1);
|
|
EXPECT_EQ(V1, llvm::to_address(V2));
|
|
V2.release();
|
|
|
|
// Check fancy pointer overload for shared_ptr
|
|
std::shared_ptr<int> V3 = std::make_shared<int>(0);
|
|
std::shared_ptr<int> V4 = V3;
|
|
EXPECT_EQ(V3.get(), V4.get());
|
|
EXPECT_EQ(V3.get(), llvm::to_address(V3));
|
|
EXPECT_EQ(V4.get(), llvm::to_address(V4));
|
|
|
|
V3.reset(V1);
|
|
EXPECT_EQ(V1, llvm::to_address(V3));
|
|
}
|
|
|
|
TEST(STLExtrasTest, partition_point) {
|
|
std::vector<int> V = {1, 3, 5, 7, 9};
|
|
|
|
// Range version.
|
|
EXPECT_EQ(V.begin() + 3,
|
|
partition_point(V, [](unsigned X) { return X < 7; }));
|
|
EXPECT_EQ(V.begin(), partition_point(V, [](unsigned X) { return X < 1; }));
|
|
EXPECT_EQ(V.end(), partition_point(V, [](unsigned X) { return X < 50; }));
|
|
}
|
|
|
|
TEST(STLExtrasTest, hasSingleElement) {
|
|
const std::vector<int> V0 = {}, V1 = {1}, V2 = {1, 2};
|
|
const std::vector<int> V10(10);
|
|
|
|
EXPECT_EQ(hasSingleElement(V0), false);
|
|
EXPECT_EQ(hasSingleElement(V1), true);
|
|
EXPECT_EQ(hasSingleElement(V2), false);
|
|
EXPECT_EQ(hasSingleElement(V10), false);
|
|
}
|
|
|
|
TEST(STLExtrasTest, hasNItems) {
|
|
const std::list<int> V0 = {}, V1 = {1}, V2 = {1, 2};
|
|
const std::list<int> V3 = {1, 3, 5};
|
|
|
|
EXPECT_TRUE(hasNItems(V0, 0));
|
|
EXPECT_FALSE(hasNItems(V0, 2));
|
|
EXPECT_TRUE(hasNItems(V1, 1));
|
|
EXPECT_FALSE(hasNItems(V1, 2));
|
|
|
|
EXPECT_TRUE(hasNItems(V3.begin(), V3.end(), 3, [](int x) { return x < 10; }));
|
|
EXPECT_TRUE(hasNItems(V3.begin(), V3.end(), 0, [](int x) { return x > 10; }));
|
|
EXPECT_TRUE(hasNItems(V3.begin(), V3.end(), 2, [](int x) { return x < 5; }));
|
|
}
|
|
|
|
TEST(STLExtras, hasNItemsOrMore) {
|
|
const std::list<int> V0 = {}, V1 = {1}, V2 = {1, 2};
|
|
const std::list<int> V3 = {1, 3, 5};
|
|
|
|
EXPECT_TRUE(hasNItemsOrMore(V1, 1));
|
|
EXPECT_FALSE(hasNItemsOrMore(V1, 2));
|
|
|
|
EXPECT_TRUE(hasNItemsOrMore(V2, 1));
|
|
EXPECT_TRUE(hasNItemsOrMore(V2, 2));
|
|
EXPECT_FALSE(hasNItemsOrMore(V2, 3));
|
|
|
|
EXPECT_TRUE(hasNItemsOrMore(V3, 3));
|
|
EXPECT_FALSE(hasNItemsOrMore(V3, 4));
|
|
|
|
EXPECT_TRUE(
|
|
hasNItemsOrMore(V3.begin(), V3.end(), 3, [](int x) { return x < 10; }));
|
|
EXPECT_FALSE(
|
|
hasNItemsOrMore(V3.begin(), V3.end(), 3, [](int x) { return x > 10; }));
