llvm-project/llvm/unittests/ADT/APIntTest.cpp

3018 lines
99 KiB
C++

//===- llvm/unittest/ADT/APInt.cpp - APInt unit tests ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Twine.h"
#include "gtest/gtest.h"
#include <array>
using namespace llvm;
namespace {
TEST(APIntTest, ValueInit) {
APInt Zero = APInt();
EXPECT_TRUE(!Zero);
EXPECT_TRUE(!Zero.zext(64));
EXPECT_TRUE(!Zero.sext(64));
}
// Test that APInt shift left works when bitwidth > 64 and shiftamt == 0
TEST(APIntTest, ShiftLeftByZero) {
APInt One = APInt::getZero(65) + 1;
APInt Shl = One.shl(0);
EXPECT_TRUE(Shl[0]);
EXPECT_FALSE(Shl[1]);
}
TEST(APIntTest, i64_ArithmeticRightShiftNegative) {
const APInt neg_one(64, static_cast<uint64_t>(-1), true);
EXPECT_EQ(neg_one, neg_one.ashr(7));
}
TEST(APIntTest, i128_NegativeCount) {
APInt Minus3(128, static_cast<uint64_t>(-3), true);
EXPECT_EQ(126u, Minus3.countLeadingOnes());
EXPECT_EQ(-3, Minus3.getSExtValue());
APInt Minus1(128, static_cast<uint64_t>(-1), true);
EXPECT_EQ(0u, Minus1.countLeadingZeros());
EXPECT_EQ(128u, Minus1.countLeadingOnes());
EXPECT_EQ(128u, Minus1.getActiveBits());
EXPECT_EQ(0u, Minus1.countTrailingZeros());
EXPECT_EQ(128u, Minus1.countTrailingOnes());
EXPECT_EQ(128u, Minus1.countPopulation());
EXPECT_EQ(-1, Minus1.getSExtValue());
}
TEST(APIntTest, i33_Count) {
APInt i33minus2(33, static_cast<uint64_t>(-2), true);
EXPECT_EQ(0u, i33minus2.countLeadingZeros());
EXPECT_EQ(32u, i33minus2.countLeadingOnes());
EXPECT_EQ(33u, i33minus2.getActiveBits());
EXPECT_EQ(1u, i33minus2.countTrailingZeros());
EXPECT_EQ(32u, i33minus2.countPopulation());
EXPECT_EQ(-2, i33minus2.getSExtValue());
EXPECT_EQ(((uint64_t)-2)&((1ull<<33) -1), i33minus2.getZExtValue());
}
TEST(APIntTest, i61_Count) {
APInt i61(61, 1 << 15);
EXPECT_EQ(45u, i61.countLeadingZeros());
EXPECT_EQ(0u, i61.countLeadingOnes());
EXPECT_EQ(16u, i61.getActiveBits());
EXPECT_EQ(15u, i61.countTrailingZeros());
EXPECT_EQ(1u, i61.countPopulation());
EXPECT_EQ(static_cast<int64_t>(1 << 15), i61.getSExtValue());
EXPECT_EQ(static_cast<uint64_t>(1 << 15), i61.getZExtValue());
i61.setBits(8, 19);
EXPECT_EQ(42u, i61.countLeadingZeros());
EXPECT_EQ(0u, i61.countLeadingOnes());
EXPECT_EQ(19u, i61.getActiveBits());
EXPECT_EQ(8u, i61.countTrailingZeros());
EXPECT_EQ(11u, i61.countPopulation());
EXPECT_EQ(static_cast<int64_t>((1 << 19) - (1 << 8)), i61.getSExtValue());
EXPECT_EQ(static_cast<uint64_t>((1 << 19) - (1 << 8)), i61.getZExtValue());
}
TEST(APIntTest, i65_Count) {
APInt i65(65, 0, true);
EXPECT_EQ(65u, i65.countLeadingZeros());
EXPECT_EQ(0u, i65.countLeadingOnes());
EXPECT_EQ(0u, i65.getActiveBits());
EXPECT_EQ(1u, i65.getActiveWords());
EXPECT_EQ(65u, i65.countTrailingZeros());
EXPECT_EQ(0u, i65.countPopulation());
APInt i65minus(65, 0, true);
i65minus.setBit(64);
EXPECT_EQ(0u, i65minus.countLeadingZeros());
EXPECT_EQ(1u, i65minus.countLeadingOnes());
EXPECT_EQ(65u, i65minus.getActiveBits());
EXPECT_EQ(64u, i65minus.countTrailingZeros());
EXPECT_EQ(1u, i65minus.countPopulation());
}
TEST(APIntTest, i128_PositiveCount) {
APInt u128max = APInt::getAllOnes(128);
EXPECT_EQ(128u, u128max.countLeadingOnes());
EXPECT_EQ(0u, u128max.countLeadingZeros());
EXPECT_EQ(128u, u128max.getActiveBits());
EXPECT_EQ(0u, u128max.countTrailingZeros());
EXPECT_EQ(128u, u128max.countTrailingOnes());
EXPECT_EQ(128u, u128max.countPopulation());
APInt u64max(128, static_cast<uint64_t>(-1), false);
EXPECT_EQ(64u, u64max.countLeadingZeros());
EXPECT_EQ(0u, u64max.countLeadingOnes());
EXPECT_EQ(64u, u64max.getActiveBits());
EXPECT_EQ(0u, u64max.countTrailingZeros());
EXPECT_EQ(64u, u64max.countTrailingOnes());
EXPECT_EQ(64u, u64max.countPopulation());
EXPECT_EQ((uint64_t)~0ull, u64max.getZExtValue());
APInt zero(128, 0, true);
EXPECT_EQ(128u, zero.countLeadingZeros());
EXPECT_EQ(0u, zero.countLeadingOnes());
EXPECT_EQ(0u, zero.getActiveBits());
EXPECT_EQ(128u, zero.countTrailingZeros());
EXPECT_EQ(0u, zero.countTrailingOnes());
EXPECT_EQ(0u, zero.countPopulation());
EXPECT_EQ(0u, zero.getSExtValue());
EXPECT_EQ(0u, zero.getZExtValue());
APInt one(128, 1, true);
EXPECT_EQ(127u, one.countLeadingZeros());
EXPECT_EQ(0u, one.countLeadingOnes());
EXPECT_EQ(1u, one.getActiveBits());
EXPECT_EQ(0u, one.countTrailingZeros());
EXPECT_EQ(1u, one.countTrailingOnes());
EXPECT_EQ(1u, one.countPopulation());
EXPECT_EQ(1, one.getSExtValue());
EXPECT_EQ(1u, one.getZExtValue());
APInt s128(128, 2, true);
EXPECT_EQ(126u, s128.countLeadingZeros());
EXPECT_EQ(0u, s128.countLeadingOnes());
EXPECT_EQ(2u, s128.getActiveBits());
EXPECT_EQ(1u, s128.countTrailingZeros());
EXPECT_EQ(0u, s128.countTrailingOnes());
EXPECT_EQ(1u, s128.countPopulation());
EXPECT_EQ(2, s128.getSExtValue());
EXPECT_EQ(2u, s128.getZExtValue());
// NOP Test
s128.setBits(42, 42);
EXPECT_EQ(126u, s128.countLeadingZeros());
EXPECT_EQ(0u, s128.countLeadingOnes());
EXPECT_EQ(2u, s128.getActiveBits());
EXPECT_EQ(1u, s128.countTrailingZeros());
EXPECT_EQ(0u, s128.countTrailingOnes());
EXPECT_EQ(1u, s128.countPopulation());
EXPECT_EQ(2, s128.getSExtValue());
EXPECT_EQ(2u, s128.getZExtValue());
s128.setBits(3, 32);
EXPECT_EQ(96u, s128.countLeadingZeros());
EXPECT_EQ(0u, s128.countLeadingOnes());
EXPECT_EQ(32u, s128.getActiveBits());
EXPECT_EQ(33u, s128.getMinSignedBits());
EXPECT_EQ(1u, s128.countTrailingZeros());
EXPECT_EQ(0u, s128.countTrailingOnes());
EXPECT_EQ(30u, s128.countPopulation());
EXPECT_EQ(static_cast<uint32_t>((~0u << 3) | 2), s128.getZExtValue());
s128.setBits(62, 128);
EXPECT_EQ(0u, s128.countLeadingZeros());
EXPECT_EQ(66u, s128.countLeadingOnes());
EXPECT_EQ(128u, s128.getActiveBits());
EXPECT_EQ(63u, s128.getMinSignedBits());
EXPECT_EQ(1u, s128.countTrailingZeros());
EXPECT_EQ(0u, s128.countTrailingOnes());
EXPECT_EQ(96u, s128.countPopulation());
EXPECT_EQ(static_cast<int64_t>((3ull << 62) |
static_cast<uint32_t>((~0u << 3) | 2)),
s128.getSExtValue());
}
TEST(APIntTest, i256) {
APInt s256(256, 15, true);
EXPECT_EQ(252u, s256.countLeadingZeros());
EXPECT_EQ(0u, s256.countLeadingOnes());
EXPECT_EQ(4u, s256.getActiveBits());
EXPECT_EQ(0u, s256.countTrailingZeros());
EXPECT_EQ(4u, s256.countTrailingOnes());
EXPECT_EQ(4u, s256.countPopulation());
EXPECT_EQ(15, s256.getSExtValue());
EXPECT_EQ(15u, s256.getZExtValue());
s256.setBits(62, 66);
EXPECT_EQ(190u, s256.countLeadingZeros());
EXPECT_EQ(0u, s256.countLeadingOnes());
EXPECT_EQ(66u, s256.getActiveBits());
EXPECT_EQ(67u, s256.getMinSignedBits());
EXPECT_EQ(0u, s256.countTrailingZeros());
EXPECT_EQ(4u, s256.countTrailingOnes());
EXPECT_EQ(8u, s256.countPopulation());
s256.setBits(60, 256);
EXPECT_EQ(0u, s256.countLeadingZeros());
EXPECT_EQ(196u, s256.countLeadingOnes());
EXPECT_EQ(256u, s256.getActiveBits());
EXPECT_EQ(61u, s256.getMinSignedBits());
EXPECT_EQ(0u, s256.countTrailingZeros());
EXPECT_EQ(4u, s256.countTrailingOnes());
EXPECT_EQ(200u, s256.countPopulation());
EXPECT_EQ(static_cast<int64_t>((~0ull << 60) | 15), s256.getSExtValue());
}
TEST(APIntTest, i1) {
const APInt neg_two(1, static_cast<uint64_t>(-2), true);
const APInt neg_one(1, static_cast<uint64_t>(-1), true);
const APInt zero(1, 0);
const APInt one(1, 1);
const APInt two(1, 2);
EXPECT_EQ(0, neg_two.getSExtValue());
EXPECT_EQ(-1, neg_one.getSExtValue());
EXPECT_EQ(1u, neg_one.getZExtValue());
EXPECT_EQ(0u, zero.getZExtValue());
EXPECT_EQ(-1, one.getSExtValue());
EXPECT_EQ(1u, one.getZExtValue());
EXPECT_EQ(0u, two.getZExtValue());
EXPECT_EQ(0, two.getSExtValue());
// Basic equalities for 1-bit values.
EXPECT_EQ(zero, two);
EXPECT_EQ(zero, neg_two);
EXPECT_EQ(one, neg_one);
EXPECT_EQ(two, neg_two);
// Min/max signed values.
EXPECT_TRUE(zero.isMaxSignedValue());
EXPECT_FALSE(one.isMaxSignedValue());
EXPECT_FALSE(zero.isMinSignedValue());
EXPECT_TRUE(one.isMinSignedValue());
// Additions.
EXPECT_EQ(two, one + one);
EXPECT_EQ(zero, neg_one + one);
EXPECT_EQ(neg_two, neg_one + neg_one);
// Subtractions.
EXPECT_EQ(neg_two, neg_one - one);
EXPECT_EQ(two, one - neg_one);
EXPECT_EQ(zero, one - one);
// And
EXPECT_EQ(zero, zero & zero);
EXPECT_EQ(zero, one & zero);
EXPECT_EQ(zero, zero & one);
EXPECT_EQ(one, one & one);
EXPECT_EQ(zero, zero & zero);
EXPECT_EQ(zero, neg_one & zero);
EXPECT_EQ(zero, zero & neg_one);
EXPECT_EQ(neg_one, neg_one & neg_one);
// Or
EXPECT_EQ(zero, zero | zero);
EXPECT_EQ(one, one | zero);
EXPECT_EQ(one, zero | one);
EXPECT_EQ(one, one | one);
EXPECT_EQ(zero, zero | zero);
EXPECT_EQ(neg_one, neg_one | zero);
EXPECT_EQ(neg_one, zero | neg_one);
EXPECT_EQ(neg_one, neg_one | neg_one);
// Xor
EXPECT_EQ(zero, zero ^ zero);
EXPECT_EQ(one, one ^ zero);
EXPECT_EQ(one, zero ^ one);
EXPECT_EQ(zero, one ^ one);
EXPECT_EQ(zero, zero ^ zero);
EXPECT_EQ(neg_one, neg_one ^ zero);
EXPECT_EQ(neg_one, zero ^ neg_one);
EXPECT_EQ(zero, neg_one ^ neg_one);
// Shifts.
EXPECT_EQ(zero, one << one);
EXPECT_EQ(one, one << zero);
EXPECT_EQ(zero, one.shl(1));
EXPECT_EQ(one, one.shl(0));
EXPECT_EQ(zero, one.lshr(1));
EXPECT_EQ(one, one.ashr(1));
// Rotates.
EXPECT_EQ(one, one.rotl(0));
EXPECT_EQ(one, one.rotl(1));
EXPECT_EQ(one, one.rotr(0));
EXPECT_EQ(one, one.rotr(1));
// Multiplies.
EXPECT_EQ(neg_one, neg_one * one);
EXPECT_EQ(neg_one, one * neg_one);
EXPECT_EQ(one, neg_one * neg_one);
EXPECT_EQ(one, one * one);
// Divides.
EXPECT_EQ(neg_one, one.sdiv(neg_one));
EXPECT_EQ(neg_one, neg_one.sdiv(one));
EXPECT_EQ(one, neg_one.sdiv(neg_one));
EXPECT_EQ(one, one.sdiv(one));
EXPECT_EQ(neg_one, one.udiv(neg_one));
EXPECT_EQ(neg_one, neg_one.udiv(one));
EXPECT_EQ(one, neg_one.udiv(neg_one));
EXPECT_EQ(one, one.udiv(one));
// Remainders.
