llvm-project/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp

3111 lines
117 KiB
C++

//===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
/// analysis.
///
/// Unlike other Sanitizer tools, this tool is not designed to detect a specific
/// class of bugs on its own. Instead, it provides a generic dynamic data flow
/// analysis framework to be used by clients to help detect application-specific
/// issues within their own code.
///
/// The analysis is based on automatic propagation of data flow labels (also
/// known as taint labels) through a program as it performs computation.
///
/// Argument and return value labels are passed through TLS variables
/// __dfsan_arg_tls and __dfsan_retval_tls.
///
/// Each byte of application memory is backed by a shadow memory byte. The
/// shadow byte can represent up to 8 labels. On Linux/x86_64, memory is then
/// laid out as follows:
///
/// +--------------------+ 0x800000000000 (top of memory)
/// | application 3 |
/// +--------------------+ 0x700000000000
/// | invalid |
/// +--------------------+ 0x610000000000
/// | origin 1 |
/// +--------------------+ 0x600000000000
/// | application 2 |
/// +--------------------+ 0x510000000000
/// | shadow 1 |
/// +--------------------+ 0x500000000000
/// | invalid |
/// +--------------------+ 0x400000000000
/// | origin 3 |
/// +--------------------+ 0x300000000000
/// | shadow 3 |
/// +--------------------+ 0x200000000000
/// | origin 2 |
/// +--------------------+ 0x110000000000
/// | invalid |
/// +--------------------+ 0x100000000000
/// | shadow 2 |
/// +--------------------+ 0x010000000000
/// | application 1 |
/// +--------------------+ 0x000000000000
///
/// MEM_TO_SHADOW(mem) = mem ^ 0x500000000000
/// SHADOW_TO_ORIGIN(shadow) = shadow + 0x100000000000
///
/// For more information, please refer to the design document:
/// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/iterator.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SpecialCaseList.h"
#include "llvm/Support/VirtualFileSystem.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
// This must be consistent with ShadowWidthBits.
static const Align ShadowTLSAlignment = Align(2);
static const Align MinOriginAlignment = Align(4);
// The size of TLS variables. These constants must be kept in sync with the ones
// in dfsan.cpp.
static const unsigned ArgTLSSize = 800;
static const unsigned RetvalTLSSize = 800;
// The -dfsan-preserve-alignment flag controls whether this pass assumes that
// alignment requirements provided by the input IR are correct. For example,
// if the input IR contains a load with alignment 8, this flag will cause
// the shadow load to have alignment 16. This flag is disabled by default as
// we have unfortunately encountered too much code (including Clang itself;
// see PR14291) which performs misaligned access.
static cl::opt<bool> ClPreserveAlignment(
"dfsan-preserve-alignment",
cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
cl::init(false));
// The ABI list files control how shadow parameters are passed. The pass treats
// every function labelled "uninstrumented" in the ABI list file as conforming
// to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains
// additional annotations for those functions, a call to one of those functions
// will produce a warning message, as the labelling behaviour of the function is
// unknown. The other supported annotations for uninstrumented functions are
// "functional" and "discard", which are described below under
// DataFlowSanitizer::WrapperKind.
// Functions will often be labelled with both "uninstrumented" and one of
// "functional" or "discard". This will leave the function unchanged by this
// pass, and create a wrapper function that will call the original.
//
// Instrumented functions can also be annotated as "force_zero_labels", which
// will make all shadow and return values set zero labels.
// Functions should never be labelled with both "force_zero_labels" and
// "uninstrumented" or any of the unistrumented wrapper kinds.
static cl::list<std::string> ClABIListFiles(
"dfsan-abilist",
cl::desc("File listing native ABI functions and how the pass treats them"),
cl::Hidden);
// Controls whether the pass includes or ignores the labels of pointers in load
// instructions.
static cl::opt<bool> ClCombinePointerLabelsOnLoad(
"dfsan-combine-pointer-labels-on-load",
cl::desc("Combine the label of the pointer with the label of the data when "
"loading from memory."),
cl::Hidden, cl::init(true));
// Controls whether the pass includes or ignores the labels of pointers in
// stores instructions.
static cl::opt<bool> ClCombinePointerLabelsOnStore(
"dfsan-combine-pointer-labels-on-store",
cl::desc("Combine the label of the pointer with the label of the data when "
"storing in memory."),
cl::Hidden, cl::init(false));
// Controls whether the pass propagates labels of offsets in GEP instructions.
static cl::opt<bool> ClCombineOffsetLabelsOnGEP(
"dfsan-combine-offset-labels-on-gep",
cl::desc(
"Combine the label of the offset with the label of the pointer when "
"doing pointer arithmetic."),
cl::Hidden, cl::init(true));
static cl::list<std::string> ClCombineTaintLookupTables(
"dfsan-combine-taint-lookup-table",
cl::desc(
"When dfsan-combine-offset-labels-on-gep and/or "
"dfsan-combine-pointer-labels-on-load are false, this flag can "
"be used to re-enable combining offset and/or pointer taint when "
"loading specific constant global variables (i.e. lookup tables)."),
cl::Hidden);
static cl::opt<bool> ClDebugNonzeroLabels(
"dfsan-debug-nonzero-labels",
cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
"load or return with a nonzero label"),
cl::Hidden);
// Experimental feature that inserts callbacks for certain data events.
// Currently callbacks are only inserted for loads, stores, memory transfers
// (i.e. memcpy and memmove), and comparisons.
//
// If this flag is set to true, the user must provide definitions for the
// following callback functions:
// void __dfsan_load_callback(dfsan_label Label, void* addr);
// void __dfsan_store_callback(dfsan_label Label, void* addr);
// void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len);
// void __dfsan_cmp_callback(dfsan_label CombinedLabel);
static cl::opt<bool> ClEventCallbacks(
"dfsan-event-callbacks",
cl::desc("Insert calls to __dfsan_*_callback functions on data events."),
cl::Hidden, cl::init(false));
// Experimental feature that inserts callbacks for conditionals, including:
// conditional branch, switch, select.
// This must be true for dfsan_set_conditional_callback() to have effect.
static cl::opt<bool> ClConditionalCallbacks(
"dfsan-conditional-callbacks",
cl::desc("Insert calls to callback functions on conditionals."), cl::Hidden,
cl::init(false));
// Controls whether the pass tracks the control flow of select instructions.
static cl::opt<bool> ClTrackSelectControlFlow(
"dfsan-track-select-control-flow",
cl::desc("Propagate labels from condition values of select instructions "
"to results."),
cl::Hidden, cl::init(true));
// TODO: This default value follows MSan. DFSan may use a different value.
static cl::opt<int> ClInstrumentWithCallThreshold(
"dfsan-instrument-with-call-threshold",
cl::desc("If the function being instrumented requires more than "
"this number of origin stores, use callbacks instead of "
"inline checks (-1 means never use callbacks)."),
cl::Hidden, cl::init(3500));
// Controls how to track origins.
// * 0: do not track origins.
// * 1: track origins at memory store operations.
// * 2: track origins at memory load and store operations.
// TODO: track callsites.
static cl::opt<int> ClTrackOrigins("dfsan-track-origins",
cl::desc("Track origins of labels"),
cl::Hidden, cl::init(0));
static cl::opt<bool> ClIgnorePersonalityRoutine(
"dfsan-ignore-personality-routine",
cl::desc("If a personality routine is marked uninstrumented from the ABI "
"list, do not create a wrapper for it."),
cl::Hidden, cl::init(false));
static StringRef getGlobalTypeString(const GlobalValue &G) {
// Types of GlobalVariables are always pointer types.
