llvm-project/llvm/unittests/ADT/BitVectorTest.cpp

1302 lines
32 KiB
C++

//===- llvm/unittest/ADT/BitVectorTest.cpp - BitVector tests --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallBitVector.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
// Test fixture
template <typename T>
class BitVectorTest : public ::testing::Test { };
// Test both BitVector and SmallBitVector with the same suite of tests.
typedef ::testing::Types<BitVector, SmallBitVector> BitVectorTestTypes;
TYPED_TEST_SUITE(BitVectorTest, BitVectorTestTypes, );
TYPED_TEST(BitVectorTest, TrivialOperation) {
TypeParam Vec;
EXPECT_EQ(0U, Vec.count());
EXPECT_EQ(0U, Vec.size());
EXPECT_FALSE(Vec.any());
EXPECT_TRUE(Vec.all());
EXPECT_TRUE(Vec.none());
EXPECT_TRUE(Vec.empty());
Vec.resize(5, true);
EXPECT_EQ(5U, Vec.count());
EXPECT_EQ(5U, Vec.size());
EXPECT_TRUE(Vec.any());
EXPECT_TRUE(Vec.all());
EXPECT_FALSE(Vec.none());
EXPECT_FALSE(Vec.empty());
Vec.resize(11);
EXPECT_EQ(5U, Vec.count());
EXPECT_EQ(11U, Vec.size());
EXPECT_TRUE(Vec.any());
EXPECT_FALSE(Vec.all());
EXPECT_FALSE(Vec.none());
EXPECT_FALSE(Vec.empty());
TypeParam Inv = Vec;
Inv.flip();
EXPECT_EQ(6U, Inv.count());
EXPECT_EQ(11U, Inv.size());
EXPECT_TRUE(Inv.any());
EXPECT_FALSE(Inv.all());
EXPECT_FALSE(Inv.none());
EXPECT_FALSE(Inv.empty());
EXPECT_FALSE(Inv == Vec);
EXPECT_TRUE(Inv != Vec);
Vec.flip();
EXPECT_TRUE(Inv == Vec);
EXPECT_FALSE(Inv != Vec);
// Add some "interesting" data to Vec.
Vec.resize(23, true);
Vec.resize(25, false);
Vec.resize(26, true);
Vec.resize(29, false);
Vec.resize(33, true);
Vec.resize(57, false);
unsigned Count = 0;
for (unsigned i = Vec.find_first(); i != -1u; i = Vec.find_next(i)) {
++Count;
EXPECT_TRUE(Vec[i]);
EXPECT_TRUE(Vec.test(i));
}
EXPECT_EQ(Count, Vec.count());
EXPECT_EQ(Count, 23u);
EXPECT_FALSE(Vec[0]);
EXPECT_TRUE(Vec[32]);
EXPECT_FALSE(Vec[56]);
Vec.resize(61, false);
TypeParam Copy = Vec;
TypeParam Alt(3, false);
Alt.resize(6, true);
std::swap(Alt, Vec);
EXPECT_TRUE(Copy == Alt);
EXPECT_TRUE(Vec.size() == 6);
EXPECT_TRUE(Vec.count() == 3);
EXPECT_TRUE(Vec.find_first() == 3);
std::swap(Copy, Vec);
// Add some more "interesting" data.
Vec.resize(68, true);
Vec.resize(78, false);
Vec.resize(89, true);
Vec.resize(90, false);
Vec.resize(91, true);
Vec.resize(130, false);
Count = 0;
for (unsigned i = Vec.find_first(); i != -1u; i = Vec.find_next(i)) {
++Count;
EXPECT_TRUE(Vec[i]);
EXPECT_TRUE(Vec.test(i));
}
EXPECT_EQ(Count, Vec.count());
EXPECT_EQ(Count, 42u);
EXPECT_FALSE(Vec[0]);
EXPECT_TRUE(Vec[32]);
EXPECT_FALSE(Vec[60]);
EXPECT_FALSE(Vec[129]);
Vec.flip(60);
EXPECT_TRUE(Vec[60]);
EXPECT_EQ(Count + 1, Vec.count());
Vec.flip(60);
EXPECT_FALSE(Vec[60]);
EXPECT_EQ(Count, Vec.count());
Vec.reset(32);
EXPECT_FALSE(Vec[32]);
EXPECT_EQ(Count - 1, Vec.count());
Vec.set(32);
EXPECT_TRUE(Vec[32]);
EXPECT_EQ(Count, Vec.count());
Vec.flip();
EXPECT_EQ(Vec.size() - Count, Vec.count());
Vec.reset();
EXPECT_EQ(0U, Vec.count());
EXPECT_EQ(130U, Vec.size());
EXPECT_FALSE(Vec.any());
EXPECT_FALSE(Vec.all());
EXPECT_TRUE(Vec.none());
EXPECT_FALSE(Vec.empty());
Vec.flip();
EXPECT_EQ(130U, Vec.count());
EXPECT_EQ(130U, Vec.size());
EXPECT_TRUE(Vec.any());
EXPECT_TRUE(Vec.all());
EXPECT_FALSE(Vec.none());
EXPECT_FALSE(Vec.empty());
Vec.resize(64);
EXPECT_EQ(64U, Vec.count());
EXPECT_EQ(64U, Vec.size());
EXPECT_TRUE(Vec.any());
EXPECT_TRUE(Vec.all());
EXPECT_FALSE(Vec.none());
EXPECT_FALSE(Vec.empty());
Vec.flip();
EXPECT_EQ(0U, Vec.count());
EXPECT_EQ(64U, Vec.size());