EXPECT_EQ(zero, neg_one.srem(one));
EXPECT_EQ(zero, neg_one.urem(one));
EXPECT_EQ(zero, one.srem(neg_one));
// sdivrem
{
APInt q(8, 0);
APInt r(8, 0);
APInt one(8, 1);
APInt two(8, 2);
APInt nine(8, 9);
APInt four(8, 4);
EXPECT_EQ(nine.srem(two), one);
EXPECT_EQ(nine.srem(-two), one);
EXPECT_EQ((-nine).srem(two), -one);
EXPECT_EQ((-nine).srem(-two), -one);
APInt::sdivrem(nine, two, q, r);
EXPECT_EQ(four, q);
EXPECT_EQ(one, r);
APInt::sdivrem(-nine, two, q, r);
EXPECT_EQ(-four, q);
EXPECT_EQ(-one, r);
APInt::sdivrem(nine, -two, q, r);
EXPECT_EQ(-four, q);
EXPECT_EQ(one, r);
APInt::sdivrem(-nine, -two, q, r);
EXPECT_EQ(four, q);
EXPECT_EQ(-one, r);
}
}
TEST(APIntTest, compare) {
std::array<APInt, 5> testVals{{
APInt{16, 2},
APInt{16, 1},
APInt{16, 0},
APInt{16, (uint64_t)-1, true},
APInt{16, (uint64_t)-2, true},
}};
for (auto &arg1 : testVals)
for (auto &arg2 : testVals) {
auto uv1 = arg1.getZExtValue();
auto uv2 = arg2.getZExtValue();
auto sv1 = arg1.getSExtValue();
auto sv2 = arg2.getSExtValue();
EXPECT_EQ(uv1 < uv2, arg1.ult(arg2));
EXPECT_EQ(uv1 <= uv2, arg1.ule(arg2));
EXPECT_EQ(uv1 > uv2, arg1.ugt(arg2));
EXPECT_EQ(uv1 >= uv2, arg1.uge(arg2));
EXPECT_EQ(sv1 < sv2, arg1.slt(arg2));
EXPECT_EQ(sv1 <= sv2, arg1.sle(arg2));
EXPECT_EQ(sv1 > sv2, arg1.sgt(arg2));
EXPECT_EQ(sv1 >= sv2, arg1.sge(arg2));
EXPECT_EQ(uv1 < uv2, arg1.ult(uv2));
EXPECT_EQ(uv1 <= uv2, arg1.ule(uv2));
EXPECT_EQ(uv1 > uv2, arg1.ugt(uv2));
EXPECT_EQ(uv1 >= uv2, arg1.uge(uv2));
EXPECT_EQ(sv1 < sv2, arg1.slt(sv2));
EXPECT_EQ(sv1 <= sv2, arg1.sle(sv2));
EXPECT_EQ(sv1 > sv2, arg1.sgt(sv2));
EXPECT_EQ(sv1 >= sv2, arg1.sge(sv2));
}
}
TEST(APIntTest, compareWithRawIntegers) {
EXPECT_TRUE(!APInt(8, 1).uge(256));
EXPECT_TRUE(!APInt(8, 1).ugt(256));
EXPECT_TRUE( APInt(8, 1).ule(256));
EXPECT_TRUE( APInt(8, 1).ult(256));
EXPECT_TRUE(!APInt(8, 1).sge(256));
EXPECT_TRUE(!APInt(8, 1).sgt(256));
EXPECT_TRUE( APInt(8, 1).sle(256));
EXPECT_TRUE( APInt(8, 1).slt(256));
EXPECT_TRUE(!(APInt(8, 0) == 256));
EXPECT_TRUE( APInt(8, 0) != 256);
EXPECT_TRUE(!(APInt(8, 1) == 256));
EXPECT_TRUE( APInt(8, 1) != 256);
auto uint64max = UINT64_MAX;
auto int64max = INT64_MAX;
auto int64min = INT64_MIN;
auto u64 = APInt{128, uint64max};
auto s64 = APInt{128, static_cast<uint64_t>(int64max), true};
auto big = u64 + 1;
EXPECT_TRUE( u64.uge(uint64max));
EXPECT_TRUE(!u64.ugt(uint64max));
EXPECT_TRUE( u64.ule(uint64max));
EXPECT_TRUE(!u64.ult(uint64max));
EXPECT_TRUE( u64.sge(int64max));
EXPECT_TRUE( u64.sgt(int64max));
EXPECT_TRUE(!u64.sle(int64max));
EXPECT_TRUE(!u64.slt(int64max));
EXPECT_TRUE( u64.sge(int64min));
EXPECT_TRUE( u64.sgt(int64min));
EXPECT_TRUE(!u64.sle(int64min));
EXPECT_TRUE(!u64.slt(int64min));
EXPECT_TRUE(u64 == uint64max);
EXPECT_TRUE(u64 != int64max);
EXPECT_TRUE(u64 != int64min);
EXPECT_TRUE(!s64.uge(uint64max));
EXPECT_TRUE(!s64.ugt(uint64max));
EXPECT_TRUE( s64.ule(uint64max));
EXPECT_TRUE( s64.ult(uint64max));
EXPECT_TRUE( s64.sge(int64max));
EXPECT_TRUE(!s64.sgt(int64max));
EXPECT_TRUE( s64.sle(int64max));
EXPECT_TRUE(!s64.slt(int64max));
EXPECT_TRUE( s64.sge(int64min));
EXPECT_TRUE( s64.sgt(int64min));
EXPECT_TRUE(!s64.sle(int64min));
EXPECT_TRUE(!s64.slt(int64min));
EXPECT_TRUE(s64 != uint64max);
EXPECT_TRUE(s64 == int64max);
EXPECT_TRUE(s64 != int64min);
EXPECT_TRUE( big.uge(uint64max));
EXPECT_TRUE( big.ugt(uint64max));
EXPECT_TRUE(!big.ule(uint64max));
EXPECT_TRUE(!big.ult(uint64max));
EXPECT_TRUE( big.sge(int64max));
EXPECT_TRUE( big.sgt(int64max));
EXPECT_TRUE(!big.sle(int64max));
EXPECT_TRUE(!big.slt(int64max));
EXPECT_TRUE( big.sge(int64min));
EXPECT_TRUE( big.sgt(int64min));
EXPECT_TRUE(!big.sle(int64min));
EXPECT_TRUE(!big.slt(int64min));
EXPECT_TRUE(big != uint64max);
EXPECT_TRUE(big != int64max);
EXPECT_TRUE(big != int64min);
}
TEST(APIntTest, compareWithInt64Min) {
int64_t edge = INT64_MIN;
int64_t edgeP1 = edge + 1;
int64_t edgeM1 = INT64_MAX;
auto a = APInt{64, static_cast<uint64_t>(edge), true};
EXPECT_TRUE(!a.slt(edge));
EXPECT_TRUE( a.sle(edge));
EXPECT_TRUE(!a.sgt(edge));
EXPECT_TRUE( a.sge(edge));
EXPECT_TRUE( a.slt(edgeP1));
EXPECT_TRUE( a.sle(edgeP1));
EXPECT_TRUE(!a.sgt(edgeP1));
EXPECT_TRUE(!a.sge(edgeP1));
EXPECT_TRUE( a.slt(edgeM1));
EXPECT_TRUE( a.sle(edgeM1));
EXPECT_TRUE(!a.sgt(edgeM1));
EXPECT_TRUE(!a.sge(edgeM1));
}
TEST(APIntTest, compareWithHalfInt64Max) {
uint64_t edge = 0x4000000000000000;
uint64_t edgeP1 = edge + 1;
uint64_t edgeM1 = edge - 1;
auto a = APInt{64, edge};
EXPECT_TRUE(!a.ult(edge));
EXPECT_TRUE( a.ule(edge));
EXPECT_TRUE(!a.ugt(edge));
EXPECT_TRUE( a.uge(edge));
EXPECT_TRUE( a.ult(edgeP1));
EXPECT_TRUE( a.ule(edgeP1));
EXPECT_TRUE(!a.ugt(edgeP1));
EXPECT_TRUE(!a.uge(edgeP1));
EXPECT_TRUE(!a.ult(edgeM1));
EXPECT_TRUE(!a.ule(edgeM1));
EXPECT_TRUE( a.ugt(edgeM1));
EXPECT_TRUE( a.uge(edgeM1));
EXPECT_TRUE(!a.slt(edge));
EXPECT_TRUE( a.sle(edge));
EXPECT_TRUE(!a.sgt(edge));
EXPECT_TRUE( a.sge(edge));
EXPECT_TRUE( a.slt(edgeP1));
EXPECT_TRUE( a.sle(edgeP1));
EXPECT_TRUE(!a.sgt(edgeP1));
EXPECT_TRUE(!a.sge(edgeP1));
EXPECT_TRUE(!a.slt(edgeM1));
EXPECT_TRUE(!a.sle(edgeM1));
EXPECT_TRUE( a.sgt(edgeM1));
EXPECT_TRUE( a.sge(edgeM1));
}
TEST(APIntTest, compareLargeIntegers) {
// Make sure all the combinations of signed comparisons work with big ints.
auto One = APInt{128, static_cast<uint64_t>(1), true};
auto Two = APInt{128, static_cast<uint64_t>(2), true};
auto MinusOne = APInt{128, static_cast<uint64_t>(-1), true};
auto MinusTwo = APInt{128, static_cast<uint64_t>(-2), true};
EXPECT_TRUE(!One.slt(One));
EXPECT_TRUE(!Two.slt(One));
EXPECT_TRUE(MinusOne.slt(One));
EXPECT_TRUE(MinusTwo.slt(One));
EXPECT_TRUE(One.slt(Two));
EXPECT_TRUE(!Two.slt(Two));
EXPECT_TRUE(MinusOne.slt(Two));
EXPECT_TRUE(MinusTwo.slt(Two));
EXPECT_TRUE(!One.slt(MinusOne));
EXPECT_TRUE(!Two.slt(MinusOne));
EXPECT_TRUE(!MinusOne.slt(MinusOne));
EXPECT_TRUE(MinusTwo.slt(MinusOne));
EXPECT_TRUE(!One.slt(MinusTwo));
EXPECT_TRUE(!Two.slt(MinusTwo));
EXPECT_TRUE(!MinusOne.slt(MinusTwo));
EXPECT_TRUE(!MinusTwo.slt(MinusTwo));
}
TEST(APIntTest, binaryOpsWithRawIntegers) {
// Single word check.
uint64_t E1 = 0x2CA7F46BF6569915ULL;
APInt A1(64, E1);
EXPECT_EQ(A1 & E1, E1);
EXPECT_EQ(A1 & 0, 0);
EXPECT_EQ(A1 & 1, 1);
EXPECT_EQ(A1 & 5, 5);
EXPECT_EQ(A1 & UINT64_MAX, E1);
EXPECT_EQ(A1 | E1, E1);
EXPECT_EQ(A1 | 0, E1);
EXPECT_EQ(A1 | 1, E1);
EXPECT_EQ(A1 | 2, E1 | 2);
EXPECT_EQ(A1 | UINT64_MAX, UINT64_MAX);
EXPECT_EQ(A1 ^ E1, 0);
EXPECT_EQ(A1 ^ 0, E1);
EXPECT_EQ(A1 ^ 1, E1 ^ 1);
EXPECT_EQ(A1 ^ 7, E1 ^ 7);
EXPECT_EQ(A1 ^ UINT64_MAX, ~E1);
// Multiword check.
uint64_t N = 0xEB6EB136591CBA21ULL;
APInt::WordType E2[4] = {
N,
0x7B9358BD6A33F10AULL,
0x7E7FFA5EADD8846ULL,
0x305F341CA00B613DULL
};
APInt A2(APInt::APINT_BITS_PER_WORD*4, E2);
EXPECT_EQ(A2 & N, N);
EXPECT_EQ(A2 & 0, 0);
EXPECT_EQ(A2 & 1, 1);
EXPECT_EQ(A2 & 5, 1);
EXPECT_EQ(A2 & UINT64_MAX, N);
EXPECT_EQ(A2 | N, A2);
EXPECT_EQ(A2 | 0, A2);
EXPECT_EQ(A2 | 1, A2);
EXPECT_EQ(A2 | 2, A2 + 2);
EXPECT_EQ(A2 | UINT64_MAX, A2 - N + UINT64_MAX);
EXPECT_EQ(A2 ^ N, A2 - N);
EXPECT_EQ(A2 ^ 0, A2);
EXPECT_EQ(A2 ^ 1, A2 - 1);
EXPECT_EQ(A2 ^ 7, A2 + 5);
EXPECT_EQ(A2 ^ UINT64_MAX, A2 - N + ~N);
}
TEST(APIntTest, rvalue_arithmetic) {
// Test all combinations of lvalue/rvalue lhs/rhs of add/sub
// Lamdba to return an APInt by value, but also provide the raw value of the
// allocated data.
auto getRValue = [](const char *HexString, uint64_t const *&RawData) {
APInt V(129, HexString, 16);
RawData = V.getRawData();
return V;
};
APInt One(129, "1", 16);
APInt Two(129, "2", 16);
APInt Three(129, "3", 16);
APInt MinusOne = -One;
const uint64_t *RawDataL = nullptr;
const uint64_t *RawDataR = nullptr;
{
// 1 + 1 = 2
APInt AddLL = One + One;
EXPECT_EQ(AddLL, Two);
APInt AddLR = One + getRValue("1", RawDataR);
EXPECT_EQ(AddLR, Two);
EXPECT_EQ(AddLR.getRawData(), RawDataR);
APInt AddRL = getRValue("1", RawDataL) + One;
EXPECT_EQ(AddRL, Two);
EXPECT_EQ(AddRL.getRawData(), RawDataL);
APInt AddRR = getRValue("1", RawDataL) + getRValue("1", RawDataR);
EXPECT_EQ(AddRR, Two);
EXPECT_EQ(AddRR.getRawData(), RawDataR);
// LValue's and constants
APInt AddLK = One + 1;
EXPECT_EQ(AddLK, Two);
APInt AddKL = 1 + One;
EXPECT_EQ(AddKL, Two);
// RValue's and constants
APInt AddRK = getRValue("1", RawDataL) + 1;
EXPECT_EQ(AddRK, Two);
EXPECT_EQ(AddRK.getRawData(), RawDataL);
APInt AddKR = 1 + getRValue("1", RawDataR);
EXPECT_EQ(AddKR, Two);
EXPECT_EQ(AddKR.getRawData(), RawDataR);
}
{
// 0x0,FFFF...FFFF + 0x2 = 0x100...0001
APInt AllOnes(129, "0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", 16);
APInt HighOneLowOne(129, "100000000000000000000000000000001", 16);
APInt AddLL = AllOnes + Two;
EXPECT_EQ(AddLL, HighOneLowOne);
APInt AddLR = AllOnes + getRValue("2", RawDataR);
EXPECT_EQ(AddLR, HighOneLowOne);
EXPECT_EQ(AddLR.getRawData(), RawDataR);
APInt AddRL = getRValue("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", RawDataL) + Two;
EXPECT_EQ(AddRL, HighOneLowOne);
EXPECT_EQ(AddRL.getRawData(), RawDataL);
APInt AddRR = getRValue("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", RawDataL) +
getRValue("2", RawDataR);
EXPECT_EQ(AddRR, HighOneLowOne);
EXPECT_EQ(AddRR.getRawData(), RawDataR);
// LValue's and constants
APInt AddLK = AllOnes + 2;
EXPECT_EQ(AddLK, HighOneLowOne);
APInt AddKL = 2 + AllOnes;
EXPECT_EQ(AddKL, HighOneLowOne);
// RValue's and constants
APInt AddRK = getRValue("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", RawDataL) + 2;
EXPECT_EQ(AddRK, HighOneLowOne);
EXPECT_EQ(AddRK.getRawData(), RawDataL);
APInt AddKR = 2 + getRValue("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", RawDataR);
EXPECT_EQ(AddKR, HighOneLowOne);
EXPECT_EQ(AddKR.getRawData(), RawDataR);
}
{
// 2 - 1 = 1
APInt SubLL = Two - One;
EXPECT_EQ(SubLL, One);
APInt SubLR = Two - getRValue("1", RawDataR);
EXPECT_EQ(SubLR, One);
EXPECT_EQ(SubLR.getRawData(), RawDataR);
APInt SubRL = getRValue("2", RawDataL) - One;
EXPECT_EQ(SubRL, One);
EXPECT_EQ(SubRL.getRawData(), RawDataL);
APInt SubRR = getRValue("2", RawDataL) - getRValue("1", RawDataR);
EXPECT_EQ(SubRR, One);
EXPECT_EQ(SubRR.getRawData(), RawDataR);
// LValue's and constants
APInt SubLK = Two - 1;
EXPECT_EQ(SubLK, One);
APInt SubKL = 2 - One;
EXPECT_EQ(SubKL, One);
// RValue's and constants
APInt SubRK = getRValue("2", RawDataL) - 1;
EXPECT_EQ(SubRK, One);
EXPECT_EQ(SubRK.getRawData(), RawDataL);
APInt SubKR = 2 - getRValue("1", RawDataR);
EXPECT_EQ(SubKR, One);
EXPECT_EQ(SubKR.getRawData(), RawDataR);
}
{
// 0x100...0001 - 0x0,FFFF...FFFF = 0x2
APInt AllOnes(129, "0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", 16);
APInt HighOneLowOne(129, "100000000000000000000000000000001", 16);
APInt SubLL = HighOneLowOne - AllOnes;
EXPECT_EQ(SubLL, Two);
APInt SubLR = HighOneLowOne -
getRValue("0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", RawDataR);
EXPECT_EQ(SubLR, Two);
EXPECT_EQ(SubLR.getRawData(), RawDataR);
APInt SubRL = getRValue("100000000000000000000000000000001", RawDataL) -
AllOnes;
EXPECT_EQ(SubRL, Two);
EXPECT_EQ(SubRL.getRawData(), RawDataL);
APInt SubRR = getRValue("100000000000000000000000000000001", RawDataL) -
getRValue("0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", RawDataR);
EXPECT_EQ(SubRR, Two);
EXPECT_EQ(SubRR.getRawData(), RawDataR);
// LValue's and constants
// 0x100...0001 - 0x2 = 0x0,FFFF...FFFF
APInt SubLK = HighOneLowOne - 2;
EXPECT_EQ(SubLK, AllOnes);
// 2 - (-1) = 3
APInt SubKL = 2 - MinusOne;
EXPECT_EQ(SubKL, Three);
// RValue's and constants
// 0x100...0001 - 0x2 = 0x0,FFFF...FFFF
APInt SubRK = getRValue("100000000000000000000000000000001", RawDataL) - 2;
EXPECT_EQ(SubRK, AllOnes);
EXPECT_EQ(SubRK.getRawData(), RawDataL);
APInt SubKR = 2 - getRValue("1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", RawDataR);
EXPECT_EQ(SubKR, Three);
EXPECT_EQ(SubKR.getRawData(), RawDataR);
}
}
TEST(APIntTest, rvalue_bitwise) {
// Test all combinations of lvalue/rvalue lhs/rhs of and/or/xor
// Lamdba to return an APInt by value, but also provide the raw value of the
// allocated data.
auto getRValue = [](const char *HexString, uint64_t const *&RawData) {
APInt V(129, HexString, 16);
RawData = V.getRawData();
return V;
};
APInt Ten(129, "A", 16);
APInt Twelve(129, "C", 16);
const uint64_t *RawDataL = nullptr;
const uint64_t *RawDataR = nullptr;
{
// 12 & 10 = 8
APInt AndLL = Ten & Twelve;
EXPECT_EQ(AndLL, 0x8);
APInt AndLR = Ten & getRValue("C", RawDataR);
EXPECT_EQ(AndLR, 0x8);
EXPECT_EQ(AndLR.getRawData(), RawDataR);
APInt AndRL = getRValue("A", RawDataL) & Twelve;
EXPECT_EQ(AndRL, 0x8);
EXPECT_EQ(AndRL.getRawData(), RawDataL);
APInt AndRR = getRValue("A", RawDataL) & getRValue("C", RawDataR);
EXPECT_EQ(AndRR, 0x8);
EXPECT_EQ(AndRR.getRawData(), RawDataR);
// LValue's and constants
APInt AndLK = Ten & 0xc;
EXPECT_EQ(AndLK, 0x8);
APInt AndKL = 0xa & Twelve;
EXPECT_EQ(AndKL, 0x8);
// RValue's and constants
APInt AndRK = getRValue("A", RawDataL) & 0xc;
EXPECT_EQ(AndRK, 0x8);
EXPECT_EQ(AndRK.getRawData(), RawDataL);
APInt AndKR = 0xa & getRValue("C", RawDataR);
EXPECT_EQ(AndKR, 0x8);
EXPECT_EQ(AndKR.getRawData(), RawDataR);
}
{
// 12 | 10 = 14
APInt OrLL = Ten | Twelve;
EXPECT_EQ(OrLL, 0xe);
APInt OrLR = Ten | getRValue("C", RawDataR);
EXPECT_EQ(OrLR, 0xe);
EXPECT_EQ(OrLR.getRawData(), RawDataR);
APInt OrRL = getRValue("A", RawDataL) | Twelve;
EXPECT_EQ(OrRL, 0xe);
EXPECT_EQ(OrRL.getRawData(), RawDataL);
APInt OrRR = getRValue("A", RawDataL) | getRValue("C", RawDataR);
EXPECT_EQ(OrRR, 0xe);
EXPECT_EQ(OrRR.getRawData(), RawDataR);
// LValue's and constants
APInt OrLK = Ten | 0xc;
EXPECT_EQ(OrLK, 0xe);
APInt OrKL = 0xa | Twelve;
EXPECT_EQ(OrKL, 0xe);
// RValue's and constants
APInt OrRK = getRValue("A", RawDataL) | 0xc;
EXPECT_EQ(OrRK, 0xe);
EXPECT_EQ(OrRK.getRawData(), RawDataL);
APInt OrKR = 0xa | getRValue("C", RawDataR);
EXPECT_EQ(OrKR, 0xe);
EXPECT_EQ(OrKR.getRawData(), RawDataR);
}
{
// 12 ^ 10 = 6
APInt XorLL = Ten ^ Twelve;
EXPECT_EQ(XorLL, 0x6);
APInt XorLR = Ten ^ getRValue("C", RawDataR);
EXPECT_EQ(XorLR, 0x6);
EXPECT_EQ(XorLR.getRawData(), RawDataR);
APInt XorRL = getRValue("A", RawDataL) ^ Twelve;
EXPECT_EQ(XorRL, 0x6);
EXPECT_EQ(XorRL.getRawData(), RawDataL);
APInt XorRR = getRValue("A", RawDataL) ^ getRValue("C", RawDataR);
EXPECT_EQ(XorRR, 0x6);
EXPECT_EQ(XorRR.getRawData(), RawDataR);
// LValue's and constants
APInt XorLK = Ten ^ 0xc;
EXPECT_EQ(XorLK, 0x6);
APInt XorKL = 0xa ^ Twelve;
EXPECT_EQ(XorKL, 0x6);
// RValue's and constants
APInt XorRK = getRValue("A", RawDataL) ^ 0xc;
EXPECT_EQ(XorRK, 0x6);
EXPECT_EQ(XorRK.getRawData(), RawDataL);
APInt XorKR = 0xa ^ getRValue("C", RawDataR);
EXPECT_EQ(XorKR, 0x6);
EXPECT_EQ(XorKR.getRawData(), RawDataR);
}
}
TEST(APIntTest, rvalue_invert) {
// Lamdba to return an APInt by value, but also provide the raw value of the
// allocated data.