|
|
EXPECT_TRUE(
|
|
hasNItemsOrMore(V3.begin(), V3.end(), 2, [](int x) { return x < 5; }));
|
|
}
|
|
|
|
TEST(STLExtras, hasNItemsOrLess) {
|
|
const std::list<int> V0 = {}, V1 = {1}, V2 = {1, 2};
|
|
const std::list<int> V3 = {1, 3, 5};
|
|
|
|
EXPECT_TRUE(hasNItemsOrLess(V0, 0));
|
|
EXPECT_TRUE(hasNItemsOrLess(V0, 1));
|
|
EXPECT_TRUE(hasNItemsOrLess(V0, 2));
|
|
|
|
EXPECT_FALSE(hasNItemsOrLess(V1, 0));
|
|
EXPECT_TRUE(hasNItemsOrLess(V1, 1));
|
|
EXPECT_TRUE(hasNItemsOrLess(V1, 2));
|
|
|
|
EXPECT_FALSE(hasNItemsOrLess(V2, 0));
|
|
EXPECT_FALSE(hasNItemsOrLess(V2, 1));
|
|
EXPECT_TRUE(hasNItemsOrLess(V2, 2));
|
|
EXPECT_TRUE(hasNItemsOrLess(V2, 3));
|
|
|
|
EXPECT_FALSE(hasNItemsOrLess(V3, 0));
|
|
EXPECT_FALSE(hasNItemsOrLess(V3, 1));
|
|
EXPECT_FALSE(hasNItemsOrLess(V3, 2));
|
|
EXPECT_TRUE(hasNItemsOrLess(V3, 3));
|
|
EXPECT_TRUE(hasNItemsOrLess(V3, 4));
|
|
|
|
EXPECT_TRUE(
|
|
hasNItemsOrLess(V3.begin(), V3.end(), 1, [](int x) { return x == 1; }));
|
|
EXPECT_TRUE(
|
|
hasNItemsOrLess(V3.begin(), V3.end(), 2, [](int x) { return x < 5; }));
|
|
EXPECT_TRUE(
|
|
hasNItemsOrLess(V3.begin(), V3.end(), 5, [](int x) { return x < 5; }));
|
|
EXPECT_FALSE(
|
|
hasNItemsOrLess(V3.begin(), V3.end(), 2, [](int x) { return x < 10; }));
|
|
}
|
|
|
|
TEST(STLExtras, MoveRange) {
|
|
class Foo {
|
|
bool A;
|
|
|
|
public:
|
|
Foo() : A(true) {}
|
|
Foo(const Foo &) = delete;
|
|
Foo(Foo &&Other) : A(Other.A) { Other.A = false; }
|
|
Foo &operator=(const Foo &) = delete;
|
|
Foo &operator=(Foo &&Other) {
|
|
if (this != &Other) {
|
|
A = Other.A;
|
|
Other.A = false;
|
|
}
|
|
return *this;
|
|
}
|
|
operator bool() const { return A; }
|
|
};
|
|
SmallVector<Foo, 4U> V1, V2, V3, V4;
|
|
auto HasVal = [](const Foo &Item) { return static_cast<bool>(Item); };
|
|
auto Build = [&] {
|
|
SmallVector<Foo, 4U> Foos;
|
|
Foos.resize(4U);
|
|
return Foos;
|
|
};
|
|
|
|
V1.resize(4U);
|
|
EXPECT_TRUE(llvm::all_of(V1, HasVal));
|
|
|
|
llvm::move(V1, std::back_inserter(V2));
|
|
|
|
// Ensure input container is same size, but its contents were moved out.
|
|
EXPECT_EQ(V1.size(), 4U);
|
|
EXPECT_TRUE(llvm::none_of(V1, HasVal));
|
|
|
|
// Ensure output container has the contents of the input container.