EXPECT_FALSE(Vec.any());
EXPECT_FALSE(Vec.all());
EXPECT_TRUE(Vec.none());
EXPECT_FALSE(Vec.empty());
Inv = TypeParam().flip();
EXPECT_EQ(0U, Inv.count());
EXPECT_EQ(0U, Inv.size());
EXPECT_FALSE(Inv.any());
EXPECT_TRUE(Inv.all());
EXPECT_TRUE(Inv.none());
EXPECT_TRUE(Inv.empty());
Vec.clear();
EXPECT_EQ(0U, Vec.count());
EXPECT_EQ(0U, Vec.size());
EXPECT_FALSE(Vec.any());
EXPECT_TRUE(Vec.all());
EXPECT_TRUE(Vec.none());
EXPECT_TRUE(Vec.empty());
}
TYPED_TEST(BitVectorTest, Equality) {
TypeParam A;
TypeParam B;
EXPECT_TRUE(A == B);
A.resize(10);
EXPECT_FALSE(A == B);
B.resize(10);
EXPECT_TRUE(A == B);
A.set(5);
EXPECT_FALSE(A == B);
B.set(5);
EXPECT_TRUE(A == B);
A.resize(20);
EXPECT_FALSE(A == B);
B.resize(20);
EXPECT_TRUE(A == B);
}
TYPED_TEST(BitVectorTest, SimpleFindOpsMultiWord) {
TypeParam A;
// Test finding next set and unset bits in a BitVector with multiple words
A.resize(100);
A.set(12);
A.set(13);
A.set(75);
EXPECT_EQ(75, A.find_last());
EXPECT_EQ(12, A.find_first());
EXPECT_EQ(13, A.find_next(12));
EXPECT_EQ(75, A.find_next(13));
EXPECT_EQ(-1, A.find_next(75));
EXPECT_EQ(-1, A.find_prev(12));
EXPECT_EQ(12, A.find_prev(13));
EXPECT_EQ(13, A.find_prev(75));
EXPECT_EQ(75, A.find_prev(90));
EXPECT_EQ(0, A.find_first_unset());
EXPECT_EQ(99, A.find_last_unset());
EXPECT_EQ(14, A.find_next_unset(11));
EXPECT_EQ(14, A.find_next_unset(12));
EXPECT_EQ(14, A.find_next_unset(13));
EXPECT_EQ(16, A.find_next_unset(15));
EXPECT_EQ(76, A.find_next_unset(74));
EXPECT_EQ(76, A.find_next_unset(75));
EXPECT_EQ(-1, A.find_next_unset(99));
A.set(0, 100);
EXPECT_EQ(100U, A.count());
EXPECT_EQ(0, A.find_first());
EXPECT_EQ(-1, A.find_first_unset());
EXPECT_EQ(-1, A.find_last_unset());
EXPECT_EQ(99, A.find_last());
EXPECT_EQ(99, A.find_next(98));
A.reset(0, 100);
EXPECT_EQ(0U, A.count());
EXPECT_EQ(-1, A.find_first());
EXPECT_EQ(-1, A.find_last());
EXPECT_EQ(0, A.find_first_unset());
EXPECT_EQ(99, A.find_last_unset());
EXPECT_EQ(99, A.find_next_unset(98));
}
// Test finding next set and unset bits in a BitVector/SmallBitVector within a
// uintptr_t - check both 32-bit (Multi) and 64-bit (Small) targets.
TYPED_TEST(BitVectorTest, SimpleFindOps64Bit) {
TypeParam A;
A.resize(57);
A.set(12);
A.set(13);
A.set(47);
EXPECT_EQ(47, A.find_last());
EXPECT_EQ(12, A.find_first());
EXPECT_EQ(13, A.find_next(12));
EXPECT_EQ(47, A.find_next(13));
EXPECT_EQ(-1, A.find_next(47));
EXPECT_EQ(-1, A.find_prev(12));
EXPECT_EQ(12, A.find_prev(13));
EXPECT_EQ(13, A.find_prev(47));
EXPECT_EQ(47, A.find_prev(56));
EXPECT_EQ(0, A.find_first_unset());
EXPECT_EQ(56, A.find_last_unset());
EXPECT_EQ(14, A.find_next_unset(11));
EXPECT_EQ(14, A.find_next_unset(12));
EXPECT_EQ(14, A.find_next_unset(13));
EXPECT_EQ(16, A.find_next_unset(15));
EXPECT_EQ(48, A.find_next_unset(46));
EXPECT_EQ(48, A.find_next_unset(47));
EXPECT_EQ(-1, A.find_next_unset(56));
}
// Check if a SmallBitVector is in small mode. This check is used in tests
// that run for both SmallBitVector and BitVector. This check doesn't apply
// to BitVector so we provide an overload that returns true to get the tests
// to compile.
static bool SmallBitVectorIsSmallMode(const SmallBitVector &bv) {
return bv.isSmall();
}
static bool SmallBitVectorIsSmallMode(const BitVector &) { return true; }
// These tests are intended to exercise the single-word case of BitVector
// and the small-mode case of SmallBitVector.
TYPED_TEST(BitVectorTest, SimpleFindOpsSingleWord) {
// Test finding in an empty BitVector.