auto getRValue = [](const char *HexString, uint64_t const *&RawData) {
APInt V(129, HexString, 16);
RawData = V.getRawData();
return V;
};
APInt One(129, 1);
APInt NegativeTwo(129, -2ULL, true);
const uint64_t *RawData = nullptr;
{
// ~1 = -2
APInt NegL = ~One;
EXPECT_EQ(NegL, NegativeTwo);
APInt NegR = ~getRValue("1", RawData);
EXPECT_EQ(NegR, NegativeTwo);
EXPECT_EQ(NegR.getRawData(), RawData);
}
}
// Tests different div/rem varaints using scheme (a * b + c) / a
void testDiv(APInt a, APInt b, APInt c) {
ASSERT_TRUE(a.uge(b)); // Must: a >= b
ASSERT_TRUE(a.ugt(c)); // Must: a > c
auto p = a * b + c;
auto q = p.udiv(a);
auto r = p.urem(a);
EXPECT_EQ(b, q);
EXPECT_EQ(c, r);
APInt::udivrem(p, a, q, r);
EXPECT_EQ(b, q);
EXPECT_EQ(c, r);
q = p.sdiv(a);
r = p.srem(a);
EXPECT_EQ(b, q);
EXPECT_EQ(c, r);
APInt::sdivrem(p, a, q, r);
EXPECT_EQ(b, q);
EXPECT_EQ(c, r);
if (b.ugt(c)) { // Test also symmetric case
q = p.udiv(b);
r = p.urem(b);
EXPECT_EQ(a, q);
EXPECT_EQ(c, r);
APInt::udivrem(p, b, q, r);
EXPECT_EQ(a, q);
EXPECT_EQ(c, r);
q = p.sdiv(b);
r = p.srem(b);
EXPECT_EQ(a, q);
EXPECT_EQ(c, r);
APInt::sdivrem(p, b, q, r);
EXPECT_EQ(a, q);
EXPECT_EQ(c, r);
}
}
TEST(APIntTest, divrem_big1) {
// Tests KnuthDiv rare step D6
testDiv({256, "1ffffffffffffffff", 16},
{256, "1ffffffffffffffff", 16},
{256, 0});
}
TEST(APIntTest, divrem_big2) {
// Tests KnuthDiv rare step D6
testDiv({1024, "112233ceff"
"cecece000000ffffffffffffffffffff"
"ffffffffffffffffffffffffffffffff"
"ffffffffffffffffffffffffffffffff"
"ffffffffffffffffffffffffffffff33", 16},
{1024, "111111ffffffffffffffff"
"ffffffffffffffffffffffffffffffff"
"fffffffffffffffffffffffffffffccf"
"ffffffffffffffffffffffffffffff00", 16},
{1024, 7919});
}
TEST(APIntTest, divrem_big3) {
// Tests KnuthDiv case without shift
testDiv({256, "80000001ffffffffffffffff", 16},
{256, "ffffffffffffff0000000", 16},
{256, 4219});
}
TEST(APIntTest, divrem_big4) {
// Tests heap allocation in divide() enfoced by huge numbers
testDiv(APInt{4096, 5}.shl(2001),
APInt{4096, 1}.shl(2000),
APInt{4096, 4219*13});
}
TEST(APIntTest, divrem_big5) {
// Tests one word divisor case of divide()
testDiv(APInt{1024, 19}.shl(811),
APInt{1024, 4356013}, // one word
APInt{1024, 1});
}
TEST(APIntTest, divrem_big6) {
// Tests some rare "borrow" cases in D4 step
testDiv(APInt{512, "ffffffffffffffff00000000000000000000000001", 16},
APInt{512, "10000000000000001000000000000001", 16},
APInt{512, "10000000000000000000000000000000", 16});
}
TEST(APIntTest, divrem_big7) {
// Yet another test for KnuthDiv rare step D6.
testDiv({224, "800000008000000200000005", 16},
{224, "fffffffd", 16},
{224, "80000000800000010000000f", 16});
}
void testDiv(APInt a, uint64_t b, APInt c) {
auto p = a * b + c;
APInt q;
uint64_t r;
// Unsigned division will only work if our original number wasn't negative.
if (!a.isNegative()) {
q = p.udiv(b);
r = p.urem(b);
EXPECT_EQ(a, q);
EXPECT_EQ(c, r);
APInt::udivrem(p, b, q, r);
EXPECT_EQ(a, q);
EXPECT_EQ(c, r);
}
q = p.sdiv(b);
r = p.srem(b);
EXPECT_EQ(a, q);
if (c.isNegative())
EXPECT_EQ(-c, -r); // Need to negate so the uint64_t compare will work.
else
EXPECT_EQ(c, r);
int64_t sr;
APInt::sdivrem(p, b, q, sr);
EXPECT_EQ(a, q);
if (c.isNegative())
EXPECT_EQ(-c, -sr); // Need to negate so the uint64_t compare will work.
else
EXPECT_EQ(c, sr);
}
TEST(APIntTest, divremuint) {
// Single word APInt
testDiv(APInt{64, 9},
2,
APInt{64, 1});
// Single word negative APInt
testDiv(-APInt{64, 9},
2,
-APInt{64, 1});
// Multiword dividend with only one significant word.
testDiv(APInt{256, 9},
2,
APInt{256, 1});
// Negative dividend.
testDiv(-APInt{256, 9},
2,
-APInt{256, 1});
// Multiword dividend
testDiv(APInt{1024, 19}.shl(811),
4356013, // one word
APInt{1024, 1});
}
TEST(APIntTest, divrem_simple) {
// Test simple cases.
APInt A(65, 2), B(65, 2);
APInt Q, R;
// X / X
APInt::sdivrem(A, B, Q, R);
EXPECT_EQ(Q, APInt(65, 1));
EXPECT_EQ(R, APInt(65, 0));
APInt::udivrem(A, B, Q, R);
EXPECT_EQ(Q, APInt(65, 1));
EXPECT_EQ(R, APInt(65, 0));
// 0 / X
APInt O(65, 0);
APInt::sdivrem(O, B, Q, R);
EXPECT_EQ(Q, APInt(65, 0));
EXPECT_EQ(R, APInt(65, 0));
APInt::udivrem(O, B, Q, R);
EXPECT_EQ(Q, APInt(65, 0));
EXPECT_EQ(R, APInt(65, 0));
// X / 1
APInt I(65, 1);
APInt::sdivrem(A, I, Q, R);
EXPECT_EQ(Q, A);
EXPECT_EQ(R, APInt(65, 0));
APInt::udivrem(A, I, Q, R);
EXPECT_EQ(Q, A);
EXPECT_EQ(R, APInt(65, 0));
}
TEST(APIntTest, fromString) {
EXPECT_EQ(APInt(32, 0), APInt(32, "0", 2));
EXPECT_EQ(APInt(32, 1), APInt(32, "1", 2));
EXPECT_EQ(APInt(32, 2), APInt(32, "10", 2));
EXPECT_EQ(APInt(32, 3), APInt(32, "11", 2));
EXPECT_EQ(APInt(32, 4), APInt(32, "100", 2));
EXPECT_EQ(APInt(32, 0), APInt(32, "+0", 2));
EXPECT_EQ(APInt(32, 1), APInt(32, "+1", 2));
EXPECT_EQ(APInt(32, 2), APInt(32, "+10", 2));
EXPECT_EQ(APInt(32, 3), APInt(32, "+11", 2));
EXPECT_EQ(APInt(32, 4), APInt(32, "+100", 2));
EXPECT_EQ(APInt(32, uint64_t(-0LL)), APInt(32, "-0", 2));
EXPECT_EQ(APInt(32, uint64_t(-1LL)), APInt(32, "-1", 2));
EXPECT_EQ(APInt(32, uint64_t(-2LL)), APInt(32, "-10", 2));
EXPECT_EQ(APInt(32, uint64_t(-3LL)), APInt(32, "-11", 2));
EXPECT_EQ(APInt(32, uint64_t(-4LL)), APInt(32, "-100", 2));
EXPECT_EQ(APInt(32, 0), APInt(32, "0", 8));
EXPECT_EQ(APInt(32, 1), APInt(32, "1", 8));
EXPECT_EQ(APInt(32, 7), APInt(32, "7", 8));
EXPECT_EQ(APInt(32, 8), APInt(32, "10", 8));
EXPECT_EQ(APInt(32, 15), APInt(32, "17", 8));
EXPECT_EQ(APInt(32, 16), APInt(32, "20", 8));
EXPECT_EQ(APInt(32, +0), APInt(32, "+0", 8));
EXPECT_EQ(APInt(32, +1), APInt(32, "+1", 8));
EXPECT_EQ(APInt(32, +7), APInt(32, "+7", 8));
EXPECT_EQ(APInt(32, +8), APInt(32, "+10", 8));
EXPECT_EQ(APInt(32, +15), APInt(32, "+17", 8));
EXPECT_EQ(APInt(32, +16), APInt(32, "+20", 8));
EXPECT_EQ(APInt(32, uint64_t(-0LL)), APInt(32, "-0", 8));
EXPECT_EQ(APInt(32, uint64_t(-1LL)), APInt(32, "-1", 8));
EXPECT_EQ(APInt(32, uint64_t(-7LL)), APInt(32, "-7", 8));
EXPECT_EQ(APInt(32, uint64_t(-8LL)), APInt(32, "-10", 8));
EXPECT_EQ(APInt(32, uint64_t(-15LL)), APInt(32, "-17", 8));
EXPECT_EQ(APInt(32, uint64_t(-16LL)), APInt(32, "-20", 8));
EXPECT_EQ(APInt(32, 0), APInt(32, "0", 10));
EXPECT_EQ(APInt(32, 1), APInt(32, "1", 10));
EXPECT_EQ(APInt(32, 9), APInt(32, "9", 10));
EXPECT_EQ(APInt(32, 10), APInt(32, "10", 10));
EXPECT_EQ(APInt(32, 19), APInt(32, "19", 10));
EXPECT_EQ(APInt(32, 20), APInt(32, "20", 10));
EXPECT_EQ(APInt(32, uint64_t(-0LL)), APInt(32, "-0", 10));
EXPECT_EQ(APInt(32, uint64_t(-1LL)), APInt(32, "-1", 10));
EXPECT_EQ(APInt(32, uint64_t(-9LL)), APInt(32, "-9", 10));
EXPECT_EQ(APInt(32, uint64_t(-10LL)), APInt(32, "-10", 10));
EXPECT_EQ(APInt(32, uint64_t(-19LL)), APInt(32, "-19", 10));
EXPECT_EQ(APInt(32, uint64_t(-20LL)), APInt(32, "-20", 10));
EXPECT_EQ(APInt(32, 0), APInt(32, "0", 16));
EXPECT_EQ(APInt(32, 1), APInt(32, "1", 16));
EXPECT_EQ(APInt(32, 15), APInt(32, "F", 16));
EXPECT_EQ(APInt(32, 16), APInt(32, "10", 16));
EXPECT_EQ(APInt(32, 31), APInt(32, "1F", 16));
EXPECT_EQ(APInt(32, 32), APInt(32, "20", 16));
EXPECT_EQ(APInt(32, uint64_t(-0LL)), APInt(32, "-0", 16));
EXPECT_EQ(APInt(32, uint64_t(-1LL)), APInt(32, "-1", 16));
EXPECT_EQ(APInt(32, uint64_t(-15LL)), APInt(32, "-F", 16));
EXPECT_EQ(APInt(32, uint64_t(-16LL)), APInt(32, "-10", 16));
EXPECT_EQ(APInt(32, uint64_t(-31LL)), APInt(32, "-1F", 16));
EXPECT_EQ(APInt(32, uint64_t(-32LL)), APInt(32, "-20", 16));
EXPECT_EQ(APInt(32, 0), APInt(32, "0", 36));
EXPECT_EQ(APInt(32, 1), APInt(32, "1", 36));
EXPECT_EQ(APInt(32, 35), APInt(32, "Z", 36));
EXPECT_EQ(APInt(32, 36), APInt(32, "10", 36));
EXPECT_EQ(APInt(32, 71), APInt(32, "1Z", 36));
EXPECT_EQ(APInt(32, 72), APInt(32, "20", 36));
EXPECT_EQ(APInt(32, uint64_t(-0LL)), APInt(32, "-0", 36));
EXPECT_EQ(APInt(32, uint64_t(-1LL)), APInt(32, "-1", 36));
EXPECT_EQ(APInt(32, uint64_t(-35LL)), APInt(32, "-Z", 36));
EXPECT_EQ(APInt(32, uint64_t(-36LL)), APInt(32, "-10", 36));
EXPECT_EQ(APInt(32, uint64_t(-71LL)), APInt(32, "-1Z", 36));
EXPECT_EQ(APInt(32, uint64_t(-72LL)), APInt(32, "-20", 36));
}
TEST(APIntTest, SaturatingMath) {
APInt AP_10 = APInt(8, 10);
APInt AP_42 = APInt(8, 42);
APInt AP_100 = APInt(8, 100);
APInt AP_200 = APInt(8, 200);
EXPECT_EQ(APInt(7, 100), AP_100.truncUSat(7));
EXPECT_EQ(APInt(6, 63), AP_100.truncUSat(6));
EXPECT_EQ(APInt(5, 31), AP_100.truncUSat(5));
EXPECT_EQ(APInt(7, 127), AP_200.truncUSat(7));
EXPECT_EQ(APInt(6, 63), AP_200.truncUSat(6));
EXPECT_EQ(APInt(5, 31), AP_200.truncUSat(5));
EXPECT_EQ(APInt(7, 42), AP_42.truncSSat(7));
EXPECT_EQ(APInt(6, 31), AP_42.truncSSat(6));
EXPECT_EQ(APInt(5, 15), AP_42.truncSSat(5));
EXPECT_EQ(APInt(7, -56), AP_200.truncSSat(7));
EXPECT_EQ(APInt(6, -32), AP_200.truncSSat(6));
EXPECT_EQ(APInt(5, -16), AP_200.truncSSat(5));
EXPECT_EQ(APInt(8, 200), AP_100.uadd_sat(AP_100));
EXPECT_EQ(APInt(8, 255), AP_100.uadd_sat(AP_200));
EXPECT_EQ(APInt(8, 255), APInt(8, 255).uadd_sat(APInt(8, 255)));
EXPECT_EQ(APInt(8, 110), AP_10.sadd_sat(AP_100));
EXPECT_EQ(APInt(8, 127), AP_100.sadd_sat(AP_100));
EXPECT_EQ(APInt(8, -128), (-AP_100).sadd_sat(-AP_100));
EXPECT_EQ(APInt(8, -128), APInt(8, -128).sadd_sat(APInt(8, -128)));
EXPECT_EQ(APInt(8, 90), AP_100.usub_sat(AP_10));
EXPECT_EQ(APInt(8, 0), AP_100.usub_sat(AP_200));
EXPECT_EQ(APInt(8, 0), APInt(8, 0).usub_sat(APInt(8, 255)));
EXPECT_EQ(APInt(8, -90), AP_10.ssub_sat(AP_100));
EXPECT_EQ(APInt(8, 127), AP_100.ssub_sat(-AP_100));
EXPECT_EQ(APInt(8, -128), (-AP_100).ssub_sat(AP_100));
EXPECT_EQ(APInt(8, -128), APInt(8, -128).ssub_sat(APInt(8, 127)));
EXPECT_EQ(APInt(8, 250), APInt(8, 50).umul_sat(APInt(8, 5)));
EXPECT_EQ(APInt(8, 255), APInt(8, 50).umul_sat(APInt(8, 6)));
EXPECT_EQ(APInt(8, 255), APInt(8, -128).umul_sat(APInt(8, 3)));
EXPECT_EQ(APInt(8, 255), APInt(8, 3).umul_sat(APInt(8, -128)));
EXPECT_EQ(APInt(8, 255), APInt(8, -128).umul_sat(APInt(8, -128)));
EXPECT_EQ(APInt(8, 125), APInt(8, 25).smul_sat(APInt(8, 5)));
EXPECT_EQ(APInt(8, 127), APInt(8, 25).smul_sat(APInt(8, 6)));
EXPECT_EQ(APInt(8, 127), APInt(8, 127).smul_sat(APInt(8, 127)));
EXPECT_EQ(APInt(8, -125), APInt(8, -25).smul_sat(APInt(8, 5)));
EXPECT_EQ(APInt(8, -125), APInt(8, 25).smul_sat(APInt(8, -5)));
EXPECT_EQ(APInt(8, 125), APInt(8, -25).smul_sat(APInt(8, -5)));
EXPECT_EQ(APInt(8, 125), APInt(8, 25).smul_sat(APInt(8, 5)));
EXPECT_EQ(APInt(8, -128), APInt(8, -25).smul_sat(APInt(8, 6)));
EXPECT_EQ(APInt(8, -128), APInt(8, 25).smul_sat(APInt(8, -6)));
EXPECT_EQ(APInt(8, 127), APInt(8, -25).smul_sat(APInt(8, -6)));
EXPECT_EQ(APInt(8, 127), APInt(8, 25).smul_sat(APInt(8, 6)));
EXPECT_EQ(APInt(8, 128), APInt(8, 4).ushl_sat(APInt(8, 5)));
EXPECT_EQ(APInt(8, 255), APInt(8, 4).ushl_sat(APInt(8, 6)));
EXPECT_EQ(APInt(8, 128), APInt(8, 1).ushl_sat(APInt(8, 7)));
EXPECT_EQ(APInt(8, 255), APInt(8, 1).ushl_sat(APInt(8, 8)));
EXPECT_EQ(APInt(8, 255), APInt(8, -128).ushl_sat(APInt(8, 2)));
EXPECT_EQ(APInt(8, 255), APInt(8, 64).ushl_sat(APInt(8, 2)));
EXPECT_EQ(APInt(8, 255), APInt(8, 64).ushl_sat(APInt(8, -2)));
EXPECT_EQ(APInt(8, 64), APInt(8, 4).sshl_sat(APInt(8, 4)));
