forked from OSchip/llvm-project
3111 lines
117 KiB
C++
3111 lines
117 KiB
C++
//===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
|
|
/// analysis.
|
|
///
|
|
/// Unlike other Sanitizer tools, this tool is not designed to detect a specific
|
|
/// class of bugs on its own. Instead, it provides a generic dynamic data flow
|
|
/// analysis framework to be used by clients to help detect application-specific
|
|
/// issues within their own code.
|
|
///
|
|
/// The analysis is based on automatic propagation of data flow labels (also
|
|
/// known as taint labels) through a program as it performs computation.
|
|
///
|
|
/// Argument and return value labels are passed through TLS variables
|
|
/// __dfsan_arg_tls and __dfsan_retval_tls.
|
|
///
|
|
/// Each byte of application memory is backed by a shadow memory byte. The
|
|
/// shadow byte can represent up to 8 labels. On Linux/x86_64, memory is then
|
|
/// laid out as follows:
|
|
///
|
|
/// +--------------------+ 0x800000000000 (top of memory)
|
|
/// | application 3 |
|
|
/// +--------------------+ 0x700000000000
|
|
/// | invalid |
|
|
/// +--------------------+ 0x610000000000
|
|
/// | origin 1 |
|
|
/// +--------------------+ 0x600000000000
|
|
/// | application 2 |
|
|
/// +--------------------+ 0x510000000000
|
|
/// | shadow 1 |
|
|
/// +--------------------+ 0x500000000000
|
|
/// | invalid |
|
|
/// +--------------------+ 0x400000000000
|
|
/// | origin 3 |
|
|
/// +--------------------+ 0x300000000000
|
|
/// | shadow 3 |
|
|
/// +--------------------+ 0x200000000000
|
|
/// | origin 2 |
|
|
/// +--------------------+ 0x110000000000
|
|
/// | invalid |
|
|
/// +--------------------+ 0x100000000000
|
|
/// | shadow 2 |
|
|
/// +--------------------+ 0x010000000000
|
|
/// | application 1 |
|
|
/// +--------------------+ 0x000000000000
|
|
///
|
|
/// MEM_TO_SHADOW(mem) = mem ^ 0x500000000000
|
|
/// SHADOW_TO_ORIGIN(shadow) = shadow + 0x100000000000
|
|
///
|
|
/// For more information, please refer to the design document:
|
|
/// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/StringSet.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/ADT/iterator.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalAlias.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstVisitor.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Alignment.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/SpecialCaseList.h"
|
|
#include "llvm/Support/VirtualFileSystem.h"
|
|
#include "llvm/Transforms/Instrumentation.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <memory>
|
|
#include <set>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
// This must be consistent with ShadowWidthBits.
|
|
static const Align ShadowTLSAlignment = Align(2);
|
|
|
|
static const Align MinOriginAlignment = Align(4);
|
|
|
|
// The size of TLS variables. These constants must be kept in sync with the ones
|
|
// in dfsan.cpp.
|
|
static const unsigned ArgTLSSize = 800;
|
|
static const unsigned RetvalTLSSize = 800;
|
|
|
|
// The -dfsan-preserve-alignment flag controls whether this pass assumes that
|
|
// alignment requirements provided by the input IR are correct. For example,
|
|
// if the input IR contains a load with alignment 8, this flag will cause
|
|
// the shadow load to have alignment 16. This flag is disabled by default as
|
|
// we have unfortunately encountered too much code (including Clang itself;
|
|
// see PR14291) which performs misaligned access.
|
|
static cl::opt<bool> ClPreserveAlignment(
|
|
"dfsan-preserve-alignment",
|
|
cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
|
|
cl::init(false));
|
|
|
|
// The ABI list files control how shadow parameters are passed. The pass treats
|
|
// every function labelled "uninstrumented" in the ABI list file as conforming
|
|
// to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains
|
|
// additional annotations for those functions, a call to one of those functions
|
|
// will produce a warning message, as the labelling behaviour of the function is
|
|
// unknown. The other supported annotations for uninstrumented functions are
|
|
// "functional" and "discard", which are described below under
|
|
// DataFlowSanitizer::WrapperKind.
|
|
// Functions will often be labelled with both "uninstrumented" and one of
|
|
// "functional" or "discard". This will leave the function unchanged by this
|
|
// pass, and create a wrapper function that will call the original.
|
|
//
|
|
// Instrumented functions can also be annotated as "force_zero_labels", which
|
|
// will make all shadow and return values set zero labels.
|
|
// Functions should never be labelled with both "force_zero_labels" and
|
|
// "uninstrumented" or any of the unistrumented wrapper kinds.
|
|
static cl::list<std::string> ClABIListFiles(
|
|
"dfsan-abilist",
|
|
cl::desc("File listing native ABI functions and how the pass treats them"),
|
|
cl::Hidden);
|
|
|
|
// Controls whether the pass includes or ignores the labels of pointers in load
|
|
// instructions.
|
|
static cl::opt<bool> ClCombinePointerLabelsOnLoad(
|
|
"dfsan-combine-pointer-labels-on-load",
|
|
cl::desc("Combine the label of the pointer with the label of the data when "
|
|
"loading from memory."),
|
|
cl::Hidden, cl::init(true));
|
|
|
|
// Controls whether the pass includes or ignores the labels of pointers in
|
|
// stores instructions.
|
|
static cl::opt<bool> ClCombinePointerLabelsOnStore(
|
|
"dfsan-combine-pointer-labels-on-store",
|
|
cl::desc("Combine the label of the pointer with the label of the data when "
|
|
"storing in memory."),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
// Controls whether the pass propagates labels of offsets in GEP instructions.
|
|
static cl::opt<bool> ClCombineOffsetLabelsOnGEP(
|
|
"dfsan-combine-offset-labels-on-gep",
|
|
cl::desc(
|
|
"Combine the label of the offset with the label of the pointer when "
|
|
"doing pointer arithmetic."),
|
|
cl::Hidden, cl::init(true));
|
|
|
|
static cl::list<std::string> ClCombineTaintLookupTables(
|
|
"dfsan-combine-taint-lookup-table",
|
|
cl::desc(
|
|
"When dfsan-combine-offset-labels-on-gep and/or "
|
|
"dfsan-combine-pointer-labels-on-load are false, this flag can "
|
|
"be used to re-enable combining offset and/or pointer taint when "
|
|
"loading specific constant global variables (i.e. lookup tables)."),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<bool> ClDebugNonzeroLabels(
|
|
"dfsan-debug-nonzero-labels",
|
|
cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
|
|
"load or return with a nonzero label"),
|
|
cl::Hidden);
|
|
|
|
// Experimental feature that inserts callbacks for certain data events.
|
|
// Currently callbacks are only inserted for loads, stores, memory transfers
|
|
// (i.e. memcpy and memmove), and comparisons.
|
|
//
|
|
// If this flag is set to true, the user must provide definitions for the
|
|
// following callback functions:
|
|
// void __dfsan_load_callback(dfsan_label Label, void* addr);
|
|
// void __dfsan_store_callback(dfsan_label Label, void* addr);
|
|
// void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len);
|
|
// void __dfsan_cmp_callback(dfsan_label CombinedLabel);
|
|
static cl::opt<bool> ClEventCallbacks(
|
|
"dfsan-event-callbacks",
|
|
cl::desc("Insert calls to __dfsan_*_callback functions on data events."),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
// Experimental feature that inserts callbacks for conditionals, including:
|
|
// conditional branch, switch, select.
|
|
// This must be true for dfsan_set_conditional_callback() to have effect.
|
|
static cl::opt<bool> ClConditionalCallbacks(
|
|
"dfsan-conditional-callbacks",
|
|
cl::desc("Insert calls to callback functions on conditionals."), cl::Hidden,
|
|
cl::init(false));
|
|
|
|
// Controls whether the pass tracks the control flow of select instructions.
|
|
static cl::opt<bool> ClTrackSelectControlFlow(
|
|
"dfsan-track-select-control-flow",
|
|
cl::desc("Propagate labels from condition values of select instructions "
|
|
"to results."),
|
|
cl::Hidden, cl::init(true));
|
|
|
|
// TODO: This default value follows MSan. DFSan may use a different value.
|
|
static cl::opt<int> ClInstrumentWithCallThreshold(
|
|
"dfsan-instrument-with-call-threshold",
|
|
cl::desc("If the function being instrumented requires more than "
|
|
"this number of origin stores, use callbacks instead of "
|
|
"inline checks (-1 means never use callbacks)."),
|
|
cl::Hidden, cl::init(3500));
|
|
|
|
// Controls how to track origins.
|
|
// * 0: do not track origins.
|
|
// * 1: track origins at memory store operations.
|
|
// * 2: track origins at memory load and store operations.
|
|
// TODO: track callsites.
|
|
static cl::opt<int> ClTrackOrigins("dfsan-track-origins",
|
|
cl::desc("Track origins of labels"),
|
|
cl::Hidden, cl::init(0));
|
|
|
|
static cl::opt<bool> ClIgnorePersonalityRoutine(
|
|
"dfsan-ignore-personality-routine",
|
|
cl::desc("If a personality routine is marked uninstrumented from the ABI "
|
|
"list, do not create a wrapper for it."),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static StringRef getGlobalTypeString(const GlobalValue &G) {
|
|
// Types of GlobalVariables are always pointer types.
|
|
Type *GType = G.getValueType();
|
|
// For now we support excluding struct types only.
|
|
if (StructType *SGType = dyn_cast<StructType>(GType)) {
|
|
if (!SGType->isLiteral())
|
|
return SGType->getName();
|
|
}
|
|
return "<unknown type>";
|
|
}
|
|
|
|
namespace {
|
|
|
|
// Memory map parameters used in application-to-shadow address calculation.
|
|
// Offset = (Addr & ~AndMask) ^ XorMask
|
|
// Shadow = ShadowBase + Offset
|
|
// Origin = (OriginBase + Offset) & ~3ULL
|
|
struct MemoryMapParams {
|
|
uint64_t AndMask;
|
|
uint64_t XorMask;
|
|
uint64_t ShadowBase;
|
|
uint64_t OriginBase;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
// x86_64 Linux
|
|
// NOLINTNEXTLINE(readability-identifier-naming)
|
|
static const MemoryMapParams Linux_X86_64_MemoryMapParams = {
|
|
0, // AndMask (not used)
|
|
0x500000000000, // XorMask
|
|
0, // ShadowBase (not used)
|
|
0x100000000000, // OriginBase
|
|
};
|
|
|
|
namespace {
|
|
|
|
class DFSanABIList {
|
|
std::unique_ptr<SpecialCaseList> SCL;
|
|
|
|
public:
|
|
DFSanABIList() = default;
|
|
|
|
void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); }
|
|
|
|
/// Returns whether either this function or its source file are listed in the
|
|
/// given category.
|
|
bool isIn(const Function &F, StringRef Category) const {
|
|
return isIn(*F.getParent(), Category) ||
|
|
SCL->inSection("dataflow", "fun", F.getName(), Category);
|
|
}
|
|
|
|
/// Returns whether this global alias is listed in the given category.
|
|
///
|
|
/// If GA aliases a function, the alias's name is matched as a function name
|
|
/// would be. Similarly, aliases of globals are matched like globals.
|
|
bool isIn(const GlobalAlias &GA, StringRef Category) const {
|
|
if (isIn(*GA.getParent(), Category))
|
|
return true;
|
|
|
|
if (isa<FunctionType>(GA.getValueType()))
|
|
return SCL->inSection("dataflow", "fun", GA.getName(), Category);
|
|
|
|
return SCL->inSection("dataflow", "global", GA.getName(), Category) ||
|
|
SCL->inSection("dataflow", "type", getGlobalTypeString(GA),
|
|
Category);
|
|
}
|
|
|
|
/// Returns whether this module is listed in the given category.
|
|
bool isIn(const Module &M, StringRef Category) const {
|
|
return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category);
|
|
}
|
|
};
|
|
|
|
/// TransformedFunction is used to express the result of transforming one
|
|
/// function type into another. This struct is immutable. It holds metadata
|
|
/// useful for updating calls of the old function to the new type.
|
|
struct TransformedFunction {
|
|
TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType,
|
|
std::vector<unsigned> ArgumentIndexMapping)
|
|
: OriginalType(OriginalType), TransformedType(TransformedType),
|
|
ArgumentIndexMapping(ArgumentIndexMapping) {}
|
|
|
|
// Disallow copies.
|
|
TransformedFunction(const TransformedFunction &) = delete;
|
|
TransformedFunction &operator=(const TransformedFunction &) = delete;
|
|
|
|
// Allow moves.
|
|
TransformedFunction(TransformedFunction &&) = default;
|
|
TransformedFunction &operator=(TransformedFunction &&) = default;
|
|
|
|
/// Type of the function before the transformation.
|
|
FunctionType *OriginalType;
|
|
|
|
/// Type of the function after the transformation.
|
|
FunctionType *TransformedType;
|
|
|
|
/// Transforming a function may change the position of arguments. This
|
|
/// member records the mapping from each argument's old position to its new
|
|
/// position. Argument positions are zero-indexed. If the transformation
|
|
/// from F to F' made the first argument of F into the third argument of F',
|
|
/// then ArgumentIndexMapping[0] will equal 2.
|
|
std::vector<unsigned> ArgumentIndexMapping;
|
|
};
|
|
|
|
/// Given function attributes from a call site for the original function,
|
|
/// return function attributes appropriate for a call to the transformed
|
|
/// function.
|
|
AttributeList
|
|
transformFunctionAttributes(const TransformedFunction &TransformedFunction,
|
|
LLVMContext &Ctx, AttributeList CallSiteAttrs) {
|
|
|
|
// Construct a vector of AttributeSet for each function argument.
|
|
std::vector<llvm::AttributeSet> ArgumentAttributes(
|
|
TransformedFunction.TransformedType->getNumParams());
|
|
|
|
// Copy attributes from the parameter of the original function to the
|
|
// transformed version. 'ArgumentIndexMapping' holds the mapping from
|
|
// old argument position to new.
|
|
for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size();
|
|
I < IE; ++I) {
|
|
unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I];
|
|
ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttrs(I);
|
|
}
|
|
|
|
// Copy annotations on varargs arguments.
|
|
for (unsigned I = TransformedFunction.OriginalType->getNumParams(),
|
|
IE = CallSiteAttrs.getNumAttrSets();
|
|
I < IE; ++I) {
|
|
ArgumentAttributes.push_back(CallSiteAttrs.getParamAttrs(I));
|
|
}
|
|
|
|
return AttributeList::get(Ctx, CallSiteAttrs.getFnAttrs(),
|
|
CallSiteAttrs.getRetAttrs(),
|
|
llvm::makeArrayRef(ArgumentAttributes));
|
|
}
|
|
|
|
class DataFlowSanitizer {
|
|
friend struct DFSanFunction;
|
|
friend class DFSanVisitor;
|
|
|
|
enum { ShadowWidthBits = 8, ShadowWidthBytes = ShadowWidthBits / 8 };
|
|
|
|
enum { OriginWidthBits = 32, OriginWidthBytes = OriginWidthBits / 8 };
|
|
|
|
/// How should calls to uninstrumented functions be handled?
|
|
enum WrapperKind {
|
|
/// This function is present in an uninstrumented form but we don't know
|
|
/// how it should be handled. Print a warning and call the function anyway.
|
|
/// Don't label the return value.
|
|
WK_Warning,
|
|
|
|
/// This function does not write to (user-accessible) memory, and its return
|
|
/// value is unlabelled.
|
|
WK_Discard,
|
|
|
|
/// This function does not write to (user-accessible) memory, and the label
|
|
/// of its return value is the union of the label of its arguments.
|
|
WK_Functional,
|
|
|
|
/// Instead of calling the function, a custom wrapper __dfsw_F is called,
|
|
/// where F is the name of the function. This function may wrap the
|
|
/// original function or provide its own implementation. WK_Custom uses an
|
|
/// extra pointer argument to return the shadow. This allows the wrapped
|
|
/// form of the function type to be expressed in C.
|
|
WK_Custom
|
|
};
|
|
|
|
Module *Mod;
|
|
LLVMContext *Ctx;
|
|
Type *Int8Ptr;
|
|
IntegerType *OriginTy;
|
|
PointerType *OriginPtrTy;
|
|
ConstantInt *ZeroOrigin;
|
|
/// The shadow type for all primitive types and vector types.