TypeParam A;
ASSERT_TRUE(SmallBitVectorIsSmallMode(A));
EXPECT_EQ(-1, A.find_first());
EXPECT_EQ(-1, A.find_last());
EXPECT_EQ(-1, A.find_first_unset());
EXPECT_EQ(-1, A.find_last_unset());
A.resize(20);
ASSERT_TRUE(SmallBitVectorIsSmallMode(A));
EXPECT_EQ(-1, A.find_first());
EXPECT_EQ(-1, A.find_last());
EXPECT_EQ(-1, A.find_next(5));
EXPECT_EQ(-1, A.find_next(19));
EXPECT_EQ(-1, A.find_prev(5));
EXPECT_EQ(-1, A.find_prev(20));
EXPECT_EQ(0, A.find_first_unset());
EXPECT_EQ(19, A.find_last_unset());
EXPECT_EQ(6, A.find_next_unset(5));
EXPECT_EQ(-1, A.find_next_unset(19));
A.set(3);
A.set(4);
A.set(16);
ASSERT_TRUE(SmallBitVectorIsSmallMode(A));
EXPECT_EQ(16, A.find_last());
EXPECT_EQ(3, A.find_first());
EXPECT_EQ(3, A.find_next(1));
EXPECT_EQ(4, A.find_next(3));
EXPECT_EQ(16, A.find_next(4));
EXPECT_EQ(-1, A.find_next(16));
EXPECT_EQ(-1, A.find_prev(3));
EXPECT_EQ(3, A.find_prev(4));
EXPECT_EQ(4, A.find_prev(16));
EXPECT_EQ(16, A.find_prev(18));
EXPECT_EQ(0, A.find_first_unset());
EXPECT_EQ(19, A.find_last_unset());
EXPECT_EQ(5, A.find_next_unset(3));
EXPECT_EQ(5, A.find_next_unset(4));
EXPECT_EQ(13, A.find_next_unset(12));
EXPECT_EQ(17, A.find_next_unset(15));
A.set();
ASSERT_TRUE(SmallBitVectorIsSmallMode(A));
EXPECT_EQ(0, A.find_first());
EXPECT_EQ(19, A.find_last());
EXPECT_EQ(6, A.find_next(5));
EXPECT_EQ(-1, A.find_next(19));
EXPECT_EQ(4, A.find_prev(5));
EXPECT_EQ(19, A.find_prev(20));
EXPECT_EQ(-1, A.find_first_unset());
EXPECT_EQ(-1, A.find_last_unset());
EXPECT_EQ(-1, A.find_next_unset(5));
EXPECT_EQ(-1, A.find_next_unset(19));
}
TEST(BitVectorTest, FindInRangeMultiWord) {
BitVector Vec;
Vec.resize(200);
Vec.set(3, 7);
Vec.set(24, 35);
Vec.set(50, 70);
Vec.set(150);
Vec.set(152);
Vec.set(154);
// find first
EXPECT_EQ(-1, Vec.find_first_in(0, 0));
EXPECT_EQ(-1, Vec.find_first_in(24, 24));
EXPECT_EQ(-1, Vec.find_first_in(7, 24));
EXPECT_EQ(3, Vec.find_first_in(0, 10));
EXPECT_EQ(4, Vec.find_first_in(4, 10));
EXPECT_EQ(150, Vec.find_first_in(100, 200));
EXPECT_EQ(152, Vec.find_first_in(151, 200));
EXPECT_EQ(154, Vec.find_first_in(153, 200));
EXPECT_EQ(-1, Vec.find_first_in(155, 200));
Vec.set(199);
EXPECT_EQ(199, Vec.find_first_in(199, 200));
Vec.reset(199);
// find last
EXPECT_EQ(-1, Vec.find_last_in(0, 0));
EXPECT_EQ(-1, Vec.find_last_in(24, 24));
EXPECT_EQ(-1, Vec.find_last_in(7, 24));
EXPECT_EQ(6, Vec.find_last_in(0, 10));
EXPECT_EQ(5, Vec.find_last_in(0, 6));
EXPECT_EQ(154, Vec.find_last_in(100, 155));
EXPECT_EQ(152, Vec.find_last_in(100, 154));
EXPECT_EQ(150, Vec.find_last_in(100, 152));
EXPECT_EQ(-1, Vec.find_last_in(100, 150));
Vec.set(199);
EXPECT_EQ(199, Vec.find_last_in(199, 200));
Vec.reset(199);
// find first unset
EXPECT_EQ(-1, Vec.find_first_unset_in(0, 0));
EXPECT_EQ(-1, Vec.find_first_unset_in(23, 23));
EXPECT_EQ(-1, Vec.find_first_unset_in(24, 35));
EXPECT_EQ(0, Vec.find_first_unset_in(0, 10));
EXPECT_EQ(1, Vec.find_first_unset_in(1, 10));
EXPECT_EQ(7, Vec.find_first_unset_in(5, 25));
EXPECT_EQ(151, Vec.find_first_unset_in(150, 200));
EXPECT_EQ(151, Vec.find_first_unset_in(151, 200));
EXPECT_EQ(153, Vec.find_first_unset_in(152, 200));
EXPECT_EQ(153, Vec.find_first_unset_in(153, 200));
EXPECT_EQ(155, Vec.find_first_unset_in(154, 200));
EXPECT_EQ(155, Vec.find_first_unset_in(155, 200));
EXPECT_EQ(199, Vec.find_first_unset_in(199, 200));
// find last unset
EXPECT_EQ(-1, Vec.find_last_unset_in(0, 0));
EXPECT_EQ(-1, Vec.find_last_unset_in(23, 23));
EXPECT_EQ(-1, Vec.find_last_unset_in(24, 35));
EXPECT_EQ(9, Vec.find_last_unset_in(0, 10));
EXPECT_EQ(8, Vec.find_last_unset_in(0, 9));
EXPECT_EQ(2, Vec.find_last_unset_in(0, 7));
EXPECT_EQ(149, Vec.find_last_unset_in(100, 151));
EXPECT_EQ(151, Vec.find_last_unset_in(100, 152));
EXPECT_EQ(151, Vec.find_last_unset_in(100, 153));
EXPECT_EQ(153, Vec.find_last_unset_in(100, 154));
EXPECT_EQ(153, Vec.find_last_unset_in(100, 155));
EXPECT_EQ(155, Vec.find_last_unset_in(100, 156));
EXPECT_EQ(199, Vec.find_last_unset_in(199, 200));
}
TEST(BitVectorTest, FindInRangeSingleWord) {
// When the bit vector contains only a single word, this is slightly different
// than when the bit vector contains multiple words, because masks are applied
// to the front and back of the same word. So make sure this works.