Type *GType = G.getValueType();
// For now we support excluding struct types only.
if (StructType *SGType = dyn_cast<StructType>(GType)) {
if (!SGType->isLiteral())
return SGType->getName();
}
return "<unknown type>";
}
namespace {
// Memory map parameters used in application-to-shadow address calculation.
// Offset = (Addr & ~AndMask) ^ XorMask
// Shadow = ShadowBase + Offset
// Origin = (OriginBase + Offset) & ~3ULL
struct MemoryMapParams {
uint64_t AndMask;
uint64_t XorMask;
uint64_t ShadowBase;
uint64_t OriginBase;
};
} // end anonymous namespace
// x86_64 Linux
// NOLINTNEXTLINE(readability-identifier-naming)
static const MemoryMapParams Linux_X86_64_MemoryMapParams = {
0, // AndMask (not used)
0x500000000000, // XorMask
0, // ShadowBase (not used)
0x100000000000, // OriginBase
};
namespace {
class DFSanABIList {
std::unique_ptr<SpecialCaseList> SCL;
public:
DFSanABIList() = default;
void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); }
/// Returns whether either this function or its source file are listed in the
/// given category.
bool isIn(const Function &F, StringRef Category) const {
return isIn(*F.getParent(), Category) ||
SCL->inSection("dataflow", "fun", F.getName(), Category);
}
/// Returns whether this global alias is listed in the given category.
///
/// If GA aliases a function, the alias's name is matched as a function name
/// would be. Similarly, aliases of globals are matched like globals.
bool isIn(const GlobalAlias &GA, StringRef Category) const {
if (isIn(*GA.getParent(), Category))
return true;
if (isa<FunctionType>(GA.getValueType()))
return SCL->inSection("dataflow", "fun", GA.getName(), Category);
return SCL->inSection("dataflow", "global", GA.getName(), Category) ||
SCL->inSection("dataflow", "type", getGlobalTypeString(GA),
Category);
}
/// Returns whether this module is listed in the given category.
bool isIn(const Module &M, StringRef Category) const {
return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category);
}
};
/// TransformedFunction is used to express the result of transforming one
/// function type into another. This struct is immutable. It holds metadata
/// useful for updating calls of the old function to the new type.
struct TransformedFunction {
TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType,
std::vector<unsigned> ArgumentIndexMapping)
: OriginalType(OriginalType), TransformedType(TransformedType),
ArgumentIndexMapping(ArgumentIndexMapping) {}
// Disallow copies.
TransformedFunction(const TransformedFunction &) = delete;
TransformedFunction &operator=(const TransformedFunction &) = delete;
// Allow moves.
TransformedFunction(TransformedFunction &&) = default;
TransformedFunction &operator=(TransformedFunction &&) = default;
/// Type of the function before the transformation.
FunctionType *OriginalType;
/// Type of the function after the transformation.
FunctionType *TransformedType;
/// Transforming a function may change the position of arguments. This
/// member records the mapping from each argument's old position to its new
/// position. Argument positions are zero-indexed. If the transformation
/// from F to F' made the first argument of F into the third argument of F',
/// then ArgumentIndexMapping[0] will equal 2.
std::vector<unsigned> ArgumentIndexMapping;
};
/// Given function attributes from a call site for the original function,
/// return function attributes appropriate for a call to the transformed
/// function.
AttributeList
transformFunctionAttributes(const TransformedFunction &TransformedFunction,
LLVMContext &Ctx, AttributeList CallSiteAttrs) {
// Construct a vector of AttributeSet for each function argument.
std::vector<llvm::AttributeSet> ArgumentAttributes(
TransformedFunction.TransformedType->getNumParams());
// Copy attributes from the parameter of the original function to the
// transformed version. 'ArgumentIndexMapping' holds the mapping from
// old argument position to new.
for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size();
I < IE; ++I) {
unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I];
ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttrs(I);
}
// Copy annotations on varargs arguments.
for (unsigned I = TransformedFunction.OriginalType->getNumParams(),
IE = CallSiteAttrs.getNumAttrSets();
I < IE; ++I) {
ArgumentAttributes.push_back(CallSiteAttrs.getParamAttrs(I));
}
return AttributeList::get(Ctx, CallSiteAttrs.getFnAttrs(),
CallSiteAttrs.getRetAttrs(),
llvm::makeArrayRef(ArgumentAttributes));
}
class DataFlowSanitizer {
friend struct DFSanFunction;
friend class DFSanVisitor;
enum { ShadowWidthBits = 8, ShadowWidthBytes = ShadowWidthBits / 8 };
enum { OriginWidthBits = 32, OriginWidthBytes = OriginWidthBits / 8 };
/// How should calls to uninstrumented functions be handled?
enum WrapperKind {
/// This function is present in an uninstrumented form but we don't know
/// how it should be handled. Print a warning and call the function anyway.
/// Don't label the return value.
WK_Warning,
/// This function does not write to (user-accessible) memory, and its return
/// value is unlabelled.
WK_Discard,
/// This function does not write to (user-accessible) memory, and the label
/// of its return value is the union of the label of its arguments.
WK_Functional,
/// Instead of calling the function, a custom wrapper __dfsw_F is called,
/// where F is the name of the function. This function may wrap the
/// original function or provide its own implementation. WK_Custom uses an
/// extra pointer argument to return the shadow. This allows the wrapped
/// form of the function type to be expressed in C.
WK_Custom
};
Module *Mod;
LLVMContext *Ctx;
Type *Int8Ptr;
IntegerType *OriginTy;
PointerType *OriginPtrTy;
ConstantInt *ZeroOrigin;
/// The shadow type for all primitive types and vector types.
IntegerType *PrimitiveShadowTy;
PointerType *PrimitiveShadowPtrTy;
IntegerType *IntptrTy;
ConstantInt *ZeroPrimitiveShadow;
Constant *ArgTLS;
ArrayType *ArgOriginTLSTy;
Constant *ArgOriginTLS;
Constant *RetvalTLS;
Constant *RetvalOriginTLS;
FunctionType *DFSanUnionLoadFnTy;
FunctionType *DFSanLoadLabelAndOriginFnTy;
FunctionType *DFSanUnimplementedFnTy;
FunctionType *DFSanSetLabelFnTy;
FunctionType *DFSanNonzeroLabelFnTy;
FunctionType *DFSanVarargWrapperFnTy;
FunctionType *DFSanConditionalCallbackFnTy;
FunctionType *DFSanConditionalCallbackOriginFnTy;
FunctionType *DFSanCmpCallbackFnTy;
FunctionType *DFSanLoadStoreCallbackFnTy;
FunctionType *DFSanMemTransferCallbackFnTy;
FunctionType *DFSanChainOriginFnTy;
FunctionType *DFSanChainOriginIfTaintedFnTy;
FunctionType *DFSanMemOriginTransferFnTy;
FunctionType *DFSanMaybeStoreOriginFnTy;
FunctionCallee DFSanUnionLoadFn;
FunctionCallee DFSanLoadLabelAndOriginFn;
FunctionCallee DFSanUnimplementedFn;
FunctionCallee DFSanSetLabelFn;
FunctionCallee DFSanNonzeroLabelFn;
FunctionCallee DFSanVarargWrapperFn;
FunctionCallee DFSanLoadCallbackFn;
FunctionCallee DFSanStoreCallbackFn;
FunctionCallee DFSanMemTransferCallbackFn;
FunctionCallee DFSanConditionalCallbackFn;
FunctionCallee DFSanConditionalCallbackOriginFn;
FunctionCallee DFSanCmpCallbackFn;
FunctionCallee DFSanChainOriginFn;
FunctionCallee DFSanChainOriginIfTaintedFn;
FunctionCallee DFSanMemOriginTransferFn;
FunctionCallee DFSanMaybeStoreOriginFn;
SmallPtrSet<Value *, 16> DFSanRuntimeFunctions;
MDNode *ColdCallWeights;
MDNode *OriginStoreWeights;
DFSanABIList ABIList;
DenseMap<Value *, Function *> UnwrappedFnMap;
AttributeMask ReadOnlyNoneAttrs;
StringSet<> CombineTaintLookupTableNames;
/// Memory map parameters used in calculation mapping application addresses
/// to shadow addresses and origin addresses.