|
|
IntegerType *PrimitiveShadowTy;
|
|
PointerType *PrimitiveShadowPtrTy;
|
|
IntegerType *IntptrTy;
|
|
ConstantInt *ZeroPrimitiveShadow;
|
|
Constant *ArgTLS;
|
|
ArrayType *ArgOriginTLSTy;
|
|
Constant *ArgOriginTLS;
|
|
Constant *RetvalTLS;
|
|
Constant *RetvalOriginTLS;
|
|
FunctionType *DFSanUnionLoadFnTy;
|
|
FunctionType *DFSanLoadLabelAndOriginFnTy;
|
|
FunctionType *DFSanUnimplementedFnTy;
|
|
FunctionType *DFSanSetLabelFnTy;
|
|
FunctionType *DFSanNonzeroLabelFnTy;
|
|
FunctionType *DFSanVarargWrapperFnTy;
|
|
FunctionType *DFSanConditionalCallbackFnTy;
|
|
FunctionType *DFSanConditionalCallbackOriginFnTy;
|
|
FunctionType *DFSanCmpCallbackFnTy;
|
|
FunctionType *DFSanLoadStoreCallbackFnTy;
|
|
FunctionType *DFSanMemTransferCallbackFnTy;
|
|
FunctionType *DFSanChainOriginFnTy;
|
|
FunctionType *DFSanChainOriginIfTaintedFnTy;
|
|
FunctionType *DFSanMemOriginTransferFnTy;
|
|
FunctionType *DFSanMaybeStoreOriginFnTy;
|
|
FunctionCallee DFSanUnionLoadFn;
|
|
FunctionCallee DFSanLoadLabelAndOriginFn;
|
|
FunctionCallee DFSanUnimplementedFn;
|
|
FunctionCallee DFSanSetLabelFn;
|
|
FunctionCallee DFSanNonzeroLabelFn;
|
|
FunctionCallee DFSanVarargWrapperFn;
|
|
FunctionCallee DFSanLoadCallbackFn;
|
|
FunctionCallee DFSanStoreCallbackFn;
|
|
FunctionCallee DFSanMemTransferCallbackFn;
|
|
FunctionCallee DFSanConditionalCallbackFn;
|
|
FunctionCallee DFSanConditionalCallbackOriginFn;
|
|
FunctionCallee DFSanCmpCallbackFn;
|
|
FunctionCallee DFSanChainOriginFn;
|
|
FunctionCallee DFSanChainOriginIfTaintedFn;
|
|
FunctionCallee DFSanMemOriginTransferFn;
|
|
FunctionCallee DFSanMaybeStoreOriginFn;
|
|
SmallPtrSet<Value *, 16> DFSanRuntimeFunctions;
|
|
MDNode *ColdCallWeights;
|
|
MDNode *OriginStoreWeights;
|
|
DFSanABIList ABIList;
|
|
DenseMap<Value *, Function *> UnwrappedFnMap;
|
|
AttributeMask ReadOnlyNoneAttrs;
|
|
StringSet<> CombineTaintLookupTableNames;
|
|
|
|
/// Memory map parameters used in calculation mapping application addresses
|
|
/// to shadow addresses and origin addresses.
|
|
const MemoryMapParams *MapParams;
|
|
|
|
Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB);
|
|
Value *getShadowAddress(Value *Addr, Instruction *Pos);
|
|
Value *getShadowAddress(Value *Addr, Instruction *Pos, Value *ShadowOffset);
|
|
std::pair<Value *, Value *>
|
|
getShadowOriginAddress(Value *Addr, Align InstAlignment, Instruction *Pos);
|
|
bool isInstrumented(const Function *F);
|
|
bool isInstrumented(const GlobalAlias *GA);
|
|
bool isForceZeroLabels(const Function *F);
|
|
TransformedFunction getCustomFunctionType(FunctionType *T);
|
|
WrapperKind getWrapperKind(Function *F);
|
|
void addGlobalNameSuffix(GlobalValue *GV);
|
|
Function *buildWrapperFunction(Function *F, StringRef NewFName,
|
|
GlobalValue::LinkageTypes NewFLink,
|
|
FunctionType *NewFT);
|
|
void initializeCallbackFunctions(Module &M);
|
|
void initializeRuntimeFunctions(Module &M);
|
|
void injectMetadataGlobals(Module &M);
|
|
bool initializeModule(Module &M);
|
|
|
|
/// Advances \p OriginAddr to point to the next 32-bit origin and then loads
|
|
/// from it. Returns the origin's loaded value.
|
|
Value *loadNextOrigin(Instruction *Pos, Align OriginAlign,
|
|
Value **OriginAddr);
|
|
|
|
/// Returns whether the given load byte size is amenable to inlined
|
|
/// optimization patterns.
|
|
bool hasLoadSizeForFastPath(uint64_t Size);
|
|
|
|
/// Returns whether the pass tracks origins. Supports only TLS ABI mode.
|
|
bool shouldTrackOrigins();
|
|
|
|
/// Returns a zero constant with the shadow type of OrigTy.
|
|
///
|
|
/// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...}
|
|
/// getZeroShadow([n x T]) = [n x getZeroShadow(T)]
|
|
/// getZeroShadow(other type) = i16(0)
|
|
Constant *getZeroShadow(Type *OrigTy);
|
|
/// Returns a zero constant with the shadow type of V's type.
|
|
Constant *getZeroShadow(Value *V);
|
|
|
|
/// Checks if V is a zero shadow.
|
|
bool isZeroShadow(Value *V);
|
|
|
|
/// Returns the shadow type of OrigTy.
|
|
///
|
|
/// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...}
|
|
/// getShadowTy([n x T]) = [n x getShadowTy(T)]
|
|
/// getShadowTy(other type) = i16
|
|
Type *getShadowTy(Type *OrigTy);
|
|
/// Returns the shadow type of of V's type.
|
|
Type *getShadowTy(Value *V);
|
|
|
|
const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes;
|
|
|
|
public:
|
|
DataFlowSanitizer(const std::vector<std::string> &ABIListFiles);
|
|
|
|
bool runImpl(Module &M);
|
|
};
|
|
|
|
struct DFSanFunction {
|
|
DataFlowSanitizer &DFS;
|
|
Function *F;
|
|
DominatorTree DT;
|
|
bool IsNativeABI;
|
|
bool IsForceZeroLabels;
|
|
AllocaInst *LabelReturnAlloca = nullptr;
|
|
AllocaInst *OriginReturnAlloca = nullptr;
|
|
DenseMap<Value *, Value *> ValShadowMap;
|
|
DenseMap<Value *, Value *> ValOriginMap;
|
|
DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
|
|
DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap;
|
|
|
|
struct PHIFixupElement {
|
|
PHINode *Phi;
|
|
PHINode *ShadowPhi;
|
|
PHINode *OriginPhi;
|
|
};
|
|
std::vector<PHIFixupElement> PHIFixups;
|
|
|
|
DenseSet<Instruction *> SkipInsts;
|
|
std::vector<Value *> NonZeroChecks;
|
|
|
|
struct CachedShadow {
|
|
BasicBlock *Block; // The block where Shadow is defined.
|
|
Value *Shadow;
|
|
};
|
|
/// Maps a value to its latest shadow value in terms of domination tree.
|
|
DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows;
|
|
/// Maps a value to its latest collapsed shadow value it was converted to in
|
|
/// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is
|
|
/// used at a post process where CFG blocks are split. So it does not cache
|
|
/// BasicBlock like CachedShadows, but uses domination between values.
|
|
DenseMap<Value *, Value *> CachedCollapsedShadows;
|
|
DenseMap<Value *, std::set<Value *>> ShadowElements;
|
|
|
|
DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI,
|
|
bool IsForceZeroLabels)
|
|
: DFS(DFS), F(F), IsNativeABI(IsNativeABI),
|
|
IsForceZeroLabels(IsForceZeroLabels) {
|
|
DT.recalculate(*F);
|
|
}
|
|
|
|
/// Computes the shadow address for a given function argument.
|
|
///
|
|
/// Shadow = ArgTLS+ArgOffset.
|
|
Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB);
|
|
|
|
/// Computes the shadow address for a return value.
|
|
Value *getRetvalTLS(Type *T, IRBuilder<> &IRB);
|
|
|
|
/// Computes the origin address for a given function argument.
|
|
///
|
|
/// Origin = ArgOriginTLS[ArgNo].
|
|
Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB);
|
|
|
|
/// Computes the origin address for a return value.
|
|
Value *getRetvalOriginTLS();
|
|
|
|
Value *getOrigin(Value *V);
|
|
void setOrigin(Instruction *I, Value *Origin);
|
|
/// Generates IR to compute the origin of the last operand with a taint label.
|
|
Value *combineOperandOrigins(Instruction *Inst);
|
|
/// Before the instruction Pos, generates IR to compute the last origin with a
|
|
/// taint label. Labels and origins are from vectors Shadows and Origins
|
|
/// correspondingly. The generated IR is like
|
|
/// Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0
|
|
/// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be
|
|
/// zeros with other bitwidths.
|
|
Value *combineOrigins(const std::vector<Value *> &Shadows,
|
|
const std::vector<Value *> &Origins, Instruction *Pos,
|
|
ConstantInt *Zero = nullptr);
|
|
|
|
Value *getShadow(Value *V);
|
|
void setShadow(Instruction *I, Value *Shadow);
|
|
/// Generates IR to compute the union of the two given shadows, inserting it
|
|
/// before Pos. The combined value is with primitive type.
|
|
Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
|
|
/// Combines the shadow values of V1 and V2, then converts the combined value
|
|
/// with primitive type into a shadow value with the original type T.
|
|
Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2,
|
|
Instruction *Pos);
|
|
Value *combineOperandShadows(Instruction *Inst);
|
|
|
|
/// Generates IR to load shadow and origin corresponding to bytes [\p
|
|
/// Addr, \p Addr + \p Size), where addr has alignment \p
|
|
/// InstAlignment, and take the union of each of those shadows. The returned
|
|
/// shadow always has primitive type.
|
|
///
|
|
/// When tracking loads is enabled, the returned origin is a chain at the
|
|
/// current stack if the returned shadow is tainted.
|
|
std::pair<Value *, Value *> loadShadowOrigin(Value *Addr, uint64_t Size,
|
|
Align InstAlignment,
|
|
Instruction *Pos);
|
|
|
|
void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size,
|
|
Align InstAlignment, Value *PrimitiveShadow,
|
|
Value *Origin, Instruction *Pos);
|
|
/// Applies PrimitiveShadow to all primitive subtypes of T, returning
|
|
/// the expanded shadow value.
|
|
///
|
|
/// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...}
|
|
/// EFP([n x T], PS) = [n x EFP(T,PS)]
|
|
/// EFP(other types, PS) = PS
|
|
Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow,
|
|
Instruction *Pos);
|
|
/// Collapses Shadow into a single primitive shadow value, unioning all
|
|
/// primitive shadow values in the process. Returns the final primitive
|
|
/// shadow value.
|
|
///
|
|
/// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...)
|
|
/// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...)
|
|
/// CTP(other types, PS) = PS
|
|
Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos);
|
|
|
|
void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign,
|
|
Instruction *Pos);
|
|
|
|
Align getShadowAlign(Align InstAlignment);
|
|
|
|
// If ClConditionalCallbacks is enabled, insert a callback after a given
|
|
// branch instruction using the given conditional expression.
|
|
void addConditionalCallbacksIfEnabled(Instruction &I, Value *Condition);
|
|
|
|
bool isLookupTableConstant(Value *P);
|
|
|
|
private:
|
|
/// Collapses the shadow with aggregate type into a single primitive shadow
|
|
/// value.
|
|
template <class AggregateType>
|
|
Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow,
|
|
IRBuilder<> &IRB);
|
|
|
|
Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB);
|
|
|
|
/// Returns the shadow value of an argument A.
|
|
Value *getShadowForTLSArgument(Argument *A);
|
|
|
|
/// The fast path of loading shadows.
|
|
std::pair<Value *, Value *>
|
|
loadShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size,
|
|
Align ShadowAlign, Align OriginAlign, Value *FirstOrigin,
|
|
Instruction *Pos);
|
|
|
|
Align getOriginAlign(Align InstAlignment);
|
|
|
|
/// Because 4 contiguous bytes share one 4-byte origin, the most accurate load
|
|
/// is __dfsan_load_label_and_origin. This function returns the union of all
|
|
/// labels and the origin of the first taint label. However this is an
|
|
/// additional call with many instructions. To ensure common cases are fast,
|
|
/// checks if it is possible to load labels and origins without using the
|
|
/// callback function.
|
|
///
|
|
/// When enabling tracking load instructions, we always use
|
|
/// __dfsan_load_label_and_origin to reduce code size.
|
|
bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment);
|
|
|
|
/// Returns a chain at the current stack with previous origin V.
|
|
Value *updateOrigin(Value *V, IRBuilder<> &IRB);
|
|
|
|
/// Returns a chain at the current stack with previous origin V if Shadow is
|
|
/// tainted.
|
|
Value *updateOriginIfTainted(Value *Shadow, Value *Origin, IRBuilder<> &IRB);
|
|
|
|
/// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns
|
|
/// Origin otherwise.
|
|
Value *originToIntptr(IRBuilder<> &IRB, Value *Origin);
|
|
|
|
/// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr +
|
|
/// Size).
|
|
void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr,
|
|
uint64_t StoreOriginSize, Align Alignment);
|
|
|
|
/// Stores Origin in terms of its Shadow value.
|
|
/// * Do not write origins for zero shadows because we do not trace origins
|
|
/// for untainted sinks.
|
|
/// * Use __dfsan_maybe_store_origin if there are too many origin store
|
|
/// instrumentations.
|
|
void storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, Value *Shadow,
|
|
Value *Origin, Value *StoreOriginAddr, Align InstAlignment);
|
|
|
|
/// Convert a scalar value to an i1 by comparing with 0.
|
|
Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = "");
|
|
|
|
bool shouldInstrumentWithCall();
|
|
|
|
/// Generates IR to load shadow and origin corresponding to bytes [\p
|
|
/// Addr, \p Addr + \p Size), where addr has alignment \p
|
|
/// InstAlignment, and take the union of each of those shadows. The returned
|
|
/// shadow always has primitive type.
|
|
std::pair<Value *, Value *>
|
|
loadShadowOriginSansLoadTracking(Value *Addr, uint64_t Size,
|
|
Align InstAlignment, Instruction *Pos);
|
|
int NumOriginStores = 0;
|
|
};
|
|
|
|
class DFSanVisitor : public InstVisitor<DFSanVisitor> {
|
|
public:
|
|
DFSanFunction &DFSF;
|
|
|
|
DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
|
|
|
|
const DataLayout &getDataLayout() const {
|
|
return DFSF.F->getParent()->getDataLayout();
|
|
}
|
|
|
|
// Combines shadow values and origins for all of I's operands.
|
|
void visitInstOperands(Instruction &I);
|
|
|
|
void visitUnaryOperator(UnaryOperator &UO);
|
|
void visitBinaryOperator(BinaryOperator &BO);
|
|
void visitBitCastInst(BitCastInst &BCI);
|
|
void visitCastInst(CastInst &CI);
|
|
void visitCmpInst(CmpInst &CI);
|
|
void visitLandingPadInst(LandingPadInst &LPI);
|
|
void visitGetElementPtrInst(GetElementPtrInst &GEPI);
|
|
void visitLoadInst(LoadInst &LI);
|
|
void visitStoreInst(StoreInst &SI);
|
|
void visitAtomicRMWInst(AtomicRMWInst &I);
|
|
void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I);
|
|
void visitReturnInst(ReturnInst &RI);
|
|
void visitCallBase(CallBase &CB);
|
|
void visitPHINode(PHINode &PN);
|
|
void visitExtractElementInst(ExtractElementInst &I);
|
|
void visitInsertElementInst(InsertElementInst &I);
|
|
void visitShuffleVectorInst(ShuffleVectorInst &I);
|
|
void visitExtractValueInst(ExtractValueInst &I);
|
|
void visitInsertValueInst(InsertValueInst &I);
|
|
void visitAllocaInst(AllocaInst &I);
|
|
void visitSelectInst(SelectInst &I);
|
|
void visitMemSetInst(MemSetInst &I);
|
|
void visitMemTransferInst(MemTransferInst &I);
|
|
void visitBranchInst(BranchInst &BR);
|
|
void visitSwitchInst(SwitchInst &SW);
|
|
|
|
private:
|
|
void visitCASOrRMW(Align InstAlignment, Instruction &I);
|
|
|
|
// Returns false when this is an invoke of a custom function.
|
|
bool visitWrappedCallBase(Function &F, CallBase &CB);
|
|
|
|
// Combines origins for all of I's operands.
|
|
void visitInstOperandOrigins(Instruction &I);
|
|
|
|
void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args,
|
|
IRBuilder<> &IRB);
|
|
|
|
void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args,
|
|
IRBuilder<> &IRB);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
DataFlowSanitizer::DataFlowSanitizer(
|
|
const std::vector<std::string> &ABIListFiles) {
|
|
std::vector<std::string> AllABIListFiles(std::move(ABIListFiles));
|
|
llvm::append_range(AllABIListFiles, ClABIListFiles);
|
|
// FIXME: should we propagate vfs::FileSystem to this constructor?