|
|
EXPECT_EQ(V2.size(), 4U);
|
|
EXPECT_TRUE(llvm::all_of(V2, HasVal));
|
|
|
|
llvm::move(std::move(V2), std::back_inserter(V3));
|
|
|
|
EXPECT_TRUE(llvm::none_of(V2, HasVal));
|
|
EXPECT_EQ(V3.size(), 4U);
|
|
EXPECT_TRUE(llvm::all_of(V3, HasVal));
|
|
|
|
llvm::move(Build(), std::back_inserter(V4));
|
|
EXPECT_EQ(V4.size(), 4U);
|
|
EXPECT_TRUE(llvm::all_of(V4, HasVal));
|
|
}
|
|
|
|
TEST(STLExtras, Unique) {
|
|
std::vector<int> V = {1, 5, 5, 4, 3, 3, 3};
|
|
|
|
auto I = llvm::unique(V, [](int a, int b) { return a == b; });
|
|
|
|
EXPECT_EQ(I, V.begin() + 4);
|
|
|
|
EXPECT_EQ(1, V[0]);
|
|
EXPECT_EQ(5, V[1]);
|
|
EXPECT_EQ(4, V[2]);
|
|
EXPECT_EQ(3, V[3]);
|
|
}
|
|
|
|
TEST(STLExtrasTest, MakeVisitorOneCallable) {
|
|
auto IdentityLambda = [](auto X) { return X; };
|
|
auto IdentityVisitor = makeVisitor(IdentityLambda);
|
|
EXPECT_EQ(IdentityLambda(1), IdentityVisitor(1));
|
|
EXPECT_EQ(IdentityLambda(2.0f), IdentityVisitor(2.0f));
|
|
EXPECT_TRUE((std::is_same<decltype(IdentityLambda(IdentityLambda)),
|
|
decltype(IdentityLambda)>::value));
|
|
EXPECT_TRUE((std::is_same<decltype(IdentityVisitor(IdentityVisitor)),
|
|
decltype(IdentityVisitor)>::value));
|
|
}
|
|
|
|
TEST(STLExtrasTest, MakeVisitorTwoCallables) {
|
|
auto Visitor =
|
|
makeVisitor([](int) { return 0; }, [](std::string) { return 1; });
|
|
EXPECT_EQ(Visitor(42), 0);
|
|
EXPECT_EQ(Visitor("foo"), 1);
|
|
}
|
|
|
|
TEST(STLExtrasTest, MakeVisitorCallableMultipleOperands) {
|
|
auto Second = makeVisitor([](int I, float F) { return F; },
|
|
[](float F, int I) { return I; });
|
|
EXPECT_EQ(Second(1.f, 1), 1);
|
|
EXPECT_EQ(Second(1, 1.f), 1.f);
|
|
}
|
|
|
|
TEST(STLExtrasTest, MakeVisitorDefaultCase) {
|
|
{
|
|
auto Visitor = makeVisitor([](int I) { return I + 100; },
|
|
[](float F) { return F * 2; },
|
|
[](auto) { return -1; });
|
|
EXPECT_EQ(Visitor(24), 124);
|
|
EXPECT_EQ(Visitor(2.f), 4.f);
|
|
EXPECT_EQ(Visitor(2.), -1);
|
|
EXPECT_EQ(Visitor(Visitor), -1);
|
|
}
|
|
{
|
|
auto Visitor = makeVisitor([](auto) { return -1; },
|
|
[](int I) { return I + 100; },
|
|
[](float F) { return F * 2; });
|
|
EXPECT_EQ(Visitor(24), 124);
|
|
EXPECT_EQ(Visitor(2.f), 4.f);
|
|
EXPECT_EQ(Visitor(2.), -1);
|
|
EXPECT_EQ(Visitor(Visitor), -1);
|
|
}
|
|
}
|
|
|
|
template <bool Moveable, bool Copyable>
|
|
struct Functor : Counted<Moveable, Copyable> {