BitVector Vec;
Vec.resize(25);
Vec.set(2, 4);
Vec.set(6, 9);
Vec.set(12, 15);
Vec.set(19);
Vec.set(21);
Vec.set(23);
// find first
EXPECT_EQ(-1, Vec.find_first_in(0, 0));
EXPECT_EQ(-1, Vec.find_first_in(24, 24));
EXPECT_EQ(-1, Vec.find_first_in(9, 12));
EXPECT_EQ(2, Vec.find_first_in(0, 10));
EXPECT_EQ(6, Vec.find_first_in(4, 10));
EXPECT_EQ(19, Vec.find_first_in(18, 25));
EXPECT_EQ(21, Vec.find_first_in(20, 25));
EXPECT_EQ(23, Vec.find_first_in(22, 25));
EXPECT_EQ(-1, Vec.find_first_in(24, 25));
// find last
EXPECT_EQ(-1, Vec.find_last_in(0, 0));
EXPECT_EQ(-1, Vec.find_last_in(24, 24));
EXPECT_EQ(-1, Vec.find_last_in(9, 12));
EXPECT_EQ(8, Vec.find_last_in(0, 10));
EXPECT_EQ(3, Vec.find_last_in(0, 6));
EXPECT_EQ(23, Vec.find_last_in(18, 25));
EXPECT_EQ(21, Vec.find_last_in(18, 23));
EXPECT_EQ(19, Vec.find_last_in(18, 21));
EXPECT_EQ(-1, Vec.find_last_in(18, 19));
// find first unset
EXPECT_EQ(-1, Vec.find_first_unset_in(0, 0));
EXPECT_EQ(-1, Vec.find_first_unset_in(23, 23));
EXPECT_EQ(-1, Vec.find_first_unset_in(6, 9));
EXPECT_EQ(0, Vec.find_first_unset_in(0, 6));
EXPECT_EQ(1, Vec.find_first_unset_in(1, 6));
EXPECT_EQ(9, Vec.find_first_unset_in(7, 13));
EXPECT_EQ(18, Vec.find_first_unset_in(18, 25));
EXPECT_EQ(20, Vec.find_first_unset_in(19, 25));
EXPECT_EQ(20, Vec.find_first_unset_in(20, 25));
EXPECT_EQ(22, Vec.find_first_unset_in(21, 25));
EXPECT_EQ(22, Vec.find_first_unset_in(22, 25));
EXPECT_EQ(24, Vec.find_first_unset_in(23, 25));
EXPECT_EQ(24, Vec.find_first_unset_in(24, 25));
// find last unset
EXPECT_EQ(-1, Vec.find_last_unset_in(0, 0));
EXPECT_EQ(-1, Vec.find_last_unset_in(23, 23));
EXPECT_EQ(-1, Vec.find_last_unset_in(6, 9));
EXPECT_EQ(5, Vec.find_last_unset_in(0, 6));
EXPECT_EQ(4, Vec.find_last_unset_in(0, 5));
EXPECT_EQ(1, Vec.find_last_unset_in(0, 4));
EXPECT_EQ(11, Vec.find_last_unset_in(7, 13));
EXPECT_EQ(24, Vec.find_last_unset_in(18, 25));
EXPECT_EQ(22, Vec.find_last_unset_in(18, 24));
EXPECT_EQ(22, Vec.find_last_unset_in(18, 23));
EXPECT_EQ(20, Vec.find_last_unset_in(18, 22));
EXPECT_EQ(20, Vec.find_last_unset_in(18, 21));
EXPECT_EQ(18, Vec.find_last_unset_in(18, 20));
EXPECT_EQ(18, Vec.find_last_unset_in(18, 19));
}
TYPED_TEST(BitVectorTest, CompoundAssignment) {
TypeParam A;
A.resize(10);
A.set(4);
A.set(7);
TypeParam B;
B.resize(50);
B.set(5);
B.set(18);
A |= B;
EXPECT_TRUE(A.test(4));
EXPECT_TRUE(A.test(5));
EXPECT_TRUE(A.test(7));
EXPECT_TRUE(A.test(18));
EXPECT_EQ(4U, A.count());
EXPECT_EQ(50U, A.size());
B.resize(10);
B.set();
B.reset(2);
B.reset(7);
A &= B;
EXPECT_FALSE(A.test(2));
EXPECT_FALSE(A.test(7));
EXPECT_TRUE(A.test(4));
EXPECT_TRUE(A.test(5));
EXPECT_EQ(2U, A.count());
EXPECT_EQ(50U, A.size());
B.resize(100);
B.set();
A ^= B;
EXPECT_TRUE(A.test(2));
EXPECT_TRUE(A.test(7));
EXPECT_EQ(98U, A.count());
EXPECT_EQ(100U, A.size());
}
// Test SmallBitVector operations with mixed big/small representations
TYPED_TEST(BitVectorTest, MixedBigSmall) {
{
TypeParam Big;
TypeParam Small;
Big.reserve(100);
Big.resize(20);
Small.resize(10);
Small.set(0);
Small.set(1);
Big.set(0);
Big.set(2);
Big.set(16);
Small &= Big;
EXPECT_TRUE(Small.test(0));
EXPECT_EQ(1u, Small.count());
// FIXME BitVector and SmallBitVector behave differently here.