|
|
ABIList.set(
|
|
SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem()));
|
|
|
|
for (StringRef v : ClCombineTaintLookupTables)
|
|
CombineTaintLookupTableNames.insert(v);
|
|
}
|
|
|
|
TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
|
|
SmallVector<Type *, 4> ArgTypes;
|
|
|
|
// Some parameters of the custom function being constructed are
|
|
// parameters of T. Record the mapping from parameters of T to
|
|
// parameters of the custom function, so that parameter attributes
|
|
// at call sites can be updated.
|
|
std::vector<unsigned> ArgumentIndexMapping;
|
|
for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) {
|
|
Type *ParamType = T->getParamType(I);
|
|
ArgumentIndexMapping.push_back(ArgTypes.size());
|
|
ArgTypes.push_back(ParamType);
|
|
}
|
|
for (unsigned I = 0, E = T->getNumParams(); I != E; ++I)
|
|
ArgTypes.push_back(PrimitiveShadowTy);
|
|
if (T->isVarArg())
|
|
ArgTypes.push_back(PrimitiveShadowPtrTy);
|
|
Type *RetType = T->getReturnType();
|
|
if (!RetType->isVoidTy())
|
|
ArgTypes.push_back(PrimitiveShadowPtrTy);
|
|
|
|
if (shouldTrackOrigins()) {
|
|
for (unsigned I = 0, E = T->getNumParams(); I != E; ++I)
|
|
ArgTypes.push_back(OriginTy);
|
|
if (T->isVarArg())
|
|
ArgTypes.push_back(OriginPtrTy);
|
|
if (!RetType->isVoidTy())
|
|
ArgTypes.push_back(OriginPtrTy);
|
|
}
|
|
|
|
return TransformedFunction(
|
|
T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()),
|
|
ArgumentIndexMapping);
|
|
}
|
|
|
|
bool DataFlowSanitizer::isZeroShadow(Value *V) {
|
|
Type *T = V->getType();
|
|
if (!isa<ArrayType>(T) && !isa<StructType>(T)) {
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
|
|
return CI->isZero();
|
|
return false;
|
|
}
|
|
|
|
return isa<ConstantAggregateZero>(V);
|
|
}
|
|
|
|
bool DataFlowSanitizer::hasLoadSizeForFastPath(uint64_t Size) {
|
|
uint64_t ShadowSize = Size * ShadowWidthBytes;
|
|
return ShadowSize % 8 == 0 || ShadowSize == 4;
|
|
}
|
|
|
|
bool DataFlowSanitizer::shouldTrackOrigins() {
|
|
static const bool ShouldTrackOrigins = ClTrackOrigins;
|
|
return ShouldTrackOrigins;
|
|
}
|
|
|
|
Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) {
|
|
if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy))
|
|
return ZeroPrimitiveShadow;
|
|
Type *ShadowTy = getShadowTy(OrigTy);
|
|
return ConstantAggregateZero::get(ShadowTy);
|
|
}
|
|
|
|
Constant *DataFlowSanitizer::getZeroShadow(Value *V) {
|
|
return getZeroShadow(V->getType());
|
|
}
|
|
|
|
static Value *expandFromPrimitiveShadowRecursive(
|
|
Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy,
|
|
Value *PrimitiveShadow, IRBuilder<> &IRB) {
|
|
if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy))
|
|
return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices);
|
|
|
|
if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) {
|
|
for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) {
|
|
Indices.push_back(Idx);
|
|
Shadow = expandFromPrimitiveShadowRecursive(
|
|
Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB);
|
|
Indices.pop_back();
|
|
}
|
|
return Shadow;
|
|
}
|
|
|
|
if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) {
|
|
for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) {
|
|
Indices.push_back(Idx);
|
|
Shadow = expandFromPrimitiveShadowRecursive(
|
|
Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB);
|
|
Indices.pop_back();
|
|
}
|
|
return Shadow;
|
|
}
|
|
llvm_unreachable("Unexpected shadow type");
|
|
}
|
|
|
|
bool DFSanFunction::shouldInstrumentWithCall() {
|
|
return ClInstrumentWithCallThreshold >= 0 &&
|
|
NumOriginStores >= ClInstrumentWithCallThreshold;
|
|
}
|
|
|
|
Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow,
|
|
Instruction *Pos) {
|
|
Type *ShadowTy = DFS.getShadowTy(T);
|
|
|
|
if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
|
|
return PrimitiveShadow;
|
|
|
|
if (DFS.isZeroShadow(PrimitiveShadow))
|
|
return DFS.getZeroShadow(ShadowTy);
|
|
|
|
IRBuilder<> IRB(Pos);
|
|
SmallVector<unsigned, 4> Indices;
|
|
Value *Shadow = UndefValue::get(ShadowTy);
|
|
Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy,
|
|
PrimitiveShadow, IRB);
|
|
|
|
// Caches the primitive shadow value that built the shadow value.
|
|
CachedCollapsedShadows[Shadow] = PrimitiveShadow;
|
|
return Shadow;
|
|
}
|
|
|
|
template <class AggregateType>
|
|
Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow,
|
|
IRBuilder<> &IRB) {
|
|
if (!AT->getNumElements())
|
|
return DFS.ZeroPrimitiveShadow;
|
|
|
|
Value *FirstItem = IRB.CreateExtractValue(Shadow, 0);
|
|
Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB);
|
|
|
|
for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) {
|
|
Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx);
|
|
Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB);
|
|
Aggregator = IRB.CreateOr(Aggregator, ShadowInner);
|
|
}
|
|
return Aggregator;
|
|
}
|
|
|
|
Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow,
|
|
IRBuilder<> &IRB) {
|
|
Type *ShadowTy = Shadow->getType();
|
|
if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
|
|
return Shadow;
|
|
if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy))
|
|
return collapseAggregateShadow<>(AT, Shadow, IRB);
|
|
if (StructType *ST = dyn_cast<StructType>(ShadowTy))
|
|
return collapseAggregateShadow<>(ST, Shadow, IRB);
|
|
llvm_unreachable("Unexpected shadow type");
|
|
}
|
|
|
|
Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow,
|
|
Instruction *Pos) {
|
|
Type *ShadowTy = Shadow->getType();
|
|
if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
|
|
return Shadow;
|
|
|
|
// Checks if the cached collapsed shadow value dominates Pos.
|
|
Value *&CS = CachedCollapsedShadows[Shadow];
|
|
if (CS && DT.dominates(CS, Pos))
|
|
return CS;
|
|
|
|
IRBuilder<> IRB(Pos);
|
|
Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB);
|
|
// Caches the converted primitive shadow value.
|
|
CS = PrimitiveShadow;
|
|
return PrimitiveShadow;
|
|
}
|
|
|
|
void DFSanFunction::addConditionalCallbacksIfEnabled(Instruction &I,
|
|
Value *Condition) {
|
|
if (!ClConditionalCallbacks) {
|
|
return;
|
|
}
|
|
IRBuilder<> IRB(&I);
|
|
Value *CondShadow = getShadow(Condition);
|
|
if (DFS.shouldTrackOrigins()) {
|
|
Value *CondOrigin = getOrigin(Condition);
|
|
IRB.CreateCall(DFS.DFSanConditionalCallbackOriginFn,
|
|
{CondShadow, CondOrigin});
|
|
} else {
|
|
IRB.CreateCall(DFS.DFSanConditionalCallbackFn, {CondShadow});
|
|
}
|
|
}
|
|
|
|
Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) {
|
|
if (!OrigTy->isSized())
|
|
return PrimitiveShadowTy;
|
|
if (isa<IntegerType>(OrigTy))
|
|
return PrimitiveShadowTy;
|
|
if (isa<VectorType>(OrigTy))
|
|
return PrimitiveShadowTy;
|
|
if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy))
|
|
return ArrayType::get(getShadowTy(AT->getElementType()),
|
|
AT->getNumElements());
|
|
if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
|
|
SmallVector<Type *, 4> Elements;
|
|
for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I)
|
|
Elements.push_back(getShadowTy(ST->getElementType(I)));
|
|
return StructType::get(*Ctx, Elements);
|
|
}
|
|
return PrimitiveShadowTy;
|
|
}
|
|
|
|
Type *DataFlowSanitizer::getShadowTy(Value *V) {
|
|
return getShadowTy(V->getType());
|
|
}
|
|
|
|
bool DataFlowSanitizer::initializeModule(Module &M) {
|
|
Triple TargetTriple(M.getTargetTriple());
|
|
const DataLayout &DL = M.getDataLayout();
|
|
|
|
if (TargetTriple.getOS() != Triple::Linux)
|
|
report_fatal_error("unsupported operating system");
|
|
if (TargetTriple.getArch() != Triple::x86_64)
|
|
report_fatal_error("unsupported architecture");
|
|
MapParams = &Linux_X86_64_MemoryMapParams;
|
|
|
|
Mod = &M;
|
|
Ctx = &M.getContext();
|
|
Int8Ptr = Type::getInt8PtrTy(*Ctx);
|
|
OriginTy = IntegerType::get(*Ctx, OriginWidthBits);
|
|
OriginPtrTy = PointerType::getUnqual(OriginTy);
|
|
PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits);
|
|
PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy);
|
|
IntptrTy = DL.getIntPtrType(*Ctx);
|
|
ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0);
|
|
ZeroOrigin = ConstantInt::getSigned(OriginTy, 0);
|
|
|
|
Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy};
|
|
DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs,
|
|
/*isVarArg=*/false);
|
|
Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy};
|
|
DFSanLoadLabelAndOriginFnTy =
|
|
FunctionType::get(IntegerType::get(*Ctx, 64), DFSanLoadLabelAndOriginArgs,
|
|
/*isVarArg=*/false);
|
|
DFSanUnimplementedFnTy = FunctionType::get(
|
|
Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
|
|
Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy,
|
|
Type::getInt8PtrTy(*Ctx), IntptrTy};
|
|
DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
|
|
DFSanSetLabelArgs, /*isVarArg=*/false);
|
|
DFSanNonzeroLabelFnTy =
|
|
FunctionType::get(Type::getVoidTy(*Ctx), None, /*isVarArg=*/false);
|
|
DFSanVarargWrapperFnTy = FunctionType::get(
|
|
Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
|
|
DFSanConditionalCallbackFnTy =
|
|
FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy,
|
|
/*isVarArg=*/false);
|
|
Type *DFSanConditionalCallbackOriginArgs[2] = {PrimitiveShadowTy, OriginTy};
|
|
DFSanConditionalCallbackOriginFnTy = FunctionType::get(
|
|
Type::getVoidTy(*Ctx), DFSanConditionalCallbackOriginArgs,
|
|
/*isVarArg=*/false);
|
|
DFSanCmpCallbackFnTy =
|
|
FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy,
|
|
/*isVarArg=*/false);
|
|
DFSanChainOriginFnTy =
|
|
FunctionType::get(OriginTy, OriginTy, /*isVarArg=*/false);
|
|
Type *DFSanChainOriginIfTaintedArgs[2] = {PrimitiveShadowTy, OriginTy};
|
|
DFSanChainOriginIfTaintedFnTy = FunctionType::get(
|
|
OriginTy, DFSanChainOriginIfTaintedArgs, /*isVarArg=*/false);
|
|
Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(*Ctx, ShadowWidthBits),
|
|
Int8Ptr, IntptrTy, OriginTy};
|
|
DFSanMaybeStoreOriginFnTy = FunctionType::get(
|
|
Type::getVoidTy(*Ctx), DFSanMaybeStoreOriginArgs, /*isVarArg=*/false);
|
|
Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy};
|
|
DFSanMemOriginTransferFnTy = FunctionType::get(
|
|
Type::getVoidTy(*Ctx), DFSanMemOriginTransferArgs, /*isVarArg=*/false);
|
|
Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr};
|
|
DFSanLoadStoreCallbackFnTy =
|
|
FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs,
|
|
/*isVarArg=*/false);
|
|
Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy};
|
|
DFSanMemTransferCallbackFnTy =
|
|
FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs,
|
|
/*isVarArg=*/false);
|
|
|
|
ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
|
|
OriginStoreWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
|
|
return true;
|
|
}
|
|
|
|
bool DataFlowSanitizer::isInstrumented(const Function *F) {
|
|
return !ABIList.isIn(*F, "uninstrumented");
|
|
}
|
|
|
|
bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
|
|
return !ABIList.isIn(*GA, "uninstrumented");
|
|
}
|
|
|
|
bool DataFlowSanitizer::isForceZeroLabels(const Function *F) {
|
|
return ABIList.isIn(*F, "force_zero_labels");
|
|
}
|
|
|
|
DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
|
|
if (ABIList.isIn(*F, "functional"))
|
|
return WK_Functional;
|
|
if (ABIList.isIn(*F, "discard"))
|
|
return WK_Discard;
|
|
if (ABIList.isIn(*F, "custom"))
|
|
return WK_Custom;
|
|
|
|
return WK_Warning;
|
|
}
|
|
|
|
void DataFlowSanitizer::addGlobalNameSuffix(GlobalValue *GV) {
|
|
std::string GVName = std::string(GV->getName()), Suffix = ".dfsan";
|
|
GV->setName(GVName + Suffix);
|
|
|
|
// Try to change the name of the function in module inline asm. We only do
|
|
// this for specific asm directives, currently only ".symver", to try to avoid
|
|
// corrupting asm which happens to contain the symbol name as a substring.
|
|
// Note that the substitution for .symver assumes that the versioned symbol
|
|
// also has an instrumented name.