|
|
using Counted<Moveable, Copyable>::Counted;
|
|
void operator()() {}
|
|
};
|
|
|
|
TEST(STLExtrasTest, MakeVisitorLifetimeSemanticsPRValue) {
|
|
int Copies = 0;
|
|
int Moves = 0;
|
|
int Destructors = 0;
|
|
{
|
|
auto V = makeVisitor(Functor<true, false>(Copies, Moves, Destructors));
|
|
(void)V;
|
|
EXPECT_EQ(0, Copies);
|
|
EXPECT_EQ(1, Moves);
|
|
EXPECT_EQ(1, Destructors);
|
|
}
|
|
EXPECT_EQ(0, Copies);
|
|
EXPECT_EQ(1, Moves);
|
|
EXPECT_EQ(2, Destructors);
|
|
}
|
|
|
|
TEST(STLExtrasTest, MakeVisitorLifetimeSemanticsRValue) {
|
|
int Copies = 0;
|
|
int Moves = 0;
|
|
int Destructors = 0;
|
|
{
|
|
Functor<true, false> F(Copies, Moves, Destructors);
|
|
{
|
|
auto V = makeVisitor(std::move(F));
|
|
(void)V;
|
|
EXPECT_EQ(0, Copies);
|
|
EXPECT_EQ(1, Moves);
|
|
EXPECT_EQ(0, Destructors);
|
|
}
|
|
EXPECT_EQ(0, Copies);
|
|
EXPECT_EQ(1, Moves);
|
|
EXPECT_EQ(1, Destructors);
|
|
}
|
|
EXPECT_EQ(0, Copies);
|
|
EXPECT_EQ(1, Moves);
|
|
EXPECT_EQ(2, Destructors);
|
|
}
|
|
|
|
TEST(STLExtrasTest, MakeVisitorLifetimeSemanticsLValue) {
|
|
int Copies = 0;
|
|
int Moves = 0;
|
|
int Destructors = 0;
|
|
{
|
|
Functor<true, true> F(Copies, Moves, Destructors);
|
|
{
|
|
auto V = makeVisitor(F);
|
|
(void)V;
|
|
EXPECT_EQ(1, Copies);
|
|
EXPECT_EQ(0, Moves);
|
|
EXPECT_EQ(0, Destructors);
|
|
}
|
|
EXPECT_EQ(1, Copies);
|
|
EXPECT_EQ(0, Moves);
|
|
EXPECT_EQ(1, Destructors);
|
|
}
|
|
EXPECT_EQ(1, Copies);
|
|
EXPECT_EQ(0, Moves);
|
|
EXPECT_EQ(2, Destructors);
|
|
}
|
|
|
|
TEST(STLExtrasTest, AllOfZip) {
|
|
std::vector<int> v1 = {0, 4, 2, 1};
|
|
std::vector<int> v2 = {1, 4, 3, 6};
|
|
EXPECT_TRUE(all_of_zip(v1, v2, [](int v1, int v2) { return v1 <= v2; }));
|
|
EXPECT_FALSE(all_of_zip(v1, v2, [](int L, int R) { return L < R; }));
|
|
|
|
// Triple vectors
|
|
std::vector<int> v3 = {1, 6, 5, 7};
|
|
EXPECT_EQ(true, all_of_zip(v1, v2, v3, [](int a, int b, int c) {
|
|
return a <= b && b <= c;
|
|
}));
|
|
EXPECT_EQ(false, all_of_zip(v1, v2, v3, [](int a, int b, int c) {
|
|
return a < b && b < c;
|
|
}));
|
|
|
|
// Shorter vector should fail even with an always-true predicate.
|
|
std::vector<int> v_short = {1, 4};
|
|
EXPECT_EQ(false, all_of_zip(v1, v_short, [](int, int) { return true; }));
|
|
EXPECT_EQ(false,
|
|
all_of_zip(v1, v2, v_short, [](int, int, int) { return true; }));
|
|
}
|
|
|
|
} // namespace
|