EXPECT_EQ(APInt(8, 127), APInt(8, 4).sshl_sat(APInt(8, 5)));
EXPECT_EQ(APInt(8, 127), APInt(8, 1).sshl_sat(APInt(8, 8)));
EXPECT_EQ(APInt(8, -64), APInt(8, -4).sshl_sat(APInt(8, 4)));
EXPECT_EQ(APInt(8, -128), APInt(8, -4).sshl_sat(APInt(8, 5)));
EXPECT_EQ(APInt(8, -128), APInt(8, -4).sshl_sat(APInt(8, 6)));
EXPECT_EQ(APInt(8, -128), APInt(8, -1).sshl_sat(APInt(8, 7)));
EXPECT_EQ(APInt(8, -128), APInt(8, -1).sshl_sat(APInt(8, 8)));
}
TEST(APIntTest, FromArray) {
EXPECT_EQ(APInt(32, uint64_t(1)), APInt(32, ArrayRef<uint64_t>(1)));
}
TEST(APIntTest, StringBitsNeeded2) {
EXPECT_EQ(1U, APInt::getBitsNeeded( "0", 2));
EXPECT_EQ(1U, APInt::getBitsNeeded( "1", 2));
EXPECT_EQ(2U, APInt::getBitsNeeded( "10", 2));
EXPECT_EQ(2U, APInt::getBitsNeeded( "11", 2));
EXPECT_EQ(3U, APInt::getBitsNeeded("100", 2));
EXPECT_EQ(1U, APInt::getBitsNeeded( "+0", 2));
EXPECT_EQ(1U, APInt::getBitsNeeded( "+1", 2));
EXPECT_EQ(2U, APInt::getBitsNeeded( "+10", 2));
EXPECT_EQ(2U, APInt::getBitsNeeded( "+11", 2));
EXPECT_EQ(3U, APInt::getBitsNeeded("+100", 2));
EXPECT_EQ(2U, APInt::getBitsNeeded( "-0", 2));
EXPECT_EQ(2U, APInt::getBitsNeeded( "-1", 2));
EXPECT_EQ(3U, APInt::getBitsNeeded( "-10", 2));
EXPECT_EQ(3U, APInt::getBitsNeeded( "-11", 2));
EXPECT_EQ(4U, APInt::getBitsNeeded("-100", 2));
}
TEST(APIntTest, StringBitsNeeded8) {
EXPECT_EQ(3U, APInt::getBitsNeeded( "0", 8));
EXPECT_EQ(3U, APInt::getBitsNeeded( "7", 8));
EXPECT_EQ(6U, APInt::getBitsNeeded("10", 8));
EXPECT_EQ(6U, APInt::getBitsNeeded("17", 8));
EXPECT_EQ(6U, APInt::getBitsNeeded("20", 8));
EXPECT_EQ(3U, APInt::getBitsNeeded( "+0", 8));
EXPECT_EQ(3U, APInt::getBitsNeeded( "+7", 8));
EXPECT_EQ(6U, APInt::getBitsNeeded("+10", 8));
EXPECT_EQ(6U, APInt::getBitsNeeded("+17", 8));
EXPECT_EQ(6U, APInt::getBitsNeeded("+20", 8));
EXPECT_EQ(4U, APInt::getBitsNeeded( "-0", 8));
EXPECT_EQ(4U, APInt::getBitsNeeded( "-7", 8));
EXPECT_EQ(7U, APInt::getBitsNeeded("-10", 8));
EXPECT_EQ(7U, APInt::getBitsNeeded("-17", 8));
EXPECT_EQ(7U, APInt::getBitsNeeded("-20", 8));
}
TEST(APIntTest, StringBitsNeeded10) {
EXPECT_EQ(1U, APInt::getBitsNeeded( "0", 10));
EXPECT_EQ(2U, APInt::getBitsNeeded( "3", 10));
EXPECT_EQ(4U, APInt::getBitsNeeded( "9", 10));
EXPECT_EQ(4U, APInt::getBitsNeeded("10", 10));
EXPECT_EQ(5U, APInt::getBitsNeeded("19", 10));
EXPECT_EQ(5U, APInt::getBitsNeeded("20", 10));
EXPECT_EQ(1U, APInt::getBitsNeeded( "+0", 10));
EXPECT_EQ(4U, APInt::getBitsNeeded( "+9", 10));
EXPECT_EQ(4U, APInt::getBitsNeeded("+10", 10));
EXPECT_EQ(5U, APInt::getBitsNeeded("+19", 10));
EXPECT_EQ(5U, APInt::getBitsNeeded("+20", 10));
EXPECT_EQ(2U, APInt::getBitsNeeded( "-0", 10));
EXPECT_EQ(5U, APInt::getBitsNeeded( "-9", 10));
EXPECT_EQ(5U, APInt::getBitsNeeded("-10", 10));
EXPECT_EQ(6U, APInt::getBitsNeeded("-19", 10));
EXPECT_EQ(6U, APInt::getBitsNeeded("-20", 10));
EXPECT_EQ(1U, APInt::getBitsNeeded("-1", 10));
EXPECT_EQ(2U, APInt::getBitsNeeded("-2", 10));
EXPECT_EQ(3U, APInt::getBitsNeeded("-4", 10));
EXPECT_EQ(4U, APInt::getBitsNeeded("-8", 10));
EXPECT_EQ(5U, APInt::getBitsNeeded("-16", 10));
EXPECT_EQ(6U, APInt::getBitsNeeded("-23", 10));
EXPECT_EQ(6U, APInt::getBitsNeeded("-32", 10));
EXPECT_EQ(7U, APInt::getBitsNeeded("-64", 10));
EXPECT_EQ(8U, APInt::getBitsNeeded("-127", 10));
EXPECT_EQ(8U, APInt::getBitsNeeded("-128", 10));
EXPECT_EQ(9U, APInt::getBitsNeeded("-255", 10));
EXPECT_EQ(9U, APInt::getBitsNeeded("-256", 10));
EXPECT_EQ(10U, APInt::getBitsNeeded("-512", 10));
EXPECT_EQ(11U, APInt::getBitsNeeded("-1024", 10));
EXPECT_EQ(12U, APInt::getBitsNeeded("-1025", 10));
}
TEST(APIntTest, StringBitsNeeded16) {
EXPECT_EQ(4U, APInt::getBitsNeeded( "0", 16));
EXPECT_EQ(4U, APInt::getBitsNeeded( "F", 16));
EXPECT_EQ(8U, APInt::getBitsNeeded("10", 16));
EXPECT_EQ(8U, APInt::getBitsNeeded("1F", 16));
EXPECT_EQ(8U, APInt::getBitsNeeded("20", 16));
EXPECT_EQ(4U, APInt::getBitsNeeded( "+0", 16));
EXPECT_EQ(4U, APInt::getBitsNeeded( "+F", 16));
EXPECT_EQ(8U, APInt::getBitsNeeded("+10", 16));
EXPECT_EQ(8U, APInt::getBitsNeeded("+1F", 16));
EXPECT_EQ(8U, APInt::getBitsNeeded("+20", 16));
EXPECT_EQ(5U, APInt::getBitsNeeded( "-0", 16));
EXPECT_EQ(5U, APInt::getBitsNeeded( "-F", 16));
EXPECT_EQ(9U, APInt::getBitsNeeded("-10", 16));
EXPECT_EQ(9U, APInt::getBitsNeeded("-1F", 16));
EXPECT_EQ(9U, APInt::getBitsNeeded("-20", 16));
}
TEST(APIntTest, toString) {
SmallString<16> S;
bool isSigned;
APInt(8, 0).toString(S, 2, true, true);
EXPECT_EQ(std::string(S), "0b0");
S.clear();
APInt(8, 0).toString(S, 8, true, true);
EXPECT_EQ(std::string(S), "00");
S.clear();
APInt(8, 0).toString(S, 10, true, true);
EXPECT_EQ(std::string(S), "0");
S.clear();
APInt(8, 0).toString(S, 16, true, true);
EXPECT_EQ(std::string(S), "0x0");
S.clear();
APInt(8, 0).toString(S, 36, true, false);
EXPECT_EQ(std::string(S), "0");
S.clear();
isSigned = false;
APInt(8, 255, isSigned).toString(S, 2, isSigned, true);
EXPECT_EQ(std::string(S), "0b11111111");
S.clear();
APInt(8, 255, isSigned).toString(S, 8, isSigned, true);
EXPECT_EQ(std::string(S), "0377");
S.clear();
APInt(8, 255, isSigned).toString(S, 10, isSigned, true);
EXPECT_EQ(std::string(S), "255");
S.clear();
APInt(8, 255, isSigned).toString(S, 16, isSigned, true);
EXPECT_EQ(std::string(S), "0xFF");
S.clear();
APInt(8, 255, isSigned).toString(S, 36, isSigned, false);
EXPECT_EQ(std::string(S), "73");
S.clear();
isSigned = true;
APInt(8, 255, isSigned).toString(S, 2, isSigned, true);
EXPECT_EQ(std::string(S), "-0b1");
S.clear();
APInt(8, 255, isSigned).toString(S, 8, isSigned, true);
EXPECT_EQ(std::string(S), "-01");
S.clear();
APInt(8, 255, isSigned).toString(S, 10, isSigned, true);
EXPECT_EQ(std::string(S), "-1");
S.clear();
APInt(8, 255, isSigned).toString(S, 16, isSigned, true);
EXPECT_EQ(std::string(S), "-0x1");
S.clear();
APInt(8, 255, isSigned).toString(S, 36, isSigned, false);
EXPECT_EQ(std::string(S), "-1");
S.clear();
}
TEST(APIntTest, Log2) {
EXPECT_EQ(APInt(15, 7).logBase2(), 2U);
EXPECT_EQ(APInt(15, 7).ceilLogBase2(), 3U);
EXPECT_EQ(APInt(15, 7).exactLogBase2(), -1);
EXPECT_EQ(APInt(15, 8).logBase2(), 3U);
EXPECT_EQ(APInt(15, 8).ceilLogBase2(), 3U);
EXPECT_EQ(APInt(15, 8).exactLogBase2(), 3);
EXPECT_EQ(APInt(15, 9).logBase2(), 3U);
EXPECT_EQ(APInt(15, 9).ceilLogBase2(), 4U);
EXPECT_EQ(APInt(15, 9).exactLogBase2(), -1);
}
#ifdef GTEST_HAS_DEATH_TEST
#ifndef NDEBUG
TEST(APIntTest, StringDeath) {
EXPECT_DEATH((void)APInt(32, "", 0), "Invalid string length");
EXPECT_DEATH((void)APInt(32, "0", 0), "Radix should be 2, 8, 10, 16, or 36!");
EXPECT_DEATH((void)APInt(32, "", 10), "Invalid string length");
EXPECT_DEATH((void)APInt(32, "-", 10), "String is only a sign, needs a value.");
EXPECT_DEATH((void)APInt(1, "1234", 10), "Insufficient bit width");
EXPECT_DEATH((void)APInt(32, "\0", 10), "Invalid string length");
EXPECT_DEATH((void)APInt(32, StringRef("1\02", 3), 10), "Invalid character in digit string");
EXPECT_DEATH((void)APInt(32, "1L", 10), "Invalid character in digit string");
}
#endif
#endif
TEST(APIntTest, mul_clear) {
APInt ValA(65, -1ULL);
APInt ValB(65, 4);
APInt ValC(65, 0);
ValC = ValA * ValB;
ValA *= ValB;
SmallString<16> StrA, StrC;
ValA.toString(StrA, 10, false);
ValC.toString(StrC, 10, false);
EXPECT_EQ(std::string(StrA), std::string(StrC));
}
TEST(APIntTest, Rotate) {
EXPECT_EQ(APInt(8, 1), APInt(8, 1).rotl(0));
EXPECT_EQ(APInt(8, 2), APInt(8, 1).rotl(1));
EXPECT_EQ(APInt(8, 4), APInt(8, 1).rotl(2));
EXPECT_EQ(APInt(8, 16), APInt(8, 1).rotl(4));
EXPECT_EQ(APInt(8, 1), APInt(8, 1).rotl(8));
EXPECT_EQ(APInt(8, 16), APInt(8, 16).rotl(0));
EXPECT_EQ(APInt(8, 32), APInt(8, 16).rotl(1));
EXPECT_EQ(APInt(8, 64), APInt(8, 16).rotl(2));
EXPECT_EQ(APInt(8, 1), APInt(8, 16).rotl(4));
EXPECT_EQ(APInt(8, 16), APInt(8, 16).rotl(8));
EXPECT_EQ(APInt(32, 2), APInt(32, 1).rotl(33));
EXPECT_EQ(APInt(32, 2), APInt(32, 1).rotl(APInt(32, 33)));
EXPECT_EQ(APInt(32, 2), APInt(32, 1).rotl(33));
EXPECT_EQ(APInt(32, 2), APInt(32, 1).rotl(APInt(32, 33)));
EXPECT_EQ(APInt(32, 2), APInt(32, 1).rotl(APInt(33, 33)));
EXPECT_EQ(APInt(32, (1 << 8)), APInt(32, 1).rotl(APInt(32, 40)));
EXPECT_EQ(APInt(32, (1 << 30)), APInt(32, 1).rotl(APInt(31, 30)));
EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotl(APInt(31, 31)));
EXPECT_EQ(APInt(32, 1), APInt(32, 1).rotl(APInt(1, 0)));
EXPECT_EQ(APInt(32, 2), APInt(32, 1).rotl(APInt(1, 1)));
EXPECT_EQ(APInt(32, 16), APInt(32, 1).rotl(APInt(3, 4)));
EXPECT_EQ(APInt(32, 1), APInt(32, 1).rotl(APInt(64, 64)));
EXPECT_EQ(APInt(32, 2), APInt(32, 1).rotl(APInt(64, 65)));
EXPECT_EQ(APInt(7, 24), APInt(7, 3).rotl(APInt(7, 3)));
EXPECT_EQ(APInt(7, 24), APInt(7, 3).rotl(APInt(7, 10)));
EXPECT_EQ(APInt(7, 24), APInt(7, 3).rotl(APInt(5, 10)));
EXPECT_EQ(APInt(7, 6), APInt(7, 3).rotl(APInt(12, 120)));
EXPECT_EQ(APInt(8, 16), APInt(8, 16).rotr(0));
EXPECT_EQ(APInt(8, 8), APInt(8, 16).rotr(1));
EXPECT_EQ(APInt(8, 4), APInt(8, 16).rotr(2));
EXPECT_EQ(APInt(8, 1), APInt(8, 16).rotr(4));
EXPECT_EQ(APInt(8, 16), APInt(8, 16).rotr(8));
EXPECT_EQ(APInt(8, 1), APInt(8, 1).rotr(0));
EXPECT_EQ(APInt(8, 128), APInt(8, 1).rotr(1));
EXPECT_EQ(APInt(8, 64), APInt(8, 1).rotr(2));
EXPECT_EQ(APInt(8, 16), APInt(8, 1).rotr(4));
EXPECT_EQ(APInt(8, 1), APInt(8, 1).rotr(8));
EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotr(33));
EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotr(APInt(32, 33)));
EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotr(33));
EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotr(APInt(32, 33)));
EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotr(APInt(33, 33)));
EXPECT_EQ(APInt(32, (1 << 24)), APInt(32, 1).rotr(APInt(32, 40)));
EXPECT_EQ(APInt(32, (1 << 2)), APInt(32, 1).rotr(APInt(31, 30)));
EXPECT_EQ(APInt(32, (1 << 1)), APInt(32, 1).rotr(APInt(31, 31)));
EXPECT_EQ(APInt(32, 1), APInt(32, 1).rotr(APInt(1, 0)));
EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotr(APInt(1, 1)));
EXPECT_EQ(APInt(32, (1 << 28)), APInt(32, 1).rotr(APInt(3, 4)));
EXPECT_EQ(APInt(32, 1), APInt(32, 1).rotr(APInt(64, 64)));
EXPECT_EQ(APInt(32, (1 << 31)), APInt(32, 1).rotr(APInt(64, 65)));
EXPECT_EQ(APInt(7, 48), APInt(7, 3).rotr(APInt(7, 3)));
EXPECT_EQ(APInt(7, 48), APInt(7, 3).rotr(APInt(7, 10)));
EXPECT_EQ(APInt(7, 48), APInt(7, 3).rotr(APInt(5, 10)));
EXPECT_EQ(APInt(7, 65), APInt(7, 3).rotr(APInt(12, 120)));
APInt Big(256, "00004000800000000000000000003fff8000000000000003", 16);
APInt Rot(256, "3fff80000000000000030000000000000000000040008000", 16);
EXPECT_EQ(Rot, Big.rotr(144));
EXPECT_EQ(APInt(32, 8), APInt(32, 1).rotl(Big));
EXPECT_EQ(APInt(32, (1 << 29)), APInt(32, 1).rotr(Big));
}
TEST(APIntTest, Splat) {
APInt ValA(8, 0x01);
EXPECT_EQ(ValA, APInt::getSplat(8, ValA));
EXPECT_EQ(APInt(64, 0x0101010101010101ULL), APInt::getSplat(64, ValA));
APInt ValB(3, 5);
EXPECT_EQ(APInt(4, 0xD), APInt::getSplat(4, ValB));
EXPECT_EQ(APInt(15, 0xDB6D), APInt::getSplat(15, ValB));
}
TEST(APIntTest, tcDecrement) {
// Test single word decrement.