// SmallBitVector resizes the LHS to max(LHS.size(), RHS.size())
// but BitVector does not.
// EXPECT_EQ(20u, Small.size());
}
{
TypeParam Big;
TypeParam Small;
Big.reserve(100);
Big.resize(20);
Small.resize(10);
Small.set(0);
Small.set(1);
Big.set(0);
Big.set(2);
Big.set(16);
Big &= Small;
EXPECT_TRUE(Big.test(0));
EXPECT_EQ(1u, Big.count());
// FIXME BitVector and SmallBitVector behave differently here.
// SmallBitVector resizes the LHS to max(LHS.size(), RHS.size())
// but BitVector does not.
// EXPECT_EQ(20u, Big.size());
}
{
TypeParam Big;
TypeParam Small;
Big.reserve(100);
Big.resize(20);
Small.resize(10);
Small.set(0);
Small.set(1);
Big.set(0);
Big.set(2);
Big.set(16);
Small |= Big;
EXPECT_TRUE(Small.test(0));
EXPECT_TRUE(Small.test(1));
EXPECT_TRUE(Small.test(2));
EXPECT_TRUE(Small.test(16));
EXPECT_EQ(4u, Small.count());
EXPECT_EQ(20u, Small.size());
}
{
TypeParam Big;
TypeParam Small;
Big.reserve(100);
Big.resize(20);
Small.resize(10);
Small.set(0);
Small.set(1);
Big.set(0);
Big.set(2);
Big.set(16);
Big |= Small;
EXPECT_TRUE(Big.test(0));
EXPECT_TRUE(Big.test(1));
EXPECT_TRUE(Big.test(2));
EXPECT_TRUE(Big.test(16));
EXPECT_EQ(4u, Big.count());
EXPECT_EQ(20u, Big.size());
}
{
TypeParam Big;
TypeParam Small;
Big.reserve(100);
Big.resize(20);
Small.resize(10);
Small.set(0);
Small.set(1);
Big.set(0);
Big.set(2);
Big.set(16);
Small ^= Big;
EXPECT_TRUE(Small.test(1));
EXPECT_TRUE(Small.test(2));
EXPECT_TRUE(Small.test(16));
EXPECT_EQ(3u, Small.count());
EXPECT_EQ(20u, Small.size());
}
{
TypeParam Big;
TypeParam Small;
Big.reserve(100);
Big.resize(20);
Small.resize(10);
Small.set(0);
Small.set(1);
Big.set(0);
Big.set(2);
Big.set(16);
Big ^= Small;
EXPECT_TRUE(Big.test(1));
EXPECT_TRUE(Big.test(2));
EXPECT_TRUE(Big.test(16));
EXPECT_EQ(3u, Big.count());
EXPECT_EQ(20u, Big.size());
}
{
TypeParam Big;
TypeParam Small;
Big.reserve(100);
Big.resize(20);
Small.resize(10);
Small.set(0);
Small.set(1);
Big.set(0);
Big.set(2);
Big.set(16);
Small.reset(Big);
EXPECT_TRUE(Small.test(1));
EXPECT_EQ(1u, Small.count());
EXPECT_EQ(10u, Small.size());
}
{
TypeParam Big;
TypeParam Small;
Big.reserve(100);
Big.resize(20);
Small.resize(10);
Small.set(0);
Small.set(1);
Big.set(0);
Big.set(2);
Big.set(16);
Big.reset(Small);
EXPECT_TRUE(Big.test(2));
EXPECT_TRUE(Big.test(16));
EXPECT_EQ(2u, Big.count());
EXPECT_EQ(20u, Big.size());
}
{
TypeParam Big;
TypeParam Small;
Big.reserve(100);
Big.resize(10);
Small.resize(10);
Small.set(0);
Small.set(1);
Big.set(0);
EXPECT_FALSE(Big == Small);
EXPECT_FALSE(Small == Big);
Big.set(1);
EXPECT_TRUE(Big == Small);
EXPECT_TRUE(Small == Big);
}
{
TypeParam Big;
TypeParam Small;
Big.reserve(100);
Big.resize(20);
Small.resize(10);
Small.set(0);
Big.set(1);
EXPECT_FALSE(Small.anyCommon(Big));
EXPECT_FALSE(Big.anyCommon(Small));
Big.set(0);
EXPECT_TRUE(Small.anyCommon(Big));
EXPECT_TRUE(Big.anyCommon(Small));
}
{
TypeParam Big;
TypeParam Small;
Big.reserve(100);
Big.resize(10);
Small.resize(10);
Small.set(0);
Small.set(1);
Big.set(0);
EXPECT_TRUE(Small.test(Big));
EXPECT_FALSE(Big.test(Small));
Big.set(1);
EXPECT_FALSE(Small.test(Big));
EXPECT_FALSE(Big.test(Small));
}
}
TYPED_TEST(BitVectorTest, ProxyIndex) {
TypeParam Vec(3);
EXPECT_TRUE(Vec.none());
Vec[0] = Vec[1] = Vec[2] = true;
EXPECT_EQ(Vec.size(), Vec.count());
Vec[2] = Vec[1] = Vec[0] = false;
EXPECT_TRUE(Vec.none());
}
TYPED_TEST(BitVectorTest, PortableBitMask) {
TypeParam A;
const uint32_t Mask1[] = { 0x80000000, 6, 5 };
A.resize(10);
A.setBitsInMask(Mask1, 1);
EXPECT_EQ(10u, A.size());
EXPECT_FALSE(A.test(0));
A.resize(32);
A.setBitsInMask(Mask1, 1);