const MemoryMapParams *MapParams;
Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB);
Value *getShadowAddress(Value *Addr, Instruction *Pos);
Value *getShadowAddress(Value *Addr, Instruction *Pos, Value *ShadowOffset);
std::pair<Value *, Value *>
getShadowOriginAddress(Value *Addr, Align InstAlignment, Instruction *Pos);
bool isInstrumented(const Function *F);
bool isInstrumented(const GlobalAlias *GA);
bool isForceZeroLabels(const Function *F);
TransformedFunction getCustomFunctionType(FunctionType *T);
WrapperKind getWrapperKind(Function *F);
void addGlobalNameSuffix(GlobalValue *GV);
Function *buildWrapperFunction(Function *F, StringRef NewFName,
GlobalValue::LinkageTypes NewFLink,
FunctionType *NewFT);
void initializeCallbackFunctions(Module &M);
void initializeRuntimeFunctions(Module &M);
void injectMetadataGlobals(Module &M);
bool initializeModule(Module &M);
/// Advances \p OriginAddr to point to the next 32-bit origin and then loads
/// from it. Returns the origin's loaded value.
Value *loadNextOrigin(Instruction *Pos, Align OriginAlign,
Value **OriginAddr);
/// Returns whether the given load byte size is amenable to inlined
/// optimization patterns.
bool hasLoadSizeForFastPath(uint64_t Size);
/// Returns whether the pass tracks origins. Supports only TLS ABI mode.
bool shouldTrackOrigins();
/// Returns a zero constant with the shadow type of OrigTy.
///
/// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...}
/// getZeroShadow([n x T]) = [n x getZeroShadow(T)]
/// getZeroShadow(other type) = i16(0)
Constant *getZeroShadow(Type *OrigTy);
/// Returns a zero constant with the shadow type of V's type.
Constant *getZeroShadow(Value *V);
/// Checks if V is a zero shadow.
bool isZeroShadow(Value *V);
/// Returns the shadow type of OrigTy.
///
/// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...}
/// getShadowTy([n x T]) = [n x getShadowTy(T)]
/// getShadowTy(other type) = i16
Type *getShadowTy(Type *OrigTy);
/// Returns the shadow type of of V's type.
Type *getShadowTy(Value *V);
const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes;
public:
DataFlowSanitizer(const std::vector<std::string> &ABIListFiles);
bool runImpl(Module &M);
};
struct DFSanFunction {
DataFlowSanitizer &DFS;
Function *F;
DominatorTree DT;
bool IsNativeABI;
bool IsForceZeroLabels;
AllocaInst *LabelReturnAlloca = nullptr;
AllocaInst *OriginReturnAlloca = nullptr;
DenseMap<Value *, Value *> ValShadowMap;
DenseMap<Value *, Value *> ValOriginMap;
DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap;
struct PHIFixupElement {
PHINode *Phi;
PHINode *ShadowPhi;
PHINode *OriginPhi;
};
std::vector<PHIFixupElement> PHIFixups;
DenseSet<Instruction *> SkipInsts;
std::vector<Value *> NonZeroChecks;
struct CachedShadow {
BasicBlock *Block; // The block where Shadow is defined.
Value *Shadow;
};
/// Maps a value to its latest shadow value in terms of domination tree.
DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows;
/// Maps a value to its latest collapsed shadow value it was converted to in
/// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is
/// used at a post process where CFG blocks are split. So it does not cache
/// BasicBlock like CachedShadows, but uses domination between values.
DenseMap<Value *, Value *> CachedCollapsedShadows;
DenseMap<Value *, std::set<Value *>> ShadowElements;
DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI,
bool IsForceZeroLabels)
: DFS(DFS), F(F), IsNativeABI(IsNativeABI),
IsForceZeroLabels(IsForceZeroLabels) {
DT.recalculate(*F);
}
/// Computes the shadow address for a given function argument.
///
/// Shadow = ArgTLS+ArgOffset.
Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB);
/// Computes the shadow address for a return value.
Value *getRetvalTLS(Type *T, IRBuilder<> &IRB);
/// Computes the origin address for a given function argument.
///
/// Origin = ArgOriginTLS[ArgNo].
Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB);
/// Computes the origin address for a return value.
Value *getRetvalOriginTLS();
Value *getOrigin(Value *V);
void setOrigin(Instruction *I, Value *Origin);
/// Generates IR to compute the origin of the last operand with a taint label.
Value *combineOperandOrigins(Instruction *Inst);
/// Before the instruction Pos, generates IR to compute the last origin with a
/// taint label. Labels and origins are from vectors Shadows and Origins
/// correspondingly. The generated IR is like
/// Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0
/// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be
/// zeros with other bitwidths.
Value *combineOrigins(const std::vector<Value *> &Shadows,
const std::vector<Value *> &Origins, Instruction *Pos,
ConstantInt *Zero = nullptr);
Value *getShadow(Value *V);
void setShadow(Instruction *I, Value *Shadow);
/// Generates IR to compute the union of the two given shadows, inserting it
/// before Pos. The combined value is with primitive type.
Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
/// Combines the shadow values of V1 and V2, then converts the combined value
/// with primitive type into a shadow value with the original type T.
Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2,
Instruction *Pos);
Value *combineOperandShadows(Instruction *Inst);
/// Generates IR to load shadow and origin corresponding to bytes [\p
/// Addr, \p Addr + \p Size), where addr has alignment \p
/// InstAlignment, and take the union of each of those shadows. The returned
/// shadow always has primitive type.
///
/// When tracking loads is enabled, the returned origin is a chain at the
/// current stack if the returned shadow is tainted.
std::pair<Value *, Value *> loadShadowOrigin(Value *Addr, uint64_t Size,
Align InstAlignment,
Instruction *Pos);
void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size,
Align InstAlignment, Value *PrimitiveShadow,
Value *Origin, Instruction *Pos);
/// Applies PrimitiveShadow to all primitive subtypes of T, returning
/// the expanded shadow value.
///
/// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...}
/// EFP([n x T], PS) = [n x EFP(T,PS)]
/// EFP(other types, PS) = PS
Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow,
Instruction *Pos);
/// Collapses Shadow into a single primitive shadow value, unioning all
/// primitive shadow values in the process. Returns the final primitive
/// shadow value.
///
/// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...)
/// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...)
/// CTP(other types, PS) = PS
Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos);
void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign,
Instruction *Pos);
Align getShadowAlign(Align InstAlignment);
// If ClConditionalCallbacks is enabled, insert a callback after a given
// branch instruction using the given conditional expression.
void addConditionalCallbacksIfEnabled(Instruction &I, Value *Condition);
bool isLookupTableConstant(Value *P);
private:
/// Collapses the shadow with aggregate type into a single primitive shadow
/// value.
template <class AggregateType>
Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow,
IRBuilder<> &IRB);
Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB);
/// Returns the shadow value of an argument A.