|
|
std::string Asm = GV->getParent()->getModuleInlineAsm();
|
|
std::string SearchStr = ".symver " + GVName + ",";
|
|
size_t Pos = Asm.find(SearchStr);
|
|
if (Pos != std::string::npos) {
|
|
Asm.replace(Pos, SearchStr.size(), ".symver " + GVName + Suffix + ",");
|
|
Pos = Asm.find("@");
|
|
|
|
if (Pos == std::string::npos)
|
|
report_fatal_error(Twine("unsupported .symver: ", Asm));
|
|
|
|
Asm.replace(Pos, 1, Suffix + "@");
|
|
GV->getParent()->setModuleInlineAsm(Asm);
|
|
}
|
|
}
|
|
|
|
Function *
|
|
DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
|
|
GlobalValue::LinkageTypes NewFLink,
|
|
FunctionType *NewFT) {
|
|
FunctionType *FT = F->getFunctionType();
|
|
Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(),
|
|
NewFName, F->getParent());
|
|
NewF->copyAttributesFrom(F);
|
|
NewF->removeRetAttrs(
|
|
AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
|
|
|
|
BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
|
|
if (F->isVarArg()) {
|
|
NewF->removeFnAttr("split-stack");
|
|
CallInst::Create(DFSanVarargWrapperFn,
|
|
IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "",
|
|
BB);
|
|
new UnreachableInst(*Ctx, BB);
|
|
} else {
|
|
auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin());
|
|
std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams());
|
|
|
|
CallInst *CI = CallInst::Create(F, Args, "", BB);
|
|
if (FT->getReturnType()->isVoidTy())
|
|
ReturnInst::Create(*Ctx, BB);
|
|
else
|
|
ReturnInst::Create(*Ctx, CI, BB);
|
|
}
|
|
|
|
return NewF;
|
|
}
|
|
|
|
// Initialize DataFlowSanitizer runtime functions and declare them in the module
|
|
void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) {
|
|
{
|
|
AttributeList AL;
|
|
AL = AL.addFnAttribute(M.getContext(), Attribute::NoUnwind);
|
|
AL = AL.addFnAttribute(M.getContext(), Attribute::ReadOnly);
|
|
AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt);
|
|
DFSanUnionLoadFn =
|
|
Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL);
|
|
}
|
|
{
|
|
AttributeList AL;
|
|
AL = AL.addFnAttribute(M.getContext(), Attribute::NoUnwind);
|
|
AL = AL.addFnAttribute(M.getContext(), Attribute::ReadOnly);
|
|
AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt);
|
|
DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction(
|
|
"__dfsan_load_label_and_origin", DFSanLoadLabelAndOriginFnTy, AL);
|
|
}
|
|
DFSanUnimplementedFn =
|
|
Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
|
|
{
|
|
AttributeList AL;
|
|
AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
|
|
AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
|
|
DFSanSetLabelFn =
|
|
Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL);
|
|
}
|
|
DFSanNonzeroLabelFn =
|
|
Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
|
|
DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper",
|
|
DFSanVarargWrapperFnTy);
|
|
{
|
|
AttributeList AL;
|
|
AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
|
|
AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt);
|
|
DFSanChainOriginFn = Mod->getOrInsertFunction("__dfsan_chain_origin",
|
|
DFSanChainOriginFnTy, AL);
|
|
}
|
|
{
|
|
AttributeList AL;
|
|
AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
|
|
AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
|
|
AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt);
|
|
DFSanChainOriginIfTaintedFn = Mod->getOrInsertFunction(
|
|
"__dfsan_chain_origin_if_tainted", DFSanChainOriginIfTaintedFnTy, AL);
|
|
}
|
|
DFSanMemOriginTransferFn = Mod->getOrInsertFunction(
|
|
"__dfsan_mem_origin_transfer", DFSanMemOriginTransferFnTy);
|
|
|
|
{
|
|
AttributeList AL;
|
|
AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
|
|
AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt);
|
|
DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction(
|
|
"__dfsan_maybe_store_origin", DFSanMaybeStoreOriginFnTy, AL);
|
|
}
|
|
|
|
DFSanRuntimeFunctions.insert(
|
|
DFSanUnionLoadFn.getCallee()->stripPointerCasts());
|
|
DFSanRuntimeFunctions.insert(
|
|
DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts());
|
|
DFSanRuntimeFunctions.insert(
|
|
DFSanUnimplementedFn.getCallee()->stripPointerCasts());
|
|
DFSanRuntimeFunctions.insert(
|
|
DFSanSetLabelFn.getCallee()->stripPointerCasts());
|
|
DFSanRuntimeFunctions.insert(
|
|
DFSanNonzeroLabelFn.getCallee()->stripPointerCasts());
|
|
DFSanRuntimeFunctions.insert(
|
|
DFSanVarargWrapperFn.getCallee()->stripPointerCasts());
|
|
DFSanRuntimeFunctions.insert(
|
|
DFSanLoadCallbackFn.getCallee()->stripPointerCasts());
|
|
DFSanRuntimeFunctions.insert(
|
|
DFSanStoreCallbackFn.getCallee()->stripPointerCasts());
|
|
DFSanRuntimeFunctions.insert(
|
|
DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts());
|
|
DFSanRuntimeFunctions.insert(
|
|
DFSanConditionalCallbackFn.getCallee()->stripPointerCasts());
|
|
DFSanRuntimeFunctions.insert(
|
|
DFSanConditionalCallbackOriginFn.getCallee()->stripPointerCasts());
|
|
DFSanRuntimeFunctions.insert(
|
|
DFSanCmpCallbackFn.getCallee()->stripPointerCasts());
|
|
DFSanRuntimeFunctions.insert(
|
|
DFSanChainOriginFn.getCallee()->stripPointerCasts());
|
|
DFSanRuntimeFunctions.insert(
|
|
DFSanChainOriginIfTaintedFn.getCallee()->stripPointerCasts());
|
|
DFSanRuntimeFunctions.insert(
|
|
DFSanMemOriginTransferFn.getCallee()->stripPointerCasts());
|
|
DFSanRuntimeFunctions.insert(
|
|
DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts());
|
|
}
|
|
|
|
// Initializes event callback functions and declare them in the module
|
|
void DataFlowSanitizer::initializeCallbackFunctions(Module &M) {
|
|
DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback",
|
|
DFSanLoadStoreCallbackFnTy);
|
|
DFSanStoreCallbackFn = Mod->getOrInsertFunction("__dfsan_store_callback",
|
|
DFSanLoadStoreCallbackFnTy);
|
|
DFSanMemTransferCallbackFn = Mod->getOrInsertFunction(
|
|
"__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy);
|
|
DFSanCmpCallbackFn =
|
|
Mod->getOrInsertFunction("__dfsan_cmp_callback", DFSanCmpCallbackFnTy);
|
|
|
|
DFSanConditionalCallbackFn = Mod->getOrInsertFunction(
|
|
"__dfsan_conditional_callback", DFSanConditionalCallbackFnTy);
|
|
DFSanConditionalCallbackOriginFn =
|
|
Mod->getOrInsertFunction("__dfsan_conditional_callback_origin",
|
|
DFSanConditionalCallbackOriginFnTy);
|
|
}
|
|
|
|
void DataFlowSanitizer::injectMetadataGlobals(Module &M) {
|
|
// These variables can be used:
|
|
// - by the runtime (to discover what the shadow width was, during
|
|
// compilation)
|
|
// - in testing (to avoid hardcoding the shadow width and type but instead
|
|
// extract them by pattern matching)
|
|
Type *IntTy = Type::getInt32Ty(*Ctx);
|
|
(void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bits", IntTy, [&] {
|
|
return new GlobalVariable(
|
|
M, IntTy, /*isConstant=*/true, GlobalValue::WeakODRLinkage,
|
|
ConstantInt::get(IntTy, ShadowWidthBits), "__dfsan_shadow_width_bits");
|
|
});
|
|
(void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bytes", IntTy, [&] {
|
|
return new GlobalVariable(M, IntTy, /*isConstant=*/true,
|
|
GlobalValue::WeakODRLinkage,
|
|
ConstantInt::get(IntTy, ShadowWidthBytes),
|
|
"__dfsan_shadow_width_bytes");
|
|
});
|
|
}
|
|
|
|
bool DataFlowSanitizer::runImpl(Module &M) {
|
|
initializeModule(M);
|
|
|
|
if (ABIList.isIn(M, "skip"))
|
|
return false;
|
|
|
|
const unsigned InitialGlobalSize = M.global_size();
|
|
const unsigned InitialModuleSize = M.size();
|
|
|
|
bool Changed = false;
|
|
|
|
auto GetOrInsertGlobal = [this, &Changed](StringRef Name,
|
|
Type *Ty) -> Constant * {
|
|
Constant *C = Mod->getOrInsertGlobal(Name, Ty);
|
|
if (GlobalVariable *G = dyn_cast<GlobalVariable>(C)) {
|
|
Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel;
|
|
G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
|
|
}
|
|
return C;
|
|
};
|
|
|
|
// These globals must be kept in sync with the ones in dfsan.cpp.
|
|
ArgTLS =
|
|
GetOrInsertGlobal("__dfsan_arg_tls",
|
|
ArrayType::get(Type::getInt64Ty(*Ctx), ArgTLSSize / 8));
|
|
RetvalTLS = GetOrInsertGlobal(
|
|
"__dfsan_retval_tls",
|
|
ArrayType::get(Type::getInt64Ty(*Ctx), RetvalTLSSize / 8));
|
|
ArgOriginTLSTy = ArrayType::get(OriginTy, NumOfElementsInArgOrgTLS);
|
|
ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls", ArgOriginTLSTy);
|
|
RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls", OriginTy);
|
|
|
|
(void)Mod->getOrInsertGlobal("__dfsan_track_origins", OriginTy, [&] {
|
|
Changed = true;
|
|
return new GlobalVariable(
|
|
M, OriginTy, true, GlobalValue::WeakODRLinkage,
|
|
ConstantInt::getSigned(OriginTy,
|
|
shouldTrackOrigins() ? ClTrackOrigins : 0),
|
|
"__dfsan_track_origins");
|
|
});
|
|
|
|
injectMetadataGlobals(M);
|
|
|
|
initializeCallbackFunctions(M);
|
|
initializeRuntimeFunctions(M);
|
|
|
|
std::vector<Function *> FnsToInstrument;
|
|
SmallPtrSet<Function *, 2> FnsWithNativeABI;
|
|
SmallPtrSet<Function *, 2> FnsWithForceZeroLabel;
|
|
SmallPtrSet<Constant *, 1> PersonalityFns;
|
|
for (Function &F : M)
|
|
if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(&F)) {
|
|
FnsToInstrument.push_back(&F);
|
|
if (F.hasPersonalityFn())
|
|
PersonalityFns.insert(F.getPersonalityFn()->stripPointerCasts());
|
|
}
|
|
|
|
if (ClIgnorePersonalityRoutine) {
|
|
for (auto *C : PersonalityFns) {
|
|
assert(isa<Function>(C) && "Personality routine is not a function!");
|
|
Function *F = cast<Function>(C);
|
|
if (!isInstrumented(F))
|
|
FnsToInstrument.erase(
|
|
std::remove(FnsToInstrument.begin(), FnsToInstrument.end(), F),
|
|
FnsToInstrument.end());
|
|
}
|
|
}
|
|
|
|
// Give function aliases prefixes when necessary, and build wrappers where the
|
|
// instrumentedness is inconsistent.
|
|
for (GlobalAlias &GA : llvm::make_early_inc_range(M.aliases())) {
|
|
// Don't stop on weak. We assume people aren't playing games with the
|
|
// instrumentedness of overridden weak aliases.
|
|
auto *F = dyn_cast<Function>(GA.getAliaseeObject());
|
|
if (!F)
|
|
continue;
|
|
|
|
bool GAInst = isInstrumented(&GA), FInst = isInstrumented(F);
|
|
if (GAInst && FInst) {
|
|
addGlobalNameSuffix(&GA);
|
|
} else if (GAInst != FInst) {
|
|
// Non-instrumented alias of an instrumented function, or vice versa.
|
|
// Replace the alias with a native-ABI wrapper of the aliasee. The pass
|
|
// below will take care of instrumenting it.
|
|
Function *NewF =
|
|
buildWrapperFunction(F, "", GA.getLinkage(), F->getFunctionType());
|
|
GA.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA.getType()));
|
|
NewF->takeName(&GA);
|
|
GA.eraseFromParent();
|
|
FnsToInstrument.push_back(NewF);
|
|
}
|
|
}
|
|
|
|
ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly)
|
|
.addAttribute(Attribute::ReadNone);
|
|
|
|
// First, change the ABI of every function in the module. ABI-listed
|
|
// functions keep their original ABI and get a wrapper function.
|
|
for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(),
|
|
FE = FnsToInstrument.end();
|
|
FI != FE; ++FI) {
|
|
Function &F = **FI;
|
|
FunctionType *FT = F.getFunctionType();
|
|
|
|
bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
|
|
FT->getReturnType()->isVoidTy());
|
|
|
|
if (isInstrumented(&F)) {
|
|
if (isForceZeroLabels(&F))
|
|
FnsWithForceZeroLabel.insert(&F);
|
|
|
|
// Instrumented functions get a '.dfsan' suffix. This allows us to more
|
|
// easily identify cases of mismatching ABIs. This naming scheme is
|
|
// mangling-compatible (see Itanium ABI), using a vendor-specific suffix.
|
|
addGlobalNameSuffix(&F);
|
|
} else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
|
|
// Build a wrapper function for F. The wrapper simply calls F, and is
|
|
// added to FnsToInstrument so that any instrumentation according to its
|
|
// WrapperKind is done in the second pass below.
|
|
|
|
// If the function being wrapped has local linkage, then preserve the
|
|
// function's linkage in the wrapper function.
|
|
GlobalValue::LinkageTypes WrapperLinkage =
|
|
F.hasLocalLinkage() ? F.getLinkage()
|
|
: GlobalValue::LinkOnceODRLinkage;
|
|
|
|
Function *NewF = buildWrapperFunction(
|
|
&F,
|
|
(shouldTrackOrigins() ? std::string("dfso$") : std::string("dfsw$")) +
|
|
std::string(F.getName()),
|
|
WrapperLinkage, FT);
|
|
NewF->removeFnAttrs(ReadOnlyNoneAttrs);
|
|
|
|
Value *WrappedFnCst =
|
|
ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
|
|
|
|
// Extern weak functions can sometimes be null at execution time.
|
|
// Code will sometimes check if an extern weak function is null.
|
|
// This could look something like:
|
|
// declare extern_weak i8 @my_func(i8)
|
|
// br i1 icmp ne (i8 (i8)* @my_func, i8 (i8)* null), label %use_my_func,
|
|
// label %avoid_my_func
|
|
// The @"dfsw$my_func" wrapper is never null, so if we replace this use
|
|
// in the comparision, the icmp will simplify to false and we have
|
|
// accidentially optimized away a null check that is necessary.
|
|
// This can lead to a crash when the null extern_weak my_func is called.
|
|
//
|
|
// To prevent (the most common pattern of) this problem,
|
|
// do not replace uses in comparisons with the wrapper.
|
|
// We definitely want to replace uses in call instructions.
|
|
// Other uses (e.g. store the function address somewhere) might be
|
|
// called or compared or both - this case may not be handled correctly.
|
|
// We will default to replacing with wrapper in cases we are unsure.
|
|
auto IsNotCmpUse = [](Use &U) -> bool {
|
|
User *Usr = U.getUser();
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) {
|
|
// This is the most common case for icmp ne null
|
|
if (CE->getOpcode() == Instruction::ICmp) {
|
|
return false;
|
|
}
|
|
}
|
|
if (Instruction *I = dyn_cast<Instruction>(Usr)) {
|
|
if (I->getOpcode() == Instruction::ICmp) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
};
|
|
F.replaceUsesWithIf(WrappedFnCst, IsNotCmpUse);
|
|
|
|
UnwrappedFnMap[WrappedFnCst] = &F;
|
|
*FI = NewF;
|
|
|
|
if (!F.isDeclaration()) {
|
|
// This function is probably defining an interposition of an
|
|
// uninstrumented function and hence needs to keep the original ABI.
|
|
// But any functions it may call need to use the instrumented ABI, so
|
|
// we instrument it in a mode which preserves the original ABI.
|
|
FnsWithNativeABI.insert(&F);
|
|
|
|
// This code needs to rebuild the iterators, as they may be invalidated
|
|
// by the push_back, taking care that the new range does not include
|
|
// any functions added by this code.
|
|
size_t N = FI - FnsToInstrument.begin(),
|
|
Count = FE - FnsToInstrument.begin();
|
|
FnsToInstrument.push_back(&F);
|
|
FI = FnsToInstrument.begin() + N;
|
|
FE = FnsToInstrument.begin() + Count;
|
|
}
|
|
// Hopefully, nobody will try to indirectly call a vararg
|
|
// function... yet.
|
|
} else if (FT->isVarArg()) {
|
|
UnwrappedFnMap[&F] = &F;
|
|
*FI = nullptr;
|
|
}
|
|
}
|
|
|
|
for (Function *F : FnsToInstrument) {
|
|
if (!F || F->isDeclaration())
|
|
continue;
|
|
|
|
removeUnreachableBlocks(*F);
|
|
|
|
DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(F),
|
|
FnsWithForceZeroLabel.count(F));
|
|
|
|
// DFSanVisitor may create new basic blocks, which confuses df_iterator.
|
|
// Build a copy of the list before iterating over it.
|
|
SmallVector<BasicBlock *, 4> BBList(depth_first(&F->getEntryBlock()));
|
|
|
|
for (BasicBlock *BB : BBList) {
|
|
Instruction *Inst = &BB->front();
|
|
while (true) {
|
|
// DFSanVisitor may split the current basic block, changing the current
|
|
// instruction's next pointer and moving the next instruction to the
|
|
// tail block from which we should continue.
|
|
Instruction *Next = Inst->getNextNode();
|
|
// DFSanVisitor may delete Inst, so keep track of whether it was a
|
|
// terminator.
|
|
bool IsTerminator = Inst->isTerminator();
|
|
if (!DFSF.SkipInsts.count(Inst))
|
|
DFSanVisitor(DFSF).visit(Inst);
|
|
if (IsTerminator)
|
|
break;
|
|
Inst = Next;
|
|
}
|
|
}
|
|
|
|
// We will not necessarily be able to compute the shadow for every phi node
|
|
// until we have visited every block. Therefore, the code that handles phi
|
|
// nodes adds them to the PHIFixups list so that they can be properly
|
|
// handled here.
|
|
for (DFSanFunction::PHIFixupElement &P : DFSF.PHIFixups) {
|
|
for (unsigned Val = 0, N = P.Phi->getNumIncomingValues(); Val != N;
|
|
++Val) {
|
|
P.ShadowPhi->setIncomingValue(
|
|
Val, DFSF.getShadow(P.Phi->getIncomingValue(Val)));
|
|
if (P.OriginPhi)
|
|
P.OriginPhi->setIncomingValue(
|
|
Val, DFSF.getOrigin(P.Phi->getIncomingValue(Val)));
|
|
}
|
|
}
|
|
|
|
// -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
|
|
// places (i.e. instructions in basic blocks we haven't even begun visiting
|
|
// yet). To make our life easier, do this work in a pass after the main
|
|
// instrumentation.