EXPECT_FALSE(A.test(0));
EXPECT_TRUE(A.test(31));
EXPECT_EQ(1u, A.count());
A.resize(33);
A.setBitsInMask(Mask1, 1);
EXPECT_EQ(1u, A.count());
A.setBitsInMask(Mask1, 2);
EXPECT_EQ(1u, A.count());
A.resize(34);
A.setBitsInMask(Mask1, 2);
EXPECT_EQ(2u, A.count());
A.resize(65);
A.setBitsInMask(Mask1, 3);
EXPECT_EQ(4u, A.count());
A.setBitsNotInMask(Mask1, 1);
EXPECT_EQ(32u+3u, A.count());
A.setBitsNotInMask(Mask1, 3);
EXPECT_EQ(65u, A.count());
A.resize(96);
EXPECT_EQ(65u, A.count());
A.clear();
A.resize(128);
A.setBitsNotInMask(Mask1, 3);
EXPECT_EQ(96u-5u, A.count());
A.clearBitsNotInMask(Mask1, 1);
EXPECT_EQ(64-4u, A.count());
}
TYPED_TEST(BitVectorTest, BinOps) {
TypeParam A;
TypeParam B;
A.resize(65);
EXPECT_FALSE(A.anyCommon(B));
EXPECT_FALSE(B.anyCommon(B));
B.resize(64);
A.set(64);
EXPECT_FALSE(A.anyCommon(B));
EXPECT_FALSE(B.anyCommon(A));
B.set(63);
EXPECT_FALSE(A.anyCommon(B));
EXPECT_FALSE(B.anyCommon(A));
A.set(63);
EXPECT_TRUE(A.anyCommon(B));
EXPECT_TRUE(B.anyCommon(A));
B.resize(70);
B.set(64);
B.reset(63);
A.resize(64);
EXPECT_FALSE(A.anyCommon(B));
EXPECT_FALSE(B.anyCommon(A));
}
typedef std::vector<std::pair<int, int>> RangeList;
template <typename VecType>
static inline VecType createBitVector(uint32_t Size,
const RangeList &setRanges) {
VecType V;
V.resize(Size);
for (auto &R : setRanges)
V.set(R.first, R.second);
return V;
}
TYPED_TEST(BitVectorTest, ShiftOpsSingleWord) {
// Test that shift ops work when the desired shift amount is less
// than one word.
// 1. Case where the number of bits in the BitVector also fit into a single
// word.
TypeParam A = createBitVector<TypeParam>(12, {{2, 4}, {8, 10}});
TypeParam B = A;
EXPECT_EQ(4U, A.count());
EXPECT_TRUE(A.test(2));
EXPECT_TRUE(A.test(3));
EXPECT_TRUE(A.test(8));
EXPECT_TRUE(A.test(9));
A >>= 1;
EXPECT_EQ(createBitVector<TypeParam>(12, {{1, 3}, {7, 9}}), A);
A <<= 1;
EXPECT_EQ(B, A);
A >>= 10;
EXPECT_EQ(createBitVector<TypeParam>(12, {}), A);
A = B;
A <<= 10;
EXPECT_EQ(createBitVector<TypeParam>(12, {}), A);
// 2. Case where the number of bits in the BitVector do not fit into a single
// word.
// 31----------------------------------------------------------------------0
// XXXXXXXX XXXXXXXX XXXXXXXX 00000111 | 11111110 00000000 00001111 11111111
A = createBitVector<TypeParam>(40, {{0, 12}, {25, 35}});
EXPECT_EQ(40U, A.size());
EXPECT_EQ(22U, A.count());
// 2a. Make sure that left shifting some 1 bits out of the vector works.
// 31----------------------------------------------------------------------0
// Before:
// XXXXXXXX XXXXXXXX XXXXXXXX 00000111 | 11111110 00000000 00001111 11111111
// After:
// XXXXXXXX XXXXXXXX XXXXXXXX 11111100 | 00000000 00011111 11111110 00000000
A <<= 9;
EXPECT_EQ(createBitVector<TypeParam>(40, {{9, 21}, {34, 40}}), A);
// 2b. Make sure that keeping the number of one bits unchanged works.
// 31----------------------------------------------------------------------0
// Before:
// XXXXXXXX XXXXXXXX XXXXXXXX 11111100 | 00000000 00011111 11111110 00000000
// After:
// XXXXXXXX XXXXXXXX XXXXXXXX 00000011 | 11110000 00000000 01111111 11111000
A >>= 6;
EXPECT_EQ(createBitVector<TypeParam>(40, {{3, 15}, {28, 34}}), A);
// 2c. Make sure that right shifting some 1 bits out of the vector works.
// 31----------------------------------------------------------------------0
// Before:
// XXXXXXXX XXXXXXXX XXXXXXXX 00000011 | 11110000 00000000 01111111 11111000
// After:
// XXXXXXXX XXXXXXXX XXXXXXXX 00000000 | 00000000 11111100 00000000 00011111
A >>= 10;
EXPECT_EQ(createBitVector<TypeParam>(40, {{0, 5}, {18, 24}}), A);
// 3. Big test.