Value *getShadowForTLSArgument(Argument *A);
/// The fast path of loading shadows.
std::pair<Value *, Value *>
loadShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size,
Align ShadowAlign, Align OriginAlign, Value *FirstOrigin,
Instruction *Pos);
Align getOriginAlign(Align InstAlignment);
/// Because 4 contiguous bytes share one 4-byte origin, the most accurate load
/// is __dfsan_load_label_and_origin. This function returns the union of all
/// labels and the origin of the first taint label. However this is an
/// additional call with many instructions. To ensure common cases are fast,
/// checks if it is possible to load labels and origins without using the
/// callback function.
///
/// When enabling tracking load instructions, we always use
/// __dfsan_load_label_and_origin to reduce code size.
bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment);
/// Returns a chain at the current stack with previous origin V.
Value *updateOrigin(Value *V, IRBuilder<> &IRB);
/// Returns a chain at the current stack with previous origin V if Shadow is
/// tainted.
Value *updateOriginIfTainted(Value *Shadow, Value *Origin, IRBuilder<> &IRB);
/// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns
/// Origin otherwise.
Value *originToIntptr(IRBuilder<> &IRB, Value *Origin);
/// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr +
/// Size).
void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr,
uint64_t StoreOriginSize, Align Alignment);
/// Stores Origin in terms of its Shadow value.
/// * Do not write origins for zero shadows because we do not trace origins
/// for untainted sinks.
/// * Use __dfsan_maybe_store_origin if there are too many origin store
/// instrumentations.
void storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, Value *Shadow,
Value *Origin, Value *StoreOriginAddr, Align InstAlignment);
/// Convert a scalar value to an i1 by comparing with 0.
Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = "");
bool shouldInstrumentWithCall();
/// Generates IR to load shadow and origin corresponding to bytes [\p
/// Addr, \p Addr + \p Size), where addr has alignment \p
/// InstAlignment, and take the union of each of those shadows. The returned
/// shadow always has primitive type.
std::pair<Value *, Value *>
loadShadowOriginSansLoadTracking(Value *Addr, uint64_t Size,
Align InstAlignment, Instruction *Pos);
int NumOriginStores = 0;
};
class DFSanVisitor : public InstVisitor<DFSanVisitor> {
public:
DFSanFunction &DFSF;
DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
const DataLayout &getDataLayout() const {
return DFSF.F->getParent()->getDataLayout();
}
// Combines shadow values and origins for all of I's operands.
void visitInstOperands(Instruction &I);
void visitUnaryOperator(UnaryOperator &UO);
void visitBinaryOperator(BinaryOperator &BO);
void visitBitCastInst(BitCastInst &BCI);
void visitCastInst(CastInst &CI);
void visitCmpInst(CmpInst &CI);
void visitLandingPadInst(LandingPadInst &LPI);
void visitGetElementPtrInst(GetElementPtrInst &GEPI);
void visitLoadInst(LoadInst &LI);
void visitStoreInst(StoreInst &SI);
void visitAtomicRMWInst(AtomicRMWInst &I);
void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I);
void visitReturnInst(ReturnInst &RI);
void visitCallBase(CallBase &CB);
void visitPHINode(PHINode &PN);
void visitExtractElementInst(ExtractElementInst &I);
void visitInsertElementInst(InsertElementInst &I);
void visitShuffleVectorInst(ShuffleVectorInst &I);
void visitExtractValueInst(ExtractValueInst &I);
void visitInsertValueInst(InsertValueInst &I);
void visitAllocaInst(AllocaInst &I);
void visitSelectInst(SelectInst &I);
void visitMemSetInst(MemSetInst &I);
void visitMemTransferInst(MemTransferInst &I);
void visitBranchInst(BranchInst &BR);
void visitSwitchInst(SwitchInst &SW);
private:
void visitCASOrRMW(Align InstAlignment, Instruction &I);
// Returns false when this is an invoke of a custom function.
bool visitWrappedCallBase(Function &F, CallBase &CB);
// Combines origins for all of I's operands.
void visitInstOperandOrigins(Instruction &I);
void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args,
IRBuilder<> &IRB);
void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args,
IRBuilder<> &IRB);
};
} // end anonymous namespace
DataFlowSanitizer::DataFlowSanitizer(
const std::vector<std::string> &ABIListFiles) {
std::vector<std::string> AllABIListFiles(std::move(ABIListFiles));
llvm::append_range(AllABIListFiles, ClABIListFiles);
// FIXME: should we propagate vfs::FileSystem to this constructor?
ABIList.set(
SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem()));
for (StringRef v : ClCombineTaintLookupTables)
CombineTaintLookupTableNames.insert(v);
}
TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
SmallVector<Type *, 4> ArgTypes;
// Some parameters of the custom function being constructed are
// parameters of T. Record the mapping from parameters of T to
// parameters of the custom function, so that parameter attributes
// at call sites can be updated.
std::vector<unsigned> ArgumentIndexMapping;
for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) {
Type *ParamType = T->getParamType(I);
ArgumentIndexMapping.push_back(ArgTypes.size());
ArgTypes.push_back(ParamType);
}
for (unsigned I = 0, E = T->getNumParams(); I != E; ++I)
ArgTypes.push_back(PrimitiveShadowTy);
if (T->isVarArg())
ArgTypes.push_back(PrimitiveShadowPtrTy);
Type *RetType = T->getReturnType();
if (!RetType->isVoidTy())
ArgTypes.push_back(PrimitiveShadowPtrTy);
if (shouldTrackOrigins()) {
for (unsigned I = 0, E = T->getNumParams(); I != E; ++I)
ArgTypes.push_back(OriginTy);
if (T->isVarArg())
ArgTypes.push_back(OriginPtrTy);
if (!RetType->isVoidTy())
ArgTypes.push_back(OriginPtrTy);
}
return TransformedFunction(
T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()),
ArgumentIndexMapping);
}
bool DataFlowSanitizer::isZeroShadow(Value *V) {
Type *T = V->getType();
if (!isa<ArrayType>(T) && !isa<StructType>(T)) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
return CI->isZero();
return false;
}
return isa<ConstantAggregateZero>(V);
}
bool DataFlowSanitizer::hasLoadSizeForFastPath(uint64_t Size) {
uint64_t ShadowSize = Size * ShadowWidthBytes;
return ShadowSize % 8 == 0 || ShadowSize == 4;
}
bool DataFlowSanitizer::shouldTrackOrigins() {
static const bool ShouldTrackOrigins = ClTrackOrigins;
return ShouldTrackOrigins;
}
Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) {
if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy))
return ZeroPrimitiveShadow;
Type *ShadowTy = getShadowTy(OrigTy);
return ConstantAggregateZero::get(ShadowTy);
}
Constant *DataFlowSanitizer::getZeroShadow(Value *V) {
return getZeroShadow(V->getType());
}
static Value *expandFromPrimitiveShadowRecursive(
Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy,
Value *PrimitiveShadow, IRBuilder<> &IRB) {
if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy))
return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices);
if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) {
for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) {
Indices.push_back(Idx);
Shadow = expandFromPrimitiveShadowRecursive(
Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB);
Indices.pop_back();
}
return Shadow;
}
if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) {
for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) {
Indices.push_back(Idx);
Shadow = expandFromPrimitiveShadowRecursive(
Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB);
Indices.pop_back();
}
return Shadow;
}
llvm_unreachable("Unexpected shadow type");
}
bool DFSanFunction::shouldInstrumentWithCall() {
return ClInstrumentWithCallThreshold >= 0 &&
NumOriginStores >= ClInstrumentWithCallThreshold;
}
Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow,
Instruction *Pos) {
Type *ShadowTy = DFS.getShadowTy(T);
if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
return PrimitiveShadow;
if (DFS.isZeroShadow(PrimitiveShadow))
return DFS.getZeroShadow(ShadowTy);
IRBuilder<> IRB(Pos);
SmallVector<unsigned, 4> Indices;
Value *Shadow = UndefValue::get(ShadowTy);
Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy,
PrimitiveShadow, IRB);
// Caches the primitive shadow value that built the shadow value.