|
|
if (ClDebugNonzeroLabels) {
|
|
for (Value *V : DFSF.NonZeroChecks) {
|
|
Instruction *Pos;
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
Pos = I->getNextNode();
|
|
else
|
|
Pos = &DFSF.F->getEntryBlock().front();
|
|
while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
|
|
Pos = Pos->getNextNode();
|
|
IRBuilder<> IRB(Pos);
|
|
Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos);
|
|
Value *Ne =
|
|
IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow);
|
|
BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
|
|
Ne, Pos, /*Unreachable=*/false, ColdCallWeights));
|
|
IRBuilder<> ThenIRB(BI);
|
|
ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {});
|
|
}
|
|
}
|
|
}
|
|
|
|
return Changed || !FnsToInstrument.empty() ||
|
|
M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize;
|
|
}
|
|
|
|
Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) {
|
|
Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy);
|
|
if (ArgOffset)
|
|
Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset));
|
|
return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0),
|
|
"_dfsarg");
|
|
}
|
|
|
|
Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) {
|
|
return IRB.CreatePointerCast(
|
|
DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret");
|
|
}
|
|
|
|
Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; }
|
|
|
|
Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) {
|
|
return IRB.CreateConstGEP2_64(DFS.ArgOriginTLSTy, DFS.ArgOriginTLS, 0, ArgNo,
|
|
"_dfsarg_o");
|
|
}
|
|
|
|
Value *DFSanFunction::getOrigin(Value *V) {
|
|
assert(DFS.shouldTrackOrigins());
|
|
if (!isa<Argument>(V) && !isa<Instruction>(V))
|
|
return DFS.ZeroOrigin;
|
|
Value *&Origin = ValOriginMap[V];
|
|
if (!Origin) {
|
|
if (Argument *A = dyn_cast<Argument>(V)) {
|
|
if (IsNativeABI)
|
|
return DFS.ZeroOrigin;
|
|
if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) {
|
|
Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin();
|
|
IRBuilder<> IRB(ArgOriginTLSPos);
|
|
Value *ArgOriginPtr = getArgOriginTLS(A->getArgNo(), IRB);
|
|
Origin = IRB.CreateLoad(DFS.OriginTy, ArgOriginPtr);
|
|
} else {
|
|
// Overflow
|
|
Origin = DFS.ZeroOrigin;
|
|
}
|
|
} else {
|
|
Origin = DFS.ZeroOrigin;
|
|
}
|
|
}
|
|
return Origin;
|
|
}
|
|
|
|
void DFSanFunction::setOrigin(Instruction *I, Value *Origin) {
|
|
if (!DFS.shouldTrackOrigins())
|
|
return;
|
|
assert(!ValOriginMap.count(I));
|
|
assert(Origin->getType() == DFS.OriginTy);
|
|
ValOriginMap[I] = Origin;
|
|
}
|
|
|
|
Value *DFSanFunction::getShadowForTLSArgument(Argument *A) {
|
|
unsigned ArgOffset = 0;
|
|
const DataLayout &DL = F->getParent()->getDataLayout();
|
|
for (auto &FArg : F->args()) {
|
|
if (!FArg.getType()->isSized()) {
|
|
if (A == &FArg)
|
|
break;
|
|
continue;
|
|
}
|
|
|
|
unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg));
|
|
if (A != &FArg) {
|
|
ArgOffset += alignTo(Size, ShadowTLSAlignment);
|
|
if (ArgOffset > ArgTLSSize)
|
|
break; // ArgTLS overflows, uses a zero shadow.
|
|
continue;
|
|
}
|
|
|
|
if (ArgOffset + Size > ArgTLSSize)
|
|
break; // ArgTLS overflows, uses a zero shadow.
|
|
|
|
Instruction *ArgTLSPos = &*F->getEntryBlock().begin();
|
|
IRBuilder<> IRB(ArgTLSPos);
|
|
Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB);
|
|
return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr,
|
|
ShadowTLSAlignment);
|
|
}
|
|
|
|
return DFS.getZeroShadow(A);
|
|
}
|
|
|
|
Value *DFSanFunction::getShadow(Value *V) {
|
|
if (!isa<Argument>(V) && !isa<Instruction>(V))
|
|
return DFS.getZeroShadow(V);
|
|
if (IsForceZeroLabels)
|
|
return DFS.getZeroShadow(V);
|
|
Value *&Shadow = ValShadowMap[V];
|
|
if (!Shadow) {
|
|
if (Argument *A = dyn_cast<Argument>(V)) {
|
|
if (IsNativeABI)
|
|
return DFS.getZeroShadow(V);
|
|
Shadow = getShadowForTLSArgument(A);
|
|
NonZeroChecks.push_back(Shadow);
|
|
} else {
|
|
Shadow = DFS.getZeroShadow(V);
|
|
}
|
|
}
|
|
return Shadow;
|
|
}
|
|
|
|
void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
|
|
assert(!ValShadowMap.count(I));
|
|
ValShadowMap[I] = Shadow;
|
|
}
|
|
|
|
/// Compute the integer shadow offset that corresponds to a given
|
|
/// application address.
|
|
///
|
|
/// Offset = (Addr & ~AndMask) ^ XorMask
|
|
Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) {
|
|
assert(Addr != RetvalTLS && "Reinstrumenting?");
|
|
Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy);
|
|
|
|
uint64_t AndMask = MapParams->AndMask;
|
|
if (AndMask)
|
|
OffsetLong =
|
|
IRB.CreateAnd(OffsetLong, ConstantInt::get(IntptrTy, ~AndMask));
|
|
|
|
uint64_t XorMask = MapParams->XorMask;
|
|
if (XorMask)
|
|
OffsetLong = IRB.CreateXor(OffsetLong, ConstantInt::get(IntptrTy, XorMask));
|
|
return OffsetLong;
|
|
}
|
|
|
|
std::pair<Value *, Value *>
|
|
DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment,
|
|
Instruction *Pos) {
|
|
// Returns ((Addr & shadow_mask) + origin_base - shadow_base) & ~4UL
|
|
IRBuilder<> IRB(Pos);
|
|
Value *ShadowOffset = getShadowOffset(Addr, IRB);
|
|
Value *ShadowLong = ShadowOffset;
|
|
uint64_t ShadowBase = MapParams->ShadowBase;
|
|
if (ShadowBase != 0) {
|
|
ShadowLong =
|
|
IRB.CreateAdd(ShadowLong, ConstantInt::get(IntptrTy, ShadowBase));
|
|
}
|
|
IntegerType *ShadowTy = IntegerType::get(*Ctx, ShadowWidthBits);
|
|
Value *ShadowPtr =
|
|
IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
|
|
Value *OriginPtr = nullptr;
|
|
if (shouldTrackOrigins()) {
|
|
Value *OriginLong = ShadowOffset;
|
|
uint64_t OriginBase = MapParams->OriginBase;
|
|
if (OriginBase != 0)
|
|
OriginLong =
|
|
IRB.CreateAdd(OriginLong, ConstantInt::get(IntptrTy, OriginBase));
|
|
const Align Alignment = llvm::assumeAligned(InstAlignment.value());
|
|
// When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB.
|
|
// So Mask is unnecessary.
|
|
if (Alignment < MinOriginAlignment) {
|
|
uint64_t Mask = MinOriginAlignment.value() - 1;
|
|
OriginLong = IRB.CreateAnd(OriginLong, ConstantInt::get(IntptrTy, ~Mask));
|
|
}
|
|
OriginPtr = IRB.CreateIntToPtr(OriginLong, OriginPtrTy);
|
|
}
|
|
return std::make_pair(ShadowPtr, OriginPtr);
|
|
}
|
|
|
|
Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos,
|
|
Value *ShadowOffset) {
|
|
IRBuilder<> IRB(Pos);
|
|
return IRB.CreateIntToPtr(ShadowOffset, PrimitiveShadowPtrTy);
|
|
}
|
|
|
|
Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) {
|
|
IRBuilder<> IRB(Pos);
|
|
Value *ShadowOffset = getShadowOffset(Addr, IRB);
|
|
return getShadowAddress(Addr, Pos, ShadowOffset);
|
|
}
|
|
|
|
Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2,
|
|
Instruction *Pos) {
|
|
Value *PrimitiveValue = combineShadows(V1, V2, Pos);
|
|
return expandFromPrimitiveShadow(T, PrimitiveValue, Pos);
|
|
}
|
|
|
|
// Generates IR to compute the union of the two given shadows, inserting it
|
|
// before Pos. The combined value is with primitive type.
|
|
Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) {
|
|
if (DFS.isZeroShadow(V1))
|
|
return collapseToPrimitiveShadow(V2, Pos);
|
|
if (DFS.isZeroShadow(V2))
|
|
return collapseToPrimitiveShadow(V1, Pos);
|
|
if (V1 == V2)
|
|
return collapseToPrimitiveShadow(V1, Pos);
|
|
|
|
auto V1Elems = ShadowElements.find(V1);
|
|
auto V2Elems = ShadowElements.find(V2);
|
|
if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) {
|
|
if (std::includes(V1Elems->second.begin(), V1Elems->second.end(),
|
|
V2Elems->second.begin(), V2Elems->second.end())) {
|
|
return collapseToPrimitiveShadow(V1, Pos);
|
|
}
|
|
if (std::includes(V2Elems->second.begin(), V2Elems->second.end(),
|
|
V1Elems->second.begin(), V1Elems->second.end())) {
|
|
return collapseToPrimitiveShadow(V2, Pos);
|
|
}
|
|
} else if (V1Elems != ShadowElements.end()) {
|
|
if (V1Elems->second.count(V2))
|
|
return collapseToPrimitiveShadow(V1, Pos);
|
|
} else if (V2Elems != ShadowElements.end()) {
|
|
if (V2Elems->second.count(V1))
|
|
return collapseToPrimitiveShadow(V2, Pos);
|
|
}
|
|
|
|
auto Key = std::make_pair(V1, V2);
|
|
if (V1 > V2)
|
|
std::swap(Key.first, Key.second);
|
|
CachedShadow &CCS = CachedShadows[Key];
|
|
if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent()))
|
|
return CCS.Shadow;
|
|
|
|
// Converts inputs shadows to shadows with primitive types.
|
|
Value *PV1 = collapseToPrimitiveShadow(V1, Pos);
|
|
Value *PV2 = collapseToPrimitiveShadow(V2, Pos);
|
|
|
|
IRBuilder<> IRB(Pos);
|
|
CCS.Block = Pos->getParent();
|
|
CCS.Shadow = IRB.CreateOr(PV1, PV2);
|
|
|
|
std::set<Value *> UnionElems;
|
|
if (V1Elems != ShadowElements.end()) {
|
|
UnionElems = V1Elems->second;
|
|
} else {
|
|
UnionElems.insert(V1);
|
|
}
|
|
if (V2Elems != ShadowElements.end()) {
|
|
UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end());
|
|
} else {
|
|
UnionElems.insert(V2);
|
|
}
|
|
ShadowElements[CCS.Shadow] = std::move(UnionElems);
|
|
|
|
return CCS.Shadow;
|
|
}
|
|
|
|
// A convenience function which folds the shadows of each of the operands
|
|
// of the provided instruction Inst, inserting the IR before Inst. Returns
|
|
// the computed union Value.
|
|
Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
|
|
if (Inst->getNumOperands() == 0)
|
|
return DFS.getZeroShadow(Inst);
|
|
|
|
Value *Shadow = getShadow(Inst->getOperand(0));
|
|
for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I)
|
|
Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(I)), Inst);
|
|
|
|
return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst);
|
|
}
|
|
|
|
void DFSanVisitor::visitInstOperands(Instruction &I) {
|
|
Value *CombinedShadow = DFSF.combineOperandShadows(&I);
|
|
DFSF.setShadow(&I, CombinedShadow);
|
|
visitInstOperandOrigins(I);
|
|
}
|
|
|
|
Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows,
|
|
const std::vector<Value *> &Origins,
|
|
Instruction *Pos, ConstantInt *Zero) {
|
|
assert(Shadows.size() == Origins.size());
|
|
size_t Size = Origins.size();
|
|
if (Size == 0)
|
|
return DFS.ZeroOrigin;
|
|
Value *Origin = nullptr;
|
|
if (!Zero)
|
|
Zero = DFS.ZeroPrimitiveShadow;
|
|
for (size_t I = 0; I != Size; ++I) {
|
|
Value *OpOrigin = Origins[I];
|
|
Constant *ConstOpOrigin = dyn_cast<Constant>(OpOrigin);
|
|
if (ConstOpOrigin && ConstOpOrigin->isNullValue())
|
|
continue;
|
|
if (!Origin) {
|
|
Origin = OpOrigin;
|
|
continue;
|
|
}
|
|
Value *OpShadow = Shadows[I];
|
|
Value *PrimitiveShadow = collapseToPrimitiveShadow(OpShadow, Pos);
|
|
IRBuilder<> IRB(Pos);
|
|
Value *Cond = IRB.CreateICmpNE(PrimitiveShadow, Zero);
|
|
Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
|
|
}
|
|
return Origin ? Origin : DFS.ZeroOrigin;
|
|
}
|
|
|
|
Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) {
|
|
size_t Size = Inst->getNumOperands();
|
|
std::vector<Value *> Shadows(Size);
|
|
std::vector<Value *> Origins(Size);
|
|
for (unsigned I = 0; I != Size; ++I) {
|
|
Shadows[I] = getShadow(Inst->getOperand(I));
|
|
Origins[I] = getOrigin(Inst->getOperand(I));
|
|
}
|
|
return combineOrigins(Shadows, Origins, Inst);
|
|
}
|
|
|
|
void DFSanVisitor::visitInstOperandOrigins(Instruction &I) {
|
|
if (!DFSF.DFS.shouldTrackOrigins())
|
|
return;
|
|
Value *CombinedOrigin = DFSF.combineOperandOrigins(&I);
|
|
DFSF.setOrigin(&I, CombinedOrigin);
|
|
}
|
|
|
|
Align DFSanFunction::getShadowAlign(Align InstAlignment) {
|
|
const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1);
|
|
return Align(Alignment.value() * DFS.ShadowWidthBytes);
|
|
}
|
|
|
|
Align DFSanFunction::getOriginAlign(Align InstAlignment) {
|
|
const Align Alignment = llvm::assumeAligned(InstAlignment.value());
|
|
return Align(std::max(MinOriginAlignment, Alignment));
|
|
}
|
|
|
|
bool DFSanFunction::isLookupTableConstant(Value *P) {
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P->stripPointerCasts()))
|
|
if (GV->isConstant() && GV->hasName())
|
|
return DFS.CombineTaintLookupTableNames.count(GV->getName());
|
|
|
|
return false;
|
|
}
|
|
|
|
bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size,
|
|
Align InstAlignment) {
|
|
// When enabling tracking load instructions, we always use
|
|
// __dfsan_load_label_and_origin to reduce code size.
|
|
if (ClTrackOrigins == 2)
|
|
return true;
|
|
|
|
assert(Size != 0);
|
|
// * if Size == 1, it is sufficient to load its origin aligned at 4.
|
|
// * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to
|
|
// load its origin aligned at 4. If not, although origins may be lost, it
|
|
// should not happen very often.
|
|
// * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When
|
|
// Size % 4 == 0, it is more efficient to load origins without callbacks.
|
|
// * Otherwise we use __dfsan_load_label_and_origin.
|
|
// This should ensure that common cases run efficiently.
|
|
if (Size <= 2)
|
|
return false;
|
|
|
|
const Align Alignment = llvm::assumeAligned(InstAlignment.value());
|
|
return Alignment < MinOriginAlignment || !DFS.hasLoadSizeForFastPath(Size);
|
|
}
|
|
|
|
Value *DataFlowSanitizer::loadNextOrigin(Instruction *Pos, Align OriginAlign,
|
|
Value **OriginAddr) {
|
|
IRBuilder<> IRB(Pos);
|
|
*OriginAddr =
|
|
IRB.CreateGEP(OriginTy, *OriginAddr, ConstantInt::get(IntptrTy, 1));
|
|
return IRB.CreateAlignedLoad(OriginTy, *OriginAddr, OriginAlign);
|
|
}
|
|
|
|
std::pair<Value *, Value *> DFSanFunction::loadShadowFast(
|
|
Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign,
|
|
Align OriginAlign, Value *FirstOrigin, Instruction *Pos) {
|
|
const bool ShouldTrackOrigins = DFS.shouldTrackOrigins();
|
|
const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes;
|
|
|
|
assert(Size >= 4 && "Not large enough load size for fast path!");
|
|
|
|
// Used for origin tracking.
|
|
std::vector<Value *> Shadows;
|
|
std::vector<Value *> Origins;
|
|
|
|
// Load instructions in LLVM can have arbitrary byte sizes (e.g., 3, 12, 20)
|
|
// but this function is only used in a subset of cases that make it possible
|
|
// to optimize the instrumentation.
|
|
//
|
|
// Specifically, when the shadow size in bytes (i.e., loaded bytes x shadow
|
|
// per byte) is either:
|
|
// - a multiple of 8 (common)
|
|
// - equal to 4 (only for load32)
|
|
//
|
|
// For the second case, we can fit the wide shadow in a 32-bit integer. In all
|
|
// other cases, we use a 64-bit integer to hold the wide shadow.