A = createBitVector<TypeParam>(300, {{1, 30}, {60, 95}, {200, 275}});
A <<= 29;
EXPECT_EQ(createBitVector<TypeParam>(
300, {{1 + 29, 30 + 29}, {60 + 29, 95 + 29}, {200 + 29, 300}}),
A);
}
TYPED_TEST(BitVectorTest, ShiftOpsMultiWord) {
// Test that shift ops work when the desired shift amount is greater than or
// equal to the size of a single word.
auto A = createBitVector<TypeParam>(300, {{1, 30}, {60, 95}, {200, 275}});
// Make a copy so we can re-use it later.
auto B = A;
// 1. Shift left by an exact multiple of the word size. This should invoke
// only a memmove and no per-word bit operations.
A <<= 64;
auto Expected = createBitVector<TypeParam>(
300, {{1 + 64, 30 + 64}, {60 + 64, 95 + 64}, {200 + 64, 300}});
EXPECT_EQ(Expected, A);
// 2. Shift left by a non multiple of the word size. This should invoke both
// a memmove and per-word bit operations.
A = B;
A <<= 93;
EXPECT_EQ(createBitVector<TypeParam>(
300, {{1 + 93, 30 + 93}, {60 + 93, 95 + 93}, {200 + 93, 300}}),
A);
// 1. Shift right by an exact multiple of the word size. This should invoke
// only a memmove and no per-word bit operations.
A = B;
A >>= 64;
EXPECT_EQ(
createBitVector<TypeParam>(300, {{0, 95 - 64}, {200 - 64, 275 - 64}}), A);
// 2. Shift left by a non multiple of the word size. This should invoke both
// a memmove and per-word bit operations.
A = B;
A >>= 93;
EXPECT_EQ(
createBitVector<TypeParam>(300, {{0, 95 - 93}, {200 - 93, 275 - 93}}), A);
}
TYPED_TEST(BitVectorTest, RangeOps) {
TypeParam A;
A.resize(256);
A.reset();
A.set(1, 255);
EXPECT_FALSE(A.test(0));
EXPECT_TRUE( A.test(1));
EXPECT_TRUE( A.test(23));
EXPECT_TRUE( A.test(254));
EXPECT_FALSE(A.test(255));
TypeParam B;
B.resize(256);
B.set();
B.reset(1, 255);
EXPECT_TRUE( B.test(0));
EXPECT_FALSE(B.test(1));
EXPECT_FALSE(B.test(23));
EXPECT_FALSE(B.test(254));
EXPECT_TRUE( B.test(255));
TypeParam C;
C.resize(3);
C.reset();
C.set(0, 1);
EXPECT_TRUE(C.test(0));
EXPECT_FALSE( C.test(1));
EXPECT_FALSE( C.test(2));
TypeParam D;
D.resize(3);
D.set();
D.reset(0, 1);
EXPECT_FALSE(D.test(0));
EXPECT_TRUE( D.test(1));
EXPECT_TRUE( D.test(2));
TypeParam E;
E.resize(128);
E.reset();
E.set(1, 33);
EXPECT_FALSE(E.test(0));
EXPECT_TRUE( E.test(1));
EXPECT_TRUE( E.test(32));
EXPECT_FALSE(E.test(33));
TypeParam BufferOverrun;
unsigned size = sizeof(unsigned long) * 8;
BufferOverrun.resize(size);
BufferOverrun.reset(0, size);
BufferOverrun.set(0, size);
}
TYPED_TEST(BitVectorTest, CompoundTestReset) {
TypeParam A(50, true);
TypeParam B(50, false);
TypeParam C(100, true);
TypeParam D(100, false);
EXPECT_FALSE(A.test(A));
EXPECT_TRUE(A.test(B));
EXPECT_FALSE(A.test(C));
EXPECT_TRUE(A.test(D));
EXPECT_FALSE(B.test(A));
EXPECT_FALSE(B.test(B));
EXPECT_FALSE(B.test(C));
EXPECT_FALSE(B.test(D));
EXPECT_TRUE(C.test(A));
EXPECT_TRUE(C.test(B));
EXPECT_FALSE(C.test(C));
EXPECT_TRUE(C.test(D));
A.reset(B);
A.reset(D);
EXPECT_TRUE(A.all());
A.reset(A);
EXPECT_TRUE(A.none());
A.set();
A.reset(C);
EXPECT_TRUE(A.none());
A.set();
C.reset(A);
EXPECT_EQ(50, C.find_first());
C.reset(C);
EXPECT_TRUE(C.none());
}
TYPED_TEST(BitVectorTest, MoveConstructor) {
TypeParam A(10, true);
TypeParam B(std::move(A));
// Check that the move ctor leaves the moved-from object in a valid state.
// The following line used to crash.
A = B;
TypeParam C(10, true);
EXPECT_EQ(C, A);
EXPECT_EQ(C, B);
}
TYPED_TEST(BitVectorTest, MoveAssignment) {
TypeParam A(10, true);
TypeParam B;
B = std::move(A);
// Check that move assignment leaves the moved-from object in a valid state.
// The following line used to crash.