CachedCollapsedShadows[Shadow] = PrimitiveShadow;
return Shadow;
}
template <class AggregateType>
Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow,
IRBuilder<> &IRB) {
if (!AT->getNumElements())
return DFS.ZeroPrimitiveShadow;
Value *FirstItem = IRB.CreateExtractValue(Shadow, 0);
Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB);
for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) {
Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx);
Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB);
Aggregator = IRB.CreateOr(Aggregator, ShadowInner);
}
return Aggregator;
}
Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow,
IRBuilder<> &IRB) {
Type *ShadowTy = Shadow->getType();
if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
return Shadow;
if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy))
return collapseAggregateShadow<>(AT, Shadow, IRB);
if (StructType *ST = dyn_cast<StructType>(ShadowTy))
return collapseAggregateShadow<>(ST, Shadow, IRB);
llvm_unreachable("Unexpected shadow type");
}
Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow,
Instruction *Pos) {
Type *ShadowTy = Shadow->getType();
if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
return Shadow;
// Checks if the cached collapsed shadow value dominates Pos.
Value *&CS = CachedCollapsedShadows[Shadow];
if (CS && DT.dominates(CS, Pos))
return CS;
IRBuilder<> IRB(Pos);
Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB);
// Caches the converted primitive shadow value.
CS = PrimitiveShadow;
return PrimitiveShadow;
}
void DFSanFunction::addConditionalCallbacksIfEnabled(Instruction &I,
Value *Condition) {
if (!ClConditionalCallbacks) {
return;
}
IRBuilder<> IRB(&I);
Value *CondShadow = getShadow(Condition);
if (DFS.shouldTrackOrigins()) {
Value *CondOrigin = getOrigin(Condition);
IRB.CreateCall(DFS.DFSanConditionalCallbackOriginFn,
{CondShadow, CondOrigin});
} else {
IRB.CreateCall(DFS.DFSanConditionalCallbackFn, {CondShadow});
}
}
Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) {
if (!OrigTy->isSized())
return PrimitiveShadowTy;
if (isa<IntegerType>(OrigTy))
return PrimitiveShadowTy;
if (isa<VectorType>(OrigTy))
return PrimitiveShadowTy;
if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy))
return ArrayType::get(getShadowTy(AT->getElementType()),
AT->getNumElements());
if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
SmallVector<Type *, 4> Elements;
for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I)
Elements.push_back(getShadowTy(ST->getElementType(I)));
return StructType::get(*Ctx, Elements);
}
return PrimitiveShadowTy;
}
Type *DataFlowSanitizer::getShadowTy(Value *V) {
return getShadowTy(V->getType());
}
bool DataFlowSanitizer::initializeModule(Module &M) {
Triple TargetTriple(M.getTargetTriple());
const DataLayout &DL = M.getDataLayout();
if (TargetTriple.getOS() != Triple::Linux)
report_fatal_error("unsupported operating system");
if (TargetTriple.getArch() != Triple::x86_64)
report_fatal_error("unsupported architecture");
MapParams = &Linux_X86_64_MemoryMapParams;
Mod = &M;
Ctx = &M.getContext();
Int8Ptr = Type::getInt8PtrTy(*Ctx);
OriginTy = IntegerType::get(*Ctx, OriginWidthBits);
OriginPtrTy = PointerType::getUnqual(OriginTy);
PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits);
PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy);
IntptrTy = DL.getIntPtrType(*Ctx);
ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0);
ZeroOrigin = ConstantInt::getSigned(OriginTy, 0);
Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy};
DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs,
/*isVarArg=*/false);
Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy};
DFSanLoadLabelAndOriginFnTy =
FunctionType::get(IntegerType::get(*Ctx, 64), DFSanLoadLabelAndOriginArgs,
/*isVarArg=*/false);
DFSanUnimplementedFnTy = FunctionType::get(
Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy,
Type::getInt8PtrTy(*Ctx), IntptrTy};
DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
DFSanSetLabelArgs, /*isVarArg=*/false);
DFSanNonzeroLabelFnTy =
FunctionType::get(Type::getVoidTy(*Ctx), None, /*isVarArg=*/false);
DFSanVarargWrapperFnTy = FunctionType::get(
Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
DFSanConditionalCallbackFnTy =
FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy,
/*isVarArg=*/false);
Type *DFSanConditionalCallbackOriginArgs[2] = {PrimitiveShadowTy, OriginTy};
DFSanConditionalCallbackOriginFnTy = FunctionType::get(
Type::getVoidTy(*Ctx), DFSanConditionalCallbackOriginArgs,
/*isVarArg=*/false);
DFSanCmpCallbackFnTy =
FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy,
/*isVarArg=*/false);
DFSanChainOriginFnTy =
FunctionType::get(OriginTy, OriginTy, /*isVarArg=*/false);
Type *DFSanChainOriginIfTaintedArgs[2] = {PrimitiveShadowTy, OriginTy};
DFSanChainOriginIfTaintedFnTy = FunctionType::get(
OriginTy, DFSanChainOriginIfTaintedArgs, /*isVarArg=*/false);
Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(*Ctx, ShadowWidthBits),
Int8Ptr, IntptrTy, OriginTy};
DFSanMaybeStoreOriginFnTy = FunctionType::get(
Type::getVoidTy(*Ctx), DFSanMaybeStoreOriginArgs, /*isVarArg=*/false);
Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy};
DFSanMemOriginTransferFnTy = FunctionType::get(
Type::getVoidTy(*Ctx), DFSanMemOriginTransferArgs, /*isVarArg=*/false);
Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr};
DFSanLoadStoreCallbackFnTy =
FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs,
/*isVarArg=*/false);
Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy};
DFSanMemTransferCallbackFnTy =
FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs,
/*isVarArg=*/false);
ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
OriginStoreWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
return true;
}
bool DataFlowSanitizer::isInstrumented(const Function *F) {
return !ABIList.isIn(*F, "uninstrumented");
}
bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
return !ABIList.isIn(*GA, "uninstrumented");
}
bool DataFlowSanitizer::isForceZeroLabels(const Function *F) {
return ABIList.isIn(*F, "force_zero_labels");
}
DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
if (ABIList.isIn(*F, "functional"))
return WK_Functional;
if (ABIList.isIn(*F, "discard"))
return WK_Discard;
if (ABIList.isIn(*F, "custom"))
return WK_Custom;
return WK_Warning;
}
void DataFlowSanitizer::addGlobalNameSuffix(GlobalValue *GV) {
std::string GVName = std::string(GV->getName()), Suffix = ".dfsan";
GV->setName(GVName + Suffix);
// Try to change the name of the function in module inline asm. We only do
// this for specific asm directives, currently only ".symver", to try to avoid
// corrupting asm which happens to contain the symbol name as a substring.