|
|
Type *WideShadowTy =
|
|
ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx);
|
|
|
|
IRBuilder<> IRB(Pos);
|
|
Value *WideAddr = IRB.CreateBitCast(ShadowAddr, WideShadowTy->getPointerTo());
|
|
Value *CombinedWideShadow =
|
|
IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign);
|
|
|
|
unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth();
|
|
const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits;
|
|
|
|
auto AppendWideShadowAndOrigin = [&](Value *WideShadow, Value *Origin) {
|
|
if (BytesPerWideShadow > 4) {
|
|
assert(BytesPerWideShadow == 8);
|
|
// The wide shadow relates to two origin pointers: one for the first four
|
|
// application bytes, and one for the latest four. We use a left shift to
|
|
// get just the shadow bytes that correspond to the first origin pointer,
|
|
// and then the entire shadow for the second origin pointer (which will be
|
|
// chosen by combineOrigins() iff the least-significant half of the wide
|
|
// shadow was empty but the other half was not).
|
|
Value *WideShadowLo = IRB.CreateShl(
|
|
WideShadow, ConstantInt::get(WideShadowTy, WideShadowBitWidth / 2));
|
|
Shadows.push_back(WideShadow);
|
|
Origins.push_back(DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr));
|
|
|
|
Shadows.push_back(WideShadowLo);
|
|
Origins.push_back(Origin);
|
|
} else {
|
|
Shadows.push_back(WideShadow);
|
|
Origins.push_back(Origin);
|
|
}
|
|
};
|
|
|
|
if (ShouldTrackOrigins)
|
|
AppendWideShadowAndOrigin(CombinedWideShadow, FirstOrigin);
|
|
|
|
// First OR all the WideShadows (i.e., 64bit or 32bit shadow chunks) linearly;
|
|
// then OR individual shadows within the combined WideShadow by binary ORing.
|
|
// This is fewer instructions than ORing shadows individually, since it
|
|
// needs logN shift/or instructions (N being the bytes of the combined wide
|
|
// shadow).
|
|
for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size;
|
|
ByteOfs += BytesPerWideShadow) {
|
|
WideAddr = IRB.CreateGEP(WideShadowTy, WideAddr,
|
|
ConstantInt::get(DFS.IntptrTy, 1));
|
|
Value *NextWideShadow =
|
|
IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign);
|
|
CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow);
|
|
if (ShouldTrackOrigins) {
|
|
Value *NextOrigin = DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr);
|
|
AppendWideShadowAndOrigin(NextWideShadow, NextOrigin);
|
|
}
|
|
}
|
|
for (unsigned Width = WideShadowBitWidth / 2; Width >= DFS.ShadowWidthBits;
|
|
Width >>= 1) {
|
|
Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width);
|
|
CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow);
|
|
}
|
|
return {IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy),
|
|
ShouldTrackOrigins
|
|
? combineOrigins(Shadows, Origins, Pos,
|
|
ConstantInt::getSigned(IRB.getInt64Ty(), 0))
|
|
: DFS.ZeroOrigin};
|
|
}
|
|
|
|
std::pair<Value *, Value *> DFSanFunction::loadShadowOriginSansLoadTracking(
|
|
Value *Addr, uint64_t Size, Align InstAlignment, Instruction *Pos) {
|
|
const bool ShouldTrackOrigins = DFS.shouldTrackOrigins();
|
|
|
|
// Non-escaped loads.
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
|
|
const auto SI = AllocaShadowMap.find(AI);
|
|
if (SI != AllocaShadowMap.end()) {
|
|
IRBuilder<> IRB(Pos);
|
|
Value *ShadowLI = IRB.CreateLoad(DFS.PrimitiveShadowTy, SI->second);
|
|
const auto OI = AllocaOriginMap.find(AI);
|
|
assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end());
|
|
return {ShadowLI, ShouldTrackOrigins
|
|
? IRB.CreateLoad(DFS.OriginTy, OI->second)
|
|
: nullptr};
|
|
}
|
|
}
|
|
|
|
// Load from constant addresses.
|
|
SmallVector<const Value *, 2> Objs;
|
|
getUnderlyingObjects(Addr, Objs);
|
|
bool AllConstants = true;
|
|
for (const Value *Obj : Objs) {
|
|
if (isa<Function>(Obj) || isa<BlockAddress>(Obj))
|
|
continue;
|
|
if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant())
|
|
continue;
|
|
|
|
AllConstants = false;
|
|
break;
|
|
}
|
|
if (AllConstants)
|
|
return {DFS.ZeroPrimitiveShadow,
|
|
ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr};
|
|
|
|
if (Size == 0)
|
|
return {DFS.ZeroPrimitiveShadow,
|
|
ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr};
|
|
|
|
// Use callback to load if this is not an optimizable case for origin
|
|
// tracking.
|
|
if (ShouldTrackOrigins &&
|
|
useCallbackLoadLabelAndOrigin(Size, InstAlignment)) {
|
|
IRBuilder<> IRB(Pos);
|
|
CallInst *Call =
|
|
IRB.CreateCall(DFS.DFSanLoadLabelAndOriginFn,
|
|
{IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
|
|
ConstantInt::get(DFS.IntptrTy, Size)});
|
|
Call->addRetAttr(Attribute::ZExt);
|
|
return {IRB.CreateTrunc(IRB.CreateLShr(Call, DFS.OriginWidthBits),
|
|
DFS.PrimitiveShadowTy),
|
|
IRB.CreateTrunc(Call, DFS.OriginTy)};
|
|
}
|
|
|
|
// Other cases that support loading shadows or origins in a fast way.
|
|
Value *ShadowAddr, *OriginAddr;
|
|
std::tie(ShadowAddr, OriginAddr) =
|
|
DFS.getShadowOriginAddress(Addr, InstAlignment, Pos);
|
|
|
|
const Align ShadowAlign = getShadowAlign(InstAlignment);
|
|
const Align OriginAlign = getOriginAlign(InstAlignment);
|
|
Value *Origin = nullptr;
|
|
if (ShouldTrackOrigins) {
|
|
IRBuilder<> IRB(Pos);
|
|
Origin = IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign);
|
|
}
|
|
|
|
// When the byte size is small enough, we can load the shadow directly with
|
|
// just a few instructions.
|
|
switch (Size) {
|
|
case 1: {
|
|
LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos);
|
|
LI->setAlignment(ShadowAlign);
|
|
return {LI, Origin};
|
|
}
|
|
case 2: {
|
|
IRBuilder<> IRB(Pos);
|
|
Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr,
|
|
ConstantInt::get(DFS.IntptrTy, 1));
|
|
Value *Load =
|
|
IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign);
|
|
Value *Load1 =
|
|
IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign);
|
|
return {combineShadows(Load, Load1, Pos), Origin};
|
|
}
|
|
}
|
|
bool HasSizeForFastPath = DFS.hasLoadSizeForFastPath(Size);
|
|
|
|
if (HasSizeForFastPath)
|
|
return loadShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign,
|
|
OriginAlign, Origin, Pos);
|
|
|
|
IRBuilder<> IRB(Pos);
|
|
CallInst *FallbackCall = IRB.CreateCall(
|
|
DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
|
|
FallbackCall->addRetAttr(Attribute::ZExt);
|
|
return {FallbackCall, Origin};
|
|
}
|
|
|
|
std::pair<Value *, Value *> DFSanFunction::loadShadowOrigin(Value *Addr,
|
|
uint64_t Size,
|
|
Align InstAlignment,
|
|
Instruction *Pos) {
|
|
Value *PrimitiveShadow, *Origin;
|
|
std::tie(PrimitiveShadow, Origin) =
|
|
loadShadowOriginSansLoadTracking(Addr, Size, InstAlignment, Pos);
|
|
if (DFS.shouldTrackOrigins()) {
|
|
if (ClTrackOrigins == 2) {
|
|
IRBuilder<> IRB(Pos);
|
|
auto *ConstantShadow = dyn_cast<Constant>(PrimitiveShadow);
|
|
if (!ConstantShadow || !ConstantShadow->isZeroValue())
|
|
Origin = updateOriginIfTainted(PrimitiveShadow, Origin, IRB);
|
|
}
|
|
}
|
|
return {PrimitiveShadow, Origin};
|
|
}
|
|
|
|
static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) {
|
|
switch (AO) {
|
|
case AtomicOrdering::NotAtomic:
|
|
return AtomicOrdering::NotAtomic;
|
|
case AtomicOrdering::Unordered:
|
|
case AtomicOrdering::Monotonic:
|
|
case AtomicOrdering::Acquire:
|
|
return AtomicOrdering::Acquire;
|
|
case AtomicOrdering::Release:
|
|
case AtomicOrdering::AcquireRelease:
|
|
return AtomicOrdering::AcquireRelease;
|
|
case AtomicOrdering::SequentiallyConsistent:
|
|
return AtomicOrdering::SequentiallyConsistent;
|
|
}
|
|
llvm_unreachable("Unknown ordering");
|
|
}
|
|
|
|
Value *StripPointerGEPsAndCasts(Value *V) {
|
|
if (!V->getType()->isPointerTy())
|
|
return V;
|
|
|
|
// DFSan pass should be running on valid IR, but we'll
|
|
// keep a seen set to ensure there are no issues.
|
|
SmallPtrSet<const Value *, 4> Visited;
|
|
Visited.insert(V);
|
|
do {
|
|
if (auto *GEP = dyn_cast<GEPOperator>(V)) {
|
|
V = GEP->getPointerOperand();
|
|
} else if (Operator::getOpcode(V) == Instruction::BitCast) {
|
|
V = cast<Operator>(V)->getOperand(0);
|
|
if (!V->getType()->isPointerTy())
|
|
return V;
|
|
} else if (isa<GlobalAlias>(V)) {
|
|
V = cast<GlobalAlias>(V)->getAliasee();
|
|
}
|
|
} while (Visited.insert(V).second);
|
|
|
|
return V;
|
|
}
|
|
|
|
void DFSanVisitor::visitLoadInst(LoadInst &LI) {
|
|
auto &DL = LI.getModule()->getDataLayout();
|
|
uint64_t Size = DL.getTypeStoreSize(LI.getType());
|
|
if (Size == 0) {
|
|
DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI));
|
|
DFSF.setOrigin(&LI, DFSF.DFS.ZeroOrigin);
|
|
return;
|
|
}
|
|
|
|
// When an application load is atomic, increase atomic ordering between
|
|
// atomic application loads and stores to ensure happen-before order; load
|
|
// shadow data after application data; store zero shadow data before
|
|
// application data. This ensure shadow loads return either labels of the
|
|
// initial application data or zeros.
|
|
if (LI.isAtomic())
|
|
LI.setOrdering(addAcquireOrdering(LI.getOrdering()));
|
|
|
|
Instruction *Pos = LI.isAtomic() ? LI.getNextNode() : &LI;
|
|
std::vector<Value *> Shadows;
|
|
std::vector<Value *> Origins;
|
|
Value *PrimitiveShadow, *Origin;
|
|
std::tie(PrimitiveShadow, Origin) =
|
|
DFSF.loadShadowOrigin(LI.getPointerOperand(), Size, LI.getAlign(), Pos);
|
|
const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
|
|
if (ShouldTrackOrigins) {
|
|
Shadows.push_back(PrimitiveShadow);
|
|
Origins.push_back(Origin);
|
|
}
|
|
if (ClCombinePointerLabelsOnLoad ||
|
|
DFSF.isLookupTableConstant(
|
|
StripPointerGEPsAndCasts(LI.getPointerOperand()))) {
|
|
Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
|
|
PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, Pos);
|
|
if (ShouldTrackOrigins) {
|
|
Shadows.push_back(PtrShadow);
|
|
Origins.push_back(DFSF.getOrigin(LI.getPointerOperand()));
|
|
}
|
|
}
|
|
if (!DFSF.DFS.isZeroShadow(PrimitiveShadow))
|
|
DFSF.NonZeroChecks.push_back(PrimitiveShadow);
|
|
|
|
Value *Shadow =
|
|
DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, Pos);
|
|
DFSF.setShadow(&LI, Shadow);
|
|
|
|
if (ShouldTrackOrigins) {
|
|
DFSF.setOrigin(&LI, DFSF.combineOrigins(Shadows, Origins, Pos));
|
|
}
|
|
|
|
if (ClEventCallbacks) {
|
|
IRBuilder<> IRB(Pos);
|
|
Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr);
|
|
IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr8});
|
|
}
|
|
}
|
|
|
|
Value *DFSanFunction::updateOriginIfTainted(Value *Shadow, Value *Origin,
|
|
IRBuilder<> &IRB) {
|
|
assert(DFS.shouldTrackOrigins());
|
|
return IRB.CreateCall(DFS.DFSanChainOriginIfTaintedFn, {Shadow, Origin});
|
|
}
|
|
|
|
Value *DFSanFunction::updateOrigin(Value *V, IRBuilder<> &IRB) {
|
|
if (!DFS.shouldTrackOrigins())
|
|
return V;
|
|
return IRB.CreateCall(DFS.DFSanChainOriginFn, V);
|
|
}
|
|
|
|
Value *DFSanFunction::originToIntptr(IRBuilder<> &IRB, Value *Origin) {
|
|
const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes;
|
|
const DataLayout &DL = F->getParent()->getDataLayout();
|
|
unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy);
|
|
if (IntptrSize == OriginSize)
|
|
return Origin;
|
|
assert(IntptrSize == OriginSize * 2);
|
|
Origin = IRB.CreateIntCast(Origin, DFS.IntptrTy, /* isSigned */ false);
|
|
return IRB.CreateOr(Origin, IRB.CreateShl(Origin, OriginSize * 8));
|
|
}
|
|
|
|
void DFSanFunction::paintOrigin(IRBuilder<> &IRB, Value *Origin,
|
|
Value *StoreOriginAddr,
|
|
uint64_t StoreOriginSize, Align Alignment) {
|
|
const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes;
|
|
const DataLayout &DL = F->getParent()->getDataLayout();
|
|
const Align IntptrAlignment = DL.getABITypeAlign(DFS.IntptrTy);
|
|
unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy);
|
|
assert(IntptrAlignment >= MinOriginAlignment);
|
|
assert(IntptrSize >= OriginSize);
|
|
|
|
unsigned Ofs = 0;
|
|
Align CurrentAlignment = Alignment;
|
|
if (Alignment >= IntptrAlignment && IntptrSize > OriginSize) {
|
|
Value *IntptrOrigin = originToIntptr(IRB, Origin);
|
|
Value *IntptrStoreOriginPtr = IRB.CreatePointerCast(
|
|
StoreOriginAddr, PointerType::get(DFS.IntptrTy, 0));
|
|
for (unsigned I = 0; I < StoreOriginSize / IntptrSize; ++I) {
|
|
Value *Ptr =
|
|
I ? IRB.CreateConstGEP1_32(DFS.IntptrTy, IntptrStoreOriginPtr, I)
|
|
: IntptrStoreOriginPtr;
|
|
IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
|
|
Ofs += IntptrSize / OriginSize;
|
|
CurrentAlignment = IntptrAlignment;
|
|
}
|
|
}
|
|
|
|
for (unsigned I = Ofs; I < (StoreOriginSize + OriginSize - 1) / OriginSize;
|
|
++I) {
|
|
Value *GEP = I ? IRB.CreateConstGEP1_32(DFS.OriginTy, StoreOriginAddr, I)
|
|
: StoreOriginAddr;
|
|
IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
|
|
CurrentAlignment = MinOriginAlignment;
|
|
}
|
|
}
|
|
|
|
Value *DFSanFunction::convertToBool(Value *V, IRBuilder<> &IRB,
|
|
const Twine &Name) {
|
|
Type *VTy = V->getType();
|
|
assert(VTy->isIntegerTy());
|
|
if (VTy->getIntegerBitWidth() == 1)
|
|
// Just converting a bool to a bool, so do nothing.
|
|
return V;
|
|
return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), Name);
|
|
}
|
|
|
|
void DFSanFunction::storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size,
|
|
Value *Shadow, Value *Origin,
|
|
Value *StoreOriginAddr, Align InstAlignment) {
|
|
// Do not write origins for zero shadows because we do not trace origins for
|
|
// untainted sinks.