// No out borrow.
{
APInt::WordType singleWord = ~APInt::WordType(0) << (APInt::APINT_BITS_PER_WORD - 1);
APInt::WordType carry = APInt::tcDecrement(&singleWord, 1);
EXPECT_EQ(carry, APInt::WordType(0));
EXPECT_EQ(singleWord, ~APInt::WordType(0) >> 1);
}
// With out borrow.
{
APInt::WordType singleWord = 0;
APInt::WordType carry = APInt::tcDecrement(&singleWord, 1);
EXPECT_EQ(carry, APInt::WordType(1));
EXPECT_EQ(singleWord, ~APInt::WordType(0));
}
// Test multiword decrement.
// No across word borrow, no out borrow.
{
APInt::WordType test[4] = {0x1, 0x1, 0x1, 0x1};
APInt::WordType expected[4] = {0x0, 0x1, 0x1, 0x1};
APInt::tcDecrement(test, 4);
EXPECT_EQ(APInt::tcCompare(test, expected, 4), 0);
}
// 1 across word borrow, no out borrow.
{
APInt::WordType test[4] = {0x0, 0xF, 0x1, 0x1};
APInt::WordType expected[4] = {~APInt::WordType(0), 0xE, 0x1, 0x1};
APInt::WordType carry = APInt::tcDecrement(test, 4);
EXPECT_EQ(carry, APInt::WordType(0));
EXPECT_EQ(APInt::tcCompare(test, expected, 4), 0);
}
// 2 across word borrow, no out borrow.
{
APInt::WordType test[4] = {0x0, 0x0, 0xC, 0x1};
APInt::WordType expected[4] = {~APInt::WordType(0), ~APInt::WordType(0), 0xB, 0x1};
APInt::WordType carry = APInt::tcDecrement(test, 4);
EXPECT_EQ(carry, APInt::WordType(0));
EXPECT_EQ(APInt::tcCompare(test, expected, 4), 0);
}
// 3 across word borrow, no out borrow.
{
APInt::WordType test[4] = {0x0, 0x0, 0x0, 0x1};
APInt::WordType expected[4] = {~APInt::WordType(0), ~APInt::WordType(0), ~APInt::WordType(0), 0x0};
APInt::WordType carry = APInt::tcDecrement(test, 4);
EXPECT_EQ(carry, APInt::WordType(0));
EXPECT_EQ(APInt::tcCompare(test, expected, 4), 0);
}
// 3 across word borrow, with out borrow.
{
APInt::WordType test[4] = {0x0, 0x0, 0x0, 0x0};
APInt::WordType expected[4] = {~APInt::WordType(0), ~APInt::WordType(0), ~APInt::WordType(0), ~APInt::WordType(0)};
APInt::WordType carry = APInt::tcDecrement(test, 4);
EXPECT_EQ(carry, APInt::WordType(1));
EXPECT_EQ(APInt::tcCompare(test, expected, 4), 0);
}
}
TEST(APIntTest, arrayAccess) {
// Single word check.
uint64_t E1 = 0x2CA7F46BF6569915ULL;
APInt A1(64, E1);
for (unsigned i = 0, e = 64; i < e; ++i) {
EXPECT_EQ(bool(E1 & (1ULL << i)),
A1[i]);
}
// Multiword check.
APInt::WordType E2[4] = {
0xEB6EB136591CBA21ULL,
0x7B9358BD6A33F10AULL,
0x7E7FFA5EADD8846ULL,
0x305F341CA00B613DULL
};
APInt A2(APInt::APINT_BITS_PER_WORD*4, E2);
for (unsigned i = 0; i < 4; ++i) {
for (unsigned j = 0; j < APInt::APINT_BITS_PER_WORD; ++j) {
EXPECT_EQ(bool(E2[i] & (1ULL << j)),
A2[i*APInt::APINT_BITS_PER_WORD + j]);
}
}
}
TEST(APIntTest, LargeAPIntConstruction) {
// Check that we can properly construct very large APInt. It is very
// unlikely that people will ever do this, but it is a legal input,
// so we should not crash on it.
APInt A9(UINT32_MAX, 0);
EXPECT_FALSE(A9.getBoolValue());
}
TEST(APIntTest, nearestLogBase2) {
// Single word check.
// Test round up.
uint64_t I1 = 0x1800001;
APInt A1(64, I1);
EXPECT_EQ(A1.nearestLogBase2(), A1.ceilLogBase2());
// Test round down.
uint64_t I2 = 0x1000011;
APInt A2(64, I2);
EXPECT_EQ(A2.nearestLogBase2(), A2.logBase2());
// Test ties round up.
uint64_t I3 = 0x1800000;
APInt A3(64, I3);
EXPECT_EQ(A3.nearestLogBase2(), A3.ceilLogBase2());
// Multiple word check.
// Test round up.
APInt::WordType I4[4] = {0x0, 0xF, 0x18, 0x0};
APInt A4(APInt::APINT_BITS_PER_WORD*4, I4);
EXPECT_EQ(A4.nearestLogBase2(), A4.ceilLogBase2());
// Test round down.
APInt::WordType I5[4] = {0x0, 0xF, 0x10, 0x0};
APInt A5(APInt::APINT_BITS_PER_WORD*4, I5);
EXPECT_EQ(A5.nearestLogBase2(), A5.logBase2());
// Test ties round up.
uint64_t I6[4] = {0x0, 0x0, 0x0, 0x18};
APInt A6(APInt::APINT_BITS_PER_WORD*4, I6);
EXPECT_EQ(A6.nearestLogBase2(), A6.ceilLogBase2());
// Test BitWidth == 1 special cases.
APInt A7(1, 1);
EXPECT_EQ(A7.nearestLogBase2(), 0ULL);
APInt A8(1, 0);
EXPECT_EQ(A8.nearestLogBase2(), UINT32_MAX);
// Test the zero case when we have a bit width large enough such
// that the bit width is larger than UINT32_MAX-1.
APInt A9(UINT32_MAX, 0);
EXPECT_EQ(A9.nearestLogBase2(), UINT32_MAX);
}
TEST(APIntTest, IsSplat) {
APInt A(32, 0x01010101);
EXPECT_FALSE(A.isSplat(1));
EXPECT_FALSE(A.isSplat(2));
EXPECT_FALSE(A.isSplat(4));
EXPECT_TRUE(A.isSplat(8));
EXPECT_TRUE(A.isSplat(16));
EXPECT_TRUE(A.isSplat(32));
APInt B(24, 0xAAAAAA);
EXPECT_FALSE(B.isSplat(1));
EXPECT_TRUE(B.isSplat(2));
EXPECT_TRUE(B.isSplat(4));
EXPECT_TRUE(B.isSplat(8));
EXPECT_TRUE(B.isSplat(24));
APInt C(24, 0xABAAAB);
EXPECT_FALSE(C.isSplat(1));
EXPECT_FALSE(C.isSplat(2));
EXPECT_FALSE(C.isSplat(4));
EXPECT_FALSE(C.isSplat(8));
EXPECT_TRUE(C.isSplat(24));
APInt D(32, 0xABBAABBA);
EXPECT_FALSE(D.isSplat(1));
EXPECT_FALSE(D.isSplat(2));
EXPECT_FALSE(D.isSplat(4));
EXPECT_FALSE(D.isSplat(8));
EXPECT_TRUE(D.isSplat(16));
EXPECT_TRUE(D.isSplat(32));
APInt E(32, 0);
EXPECT_TRUE(E.isSplat(1));
EXPECT_TRUE(E.isSplat(2));
EXPECT_TRUE(E.isSplat(4));
EXPECT_TRUE(E.isSplat(8));
EXPECT_TRUE(E.isSplat(16));
EXPECT_TRUE(E.isSplat(32));
}
TEST(APIntTest, isMask) {
EXPECT_FALSE(APInt(32, 0x01010101).isMask());
EXPECT_FALSE(APInt(32, 0xf0000000).isMask());
EXPECT_FALSE(APInt(32, 0xffff0000).isMask());
EXPECT_FALSE(APInt(32, 0xff << 1).isMask());
for (int N : { 1, 2, 3, 4, 7, 8, 16, 32, 64, 127, 128, 129, 256 }) {
EXPECT_FALSE(APInt(N, 0).isMask());
APInt One(N, 1);
for (int I = 1; I <= N; ++I) {
APInt MaskVal = One.shl(I) - 1;
EXPECT_TRUE(MaskVal.isMask());
EXPECT_TRUE(MaskVal.isMask(I));
}
}
}
TEST(APIntTest, isShiftedMask) {
EXPECT_FALSE(APInt(32, 0x01010101).isShiftedMask());
EXPECT_TRUE(APInt(32, 0xf0000000).isShiftedMask());
EXPECT_TRUE(APInt(32, 0xffff0000).isShiftedMask());
EXPECT_TRUE(APInt(32, 0xff << 1).isShiftedMask());
for (int N : { 1, 2, 3, 4, 7, 8, 16, 32, 64, 127, 128, 129, 256 }) {
EXPECT_FALSE(APInt(N, 0).isShiftedMask());
APInt One(N, 1);
for (int I = 1; I < N; ++I) {
APInt MaskVal = One.shl(I) - 1;
EXPECT_TRUE(MaskVal.isShiftedMask());
}
for (int I = 1; I < N - 1; ++I) {
APInt MaskVal = One.shl(I);
EXPECT_TRUE(MaskVal.isShiftedMask());
}
for (int I = 1; I < N; ++I) {
APInt MaskVal = APInt::getHighBitsSet(N, I);
EXPECT_TRUE(MaskVal.isShiftedMask());
}
}
}
// Test that self-move works with EXPENSIVE_CHECKS. It calls std::shuffle which
// does self-move on some platforms.
#ifdef EXPENSIVE_CHECKS
#if defined(__clang__)
// Disable the pragma warning from versions of Clang without -Wself-move
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunknown-pragmas"
// Disable the warning that triggers on exactly what is being tested.
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wself-move"
#endif
TEST(APIntTest, SelfMoveAssignment) {
APInt X(32, 0xdeadbeef);
X = std::move(X);
EXPECT_EQ(32u, X.getBitWidth());
EXPECT_EQ(0xdeadbeefULL, X.getLimitedValue());
uint64_t Bits[] = {0xdeadbeefdeadbeefULL, 0xdeadbeefdeadbeefULL};
APInt Y(128, Bits);
Y = std::move(Y);
EXPECT_EQ(128u, Y.getBitWidth());
EXPECT_EQ(~0ULL, Y.getLimitedValue());
const uint64_t *Raw = Y.getRawData();
EXPECT_EQ(2u, Y.getNumWords());
EXPECT_EQ(0xdeadbeefdeadbeefULL, Raw[0]);
EXPECT_EQ(0xdeadbeefdeadbeefULL, Raw[1]);
}
#if defined(__clang__)
#pragma clang diagnostic pop
#pragma clang diagnostic pop
#endif
#endif // EXPENSIVE_CHECKS
TEST(APIntTest, byteSwap) {
EXPECT_EQ(0x00000000, APInt(16, 0x0000).byteSwap());
EXPECT_EQ(0x0000010f, APInt(16, 0x0f01).byteSwap());
EXPECT_EQ(0x00ff8000, APInt(24, 0x0080ff).byteSwap());
EXPECT_EQ(0x117700ff, APInt(32, 0xff007711).byteSwap());
EXPECT_EQ(0x228811aaffULL, APInt(40, 0xffaa118822ULL).byteSwap());
EXPECT_EQ(0x050403020100ULL, APInt(48, 0x000102030405ULL).byteSwap());
EXPECT_EQ(0xff050403020100ULL, APInt(56, 0x000102030405ffULL).byteSwap());
EXPECT_EQ(0xff050403020100aaULL, APInt(64, 0xaa000102030405ffULL).byteSwap());
for (unsigned N : {16, 24, 32, 48, 56, 64, 72, 80, 96, 112, 128, 248, 256,
1024, 1032, 1040}) {
for (unsigned I = 0; I < N; I += 8) {
APInt X = APInt::getBitsSet(N, I, I + 8);
APInt Y = APInt::getBitsSet(N, N - I - 8, N - I);
EXPECT_EQ(Y, X.byteSwap());
EXPECT_EQ(X, Y.byteSwap());
}
}
}
TEST(APIntTest, reverseBits) {
EXPECT_EQ(1, APInt(1, 1).reverseBits());
EXPECT_EQ(0, APInt(1, 0).reverseBits());
EXPECT_EQ(3, APInt(2, 3).reverseBits());
EXPECT_EQ(3, APInt(2, 3).reverseBits());
EXPECT_EQ(0xb, APInt(4, 0xd).reverseBits());
EXPECT_EQ(0xd, APInt(4, 0xb).reverseBits());
EXPECT_EQ(0xf, APInt(4, 0xf).reverseBits());
EXPECT_EQ(0x30, APInt(7, 0x6).reverseBits());
EXPECT_EQ(0x5a, APInt(7, 0x2d).reverseBits());
EXPECT_EQ(0x0f, APInt(8, 0xf0).reverseBits());
EXPECT_EQ(0xf0, APInt(8, 0x0f).reverseBits());
EXPECT_EQ(0x0f0f, APInt(16, 0xf0f0).reverseBits());
EXPECT_EQ(0xf0f0, APInt(16, 0x0f0f).reverseBits());
EXPECT_EQ(0x0f0f0f0f, APInt(32, 0xf0f0f0f0).reverseBits());
EXPECT_EQ(0xf0f0f0f0, APInt(32, 0x0f0f0f0f).reverseBits());
EXPECT_EQ(0x402880a0 >> 1, APInt(31, 0x05011402).reverseBits());
EXPECT_EQ(0x0f0f0f0f, APInt(32, 0xf0f0f0f0).reverseBits());
EXPECT_EQ(0xf0f0f0f0, APInt(32, 0x0f0f0f0f).reverseBits());
EXPECT_EQ(0x0f0f0f0f0f0f0f0f, APInt(64, 0xf0f0f0f0f0f0f0f0).reverseBits());
EXPECT_EQ(0xf0f0f0f0f0f0f0f0, APInt(64, 0x0f0f0f0f0f0f0f0f).reverseBits());
for (unsigned N : { 1, 8, 16, 24, 31, 32, 33,
63, 64, 65, 127, 128, 257, 1024 }) {
for (unsigned I = 0; I < N; ++I) {
APInt X = APInt::getOneBitSet(N, I);
APInt Y = APInt::getOneBitSet(N, N - (I + 1));
EXPECT_EQ(Y, X.reverseBits());
EXPECT_EQ(X, Y.reverseBits());
}
}
}
TEST(APIntTest, insertBits) {
APInt iSrc(31, 0x00123456);
// Direct copy.
APInt i31(31, 0x76543210ull);
i31.insertBits(iSrc, 0);
EXPECT_EQ(static_cast<int64_t>(0x00123456ull), i31.getSExtValue());
// Single word src/dst insertion.
APInt i63(63, 0x01234567FFFFFFFFull);
i63.insertBits(iSrc, 4);
EXPECT_EQ(static_cast<int64_t>(0x012345600123456Full), i63.getSExtValue());
// Insert single word src into one word of dst.
APInt i120(120, UINT64_MAX, true);
i120.insertBits(iSrc, 8);
EXPECT_EQ(static_cast<int64_t>(0xFFFFFF80123456FFull), i120.getSExtValue());
// Insert single word src into two words of dst.
APInt i127(127, UINT64_MAX, true);
i127.insertBits(iSrc, 48);
EXPECT_EQ(i127.extractBits(64, 0).getZExtValue(), 0x3456FFFFFFFFFFFFull);
EXPECT_EQ(i127.extractBits(63, 64).getZExtValue(), 0x7FFFFFFFFFFF8012ull);
// Insert on word boundaries.
APInt i128(128, 0);
i128.insertBits(APInt(64, UINT64_MAX, true), 0);
i128.insertBits(APInt(64, UINT64_MAX, true), 64);
EXPECT_EQ(-1, i128.getSExtValue());
APInt i256(256, UINT64_MAX, true);
i256.insertBits(APInt(65, 0), 0);
i256.insertBits(APInt(69, 0), 64);
i256.insertBits(APInt(128, 0), 128);
EXPECT_EQ(0u, i256.getSExtValue());
APInt i257(257, 0);
i257.insertBits(APInt(96, UINT64_MAX, true), 64);
EXPECT_EQ(i257.extractBits(64, 0).getZExtValue(), 0x0000000000000000ull);
EXPECT_EQ(i257.extractBits(64, 64).getZExtValue(), 0xFFFFFFFFFFFFFFFFull);
EXPECT_EQ(i257.extractBits(64, 128).getZExtValue(), 0x00000000FFFFFFFFull);
EXPECT_EQ(i257.extractBits(65, 192).getZExtValue(), 0x0000000000000000ull);
// General insertion.