// Note that the substitution for .symver assumes that the versioned symbol
// also has an instrumented name.
std::string Asm = GV->getParent()->getModuleInlineAsm();
std::string SearchStr = ".symver " + GVName + ",";
size_t Pos = Asm.find(SearchStr);
if (Pos != std::string::npos) {
Asm.replace(Pos, SearchStr.size(), ".symver " + GVName + Suffix + ",");
Pos = Asm.find("@");
if (Pos == std::string::npos)
report_fatal_error(Twine("unsupported .symver: ", Asm));
Asm.replace(Pos, 1, Suffix + "@");
GV->getParent()->setModuleInlineAsm(Asm);
}
}
Function *
DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
GlobalValue::LinkageTypes NewFLink,
FunctionType *NewFT) {
FunctionType *FT = F->getFunctionType();
Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(),
NewFName, F->getParent());
NewF->copyAttributesFrom(F);
NewF->removeRetAttrs(
AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
if (F->isVarArg()) {
NewF->removeFnAttr("split-stack");
CallInst::Create(DFSanVarargWrapperFn,
IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "",
BB);
new UnreachableInst(*Ctx, BB);
} else {
auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin());
std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams());
CallInst *CI = CallInst::Create(F, Args, "", BB);
if (FT->getReturnType()->isVoidTy())
ReturnInst::Create(*Ctx, BB);
else
ReturnInst::Create(*Ctx, CI, BB);
}
return NewF;
}
// Initialize DataFlowSanitizer runtime functions and declare them in the module
void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) {
{
AttributeList AL;
AL = AL.addFnAttribute(M.getContext(), Attribute::NoUnwind);
AL = AL.addFnAttribute(M.getContext(), Attribute::ReadOnly);
AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt);
DFSanUnionLoadFn =
Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL);
}
{
AttributeList AL;
AL = AL.addFnAttribute(M.getContext(), Attribute::NoUnwind);
AL = AL.addFnAttribute(M.getContext(), Attribute::ReadOnly);
AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt);
DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction(
"__dfsan_load_label_and_origin", DFSanLoadLabelAndOriginFnTy, AL);
}
DFSanUnimplementedFn =
Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
{
AttributeList AL;
AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
DFSanSetLabelFn =
Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL);
}
DFSanNonzeroLabelFn =
Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper",
DFSanVarargWrapperFnTy);
{
AttributeList AL;
AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt);
DFSanChainOriginFn = Mod->getOrInsertFunction("__dfsan_chain_origin",
DFSanChainOriginFnTy, AL);
}
{
AttributeList AL;
AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt);
DFSanChainOriginIfTaintedFn = Mod->getOrInsertFunction(
"__dfsan_chain_origin_if_tainted", DFSanChainOriginIfTaintedFnTy, AL);
}
DFSanMemOriginTransferFn = Mod->getOrInsertFunction(
"__dfsan_mem_origin_transfer", DFSanMemOriginTransferFnTy);
{
AttributeList AL;
AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt);
DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction(
"__dfsan_maybe_store_origin", DFSanMaybeStoreOriginFnTy, AL);
}
DFSanRuntimeFunctions.insert(
DFSanUnionLoadFn.getCallee()->stripPointerCasts());
DFSanRuntimeFunctions.insert(
DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts());
DFSanRuntimeFunctions.insert(
DFSanUnimplementedFn.getCallee()->stripPointerCasts());
DFSanRuntimeFunctions.insert(
DFSanSetLabelFn.getCallee()->stripPointerCasts());
DFSanRuntimeFunctions.insert(
DFSanNonzeroLabelFn.getCallee()->stripPointerCasts());
DFSanRuntimeFunctions.insert(
DFSanVarargWrapperFn.getCallee()->stripPointerCasts());
DFSanRuntimeFunctions.insert(
DFSanLoadCallbackFn.getCallee()->stripPointerCasts());
DFSanRuntimeFunctions.insert(
DFSanStoreCallbackFn.getCallee()->stripPointerCasts());
DFSanRuntimeFunctions.insert(
DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts());
DFSanRuntimeFunctions.insert(
DFSanConditionalCallbackFn.getCallee()->stripPointerCasts());
DFSanRuntimeFunctions.insert(
DFSanConditionalCallbackOriginFn.getCallee()->stripPointerCasts());
DFSanRuntimeFunctions.insert(
DFSanCmpCallbackFn.getCallee()->stripPointerCasts());
DFSanRuntimeFunctions.insert(
DFSanChainOriginFn.getCallee()->stripPointerCasts());
DFSanRuntimeFunctions.insert(
DFSanChainOriginIfTaintedFn.getCallee()->stripPointerCasts());
DFSanRuntimeFunctions.insert(
DFSanMemOriginTransferFn.getCallee()->stripPointerCasts());
DFSanRuntimeFunctions.insert(
DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts());
}
// Initializes event callback functions and declare them in the module
void DataFlowSanitizer::initializeCallbackFunctions(Module &M) {
DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback",
DFSanLoadStoreCallbackFnTy);
DFSanStoreCallbackFn = Mod->getOrInsertFunction("__dfsan_store_callback",
DFSanLoadStoreCallbackFnTy);
DFSanMemTransferCallbackFn = Mod->getOrInsertFunction(
"__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy);
DFSanCmpCallbackFn =
Mod->getOrInsertFunction("__dfsan_cmp_callback", DFSanCmpCallbackFnTy);
DFSanConditionalCallbackFn = Mod->getOrInsertFunction(
"__dfsan_conditional_callback", DFSanConditionalCallbackFnTy);
DFSanConditionalCallbackOriginFn =
Mod->getOrInsertFunction("__dfsan_conditional_callback_origin",
DFSanConditionalCallbackOriginFnTy);
}
void DataFlowSanitizer::injectMetadataGlobals(Module &M) {
// These variables can be used:
// - by the runtime (to discover what the shadow width was, during
// compilation)
// - in testing (to avoid hardcoding the shadow width and type but instead
// extract them by pattern matching)
Type *IntTy = Type::getInt32Ty(*Ctx);
(void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bits", IntTy, [&] {
return new GlobalVariable(
M, IntTy, /*isConstant=*/true, GlobalValue::WeakODRLinkage,
ConstantInt::get(IntTy, ShadowWidthBits), "__dfsan_shadow_width_bits");
});
(void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bytes", IntTy, [&] {
return new GlobalVariable(M, IntTy, /*isConstant=*/true,
GlobalValue::WeakODRLinkage,
ConstantInt::get(IntTy, ShadowWidthBytes),
"__dfsan_shadow_width_bytes");
});
}
bool DataFlowSanitizer::runImpl(Module &M) {
initializeModule(M);
if (ABIList.isIn(M, "skip"))
return false;
const unsigned InitialGlobalSize = M.global_size();
const unsigned InitialModuleSize = M.size();
bool Changed = false;
auto GetOrInsertGlobal = [this, &Changed](StringRef Name,
Type *Ty) -> Constant * {
Constant *C = Mod->getOrInsertGlobal(Name, Ty);
if (GlobalVariable *G = dyn_cast<GlobalVariable>(C)) {
Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel;
G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
}
return C;
};
// These globals must be kept in sync with the ones in dfsan.cpp.