|
|
const Align OriginAlignment = getOriginAlign(InstAlignment);
|
|
Value *CollapsedShadow = collapseToPrimitiveShadow(Shadow, Pos);
|
|
IRBuilder<> IRB(Pos);
|
|
if (auto *ConstantShadow = dyn_cast<Constant>(CollapsedShadow)) {
|
|
if (!ConstantShadow->isZeroValue())
|
|
paintOrigin(IRB, updateOrigin(Origin, IRB), StoreOriginAddr, Size,
|
|
OriginAlignment);
|
|
return;
|
|
}
|
|
|
|
if (shouldInstrumentWithCall()) {
|
|
IRB.CreateCall(DFS.DFSanMaybeStoreOriginFn,
|
|
{CollapsedShadow,
|
|
IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
|
|
ConstantInt::get(DFS.IntptrTy, Size), Origin});
|
|
} else {
|
|
Value *Cmp = convertToBool(CollapsedShadow, IRB, "_dfscmp");
|
|
Instruction *CheckTerm = SplitBlockAndInsertIfThen(
|
|
Cmp, &*IRB.GetInsertPoint(), false, DFS.OriginStoreWeights, &DT);
|
|
IRBuilder<> IRBNew(CheckTerm);
|
|
paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), StoreOriginAddr, Size,
|
|
OriginAlignment);
|
|
++NumOriginStores;
|
|
}
|
|
}
|
|
|
|
void DFSanFunction::storeZeroPrimitiveShadow(Value *Addr, uint64_t Size,
|
|
Align ShadowAlign,
|
|
Instruction *Pos) {
|
|
IRBuilder<> IRB(Pos);
|
|
IntegerType *ShadowTy =
|
|
IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits);
|
|
Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0);
|
|
Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
|
|
Value *ExtShadowAddr =
|
|
IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy));
|
|
IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign);
|
|
// Do not write origins for 0 shadows because we do not trace origins for
|
|
// untainted sinks.
|
|
}
|
|
|
|
void DFSanFunction::storePrimitiveShadowOrigin(Value *Addr, uint64_t Size,
|
|
Align InstAlignment,
|
|
Value *PrimitiveShadow,
|
|
Value *Origin,
|
|
Instruction *Pos) {
|
|
const bool ShouldTrackOrigins = DFS.shouldTrackOrigins() && Origin;
|
|
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
|
|
const auto SI = AllocaShadowMap.find(AI);
|
|
if (SI != AllocaShadowMap.end()) {
|
|
IRBuilder<> IRB(Pos);
|
|
IRB.CreateStore(PrimitiveShadow, SI->second);
|
|
|
|
// Do not write origins for 0 shadows because we do not trace origins for
|
|
// untainted sinks.
|
|
if (ShouldTrackOrigins && !DFS.isZeroShadow(PrimitiveShadow)) {
|
|
const auto OI = AllocaOriginMap.find(AI);
|
|
assert(OI != AllocaOriginMap.end() && Origin);
|
|
IRB.CreateStore(Origin, OI->second);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
const Align ShadowAlign = getShadowAlign(InstAlignment);
|
|
if (DFS.isZeroShadow(PrimitiveShadow)) {
|
|
storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos);
|
|
return;
|
|
}
|
|
|
|
IRBuilder<> IRB(Pos);
|
|
Value *ShadowAddr, *OriginAddr;
|
|
std::tie(ShadowAddr, OriginAddr) =
|
|
DFS.getShadowOriginAddress(Addr, InstAlignment, Pos);
|
|
|
|
const unsigned ShadowVecSize = 8;
|
|
assert(ShadowVecSize * DFS.ShadowWidthBits <= 128 &&
|
|
"Shadow vector is too large!");
|
|
|
|
uint64_t Offset = 0;
|
|
uint64_t LeftSize = Size;
|
|
if (LeftSize >= ShadowVecSize) {
|
|
auto *ShadowVecTy =
|
|
FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize);
|
|
Value *ShadowVec = UndefValue::get(ShadowVecTy);
|
|
for (unsigned I = 0; I != ShadowVecSize; ++I) {
|
|
ShadowVec = IRB.CreateInsertElement(
|
|
ShadowVec, PrimitiveShadow,
|
|
ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), I));
|
|
}
|
|
Value *ShadowVecAddr =
|
|
IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy));
|
|
do {
|
|
Value *CurShadowVecAddr =
|
|
IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset);
|
|
IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign);
|
|
LeftSize -= ShadowVecSize;
|
|
++Offset;
|
|
} while (LeftSize >= ShadowVecSize);
|
|
Offset *= ShadowVecSize;
|
|
}
|
|
while (LeftSize > 0) {
|
|
Value *CurShadowAddr =
|
|
IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset);
|
|
IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign);
|
|
--LeftSize;
|
|
++Offset;
|
|
}
|
|
|
|
if (ShouldTrackOrigins) {
|
|
storeOrigin(Pos, Addr, Size, PrimitiveShadow, Origin, OriginAddr,
|
|
InstAlignment);
|
|
}
|
|
}
|
|
|
|
static AtomicOrdering addReleaseOrdering(AtomicOrdering AO) {
|
|
switch (AO) {
|
|
case AtomicOrdering::NotAtomic:
|
|
return AtomicOrdering::NotAtomic;
|
|
case AtomicOrdering::Unordered:
|
|
case AtomicOrdering::Monotonic:
|
|
case AtomicOrdering::Release:
|
|
return AtomicOrdering::Release;
|
|
case AtomicOrdering::Acquire:
|
|
case AtomicOrdering::AcquireRelease:
|
|
return AtomicOrdering::AcquireRelease;
|
|
case AtomicOrdering::SequentiallyConsistent:
|
|
return AtomicOrdering::SequentiallyConsistent;
|
|
}
|
|
llvm_unreachable("Unknown ordering");
|
|
}
|
|
|
|
void DFSanVisitor::visitStoreInst(StoreInst &SI) {
|
|
auto &DL = SI.getModule()->getDataLayout();
|
|
Value *Val = SI.getValueOperand();
|
|
uint64_t Size = DL.getTypeStoreSize(Val->getType());
|
|
if (Size == 0)
|
|
return;
|
|
|
|
// When an application store is atomic, increase atomic ordering between
|
|
// atomic application loads and stores to ensure happen-before order; load
|
|
// shadow data after application data; store zero shadow data before
|
|
// application data. This ensure shadow loads return either labels of the
|
|
// initial application data or zeros.
|
|
if (SI.isAtomic())
|
|
SI.setOrdering(addReleaseOrdering(SI.getOrdering()));
|
|
|
|
const bool ShouldTrackOrigins =
|
|
DFSF.DFS.shouldTrackOrigins() && !SI.isAtomic();
|
|
std::vector<Value *> Shadows;
|
|
std::vector<Value *> Origins;
|
|
|
|
Value *Shadow =
|
|
SI.isAtomic() ? DFSF.DFS.getZeroShadow(Val) : DFSF.getShadow(Val);
|
|
|
|
if (ShouldTrackOrigins) {
|
|
Shadows.push_back(Shadow);
|
|
Origins.push_back(DFSF.getOrigin(Val));
|
|
}
|
|
|
|
Value *PrimitiveShadow;
|
|
if (ClCombinePointerLabelsOnStore) {
|
|
Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
|
|
if (ShouldTrackOrigins) {
|
|
Shadows.push_back(PtrShadow);
|
|
Origins.push_back(DFSF.getOrigin(SI.getPointerOperand()));
|
|
}
|
|
PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI);
|
|
} else {
|
|
PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI);
|
|
}
|
|
Value *Origin = nullptr;
|
|
if (ShouldTrackOrigins)
|
|
Origin = DFSF.combineOrigins(Shadows, Origins, &SI);
|
|
DFSF.storePrimitiveShadowOrigin(SI.getPointerOperand(), Size, SI.getAlign(),
|
|
PrimitiveShadow, Origin, &SI);
|
|
if (ClEventCallbacks) {
|
|
IRBuilder<> IRB(&SI);
|
|
Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr);
|
|
IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr8});
|
|
}
|
|
}
|
|
|
|
void DFSanVisitor::visitCASOrRMW(Align InstAlignment, Instruction &I) {
|
|
assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
|
|
|
|
Value *Val = I.getOperand(1);
|
|
const auto &DL = I.getModule()->getDataLayout();
|
|
uint64_t Size = DL.getTypeStoreSize(Val->getType());
|
|
if (Size == 0)
|
|
return;
|
|
|
|
// Conservatively set data at stored addresses and return with zero shadow to
|
|
// prevent shadow data races.
|
|
IRBuilder<> IRB(&I);
|
|
Value *Addr = I.getOperand(0);
|
|
const Align ShadowAlign = DFSF.getShadowAlign(InstAlignment);
|
|
DFSF.storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, &I);
|
|
DFSF.setShadow(&I, DFSF.DFS.getZeroShadow(&I));
|
|
DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin);
|
|
}
|
|
|
|
void DFSanVisitor::visitAtomicRMWInst(AtomicRMWInst &I) {
|
|
visitCASOrRMW(I.getAlign(), I);
|
|
// TODO: The ordering change follows MSan. It is possible not to change
|
|
// ordering because we always set and use 0 shadows.
|
|
I.setOrdering(addReleaseOrdering(I.getOrdering()));
|
|
}
|
|
|
|
void DFSanVisitor::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
|
|
visitCASOrRMW(I.getAlign(), I);
|
|
// TODO: The ordering change follows MSan. It is possible not to change
|
|
// ordering because we always set and use 0 shadows.
|
|
I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
|
|
}
|
|
|
|
void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) {
|
|
visitInstOperands(UO);
|
|
}
|
|
|
|
void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) {
|
|
visitInstOperands(BO);
|
|
}
|
|
|
|
void DFSanVisitor::visitBitCastInst(BitCastInst &BCI) {
|
|
// Special case: if this is the bitcast (there is exactly 1 allowed) between
|
|
// a musttail call and a ret, don't instrument. New instructions are not
|
|
// allowed after a musttail call.
|
|
if (auto *CI = dyn_cast<CallInst>(BCI.getOperand(0)))
|
|
if (CI->isMustTailCall())
|
|
return;
|
|
visitInstOperands(BCI);
|
|
}
|
|
|
|
void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(CI); }
|
|
|
|
void DFSanVisitor::visitCmpInst(CmpInst &CI) {
|
|
visitInstOperands(CI);
|
|
if (ClEventCallbacks) {
|
|
IRBuilder<> IRB(&CI);
|
|
Value *CombinedShadow = DFSF.getShadow(&CI);
|
|
IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow);
|
|
}
|
|
}
|
|
|
|
void DFSanVisitor::visitLandingPadInst(LandingPadInst &LPI) {
|
|
// We do not need to track data through LandingPadInst.
|
|
//
|
|
// For the C++ exceptions, if a value is thrown, this value will be stored
|
|
// in a memory location provided by __cxa_allocate_exception(...) (on the
|
|
// throw side) or __cxa_begin_catch(...) (on the catch side).
|
|
// This memory will have a shadow, so with the loads and stores we will be
|
|
// able to propagate labels on data thrown through exceptions, without any
|
|
// special handling of the LandingPadInst.
|
|
//
|
|
// The second element in the pair result of the LandingPadInst is a
|
|
// register value, but it is for a type ID and should never be tainted.
|
|
DFSF.setShadow(&LPI, DFSF.DFS.getZeroShadow(&LPI));
|
|
DFSF.setOrigin(&LPI, DFSF.DFS.ZeroOrigin);
|
|
}
|
|
|
|
void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
|
|
if (ClCombineOffsetLabelsOnGEP ||
|
|
DFSF.isLookupTableConstant(
|
|
StripPointerGEPsAndCasts(GEPI.getPointerOperand()))) {
|
|
visitInstOperands(GEPI);
|
|
return;
|
|
}
|
|
|
|
// Only propagate shadow/origin of base pointer value but ignore those of
|
|
// offset operands.
|
|
Value *BasePointer = GEPI.getPointerOperand();
|
|
DFSF.setShadow(&GEPI, DFSF.getShadow(BasePointer));
|
|
if (DFSF.DFS.shouldTrackOrigins())
|
|
DFSF.setOrigin(&GEPI, DFSF.getOrigin(BasePointer));
|
|
}
|
|
|
|
void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) {
|
|
visitInstOperands(I);
|
|
}
|
|
|
|
void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) {
|
|
visitInstOperands(I);
|
|
}
|
|
|
|
void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) {
|
|
visitInstOperands(I);
|
|
}
|
|
|
|
void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) {
|
|
IRBuilder<> IRB(&I);
|
|
Value *Agg = I.getAggregateOperand();
|
|
Value *AggShadow = DFSF.getShadow(Agg);
|
|
Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
|
|
DFSF.setShadow(&I, ResShadow);
|
|
visitInstOperandOrigins(I);
|
|
}
|
|
|
|
void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) {
|
|
IRBuilder<> IRB(&I);
|
|
Value *AggShadow = DFSF.getShadow(I.getAggregateOperand());
|
|
Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand());
|
|
Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
|
|
DFSF.setShadow(&I, Res);
|
|
visitInstOperandOrigins(I);
|
|
}
|
|
|
|
void DFSanVisitor::visitAllocaInst(AllocaInst &I) {
|
|
bool AllLoadsStores = true;
|
|
for (User *U : I.users()) {
|
|
if (isa<LoadInst>(U))
|
|
continue;
|
|
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
|
|
if (SI->getPointerOperand() == &I)
|
|
continue;
|
|
}
|
|
|
|
AllLoadsStores = false;
|
|
break;
|
|
}
|
|
if (AllLoadsStores) {
|
|
IRBuilder<> IRB(&I);
|
|
DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy);
|
|
if (DFSF.DFS.shouldTrackOrigins()) {
|
|
DFSF.AllocaOriginMap[&I] =
|
|
IRB.CreateAlloca(DFSF.DFS.OriginTy, nullptr, "_dfsa");
|
|
}
|
|
}
|
|
DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow);
|
|
DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin);
|
|
}
|
|
|
|
void DFSanVisitor::visitSelectInst(SelectInst &I) {
|
|
Value *CondShadow = DFSF.getShadow(I.getCondition());
|
|
Value *TrueShadow = DFSF.getShadow(I.getTrueValue());
|
|
Value *FalseShadow = DFSF.getShadow(I.getFalseValue());
|
|
Value *ShadowSel = nullptr;
|
|
const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
|
|
std::vector<Value *> Shadows;
|
|
std::vector<Value *> Origins;
|
|
Value *TrueOrigin =
|
|
ShouldTrackOrigins ? DFSF.getOrigin(I.getTrueValue()) : nullptr;
|
|
Value *FalseOrigin =
|
|
ShouldTrackOrigins ? DFSF.getOrigin(I.getFalseValue()) : nullptr;
|
|
|
|
DFSF.addConditionalCallbacksIfEnabled(I, I.getCondition());
|
|
|
|
if (isa<VectorType>(I.getCondition()->getType())) {
|
|
ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow,
|
|
FalseShadow, &I);
|
|
if (ShouldTrackOrigins) {
|
|
Shadows.push_back(TrueShadow);
|
|
Shadows.push_back(FalseShadow);
|
|
Origins.push_back(TrueOrigin);
|
|
Origins.push_back(FalseOrigin);
|
|
}
|
|
} else {
|
|
if (TrueShadow == FalseShadow) {
|
|
ShadowSel = TrueShadow;
|
|
if (ShouldTrackOrigins) {
|
|
Shadows.push_back(TrueShadow);
|
|
Origins.push_back(TrueOrigin);
|
|
}
|
|
} else {
|
|
ShadowSel =
|
|
SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I);
|
|
if (ShouldTrackOrigins) {
|
|
Shadows.push_back(ShadowSel);
|
|
Origins.push_back(SelectInst::Create(I.getCondition(), TrueOrigin,
|
|
FalseOrigin, "", &I));
|
|
}
|
|
}
|
|
}
|
|
DFSF.setShadow(&I, ClTrackSelectControlFlow
|
|
? DFSF.combineShadowsThenConvert(
|
|
I.getType(), CondShadow, ShadowSel, &I)
|
|
: ShadowSel);
|
|
if (ShouldTrackOrigins) {
|
|
if (ClTrackSelectControlFlow) {
|
|
Shadows.push_back(CondShadow);
|
|
Origins.push_back(DFSF.getOrigin(I.getCondition()));
|
|
}
|
|
DFSF.setOrigin(&I, DFSF.combineOrigins(Shadows, Origins, &I));
|
|
}
|
|
}
|
|
|
|
void DFSanVisitor::visitMemSetInst(MemSetInst &I) {
|
|
IRBuilder<> IRB(&I);
|
|
Value *ValShadow = DFSF.getShadow(I.getValue());
|
|
Value *ValOrigin = DFSF.DFS.shouldTrackOrigins()
|
|
? DFSF.getOrigin(I.getValue())
|
|
: DFSF.DFS.ZeroOrigin;
|
|
IRB.CreateCall(
|
|
DFSF.DFS.DFSanSetLabelFn,
|
|
{ValShadow, ValOrigin,
|
|
IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)),
|
|
IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
|
|
}
|
|
|
|
void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
|
|
IRBuilder<> IRB(&I);
|
|
|
|
// CopyOrMoveOrigin transfers origins by refering to their shadows. So we
|
|
// need to move origins before moving shadows.