APInt i260(260, UINT64_MAX, true);
i260.insertBits(APInt(129, 1ull << 48), 15);
EXPECT_EQ(i260.extractBits(64, 0).getZExtValue(), 0x8000000000007FFFull);
EXPECT_EQ(i260.extractBits(64, 64).getZExtValue(), 0x0000000000000000ull);
EXPECT_EQ(i260.extractBits(64, 128).getZExtValue(), 0xFFFFFFFFFFFF0000ull);
EXPECT_EQ(i260.extractBits(64, 192).getZExtValue(), 0xFFFFFFFFFFFFFFFFull);
EXPECT_EQ(i260.extractBits(4, 256).getZExtValue(), 0x000000000000000Full);
}
TEST(APIntTest, insertBitsUInt64) {
// Tests cloned from insertBits but adapted to the numBits <= 64 constraint
uint64_t iSrc = 0x00123456;
// Direct copy.
APInt i31(31, 0x76543210ull);
i31.insertBits(iSrc, 0, 31);
EXPECT_EQ(static_cast<int64_t>(0x00123456ull), i31.getSExtValue());
// Single word src/dst insertion.
APInt i63(63, 0x01234567FFFFFFFFull);
i63.insertBits(iSrc, 4, 31);
EXPECT_EQ(static_cast<int64_t>(0x012345600123456Full), i63.getSExtValue());
// Insert single word src into one word of dst.
APInt i120(120, UINT64_MAX, true);
i120.insertBits(iSrc, 8, 31);
EXPECT_EQ(static_cast<int64_t>(0xFFFFFF80123456FFull), i120.getSExtValue());
// Insert single word src into two words of dst.
APInt i127(127, UINT64_MAX, true);
i127.insertBits(iSrc, 48, 31);
EXPECT_EQ(i127.extractBits(64, 0).getZExtValue(), 0x3456FFFFFFFFFFFFull);
EXPECT_EQ(i127.extractBits(63, 64).getZExtValue(), 0x7FFFFFFFFFFF8012ull);
// Insert on word boundaries.
APInt i128(128, 0);
i128.insertBits(UINT64_MAX, 0, 64);
i128.insertBits(UINT64_MAX, 64, 64);
EXPECT_EQ(-1, i128.getSExtValue());
APInt i256(256, UINT64_MAX, true);
i256.insertBits(0, 0, 64);
i256.insertBits(0, 64, 1);
i256.insertBits(0, 64, 64);
i256.insertBits(0, 128, 5);
i256.insertBits(0, 128, 64);
i256.insertBits(0, 192, 64);
EXPECT_EQ(0u, i256.getSExtValue());
APInt i257(257, 0);
i257.insertBits(APInt(96, UINT64_MAX, true), 64);
EXPECT_EQ(i257.extractBitsAsZExtValue(64, 0), 0x0000000000000000ull);
EXPECT_EQ(i257.extractBitsAsZExtValue(64, 64), 0xFFFFFFFFFFFFFFFFull);
EXPECT_EQ(i257.extractBitsAsZExtValue(64, 128), 0x00000000FFFFFFFFull);
EXPECT_EQ(i257.extractBitsAsZExtValue(64, 192), 0x0000000000000000ull);
EXPECT_EQ(i257.extractBitsAsZExtValue(1, 256), 0x0000000000000000ull);
// General insertion.
APInt i260(260, UINT64_MAX, true);
i260.insertBits(APInt(129, 1ull << 48), 15);
EXPECT_EQ(i260.extractBitsAsZExtValue(64, 0), 0x8000000000007FFFull);
EXPECT_EQ(i260.extractBitsAsZExtValue(64, 64), 0x0000000000000000ull);
EXPECT_EQ(i260.extractBitsAsZExtValue(64, 128), 0xFFFFFFFFFFFF0000ull);
EXPECT_EQ(i260.extractBitsAsZExtValue(64, 192), 0xFFFFFFFFFFFFFFFFull);
EXPECT_EQ(i260.extractBitsAsZExtValue(4, 256), 0x000000000000000Full);
}
TEST(APIntTest, extractBits) {
APInt i32(32, 0x1234567);
EXPECT_EQ(0x3456, i32.extractBits(16, 4));
APInt i64(64, 0x01234567FFFFFFFFull);
EXPECT_EQ(0xFFFFFFFF, i64.extractBits(32, 0));
EXPECT_EQ(0xFFFFFFFF, i64.trunc(32));
EXPECT_EQ(0x01234567, i64.extractBits(32, 32));
EXPECT_EQ(0x01234567, i64.lshr(32).trunc(32));
APInt i257(257, 0xFFFFFFFFFF0000FFull, true);
EXPECT_EQ(0xFFu, i257.extractBits(16, 0));
EXPECT_EQ(0xFFu, i257.lshr(0).trunc(16));
EXPECT_EQ((0xFFu >> 1), i257.extractBits(16, 1));
EXPECT_EQ((0xFFu >> 1), i257.lshr(1).trunc(16));
EXPECT_EQ(-1, i257.extractBits(32, 64).getSExtValue());
EXPECT_EQ(-1, i257.lshr(64).trunc(32).getSExtValue());
EXPECT_EQ(-1, i257.extractBits(128, 128).getSExtValue());
EXPECT_EQ(-1, i257.lshr(128).trunc(128).getSExtValue());
EXPECT_EQ(-1, i257.extractBits(66, 191).getSExtValue());
EXPECT_EQ(-1, i257.lshr(191).trunc(66).getSExtValue());
EXPECT_EQ(static_cast<int64_t>(0xFFFFFFFFFF80007Full),
i257.extractBits(128, 1).getSExtValue());
EXPECT_EQ(static_cast<int64_t>(0xFFFFFFFFFF80007Full),
i257.lshr(1).trunc(128).getSExtValue());
EXPECT_EQ(static_cast<int64_t>(0xFFFFFFFFFF80007Full),
i257.extractBits(129, 1).getSExtValue());
EXPECT_EQ(static_cast<int64_t>(0xFFFFFFFFFF80007Full),
i257.lshr(1).trunc(129).getSExtValue());
EXPECT_EQ(APInt(48, 0),
APInt(144, "281474976710655", 10).extractBits(48, 48));
EXPECT_EQ(APInt(48, 0),
APInt(144, "281474976710655", 10).lshr(48).trunc(48));
EXPECT_EQ(APInt(48, 0x0000ffffffffffffull),
APInt(144, "281474976710655", 10).extractBits(48, 0));
EXPECT_EQ(APInt(48, 0x0000ffffffffffffull),
APInt(144, "281474976710655", 10).lshr(0).trunc(48));
EXPECT_EQ(APInt(48, 0x00007fffffffffffull),
APInt(144, "281474976710655", 10).extractBits(48, 1));
EXPECT_EQ(APInt(48, 0x00007fffffffffffull),
APInt(144, "281474976710655", 10).lshr(1).trunc(48));
}
TEST(APIntTest, extractBitsAsZExtValue) {
// Tests based on extractBits
APInt i32(32, 0x1234567);
EXPECT_EQ(0x3456u, i32.extractBitsAsZExtValue(16, 4));
APInt i257(257, 0xFFFFFFFFFF0000FFull, true);
EXPECT_EQ(0xFFu, i257.extractBitsAsZExtValue(16, 0));
EXPECT_EQ((0xFFu >> 1), i257.extractBitsAsZExtValue(16, 1));
EXPECT_EQ(0xFFFFFFFFull, i257.extractBitsAsZExtValue(32, 64));
EXPECT_EQ(0xFFFFFFFFFFFFFFFFull, i257.extractBitsAsZExtValue(64, 128));
EXPECT_EQ(0xFFFFFFFFFFFFFFFFull, i257.extractBitsAsZExtValue(64, 192));
EXPECT_EQ(0xFFFFFFFFFFFFFFFFull, i257.extractBitsAsZExtValue(64, 191));
EXPECT_EQ(0x3u, i257.extractBitsAsZExtValue(2, 255));
EXPECT_EQ(0xFFFFFFFFFF80007Full, i257.extractBitsAsZExtValue(64, 1));
EXPECT_EQ(0xFFFFFFFFFFFFFFFFull, i257.extractBitsAsZExtValue(64, 65));
EXPECT_EQ(0xFFFFFFFFFF80007Full, i257.extractBitsAsZExtValue(64, 1));
EXPECT_EQ(0xFFFFFFFFFFFFFFFFull, i257.extractBitsAsZExtValue(64, 65));
EXPECT_EQ(0x1ull, i257.extractBitsAsZExtValue(1, 129));
EXPECT_EQ(APInt(48, 0),
APInt(144, "281474976710655", 10).extractBitsAsZExtValue(48, 48));
EXPECT_EQ(APInt(48, 0x0000ffffffffffffull),
APInt(144, "281474976710655", 10).extractBitsAsZExtValue(48, 0));
EXPECT_EQ(APInt(48, 0x00007fffffffffffull),
APInt(144, "281474976710655", 10).extractBitsAsZExtValue(48, 1));
}
TEST(APIntTest, getLowBitsSet) {
APInt i128lo64 = APInt::getLowBitsSet(128, 64);
EXPECT_EQ(0u, i128lo64.countLeadingOnes());
EXPECT_EQ(64u, i128lo64.countLeadingZeros());
EXPECT_EQ(64u, i128lo64.getActiveBits());
EXPECT_EQ(0u, i128lo64.countTrailingZeros());
EXPECT_EQ(64u, i128lo64.countTrailingOnes());
EXPECT_EQ(64u, i128lo64.countPopulation());
}
TEST(APIntTest, getBitsSet) {
APInt i64hi1lo1 = APInt::getBitsSet(64, 1, 63);
EXPECT_EQ(0u, i64hi1lo1.countLeadingOnes());
EXPECT_EQ(1u, i64hi1lo1.countLeadingZeros());
EXPECT_EQ(63u, i64hi1lo1.getActiveBits());
EXPECT_EQ(1u, i64hi1lo1.countTrailingZeros());
EXPECT_EQ(0u, i64hi1lo1.countTrailingOnes());
EXPECT_EQ(62u, i64hi1lo1.countPopulation());
APInt i127hi1lo1 = APInt::getBitsSet(127, 1, 126);
EXPECT_EQ(0u, i127hi1lo1.countLeadingOnes());
EXPECT_EQ(1u, i127hi1lo1.countLeadingZeros());
EXPECT_EQ(126u, i127hi1lo1.getActiveBits());
EXPECT_EQ(1u, i127hi1lo1.countTrailingZeros());
EXPECT_EQ(0u, i127hi1lo1.countTrailingOnes());
EXPECT_EQ(125u, i127hi1lo1.countPopulation());
}
TEST(APIntTest, getBitsSetWithWrap) {
APInt i64hi1lo1 = APInt::getBitsSetWithWrap(64, 1, 63);
EXPECT_EQ(0u, i64hi1lo1.countLeadingOnes());
EXPECT_EQ(1u, i64hi1lo1.countLeadingZeros());
EXPECT_EQ(63u, i64hi1lo1.getActiveBits());
EXPECT_EQ(1u, i64hi1lo1.countTrailingZeros());
EXPECT_EQ(0u, i64hi1lo1.countTrailingOnes());
EXPECT_EQ(62u, i64hi1lo1.countPopulation());
APInt i127hi1lo1 = APInt::getBitsSetWithWrap(127, 1, 126);
EXPECT_EQ(0u, i127hi1lo1.countLeadingOnes());
EXPECT_EQ(1u, i127hi1lo1.countLeadingZeros());
EXPECT_EQ(126u, i127hi1lo1.getActiveBits());
EXPECT_EQ(1u, i127hi1lo1.countTrailingZeros());
EXPECT_EQ(0u, i127hi1lo1.countTrailingOnes());
EXPECT_EQ(125u, i127hi1lo1.countPopulation());
APInt i64hi1lo1wrap = APInt::getBitsSetWithWrap(64, 63, 1);
EXPECT_EQ(1u, i64hi1lo1wrap.countLeadingOnes());
EXPECT_EQ(0u, i64hi1lo1wrap.countLeadingZeros());
EXPECT_EQ(64u, i64hi1lo1wrap.getActiveBits());
EXPECT_EQ(0u, i64hi1lo1wrap.countTrailingZeros());
EXPECT_EQ(1u, i64hi1lo1wrap.countTrailingOnes());
EXPECT_EQ(2u, i64hi1lo1wrap.countPopulation());
APInt i127hi1lo1wrap = APInt::getBitsSetWithWrap(127, 126, 1);
EXPECT_EQ(1u, i127hi1lo1wrap.countLeadingOnes());
EXPECT_EQ(0u, i127hi1lo1wrap.countLeadingZeros());
EXPECT_EQ(127u, i127hi1lo1wrap.getActiveBits());
EXPECT_EQ(0u, i127hi1lo1wrap.countTrailingZeros());
EXPECT_EQ(1u, i127hi1lo1wrap.countTrailingOnes());
EXPECT_EQ(2u, i127hi1lo1wrap.countPopulation());
APInt i32hiequallowrap = APInt::getBitsSetWithWrap(32, 10, 10);
EXPECT_EQ(32u, i32hiequallowrap.countLeadingOnes());
EXPECT_EQ(0u, i32hiequallowrap.countLeadingZeros());
EXPECT_EQ(32u, i32hiequallowrap.getActiveBits());
EXPECT_EQ(0u, i32hiequallowrap.countTrailingZeros());
EXPECT_EQ(32u, i32hiequallowrap.countTrailingOnes());
EXPECT_EQ(32u, i32hiequallowrap.countPopulation());
}
TEST(APIntTest, getHighBitsSet) {
APInt i64hi32 = APInt::getHighBitsSet(64, 32);
EXPECT_EQ(32u, i64hi32.countLeadingOnes());
EXPECT_EQ(0u, i64hi32.countLeadingZeros());
EXPECT_EQ(64u, i64hi32.getActiveBits());
EXPECT_EQ(32u, i64hi32.countTrailingZeros());
EXPECT_EQ(0u, i64hi32.countTrailingOnes());
EXPECT_EQ(32u, i64hi32.countPopulation());
}
TEST(APIntTest, getBitsSetFrom) {
APInt i64hi31 = APInt::getBitsSetFrom(64, 33);
EXPECT_EQ(31u, i64hi31.countLeadingOnes());
EXPECT_EQ(0u, i64hi31.countLeadingZeros());
EXPECT_EQ(64u, i64hi31.getActiveBits());
EXPECT_EQ(33u, i64hi31.countTrailingZeros());
EXPECT_EQ(0u, i64hi31.countTrailingOnes());
EXPECT_EQ(31u, i64hi31.countPopulation());
}
TEST(APIntTest, setLowBits) {
APInt i64lo32(64, 0);
i64lo32.setLowBits(32);
EXPECT_EQ(0u, i64lo32.countLeadingOnes());
EXPECT_EQ(32u, i64lo32.countLeadingZeros());
EXPECT_EQ(32u, i64lo32.getActiveBits());
EXPECT_EQ(0u, i64lo32.countTrailingZeros());
EXPECT_EQ(32u, i64lo32.countTrailingOnes());
EXPECT_EQ(32u, i64lo32.countPopulation());
APInt i128lo64(128, 0);
i128lo64.setLowBits(64);
EXPECT_EQ(0u, i128lo64.countLeadingOnes());
EXPECT_EQ(64u, i128lo64.countLeadingZeros());
EXPECT_EQ(64u, i128lo64.getActiveBits());
EXPECT_EQ(0u, i128lo64.countTrailingZeros());
EXPECT_EQ(64u, i128lo64.countTrailingOnes());
EXPECT_EQ(64u, i128lo64.countPopulation());
APInt i128lo24(128, 0);
i128lo24.setLowBits(24);
EXPECT_EQ(0u, i128lo24.countLeadingOnes());
EXPECT_EQ(104u, i128lo24.countLeadingZeros());
EXPECT_EQ(24u, i128lo24.getActiveBits());
EXPECT_EQ(0u, i128lo24.countTrailingZeros());
EXPECT_EQ(24u, i128lo24.countTrailingOnes());
EXPECT_EQ(24u, i128lo24.countPopulation());
APInt i128lo104(128, 0);
i128lo104.setLowBits(104);
EXPECT_EQ(0u, i128lo104.countLeadingOnes());
EXPECT_EQ(24u, i128lo104.countLeadingZeros());
EXPECT_EQ(104u, i128lo104.getActiveBits());
EXPECT_EQ(0u, i128lo104.countTrailingZeros());
EXPECT_EQ(104u, i128lo104.countTrailingOnes());
EXPECT_EQ(104u, i128lo104.countPopulation());
APInt i128lo0(128, 0);
i128lo0.setLowBits(0);
EXPECT_EQ(0u, i128lo0.countLeadingOnes());
EXPECT_EQ(128u, i128lo0.countLeadingZeros());
EXPECT_EQ(0u, i128lo0.getActiveBits());
EXPECT_EQ(128u, i128lo0.countTrailingZeros());
EXPECT_EQ(0u, i128lo0.countTrailingOnes());
EXPECT_EQ(0u, i128lo0.countPopulation());
APInt i80lo79(80, 0);
i80lo79.setLowBits(79);