ArgTLS =
GetOrInsertGlobal("__dfsan_arg_tls",
ArrayType::get(Type::getInt64Ty(*Ctx), ArgTLSSize / 8));
RetvalTLS = GetOrInsertGlobal(
"__dfsan_retval_tls",
ArrayType::get(Type::getInt64Ty(*Ctx), RetvalTLSSize / 8));
ArgOriginTLSTy = ArrayType::get(OriginTy, NumOfElementsInArgOrgTLS);
ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls", ArgOriginTLSTy);
RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls", OriginTy);
(void)Mod->getOrInsertGlobal("__dfsan_track_origins", OriginTy, [&] {
Changed = true;
return new GlobalVariable(
M, OriginTy, true, GlobalValue::WeakODRLinkage,
ConstantInt::getSigned(OriginTy,
shouldTrackOrigins() ? ClTrackOrigins : 0),
"__dfsan_track_origins");
});
injectMetadataGlobals(M);
initializeCallbackFunctions(M);
initializeRuntimeFunctions(M);
std::vector<Function *> FnsToInstrument;
SmallPtrSet<Function *, 2> FnsWithNativeABI;
SmallPtrSet<Function *, 2> FnsWithForceZeroLabel;
SmallPtrSet<Constant *, 1> PersonalityFns;
for (Function &F : M)
if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(&F)) {
FnsToInstrument.push_back(&F);
if (F.hasPersonalityFn())
PersonalityFns.insert(F.getPersonalityFn()->stripPointerCasts());
}
if (ClIgnorePersonalityRoutine) {
for (auto *C : PersonalityFns) {
assert(isa<Function>(C) && "Personality routine is not a function!");
Function *F = cast<Function>(C);
if (!isInstrumented(F))
FnsToInstrument.erase(
std::remove(FnsToInstrument.begin(), FnsToInstrument.end(), F),
FnsToInstrument.end());
}
}
// Give function aliases prefixes when necessary, and build wrappers where the
// instrumentedness is inconsistent.
for (GlobalAlias &GA : llvm::make_early_inc_range(M.aliases())) {
// Don't stop on weak. We assume people aren't playing games with the
// instrumentedness of overridden weak aliases.
auto *F = dyn_cast<Function>(GA.getAliaseeObject());
if (!F)
continue;
bool GAInst = isInstrumented(&GA), FInst = isInstrumented(F);
if (GAInst && FInst) {
addGlobalNameSuffix(&GA);
} else if (GAInst != FInst) {
// Non-instrumented alias of an instrumented function, or vice versa.
// Replace the alias with a native-ABI wrapper of the aliasee. The pass
// below will take care of instrumenting it.
Function *NewF =
buildWrapperFunction(F, "", GA.getLinkage(), F->getFunctionType());
GA.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA.getType()));
NewF->takeName(&GA);
GA.eraseFromParent();
FnsToInstrument.push_back(NewF);
}
}
ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly)
.addAttribute(Attribute::ReadNone);
// First, change the ABI of every function in the module. ABI-listed
// functions keep their original ABI and get a wrapper function.
for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(),
FE = FnsToInstrument.end();
FI != FE; ++FI) {
Function &F = **FI;
FunctionType *FT = F.getFunctionType();
bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
FT->getReturnType()->isVoidTy());
if (isInstrumented(&F)) {
if (isForceZeroLabels(&F))
FnsWithForceZeroLabel.insert(&F);
// Instrumented functions get a '.dfsan' suffix. This allows us to more
// easily identify cases of mismatching ABIs. This naming scheme is
// mangling-compatible (see Itanium ABI), using a vendor-specific suffix.
addGlobalNameSuffix(&F);
} else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
// Build a wrapper function for F. The wrapper simply calls F, and is
// added to FnsToInstrument so that any instrumentation according to its
// WrapperKind is done in the second pass below.
// If the function being wrapped has local linkage, then preserve the
// function's linkage in the wrapper function.
GlobalValue::LinkageTypes WrapperLinkage =
F.hasLocalLinkage() ? F.getLinkage()
: GlobalValue::LinkOnceODRLinkage;
Function *NewF = buildWrapperFunction(
&F,
(shouldTrackOrigins() ? std::string("dfso$") : std::string("dfsw$")) +
std::string(F.getName()),
WrapperLinkage, FT);
NewF->removeFnAttrs(ReadOnlyNoneAttrs);
Value *WrappedFnCst =
ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
// Extern weak functions can sometimes be null at execution time.
// Code will sometimes check if an extern weak function is null.
// This could look something like:
// declare extern_weak i8 @my_func(i8)
// br i1 icmp ne (i8 (i8)* @my_func, i8 (i8)* null), label %use_my_func,
// label %avoid_my_func
// The @"dfsw$my_func" wrapper is never null, so if we replace this use
// in the comparision, the icmp will simplify to false and we have
// accidentially optimized away a null check that is necessary.
// This can lead to a crash when the null extern_weak my_func is called.
//
// To prevent (the most common pattern of) this problem,
// do not replace uses in comparisons with the wrapper.
// We definitely want to replace uses in call instructions.
// Other uses (e.g. store the function address somewhere) might be
// called or compared or both - this case may not be handled correctly.
// We will default to replacing with wrapper in cases we are unsure.
auto IsNotCmpUse = [](Use &U) -> bool {
User *Usr = U.getUser();
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) {
// This is the most common case for icmp ne null
if (CE->getOpcode() == Instruction::ICmp) {
return false;
}
}
if (Instruction *I = dyn_cast<Instruction>(Usr)) {
if (I->getOpcode() == Instruction::ICmp) {
return false;
}
}
return true;
};
F.replaceUsesWithIf(WrappedFnCst, IsNotCmpUse);
UnwrappedFnMap[WrappedFnCst] = &F;
*FI = NewF;
if (!F.isDeclaration()) {
// This function is probably defining an interposition of an
// uninstrumented function and hence needs to keep the original ABI.
// But any functions it may call need to use the instrumented ABI, so
// we instrument it in a mode which preserves the original ABI.
FnsWithNativeABI.insert(&F);
// This code needs to rebuild the iterators, as they may be invalidated
// by the push_back, taking care that the new range does not include
// any functions added by this code.
size_t N = FI - FnsToInstrument.begin(),
Count = FE - FnsToInstrument.begin();
FnsToInstrument.push_back(&F);
FI = FnsToInstrument.begin() + N;
FE = FnsToInstrument.begin() + Count;
}
// Hopefully, nobody will try to indirectly call a vararg
// function... yet.
} else if (FT->isVarArg()) {
UnwrappedFnMap[&F] = &F;
*FI = nullptr;
}
}
for (Function *F : FnsToInstrument) {
if (!F || F->isDeclaration())
continue;
removeUnreachableBlocks(*F);
DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(F),
FnsWithForceZeroLabel.count(F));
// DFSanVisitor may create new basic blocks, which confuses df_iterator.
// Build a copy of the list before iterating over it.
SmallVector<BasicBlock *, 4> BBList(depth_first(&F->getEntryBlock()));
for (BasicBlock *BB : BBList) {
Instruction *Inst = &BB->front();
while (true) {
// DFSanVisitor may split the current basic block, changing the current
// instruction's next pointer and moving the next instruction to the
// tail block from which we should continue.