|
|
if (DFSF.DFS.shouldTrackOrigins()) {
|
|
IRB.CreateCall(
|
|
DFSF.DFS.DFSanMemOriginTransferFn,
|
|
{IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
|
|
IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
|
|
IRB.CreateIntCast(I.getArgOperand(2), DFSF.DFS.IntptrTy, false)});
|
|
}
|
|
|
|
Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I);
|
|
Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I);
|
|
Value *LenShadow =
|
|
IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(),
|
|
DFSF.DFS.ShadowWidthBytes));
|
|
Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx);
|
|
Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr);
|
|
SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr);
|
|
auto *MTI = cast<MemTransferInst>(
|
|
IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(),
|
|
{DestShadow, SrcShadow, LenShadow, I.getVolatileCst()}));
|
|
if (ClPreserveAlignment) {
|
|
MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes);
|
|
MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes);
|
|
} else {
|
|
MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes));
|
|
MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes));
|
|
}
|
|
if (ClEventCallbacks) {
|
|
IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn,
|
|
{RawDestShadow,
|
|
IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
|
|
}
|
|
}
|
|
|
|
void DFSanVisitor::visitBranchInst(BranchInst &BR) {
|
|
if (!BR.isConditional())
|
|
return;
|
|
|
|
DFSF.addConditionalCallbacksIfEnabled(BR, BR.getCondition());
|
|
}
|
|
|
|
void DFSanVisitor::visitSwitchInst(SwitchInst &SW) {
|
|
DFSF.addConditionalCallbacksIfEnabled(SW, SW.getCondition());
|
|
}
|
|
|
|
static bool isAMustTailRetVal(Value *RetVal) {
|
|
// Tail call may have a bitcast between return.
|
|
if (auto *I = dyn_cast<BitCastInst>(RetVal)) {
|
|
RetVal = I->getOperand(0);
|
|
}
|
|
if (auto *I = dyn_cast<CallInst>(RetVal)) {
|
|
return I->isMustTailCall();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
|
|
if (!DFSF.IsNativeABI && RI.getReturnValue()) {
|
|
// Don't emit the instrumentation for musttail call returns.
|
|
if (isAMustTailRetVal(RI.getReturnValue()))
|
|
return;
|
|
|
|
Value *S = DFSF.getShadow(RI.getReturnValue());
|
|
IRBuilder<> IRB(&RI);
|
|
Type *RT = DFSF.F->getFunctionType()->getReturnType();
|
|
unsigned Size = getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT));
|
|
if (Size <= RetvalTLSSize) {
|
|
// If the size overflows, stores nothing. At callsite, oversized return
|
|
// shadows are set to zero.
|
|
IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB), ShadowTLSAlignment);
|
|
}
|
|
if (DFSF.DFS.shouldTrackOrigins()) {
|
|
Value *O = DFSF.getOrigin(RI.getReturnValue());
|
|
IRB.CreateStore(O, DFSF.getRetvalOriginTLS());
|
|
}
|
|
}
|
|
}
|
|
|
|
void DFSanVisitor::addShadowArguments(Function &F, CallBase &CB,
|
|
std::vector<Value *> &Args,
|
|
IRBuilder<> &IRB) {
|
|
FunctionType *FT = F.getFunctionType();
|
|
|
|
auto *I = CB.arg_begin();
|
|
|
|
// Adds non-variable argument shadows.
|
|
for (unsigned N = FT->getNumParams(); N != 0; ++I, --N)
|
|
Args.push_back(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB));
|
|
|
|
// Adds variable argument shadows.
|
|
if (FT->isVarArg()) {
|
|
auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy,
|
|
CB.arg_size() - FT->getNumParams());
|
|
auto *LabelVAAlloca =
|
|
new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(),
|
|
"labelva", &DFSF.F->getEntryBlock().front());
|
|
|
|
for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) {
|
|
auto *LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, N);
|
|
IRB.CreateStore(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB),
|
|
LabelVAPtr);
|
|
}
|
|
|
|
Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0));
|
|
}
|
|
|
|
// Adds the return value shadow.
|
|
if (!FT->getReturnType()->isVoidTy()) {
|
|
if (!DFSF.LabelReturnAlloca) {
|
|
DFSF.LabelReturnAlloca = new AllocaInst(
|
|
DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(),
|
|
"labelreturn", &DFSF.F->getEntryBlock().front());
|
|
}
|
|
Args.push_back(DFSF.LabelReturnAlloca);
|
|
}
|
|
}
|
|
|
|
void DFSanVisitor::addOriginArguments(Function &F, CallBase &CB,
|
|
std::vector<Value *> &Args,
|
|
IRBuilder<> &IRB) {
|
|
FunctionType *FT = F.getFunctionType();
|
|
|
|
auto *I = CB.arg_begin();
|
|
|
|
// Add non-variable argument origins.
|
|
for (unsigned N = FT->getNumParams(); N != 0; ++I, --N)
|
|
Args.push_back(DFSF.getOrigin(*I));
|
|
|
|
// Add variable argument origins.
|
|
if (FT->isVarArg()) {
|
|
auto *OriginVATy =
|
|
ArrayType::get(DFSF.DFS.OriginTy, CB.arg_size() - FT->getNumParams());
|
|
auto *OriginVAAlloca =
|
|
new AllocaInst(OriginVATy, getDataLayout().getAllocaAddrSpace(),
|
|
"originva", &DFSF.F->getEntryBlock().front());
|
|
|
|
for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) {
|
|
auto *OriginVAPtr = IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, N);
|
|
IRB.CreateStore(DFSF.getOrigin(*I), OriginVAPtr);
|
|
}
|
|
|
|
Args.push_back(IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, 0));
|
|
}
|
|
|
|
// Add the return value origin.
|
|
if (!FT->getReturnType()->isVoidTy()) {
|
|
if (!DFSF.OriginReturnAlloca) {
|
|
DFSF.OriginReturnAlloca = new AllocaInst(
|
|
DFSF.DFS.OriginTy, getDataLayout().getAllocaAddrSpace(),
|
|
"originreturn", &DFSF.F->getEntryBlock().front());
|
|
}
|
|
Args.push_back(DFSF.OriginReturnAlloca);
|
|
}
|
|
}
|
|
|
|
bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) {
|
|
IRBuilder<> IRB(&CB);
|
|
switch (DFSF.DFS.getWrapperKind(&F)) {
|
|
case DataFlowSanitizer::WK_Warning:
|
|
CB.setCalledFunction(&F);
|
|
IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
|
|
IRB.CreateGlobalStringPtr(F.getName()));
|
|
DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
|
|
DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin);
|
|
return true;
|
|
case DataFlowSanitizer::WK_Discard:
|
|
CB.setCalledFunction(&F);
|
|
DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
|
|
DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin);
|
|
return true;
|
|
case DataFlowSanitizer::WK_Functional:
|
|
CB.setCalledFunction(&F);
|
|
visitInstOperands(CB);
|
|
return true;
|
|
case DataFlowSanitizer::WK_Custom:
|
|
// Don't try to handle invokes of custom functions, it's too complicated.
|
|
// Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
|
|
// wrapper.
|
|
CallInst *CI = dyn_cast<CallInst>(&CB);
|
|
if (!CI)
|
|
return false;
|
|
|
|
const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
|
|
FunctionType *FT = F.getFunctionType();
|
|
TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT);
|
|
std::string CustomFName = ShouldTrackOrigins ? "__dfso_" : "__dfsw_";
|
|
CustomFName += F.getName();
|
|
FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction(
|
|
CustomFName, CustomFn.TransformedType);
|
|
if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) {
|
|
CustomFn->copyAttributesFrom(&F);
|
|
|
|
// Custom functions returning non-void will write to the return label.
|
|
if (!FT->getReturnType()->isVoidTy()) {
|
|
CustomFn->removeFnAttrs(DFSF.DFS.ReadOnlyNoneAttrs);
|
|
}
|
|
}
|
|
|
|
std::vector<Value *> Args;
|
|
|
|
// Adds non-variable arguments.
|
|
auto *I = CB.arg_begin();
|
|
for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) {
|
|
Args.push_back(*I);
|
|
}
|
|
|
|
// Adds shadow arguments.
|
|
const unsigned ShadowArgStart = Args.size();
|
|
addShadowArguments(F, CB, Args, IRB);
|
|
|
|
// Adds origin arguments.
|
|
const unsigned OriginArgStart = Args.size();
|
|
if (ShouldTrackOrigins)
|
|
addOriginArguments(F, CB, Args, IRB);
|
|
|
|
// Adds variable arguments.
|
|
append_range(Args, drop_begin(CB.args(), FT->getNumParams()));
|
|
|
|
CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
|
|
CustomCI->setCallingConv(CI->getCallingConv());
|
|
CustomCI->setAttributes(transformFunctionAttributes(
|
|
CustomFn, CI->getContext(), CI->getAttributes()));
|
|
|
|
// Update the parameter attributes of the custom call instruction to
|
|
// zero extend the shadow parameters. This is required for targets
|
|
// which consider PrimitiveShadowTy an illegal type.
|
|
for (unsigned N = 0; N < FT->getNumParams(); N++) {
|
|
const unsigned ArgNo = ShadowArgStart + N;
|
|
if (CustomCI->getArgOperand(ArgNo)->getType() ==
|
|
DFSF.DFS.PrimitiveShadowTy)
|
|
CustomCI->addParamAttr(ArgNo, Attribute::ZExt);
|
|
if (ShouldTrackOrigins) {
|
|
const unsigned OriginArgNo = OriginArgStart + N;
|
|
if (CustomCI->getArgOperand(OriginArgNo)->getType() ==
|
|
DFSF.DFS.OriginTy)
|
|
CustomCI->addParamAttr(OriginArgNo, Attribute::ZExt);
|
|
}
|
|
}
|
|
|
|
// Loads the return value shadow and origin.
|
|
if (!FT->getReturnType()->isVoidTy()) {
|
|
LoadInst *LabelLoad =
|
|
IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.LabelReturnAlloca);
|
|
DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow(
|
|
FT->getReturnType(), LabelLoad, &CB));
|
|
if (ShouldTrackOrigins) {
|
|
LoadInst *OriginLoad =
|
|
IRB.CreateLoad(DFSF.DFS.OriginTy, DFSF.OriginReturnAlloca);
|
|
DFSF.setOrigin(CustomCI, OriginLoad);
|
|
}
|
|
}
|
|
|
|
CI->replaceAllUsesWith(CustomCI);
|
|
CI->eraseFromParent();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void DFSanVisitor::visitCallBase(CallBase &CB) {
|
|
Function *F = CB.getCalledFunction();
|
|
if ((F && F->isIntrinsic()) || CB.isInlineAsm()) {
|
|
visitInstOperands(CB);
|
|
return;
|
|
}
|
|
|
|
// Calls to this function are synthesized in wrappers, and we shouldn't
|
|
// instrument them.
|
|
if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts())
|
|
return;
|
|
|
|
DenseMap<Value *, Function *>::iterator UnwrappedFnIt =
|
|
DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand());
|
|
if (UnwrappedFnIt != DFSF.DFS.UnwrappedFnMap.end())
|
|
if (visitWrappedCallBase(*UnwrappedFnIt->second, CB))
|
|
return;
|
|
|
|
IRBuilder<> IRB(&CB);
|
|
|
|
const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
|
|
FunctionType *FT = CB.getFunctionType();
|
|
const DataLayout &DL = getDataLayout();
|
|
|
|
// Stores argument shadows.
|
|
unsigned ArgOffset = 0;
|
|
for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) {
|
|
if (ShouldTrackOrigins) {
|
|
// Ignore overflowed origins
|
|
Value *ArgShadow = DFSF.getShadow(CB.getArgOperand(I));
|
|
if (I < DFSF.DFS.NumOfElementsInArgOrgTLS &&
|
|
!DFSF.DFS.isZeroShadow(ArgShadow))
|
|
IRB.CreateStore(DFSF.getOrigin(CB.getArgOperand(I)),
|
|
DFSF.getArgOriginTLS(I, IRB));
|
|
}
|
|
|
|
unsigned Size =
|
|
DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I)));
|
|
// Stop storing if arguments' size overflows. Inside a function, arguments
|
|
// after overflow have zero shadow values.
|
|
if (ArgOffset + Size > ArgTLSSize)
|
|
break;
|
|
IRB.CreateAlignedStore(DFSF.getShadow(CB.getArgOperand(I)),
|
|
DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB),
|
|
ShadowTLSAlignment);
|
|
ArgOffset += alignTo(Size, ShadowTLSAlignment);
|
|
}
|
|
|
|
Instruction *Next = nullptr;
|
|
if (!CB.getType()->isVoidTy()) {
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
|
|
if (II->getNormalDest()->getSinglePredecessor()) {
|
|
Next = &II->getNormalDest()->front();
|
|
} else {
|
|
BasicBlock *NewBB =
|
|
SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT);
|
|
Next = &NewBB->front();
|
|
}
|
|
} else {
|
|
assert(CB.getIterator() != CB.getParent()->end());
|
|
Next = CB.getNextNode();
|
|
}
|
|
|
|
// Don't emit the epilogue for musttail call returns.
|
|
if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall())
|
|
return;
|
|
|
|
// Loads the return value shadow.
|
|
IRBuilder<> NextIRB(Next);
|
|
unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB));
|
|
if (Size > RetvalTLSSize) {
|
|
// Set overflowed return shadow to be zero.
|
|
DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
|
|
} else {
|
|
LoadInst *LI = NextIRB.CreateAlignedLoad(
|
|
DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB),
|
|
ShadowTLSAlignment, "_dfsret");
|
|
DFSF.SkipInsts.insert(LI);
|
|
DFSF.setShadow(&CB, LI);
|
|
DFSF.NonZeroChecks.push_back(LI);
|
|
}
|
|
|
|
if (ShouldTrackOrigins) {
|
|
LoadInst *LI = NextIRB.CreateLoad(DFSF.DFS.OriginTy,
|
|
DFSF.getRetvalOriginTLS(), "_dfsret_o");
|
|
DFSF.SkipInsts.insert(LI);
|
|
DFSF.setOrigin(&CB, LI);
|
|
}
|
|
}
|
|
}
|
|
|
|
void DFSanVisitor::visitPHINode(PHINode &PN) {
|
|
Type *ShadowTy = DFSF.DFS.getShadowTy(&PN);
|
|
PHINode *ShadowPN =
|
|
PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN);
|
|
|
|
// Give the shadow phi node valid predecessors to fool SplitEdge into working.
|
|
Value *UndefShadow = UndefValue::get(ShadowTy);
|
|
for (BasicBlock *BB : PN.blocks())
|
|
ShadowPN->addIncoming(UndefShadow, BB);
|
|
|
|
DFSF.setShadow(&PN, ShadowPN);
|
|
|
|
PHINode *OriginPN = nullptr;
|
|
if (DFSF.DFS.shouldTrackOrigins()) {
|
|
OriginPN =
|
|
PHINode::Create(DFSF.DFS.OriginTy, PN.getNumIncomingValues(), "", &PN);
|
|
Value *UndefOrigin = UndefValue::get(DFSF.DFS.OriginTy);
|
|
for (BasicBlock *BB : PN.blocks())
|
|
OriginPN->addIncoming(UndefOrigin, BB);
|
|
DFSF.setOrigin(&PN, OriginPN);
|
|
}
|
|
|
|
DFSF.PHIFixups.push_back({&PN, ShadowPN, OriginPN});
|
|
}
|
|
|
|
namespace {
|
|
class DataFlowSanitizerLegacyPass : public ModulePass {
|
|
private:
|
|
std::vector<std::string> ABIListFiles;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
DataFlowSanitizerLegacyPass(
|
|
const std::vector<std::string> &ABIListFiles = std::vector<std::string>())
|
|
: ModulePass(ID), ABIListFiles(ABIListFiles) {}
|
|
|
|
bool runOnModule(Module &M) override {
|
|
return DataFlowSanitizer(ABIListFiles).runImpl(M);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
char DataFlowSanitizerLegacyPass::ID;
|
|
|
|
INITIALIZE_PASS(DataFlowSanitizerLegacyPass, "dfsan",
|
|
"DataFlowSanitizer: dynamic data flow analysis.", false, false)
|
|
|
|
ModulePass *llvm::createDataFlowSanitizerLegacyPassPass(
|
|
const std::vector<std::string> &ABIListFiles) {
|
|
return new DataFlowSanitizerLegacyPass(ABIListFiles);
|
|
}
|
|
|
|
PreservedAnalyses DataFlowSanitizerPass::run(Module &M,
|
|
ModuleAnalysisManager &AM) {
|
|
if (DataFlowSanitizer(ABIListFiles).runImpl(M)) {
|
|
return PreservedAnalyses::none();
|
|
}
|
|
return PreservedAnalyses::all();
|
|
}
|