EXPECT_EQ(0u, i80lo79.countLeadingOnes());
EXPECT_EQ(1u, i80lo79.countLeadingZeros());
EXPECT_EQ(79u, i80lo79.getActiveBits());
EXPECT_EQ(0u, i80lo79.countTrailingZeros());
EXPECT_EQ(79u, i80lo79.countTrailingOnes());
EXPECT_EQ(79u, i80lo79.countPopulation());
}
TEST(APIntTest, setHighBits) {
APInt i64hi32(64, 0);
i64hi32.setHighBits(32);
EXPECT_EQ(32u, i64hi32.countLeadingOnes());
EXPECT_EQ(0u, i64hi32.countLeadingZeros());
EXPECT_EQ(64u, i64hi32.getActiveBits());
EXPECT_EQ(32u, i64hi32.countTrailingZeros());
EXPECT_EQ(0u, i64hi32.countTrailingOnes());
EXPECT_EQ(32u, i64hi32.countPopulation());
APInt i128hi64(128, 0);
i128hi64.setHighBits(64);
EXPECT_EQ(64u, i128hi64.countLeadingOnes());
EXPECT_EQ(0u, i128hi64.countLeadingZeros());
EXPECT_EQ(128u, i128hi64.getActiveBits());
EXPECT_EQ(64u, i128hi64.countTrailingZeros());
EXPECT_EQ(0u, i128hi64.countTrailingOnes());
EXPECT_EQ(64u, i128hi64.countPopulation());
APInt i128hi24(128, 0);
i128hi24.setHighBits(24);
EXPECT_EQ(24u, i128hi24.countLeadingOnes());
EXPECT_EQ(0u, i128hi24.countLeadingZeros());
EXPECT_EQ(128u, i128hi24.getActiveBits());
EXPECT_EQ(104u, i128hi24.countTrailingZeros());
EXPECT_EQ(0u, i128hi24.countTrailingOnes());
EXPECT_EQ(24u, i128hi24.countPopulation());
APInt i128hi104(128, 0);
i128hi104.setHighBits(104);
EXPECT_EQ(104u, i128hi104.countLeadingOnes());
EXPECT_EQ(0u, i128hi104.countLeadingZeros());
EXPECT_EQ(128u, i128hi104.getActiveBits());
EXPECT_EQ(24u, i128hi104.countTrailingZeros());
EXPECT_EQ(0u, i128hi104.countTrailingOnes());
EXPECT_EQ(104u, i128hi104.countPopulation());
APInt i128hi0(128, 0);
i128hi0.setHighBits(0);
EXPECT_EQ(0u, i128hi0.countLeadingOnes());
EXPECT_EQ(128u, i128hi0.countLeadingZeros());
EXPECT_EQ(0u, i128hi0.getActiveBits());
EXPECT_EQ(128u, i128hi0.countTrailingZeros());
EXPECT_EQ(0u, i128hi0.countTrailingOnes());
EXPECT_EQ(0u, i128hi0.countPopulation());
APInt i80hi1(80, 0);
i80hi1.setHighBits(1);
EXPECT_EQ(1u, i80hi1.countLeadingOnes());
EXPECT_EQ(0u, i80hi1.countLeadingZeros());
EXPECT_EQ(80u, i80hi1.getActiveBits());
EXPECT_EQ(79u, i80hi1.countTrailingZeros());
EXPECT_EQ(0u, i80hi1.countTrailingOnes());
EXPECT_EQ(1u, i80hi1.countPopulation());
APInt i32hi16(32, 0);
i32hi16.setHighBits(16);
EXPECT_EQ(16u, i32hi16.countLeadingOnes());
EXPECT_EQ(0u, i32hi16.countLeadingZeros());
EXPECT_EQ(32u, i32hi16.getActiveBits());
EXPECT_EQ(16u, i32hi16.countTrailingZeros());
EXPECT_EQ(0u, i32hi16.countTrailingOnes());
EXPECT_EQ(16u, i32hi16.countPopulation());
}
TEST(APIntTest, setBitsFrom) {
APInt i64from63(64, 0);
i64from63.setBitsFrom(63);
EXPECT_EQ(1u, i64from63.countLeadingOnes());
EXPECT_EQ(0u, i64from63.countLeadingZeros());
EXPECT_EQ(64u, i64from63.getActiveBits());
EXPECT_EQ(63u, i64from63.countTrailingZeros());
EXPECT_EQ(0u, i64from63.countTrailingOnes());
EXPECT_EQ(1u, i64from63.countPopulation());
}
TEST(APIntTest, setAllBits) {
APInt i32(32, 0);
i32.setAllBits();
EXPECT_EQ(32u, i32.countLeadingOnes());
EXPECT_EQ(0u, i32.countLeadingZeros());
EXPECT_EQ(32u, i32.getActiveBits());
EXPECT_EQ(0u, i32.countTrailingZeros());
EXPECT_EQ(32u, i32.countTrailingOnes());
EXPECT_EQ(32u, i32.countPopulation());
APInt i64(64, 0);
i64.setAllBits();
EXPECT_EQ(64u, i64.countLeadingOnes());
EXPECT_EQ(0u, i64.countLeadingZeros());
EXPECT_EQ(64u, i64.getActiveBits());
EXPECT_EQ(0u, i64.countTrailingZeros());
EXPECT_EQ(64u, i64.countTrailingOnes());
EXPECT_EQ(64u, i64.countPopulation());
APInt i96(96, 0);
i96.setAllBits();
EXPECT_EQ(96u, i96.countLeadingOnes());
EXPECT_EQ(0u, i96.countLeadingZeros());
EXPECT_EQ(96u, i96.getActiveBits());
EXPECT_EQ(0u, i96.countTrailingZeros());
EXPECT_EQ(96u, i96.countTrailingOnes());
EXPECT_EQ(96u, i96.countPopulation());
APInt i128(128, 0);
i128.setAllBits();
EXPECT_EQ(128u, i128.countLeadingOnes());
EXPECT_EQ(0u, i128.countLeadingZeros());
EXPECT_EQ(128u, i128.getActiveBits());
EXPECT_EQ(0u, i128.countTrailingZeros());
EXPECT_EQ(128u, i128.countTrailingOnes());
EXPECT_EQ(128u, i128.countPopulation());
}
TEST(APIntTest, getLoBits) {
APInt i32(32, 0xfa);
i32.setHighBits(1);
EXPECT_EQ(0xa, i32.getLoBits(4));
APInt i128(128, 0xfa);
i128.setHighBits(1);
EXPECT_EQ(0xa, i128.getLoBits(4));
}
TEST(APIntTest, getHiBits) {
APInt i32(32, 0xfa);
i32.setHighBits(2);
EXPECT_EQ(0xc, i32.getHiBits(4));
APInt i128(128, 0xfa);
i128.setHighBits(2);
EXPECT_EQ(0xc, i128.getHiBits(4));
}
TEST(APIntTest, clearLowBits) {
APInt i64hi32 = APInt::getAllOnes(64);
i64hi32.clearLowBits(32);
EXPECT_EQ(32u, i64hi32.countLeadingOnes());
EXPECT_EQ(0u, i64hi32.countLeadingZeros());
EXPECT_EQ(64u, i64hi32.getActiveBits());
EXPECT_EQ(32u, i64hi32.countTrailingZeros());
EXPECT_EQ(0u, i64hi32.countTrailingOnes());
EXPECT_EQ(32u, i64hi32.countPopulation());
APInt i128hi64 = APInt::getAllOnes(128);
i128hi64.clearLowBits(64);
EXPECT_EQ(64u, i128hi64.countLeadingOnes());
EXPECT_EQ(0u, i128hi64.countLeadingZeros());
EXPECT_EQ(128u, i128hi64.getActiveBits());
EXPECT_EQ(64u, i128hi64.countTrailingZeros());
EXPECT_EQ(0u, i128hi64.countTrailingOnes());
EXPECT_EQ(64u, i128hi64.countPopulation());
APInt i128hi24 = APInt::getAllOnes(128);
i128hi24.clearLowBits(104);
EXPECT_EQ(24u, i128hi24.countLeadingOnes());
EXPECT_EQ(0u, i128hi24.countLeadingZeros());
EXPECT_EQ(128u, i128hi24.getActiveBits());
EXPECT_EQ(104u, i128hi24.countTrailingZeros());
EXPECT_EQ(0u, i128hi24.countTrailingOnes());
EXPECT_EQ(24u, i128hi24.countPopulation());
APInt i128hi104 = APInt::getAllOnes(128);
i128hi104.clearLowBits(24);
EXPECT_EQ(104u, i128hi104.countLeadingOnes());
EXPECT_EQ(0u, i128hi104.countLeadingZeros());
EXPECT_EQ(128u, i128hi104.getActiveBits());
EXPECT_EQ(24u, i128hi104.countTrailingZeros());
EXPECT_EQ(0u, i128hi104.countTrailingOnes());
EXPECT_EQ(104u, i128hi104.countPopulation());
APInt i128hi0 = APInt::getAllOnes(128);
i128hi0.clearLowBits(128);
EXPECT_EQ(0u, i128hi0.countLeadingOnes());
EXPECT_EQ(128u, i128hi0.countLeadingZeros());
EXPECT_EQ(0u, i128hi0.getActiveBits());
EXPECT_EQ(128u, i128hi0.countTrailingZeros());
EXPECT_EQ(0u, i128hi0.countTrailingOnes());
EXPECT_EQ(0u, i128hi0.countPopulation());
APInt i80hi1 = APInt::getAllOnes(80);
i80hi1.clearLowBits(79);
EXPECT_EQ(1u, i80hi1.countLeadingOnes());
EXPECT_EQ(0u, i80hi1.countLeadingZeros());
EXPECT_EQ(80u, i80hi1.getActiveBits());
EXPECT_EQ(79u, i80hi1.countTrailingZeros());
EXPECT_EQ(0u, i80hi1.countTrailingOnes());
EXPECT_EQ(1u, i80hi1.countPopulation());
APInt i32hi16 = APInt::getAllOnes(32);
i32hi16.clearLowBits(16);
EXPECT_EQ(16u, i32hi16.countLeadingOnes());
EXPECT_EQ(0u, i32hi16.countLeadingZeros());
EXPECT_EQ(32u, i32hi16.getActiveBits());
EXPECT_EQ(16u, i32hi16.countTrailingZeros());
EXPECT_EQ(0u, i32hi16.countTrailingOnes());
EXPECT_EQ(16u, i32hi16.countPopulation());
}
TEST(APIntTest, GCD) {
using APIntOps::GreatestCommonDivisor;
for (unsigned Bits : {1, 2, 32, 63, 64, 65}) {
// Test some corner cases near zero.
APInt Zero(Bits, 0), One(Bits, 1);
EXPECT_EQ(GreatestCommonDivisor(Zero, Zero), Zero);
EXPECT_EQ(GreatestCommonDivisor(Zero, One), One);
EXPECT_EQ(GreatestCommonDivisor(One, Zero), One);
EXPECT_EQ(GreatestCommonDivisor(One, One), One);
if (Bits > 1) {
APInt Two(Bits, 2);
EXPECT_EQ(GreatestCommonDivisor(Zero, Two), Two);
EXPECT_EQ(GreatestCommonDivisor(One, Two), One);
EXPECT_EQ(GreatestCommonDivisor(Two, Two), Two);
// Test some corner cases near the highest representable value.
APInt Max(Bits, 0);
Max.setAllBits();
EXPECT_EQ(GreatestCommonDivisor(Zero, Max), Max);
EXPECT_EQ(GreatestCommonDivisor(One, Max), One);
EXPECT_EQ(GreatestCommonDivisor(Two, Max), One);
EXPECT_EQ(GreatestCommonDivisor(Max, Max), Max);
APInt MaxOver2 = Max.udiv(Two);
EXPECT_EQ(GreatestCommonDivisor(MaxOver2, Max), One);
// Max - 1 == Max / 2 * 2, because Max is odd.
EXPECT_EQ(GreatestCommonDivisor(MaxOver2, Max - 1), MaxOver2);
}
}
// Compute the 20th Mersenne prime.
const unsigned BitWidth = 4450;
APInt HugePrime = APInt::getLowBitsSet(BitWidth, 4423);
// 9931 and 123456 are coprime.
APInt A = HugePrime * APInt(BitWidth, 9931);
APInt B = HugePrime * APInt(BitWidth, 123456);
APInt C = GreatestCommonDivisor(A, B);
EXPECT_EQ(C, HugePrime);
}
TEST(APIntTest, LogicalRightShift) {
APInt i256(APInt::getHighBitsSet(256, 2));
i256.lshrInPlace(1);
EXPECT_EQ(1U, i256.countLeadingZeros());
EXPECT_EQ(253U, i256.countTrailingZeros());
EXPECT_EQ(2U, i256.countPopulation());
i256.lshrInPlace(62);
EXPECT_EQ(63U, i256.countLeadingZeros());
EXPECT_EQ(191U, i256.countTrailingZeros());
EXPECT_EQ(2U, i256.countPopulation());
i256.lshrInPlace(65);
EXPECT_EQ(128U, i256.countLeadingZeros());
EXPECT_EQ(126U, i256.countTrailingZeros());
EXPECT_EQ(2U, i256.countPopulation());
i256.lshrInPlace(64);
EXPECT_EQ(192U, i256.countLeadingZeros());
EXPECT_EQ(62U, i256.countTrailingZeros());
EXPECT_EQ(2U, i256.countPopulation());
i256.lshrInPlace(63);
EXPECT_EQ(255U, i256.countLeadingZeros());
EXPECT_EQ(0U, i256.countTrailingZeros());
EXPECT_EQ(1U, i256.countPopulation());
// Ensure we handle large shifts of multi-word.
const APInt neg_one(128, static_cast<uint64_t>(-1), true);
EXPECT_EQ(0, neg_one.lshr(128));
}
TEST(APIntTest, ArithmeticRightShift) {
APInt i72(APInt::getHighBitsSet(72, 1));
i72.ashrInPlace(46);
EXPECT_EQ(47U, i72.countLeadingOnes());
EXPECT_EQ(25U, i72.countTrailingZeros());
EXPECT_EQ(47U, i72.countPopulation());
i72 = APInt::getHighBitsSet(72, 1);
i72.ashrInPlace(64);
EXPECT_EQ(65U, i72.countLeadingOnes());
EXPECT_EQ(7U, i72.countTrailingZeros());
EXPECT_EQ(65U, i72.countPopulation());
APInt i128(APInt::getHighBitsSet(128, 1));
i128.ashrInPlace(64);
EXPECT_EQ(65U, i128.countLeadingOnes());
EXPECT_EQ(63U, i128.countTrailingZeros());
EXPECT_EQ(65U, i128.countPopulation());
// Ensure we handle large shifts of multi-word.
const APInt signmin32(APInt::getSignedMinValue(32));
EXPECT_TRUE(signmin32.ashr(32).isAllOnes());
// Ensure we handle large shifts of multi-word.
const APInt umax32(APInt::getSignedMaxValue(32));
EXPECT_EQ(0, umax32.ashr(32));
// Ensure we handle large shifts of multi-word.
const APInt signmin128(APInt::getSignedMinValue(128));
EXPECT_TRUE(signmin128.ashr(128).isAllOnes());
// Ensure we handle large shifts of multi-word.
const APInt umax128(APInt::getSignedMaxValue(128));
EXPECT_EQ(0, umax128.ashr(128));
}
TEST(APIntTest, LeftShift) {
APInt i256(APInt::getLowBitsSet(256, 2));
i256 <<= 1;
EXPECT_EQ(253U, i256.countLeadingZeros());
EXPECT_EQ(1U, i256.countTrailingZeros());
EXPECT_EQ(2U, i256.countPopulation());
i256 <<= 62;
EXPECT_EQ(191U, i256.countLeadingZeros());
EXPECT_EQ(63U, i256.countTrailingZeros());
EXPECT_EQ(2U, i256.countPopulation());
i256 <<= 65;
EXPECT_EQ(126U, i256.countLeadingZeros());
EXPECT_EQ(128U, i256.countTrailingZeros());
EXPECT_EQ(2U, i256.countPopulation());
i256 <<= 64;
EXPECT_EQ(62U, i256.countLeadingZeros());
EXPECT_EQ(192U, i256.countTrailingZeros());
EXPECT_EQ(2U, i256.countPopulation());
i256 <<= 63;
EXPECT_EQ(0U, i256.countLeadingZeros());
EXPECT_EQ(255U, i256.countTrailingZeros());
EXPECT_EQ(1U, i256.countPopulation());
// Ensure we handle large shifts of multi-word.