A = B;
TypeParam C(10, true);
EXPECT_EQ(C, A);
EXPECT_EQ(C, B);
}
template<class TypeParam>
static void testEmpty(const TypeParam &A) {
EXPECT_TRUE(A.empty());
EXPECT_EQ((size_t)0, A.size());
EXPECT_EQ((size_t)0, A.count());
EXPECT_FALSE(A.any());
EXPECT_TRUE(A.all());
EXPECT_TRUE(A.none());
EXPECT_EQ(-1, A.find_first());
EXPECT_EQ(A, TypeParam());
}
/// Tests whether BitVector behaves well with Bits==nullptr, Capacity==0
TYPED_TEST(BitVectorTest, EmptyVector) {
TypeParam A;
testEmpty(A);
TypeParam B;
B.reset();
testEmpty(B);
TypeParam C;
C.clear();
testEmpty(C);
TypeParam D(A);
testEmpty(D);
TypeParam E;
E = A;
testEmpty(E);
TypeParam F;
E.reset(A);
testEmpty(E);
}
TYPED_TEST(BitVectorTest, Iterators) {
TypeParam Filled(10, true);
EXPECT_NE(Filled.set_bits_begin(), Filled.set_bits_end());
unsigned Counter = 0;
for (unsigned Bit : Filled.set_bits())
EXPECT_EQ(Bit, Counter++);
TypeParam Empty;
EXPECT_EQ(Empty.set_bits_begin(), Empty.set_bits_end());
int BitCount = 0;
for (unsigned Bit : Empty.set_bits()) {
(void)Bit;
BitCount++;
}
ASSERT_EQ(BitCount, 0);
TypeParam ToFill(100, false);
ToFill.set(0);
EXPECT_NE(ToFill.set_bits_begin(), ToFill.set_bits_end());
EXPECT_EQ(++ToFill.set_bits_begin(), ToFill.set_bits_end());
EXPECT_EQ(*ToFill.set_bits_begin(), 0U);
ToFill.reset(0);
EXPECT_EQ(ToFill.set_bits_begin(), ToFill.set_bits_end());
const unsigned List[] = {1, 10, 25, 99};
for (unsigned Num : List)
ToFill.set(Num);
unsigned i = 0;
for (unsigned Bit : ToFill.set_bits())
EXPECT_EQ(List[i++], Bit);
}
TYPED_TEST(BitVectorTest, PushBack) {
TypeParam Vec(10, false);
EXPECT_EQ(-1, Vec.find_first());
EXPECT_EQ(10U, Vec.size());
EXPECT_EQ(0U, Vec.count());
Vec.push_back(true);
EXPECT_EQ(10, Vec.find_first());
EXPECT_EQ(11U, Vec.size());
EXPECT_EQ(1U, Vec.count());
Vec.push_back(false);
EXPECT_EQ(10, Vec.find_first());
EXPECT_EQ(12U, Vec.size());
EXPECT_EQ(1U, Vec.count());
Vec.push_back(true);
EXPECT_EQ(10, Vec.find_first());
EXPECT_EQ(13U, Vec.size());
EXPECT_EQ(2U, Vec.count());
// Add a lot of values to cause reallocation.
for (int i = 0; i != 100; ++i) {
Vec.push_back(true);
Vec.push_back(false);
}
EXPECT_EQ(10, Vec.find_first());
EXPECT_EQ(213U, Vec.size());
EXPECT_EQ(102U, Vec.count());
}
TYPED_TEST(BitVectorTest, DenseSet) {
DenseSet<TypeParam> Set;
TypeParam A(10, true);
auto I = Set.insert(A);
EXPECT_EQ(true, I.second);
TypeParam B(5, true);
I = Set.insert(B);
EXPECT_EQ(true, I.second);
TypeParam C(20, false);
C.set(19);
I = Set.insert(C);
EXPECT_EQ(true, I.second);
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
TypeParam D;
EXPECT_DEATH(Set.insert(D),
"Empty/Tombstone value shouldn't be inserted into map!");
#endif
EXPECT_EQ(3U, Set.size());
EXPECT_EQ(1U, Set.count(A));
EXPECT_EQ(1U, Set.count(B));
EXPECT_EQ(1U, Set.count(C));
EXPECT_EQ(true, Set.erase(B));
EXPECT_EQ(2U, Set.size());
EXPECT_EQ(true, Set.erase(C));
EXPECT_EQ(1U, Set.size());
EXPECT_EQ(true, Set.erase(A));
EXPECT_EQ(0U, Set.size());
}
/// Test that capacity doesn't affect hashing.
TYPED_TEST(BitVectorTest, DenseMapHashing) {
using DMI = DenseMapInfo<TypeParam>;
{
TypeParam A;
A.resize(200);
A.set(100);
TypeParam B;
B.resize(200);
B.set(100);
B.reserve(1000);
EXPECT_EQ(DMI::getHashValue(A), DMI::getHashValue(B));
}
{
TypeParam A;
A.resize(20);
A.set(10);
TypeParam B;
B.resize(20);
B.set(10);
B.reserve(1000);
EXPECT_EQ(DMI::getHashValue(A), DMI::getHashValue(B));
}
}
TEST(BitVectoryTest, Apply) {
for (int i = 0; i < 2; ++i) {
int j = i * 100 + 3;
const BitVector x =
createBitVector<BitVector>(j + 5, {{i, i + 1}, {j - 1, j}});
const BitVector y = createBitVector<BitVector>(j + 5, {{i, j}});
const BitVector z =
createBitVector<BitVector>(j + 5, {{i + 1, i + 2}, {j, j + 1}});
auto op0 = [](auto x) { return ~x; };
BitVector expected0 = x;
expected0.flip();
BitVector out0(j - 2);
BitVector::apply(op0, out0, x);
EXPECT_EQ(out0, expected0);
auto op1 = [](auto x, auto y) { return x & ~y; };
BitVector expected1 = x;
expected1.reset(y);
BitVector out1;
BitVector::apply(op1, out1, x, y);
EXPECT_EQ(out1, expected1);
auto op2 = [](auto x, auto y, auto z) { return (x ^ ~y) | z; };
BitVector expected2 = y;
expected2.flip();
expected2 ^= x;
expected2 |= z;
BitVector out2(j + 5);
BitVector::apply(op2, out2, x, y, z);
EXPECT_EQ(out2, expected2);
}
}
} // namespace