const APInt neg_one(128, static_cast<uint64_t>(-1), true);
EXPECT_EQ(0, neg_one.shl(128));
}
TEST(APIntTest, isSubsetOf) {
APInt i32_1(32, 1);
APInt i32_2(32, 2);
APInt i32_3(32, 3);
EXPECT_FALSE(i32_3.isSubsetOf(i32_1));
EXPECT_TRUE(i32_1.isSubsetOf(i32_3));
EXPECT_FALSE(i32_2.isSubsetOf(i32_1));
EXPECT_FALSE(i32_1.isSubsetOf(i32_2));
EXPECT_TRUE(i32_3.isSubsetOf(i32_3));
APInt i128_1(128, 1);
APInt i128_2(128, 2);
APInt i128_3(128, 3);
EXPECT_FALSE(i128_3.isSubsetOf(i128_1));
EXPECT_TRUE(i128_1.isSubsetOf(i128_3));
EXPECT_FALSE(i128_2.isSubsetOf(i128_1));
EXPECT_FALSE(i128_1.isSubsetOf(i128_2));
EXPECT_TRUE(i128_3.isSubsetOf(i128_3));
i128_1 <<= 64;
i128_2 <<= 64;
i128_3 <<= 64;
EXPECT_FALSE(i128_3.isSubsetOf(i128_1));
EXPECT_TRUE(i128_1.isSubsetOf(i128_3));
EXPECT_FALSE(i128_2.isSubsetOf(i128_1));
EXPECT_FALSE(i128_1.isSubsetOf(i128_2));
EXPECT_TRUE(i128_3.isSubsetOf(i128_3));
}
TEST(APIntTest, sext) {
EXPECT_EQ(0, APInt(1, 0).sext(64));
EXPECT_EQ(~uint64_t(0), APInt(1, 1).sext(64));
APInt i32_max(APInt::getSignedMaxValue(32).sext(63));
EXPECT_EQ(32U, i32_max.countLeadingZeros());
EXPECT_EQ(0U, i32_max.countTrailingZeros());
EXPECT_EQ(31U, i32_max.countPopulation());
APInt i32_min(APInt::getSignedMinValue(32).sext(63));
EXPECT_EQ(32U, i32_min.countLeadingOnes());
EXPECT_EQ(31U, i32_min.countTrailingZeros());
EXPECT_EQ(32U, i32_min.countPopulation());
APInt i32_neg1(APInt(32, ~uint64_t(0)).sext(63));
EXPECT_EQ(63U, i32_neg1.countLeadingOnes());
EXPECT_EQ(0U, i32_neg1.countTrailingZeros());
EXPECT_EQ(63U, i32_neg1.countPopulation());
}
TEST(APIntTest, truncOrSelf) {
APInt val(32, 0xFFFFFFFF);
EXPECT_EQ(0xFFFF, val.truncOrSelf(16));
EXPECT_EQ(0xFFFFFFFF, val.truncOrSelf(32));
EXPECT_EQ(0xFFFFFFFF, val.truncOrSelf(64));
}
TEST(APIntTest, concatMSB) {
APInt Int1(4, 0x1ULL);
APInt Int3(4, 0x3ULL);
EXPECT_EQ(0x31, Int3.concat(Int1));
EXPECT_EQ(APInt(12, 0x313), Int3.concat(Int1).concat(Int3));
EXPECT_EQ(APInt(16, 0x3313), Int3.concat(Int3).concat(Int1).concat(Int3));
APInt I64(64, 0x3ULL);
EXPECT_EQ(I64, I64.concat(I64).lshr(64).trunc(64));
}
TEST(APIntTest, multiply) {
APInt i64(64, 1234);
EXPECT_EQ(7006652, i64 * 5678);
EXPECT_EQ(7006652, 5678 * i64);
APInt i128 = APInt::getOneBitSet(128, 64);
APInt i128_1234(128, 1234);
i128_1234 <<= 64;
EXPECT_EQ(i128_1234, i128 * 1234);
EXPECT_EQ(i128_1234, 1234 * i128);
APInt i96 = APInt::getOneBitSet(96, 64);
i96 *= ~0ULL;
EXPECT_EQ(32U, i96.countLeadingOnes());
EXPECT_EQ(32U, i96.countPopulation());
EXPECT_EQ(64U, i96.countTrailingZeros());
}
TEST(APIntTest, RoundingUDiv) {
for (uint64_t Ai = 1; Ai <= 255; Ai++) {
APInt A(8, Ai);
APInt Zero(8, 0);
EXPECT_EQ(0, APIntOps::RoundingUDiv(Zero, A, APInt::Rounding::UP));
EXPECT_EQ(0, APIntOps::RoundingUDiv(Zero, A, APInt::Rounding::DOWN));
EXPECT_EQ(0, APIntOps::RoundingUDiv(Zero, A, APInt::Rounding::TOWARD_ZERO));
for (uint64_t Bi = 1; Bi <= 255; Bi++) {
APInt B(8, Bi);
{
APInt Quo = APIntOps::RoundingUDiv(A, B, APInt::Rounding::UP);
auto Prod = Quo.zext(16) * B.zext(16);
EXPECT_TRUE(Prod.uge(Ai));
if (Prod.ugt(Ai)) {
EXPECT_TRUE(((Quo - 1).zext(16) * B.zext(16)).ult(Ai));
}
}
{
APInt Quo = A.udiv(B);
EXPECT_EQ(Quo, APIntOps::RoundingUDiv(A, B, APInt::Rounding::TOWARD_ZERO));
EXPECT_EQ(Quo, APIntOps::RoundingUDiv(A, B, APInt::Rounding::DOWN));
}
}
}
}
TEST(APIntTest, RoundingSDiv) {
for (int64_t Ai = -128; Ai <= 127; Ai++) {
APInt A(8, Ai);
if (Ai != 0) {
APInt Zero(8, 0);
EXPECT_EQ(0, APIntOps::RoundingSDiv(Zero, A, APInt::Rounding::UP));
EXPECT_EQ(0, APIntOps::RoundingSDiv(Zero, A, APInt::Rounding::DOWN));
EXPECT_EQ(0, APIntOps::RoundingSDiv(Zero, A, APInt::Rounding::TOWARD_ZERO));
}
for (int64_t Bi = -128; Bi <= 127; Bi++) {
if (Bi == 0)
continue;
APInt B(8, Bi);
APInt QuoTowardZero = A.sdiv(B);
{
APInt Quo = APIntOps::RoundingSDiv(A, B, APInt::Rounding::UP);
if (A.srem(B).isNullValue()) {
EXPECT_EQ(QuoTowardZero, Quo);
} else if (A.isNegative() !=
B.isNegative()) { // if the math quotient is negative.
EXPECT_EQ(QuoTowardZero, Quo);
} else {
EXPECT_EQ(QuoTowardZero + 1, Quo);
}
}
{
APInt Quo = APIntOps::RoundingSDiv(A, B, APInt::Rounding::DOWN);
if (A.srem(B).isNullValue()) {
EXPECT_EQ(QuoTowardZero, Quo);
} else if (A.isNegative() !=
B.isNegative()) { // if the math quotient is negative.
EXPECT_EQ(QuoTowardZero - 1, Quo);
} else {
EXPECT_EQ(QuoTowardZero, Quo);
}
}
EXPECT_EQ(QuoTowardZero,
APIntOps::RoundingSDiv(A, B, APInt::Rounding::TOWARD_ZERO));
}
}
}
TEST(APIntTest, umul_ov) {
const std::pair<uint64_t, uint64_t> Overflows[] = {
{0x8000000000000000, 2},
{0x5555555555555556, 3},
{4294967296, 4294967296},
{4294967295, 4294967298},
};
const std::pair<uint64_t, uint64_t> NonOverflows[] = {
{0x7fffffffffffffff, 2},
{0x5555555555555555, 3},
{4294967295, 4294967297},
};
bool Overflow;
for (auto &X : Overflows) {
APInt A(64, X.first);
APInt B(64, X.second);
(void)A.umul_ov(B, Overflow);
EXPECT_TRUE(Overflow);
}
for (auto &X : NonOverflows) {
APInt A(64, X.first);
APInt B(64, X.second);
(void)A.umul_ov(B, Overflow);
EXPECT_FALSE(Overflow);
}
for (unsigned Bits = 1; Bits <= 5; ++Bits)
for (unsigned A = 0; A != 1u << Bits; ++A)
for (unsigned B = 0; B != 1u << Bits; ++B) {
APInt C = APInt(Bits, A).umul_ov(APInt(Bits, B), Overflow);
APInt D = APInt(2 * Bits, A) * APInt(2 * Bits, B);
EXPECT_TRUE(D.getHiBits(Bits).isNullValue() != Overflow);
}
}
TEST(APIntTest, SolveQuadraticEquationWrap) {
// Verify that "Solution" is the first non-negative integer that solves
// Ax^2 + Bx + C = "0 or overflow", i.e. that it is a correct solution
// as calculated by SolveQuadraticEquationWrap.
auto Validate = [] (int A, int B, int C, unsigned Width, int Solution) {
int Mask = (1 << Width) - 1;
// Solution should be non-negative.
EXPECT_GE(Solution, 0);
auto OverflowBits = [] (int64_t V, unsigned W) {
return V & -(1 << W);
};
int64_t Over0 = OverflowBits(C, Width);
auto IsZeroOrOverflow = [&] (int X) {
int64_t ValueAtX = A*X*X + B*X + C;
int64_t OverX = OverflowBits(ValueAtX, Width);
return (ValueAtX & Mask) == 0 || OverX != Over0;
};
auto EquationToString = [&] (const char *X_str) {
return (Twine(A) + Twine(X_str) + Twine("^2 + ") + Twine(B) +
Twine(X_str) + Twine(" + ") + Twine(C) + Twine(", bitwidth: ") +
Twine(Width)).str();
};
auto IsSolution = [&] (const char *X_str, int X) {
if (IsZeroOrOverflow(X))
return ::testing::AssertionSuccess()
<< X << " is a solution of " << EquationToString(X_str);
return ::testing::AssertionFailure()
<< X << " is not an expected solution of "
<< EquationToString(X_str);
};
auto IsNotSolution = [&] (const char *X_str, int X) {
if (!IsZeroOrOverflow(X))
return ::testing::AssertionSuccess()
<< X << " is not a solution of " << EquationToString(X_str);
return ::testing::AssertionFailure()
<< X << " is an unexpected solution of "
<< EquationToString(X_str);
};
// This is the important part: make sure that there is no solution that
// is less than the calculated one.
if (Solution > 0) {
for (int X = 1; X < Solution-1; ++X)
EXPECT_PRED_FORMAT1(IsNotSolution, X);
}
// Verify that the calculated solution is indeed a solution.
EXPECT_PRED_FORMAT1(IsSolution, Solution);
};
// Generate all possible quadratic equations with Width-bit wide integer
// coefficients, get the solution from SolveQuadraticEquationWrap, and
// verify that the solution is correct.
auto Iterate = [&] (unsigned Width) {
assert(1 < Width && Width < 32);
int Low = -(1 << (Width-1));
int High = (1 << (Width-1));
for (int A = Low; A != High; ++A) {
if (A == 0)
continue;
for (int B = Low; B != High; ++B) {
for (int C = Low; C != High; ++C) {
Optional<APInt> S = APIntOps::SolveQuadraticEquationWrap(
APInt(Width, A), APInt(Width, B),
APInt(Width, C), Width);
if (S.hasValue())
Validate(A, B, C, Width, S->getSExtValue());
}
}
}
};
// Test all widths in [2..6].
for (unsigned i = 2; i <= 6; ++i)
Iterate(i);
}
TEST(APIntTest, MultiplicativeInverseExaustive) {
for (unsigned BitWidth = 1; BitWidth <= 16; ++BitWidth) {
for (unsigned Value = 0; Value < (1u << BitWidth); ++Value) {
APInt V = APInt(BitWidth, Value);
APInt MulInv =
V.zext(BitWidth + 1)
.multiplicativeInverse(APInt::getSignedMinValue(BitWidth + 1))
.trunc(BitWidth);
APInt One = V * MulInv;
if (!V.isNullValue() && V.countTrailingZeros() == 0) {
// Multiplicative inverse exists for all odd numbers.
EXPECT_TRUE(One.isOneValue());
} else {
// Multiplicative inverse does not exist for even numbers (and 0).
EXPECT_TRUE(MulInv.isNullValue());
}
}
}
}
TEST(APIntTest, GetMostSignificantDifferentBit) {
EXPECT_EQ(APIntOps::GetMostSignificantDifferentBit(APInt(8, 0), APInt(8, 0)),
llvm::None);
EXPECT_EQ(
APIntOps::GetMostSignificantDifferentBit(APInt(8, 42), APInt(8, 42)),
llvm::None);
EXPECT_EQ(*APIntOps::GetMostSignificantDifferentBit(APInt(8, 0), APInt(8, 1)),
0u);
EXPECT_EQ(*APIntOps::GetMostSignificantDifferentBit(APInt(8, 0), APInt(8, 2)),
1u);
EXPECT_EQ(*APIntOps::GetMostSignificantDifferentBit(APInt(8, 0), APInt(8, 3)),
1u);
EXPECT_EQ(*APIntOps::GetMostSignificantDifferentBit(APInt(8, 1), APInt(8, 0)),
0u);
EXPECT_EQ(APIntOps::GetMostSignificantDifferentBit(APInt(8, 1), APInt(8, 1)),
llvm::None);
EXPECT_EQ(*APIntOps::GetMostSignificantDifferentBit(APInt(8, 1), APInt(8, 2)),
1u);
EXPECT_EQ(*APIntOps::GetMostSignificantDifferentBit(APInt(8, 1), APInt(8, 3)),
1u);
EXPECT_EQ(
*APIntOps::GetMostSignificantDifferentBit(APInt(8, 42), APInt(8, 112)),
6u);
}
TEST(APIntTest, GetMostSignificantDifferentBitExaustive) {
auto GetHighestDifferentBitBruteforce =
[](const APInt &V0, const APInt &V1) -> llvm::Optional<unsigned> {
assert(V0.getBitWidth() == V1.getBitWidth() && "Must have same bitwidth");
if (V0 == V1)
return llvm::None; // Bitwise identical.
// There is a mismatch. Let's find the most significant different bit.
for (int Bit = V0.getBitWidth() - 1; Bit >= 0; --Bit) {
if (V0[Bit] == V1[Bit])
continue;
return Bit;
}
llvm_unreachable("Must have found bit mismatch.");
};
for (unsigned BitWidth = 1; BitWidth <= 8; ++BitWidth) {
for (unsigned V0 = 0; V0 < (1u << BitWidth); ++V0) {
for (unsigned V1 = 0; V1 < (1u << BitWidth); ++V1) {
APInt A = APInt(BitWidth, V0);
APInt B = APInt(BitWidth, V1);
auto Bit = APIntOps::GetMostSignificantDifferentBit(A, B);
EXPECT_EQ(Bit, GetHighestDifferentBitBruteforce(A, B));
if (!Bit.hasValue())
EXPECT_EQ(A, B);
else {
EXPECT_NE(A, B);
for (unsigned NumLowBits = 0; NumLowBits <= BitWidth; ++NumLowBits) {
APInt Adash = A;
Adash.clearLowBits(NumLowBits);
APInt Bdash = B;
Bdash.clearLowBits(NumLowBits);
// Clearing only low bits up to and including *Bit is sufficient
// to make values equal.
if (NumLowBits >= 1 + *Bit)
EXPECT_EQ(Adash, Bdash);
else
EXPECT_NE(Adash, Bdash);
}
}
}
}
}
}
TEST(APIntTest, SignbitZeroChecks) {
EXPECT_TRUE(APInt(8, -1).isNegative());
EXPECT_FALSE(APInt(8, -1).isNonNegative());
EXPECT_FALSE(APInt(8, -1).isStrictlyPositive());
EXPECT_TRUE(APInt(8, -1).isNonPositive());
EXPECT_FALSE(APInt(8, 0).isNegative());
EXPECT_TRUE(APInt(8, 0).isNonNegative());
EXPECT_FALSE(APInt(8, 0).isStrictlyPositive());
EXPECT_TRUE(APInt(8, 0).isNonPositive());
EXPECT_FALSE(APInt(8, 1).isNegative());
EXPECT_TRUE(APInt(8, 1).isNonNegative());
EXPECT_TRUE(APInt(8, 1).isStrictlyPositive());
EXPECT_FALSE(APInt(8, 1).isNonPositive());
}
TEST(APIntTest, ZeroWidth) {
// Zero width Constructors.
auto ZW = APInt::getZeroWidth();
EXPECT_EQ(0U, ZW.getBitWidth());
EXPECT_EQ(0U, APInt(0, ArrayRef<uint64_t>({0, 1, 2})).getBitWidth());
EXPECT_EQ(0U, APInt(0, "0", 10).getBitWidth());
// Default constructor is single bit wide.
EXPECT_EQ(1U, APInt().getBitWidth());
// Copy ctor (move is down below).
APInt ZW2(ZW);
EXPECT_EQ(0U, ZW2.getBitWidth());
// Assignment
ZW = ZW2;
EXPECT_EQ(0U, ZW.getBitWidth());
// Methods like getLowBitsSet work with zero bits.
EXPECT_EQ(0U, APInt::getLowBitsSet(0, 0).getBitWidth());
EXPECT_EQ(0U, APInt::getSplat(0, ZW).getBitWidth());
// Logical operators.
ZW |= ZW2;
ZW &= ZW2;
ZW ^= ZW2;
ZW |= 42; // These ignore high bits of the literal.
ZW &= 42;
ZW ^= 42;
EXPECT_EQ(1, ZW.isIntN(0));
// Modulo Arithmetic. Divide/Rem aren't defined on division by zero, so they
// aren't supported.
ZW += ZW2;
ZW -= ZW2;
ZW *= ZW2;
// Logical Shifts and rotates, the amount must be <= bitwidth.
ZW <<= 0;
ZW.lshrInPlace(0);
(void)ZW.rotl(0);
(void)ZW.rotr(0);
// Comparisons.
EXPECT_EQ(1, ZW == ZW);
EXPECT_EQ(0, ZW != ZW);
EXPECT_EQ(0, ZW.ult(ZW));
// Mutations.
ZW.setBitsWithWrap(0, 0);
ZW.setBits(0, 0);
ZW.clearAllBits();
ZW.flipAllBits();
// Leading, trailing, ctpop, etc
EXPECT_EQ(0U, ZW.countLeadingZeros());
EXPECT_EQ(0U, ZW.countLeadingOnes());
EXPECT_EQ(0U, ZW.countPopulation());
EXPECT_EQ(0U, ZW.reverseBits().getBitWidth());
EXPECT_EQ(0U, ZW.getHiBits(0).getBitWidth());
EXPECT_EQ(0U, ZW.getLoBits(0).getBitWidth());
EXPECT_EQ(0, ZW.zext(4));
EXPECT_EQ(0U, APInt(4, 3).trunc(0).getBitWidth());
SmallString<42> STR;
ZW.toStringUnsigned(STR);
EXPECT_EQ("0", STR);
// Move ctor (keep at the end of the method since moves are destructive).
APInt MZW1(std::move(ZW));
EXPECT_EQ(0U, MZW1.getBitWidth());
// Move Assignment
MZW1 = std::move(ZW2);
EXPECT_EQ(0U, MZW1.getBitWidth());
}
TEST(APIntTest, ScaleBitMask) {
EXPECT_EQ(APIntOps::ScaleBitMask(APInt(2, 0x00), 8), APInt(8, 0x00));
EXPECT_EQ(APIntOps::ScaleBitMask(APInt(2, 0x01), 8), APInt(8, 0x0F));
EXPECT_EQ(APIntOps::ScaleBitMask(APInt(2, 0x02), 8), APInt(8, 0xF0));
EXPECT_EQ(APIntOps::ScaleBitMask(APInt(2, 0x03), 8), APInt(8, 0xFF));
EXPECT_EQ(APIntOps::ScaleBitMask(APInt(8, 0x00), 4), APInt(4, 0x00));
EXPECT_EQ(APIntOps::ScaleBitMask(APInt(8, 0xFF), 4), APInt(4, 0x0F));
EXPECT_EQ(APIntOps::ScaleBitMask(APInt(8, 0xE4), 4), APInt(4, 0x0E));
EXPECT_EQ(APIntOps::ScaleBitMask(APInt(8, 0x00), 8), APInt(8, 0x00));
EXPECT_EQ(APIntOps::ScaleBitMask(APInt::getNullValue(1024), 4096),
APInt::getNullValue(4096));
EXPECT_EQ(APIntOps::ScaleBitMask(APInt::getAllOnes(4096), 256),
APInt::getAllOnes(256));
EXPECT_EQ(APIntOps::ScaleBitMask(APInt::getOneBitSet(4096, 32), 256),
APInt::getOneBitSet(256, 2));
}
} // end anonymous namespace