Instruction *Next = Inst->getNextNode();
// DFSanVisitor may delete Inst, so keep track of whether it was a
// terminator.
bool IsTerminator = Inst->isTerminator();
if (!DFSF.SkipInsts.count(Inst))
DFSanVisitor(DFSF).visit(Inst);
if (IsTerminator)
break;
Inst = Next;
}
}
// We will not necessarily be able to compute the shadow for every phi node
// until we have visited every block. Therefore, the code that handles phi
// nodes adds them to the PHIFixups list so that they can be properly
// handled here.
for (DFSanFunction::PHIFixupElement &P : DFSF.PHIFixups) {
for (unsigned Val = 0, N = P.Phi->getNumIncomingValues(); Val != N;
++Val) {
P.ShadowPhi->setIncomingValue(
Val, DFSF.getShadow(P.Phi->getIncomingValue(Val)));
if (P.OriginPhi)
P.OriginPhi->setIncomingValue(
Val, DFSF.getOrigin(P.Phi->getIncomingValue(Val)));
}
}
// -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
// places (i.e. instructions in basic blocks we haven't even begun visiting
// yet). To make our life easier, do this work in a pass after the main
// instrumentation.
if (ClDebugNonzeroLabels) {
for (Value *V : DFSF.NonZeroChecks) {
Instruction *Pos;
if (Instruction *I = dyn_cast<Instruction>(V))
Pos = I->getNextNode();
else
Pos = &DFSF.F->getEntryBlock().front();
while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
Pos = Pos->getNextNode();
IRBuilder<> IRB(Pos);
Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos);
Value *Ne =
IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow);
BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
Ne, Pos, /*Unreachable=*/false, ColdCallWeights));
IRBuilder<> ThenIRB(BI);
ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {});
}
}
}
return Changed || !FnsToInstrument.empty() ||
M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize;
}
Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) {
Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy);
if (ArgOffset)
Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset));
return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0),
"_dfsarg");
}
Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) {
return IRB.CreatePointerCast(
DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret");
}
Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; }
Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) {
return IRB.CreateConstGEP2_64(DFS.ArgOriginTLSTy, DFS.ArgOriginTLS, 0, ArgNo,
"_dfsarg_o");
}
Value *DFSanFunction::getOrigin(Value *V) {
assert(DFS.shouldTrackOrigins());
if (!isa<Argument>(V) && !isa<Instruction>(V))
return DFS.ZeroOrigin;
Value *&Origin = ValOriginMap[V];
if (!Origin) {
if (Argument *A = dyn_cast<Argument>(V)) {
if (IsNativeABI)
return DFS.ZeroOrigin;
if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) {
Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin();
IRBuilder<> IRB(ArgOriginTLSPos);
Value *ArgOriginPtr = getArgOriginTLS(A->getArgNo(), IRB);
Origin = IRB.CreateLoad(DFS.OriginTy, ArgOriginPtr);
} else {
// Overflow
Origin = DFS.ZeroOrigin;
}
} else {
Origin = DFS.ZeroOrigin;
}
}
return Origin;
}
void DFSanFunction::setOrigin(Instruction *I, Value *Origin) {
if (!DFS.shouldTrackOrigins())
return;
assert(!ValOriginMap.count(I));
assert(Origin->getType() == DFS.OriginTy);
ValOriginMap[I] = Origin;
}
Value *DFSanFunction::getShadowForTLSArgument(Argument *A) {
unsigned ArgOffset = 0;
const DataLayout &DL = F->getParent()->getDataLayout();
for (auto &FArg : F->args()) {
if (!FArg.getType()->isSized()) {
if (A == &FArg)
break;
continue;
}
unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg));
if (A != &FArg) {
ArgOffset += alignTo(Size, ShadowTLSAlignment);
if (ArgOffset > ArgTLSSize)
break; // ArgTLS overflows, uses a zero shadow.
continue;
}
if (ArgOffset + Size > ArgTLSSize)
break; // ArgTLS overflows, uses a zero shadow.
Instruction *ArgTLSPos = &*F->getEntryBlock().begin();
IRBuilder<> IRB(ArgTLSPos);
Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB);
return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr,
ShadowTLSAlignment);
}
return DFS.getZeroShadow(A);
}
Value *DFSanFunction::getShadow(Value *V) {
if (!isa<Argument>(V) && !isa<Instruction>(V))
return DFS.getZeroShadow(V);
if (IsForceZeroLabels)
return DFS.getZeroShadow(V);
Value *&Shadow = ValShadowMap[V];
if (!Shadow) {
if (Argument *A = dyn_cast<Argument>(V)) {
if (IsNativeABI)
return DFS.getZeroShadow(V);
Shadow = getShadowForTLSArgument(A);
NonZeroChecks.push_back(Shadow);
} else {
Shadow = DFS.getZeroShadow(V);
}
}
return Shadow;
}
void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
assert(!ValShadowMap.count(I));
ValShadowMap[I] = Shadow;
}
/// Compute the integer shadow offset that corresponds to a given
/// application address.
///
/// Offset = (Addr & ~AndMask) ^ XorMask
Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) {
assert(Addr != RetvalTLS && "Reinstrumenting?");
Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy);
uint64_t AndMask = MapParams->AndMask;
if (AndMask)
OffsetLong =
IRB.CreateAnd(OffsetLong, ConstantInt::get(IntptrTy, ~AndMask));
uint64_t XorMask = MapParams->XorMask;
if (XorMask)
OffsetLong = IRB.CreateXor(OffsetLong, ConstantInt::get(IntptrTy, XorMask));
return OffsetLong;
}
std::pair<Value *, Value *>
DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment,
Instruction *Pos) {
// Returns ((Addr & shadow_mask) + origin_base - shadow_base) & ~4UL
IRBuilder<> IRB(Pos);
Value *ShadowOffset = getShadowOffset(Addr, IRB);
Value *ShadowLong = ShadowOffset;
uint64_t ShadowBase = MapParams->ShadowBase;
if (ShadowBase != 0) {
ShadowLong =
IRB.CreateAdd(ShadowLong, ConstantInt::get(IntptrTy, ShadowBase));
}
IntegerType *ShadowTy = IntegerType::get(*Ctx, ShadowWidthBits);
Value *ShadowPtr =
IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
Value *OriginPtr = nullptr;
if (shouldTrackOrigins()) {
Value *OriginLong = ShadowOffset;
uint64_t OriginBase = MapParams->OriginBase;
if (OriginBase != 0)
OriginLong =
IRB.CreateAdd(OriginLong, ConstantInt::get(IntptrTy, OriginBase));
const Align Alignment = llvm::assumeAligned(InstAlignment.value());
// When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB.
// So Mask is unnecessary.
if (Alignment < MinOriginAlignment) {
uint64_t Mask = MinOriginAlignment.value() - 1;
OriginLong = IRB.CreateAnd(OriginLong, ConstantInt::get(IntptrTy, ~Mask));
}
OriginPtr = IRB.CreateIntToPtr(OriginLong, OriginPtrTy);
}
return std::make_pair(ShadowPtr, OriginPtr);
}
Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos,
Value *ShadowOffset) {
IRBuilder<> IRB(Pos);
return IRB.CreateIntToPtr(ShadowOffset, PrimitiveShadowPtrTy);
}
Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) {
IRBuilder<> IRB(Pos);
Value *ShadowOffset = getShadowOffset(Addr, IRB);
return getShadowAddress(Addr, Pos, ShadowOffset);
}
Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2,
Instruction *Pos) {
Value *PrimitiveValue = combineShadows(V1, V2, Pos);
return expandFromPrimitiveShadow(T, PrimitiveValue, Pos);
}
// Generates IR to compute the union of the two given shadows, inserting it
// before Pos. The combined value is with primitive type.
Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) {
if (DFS.isZeroShadow(V1))
return collapseToPrimitiveShadow(V2, Pos);
if (DFS.isZeroShadow(V2))
return collapseToPrimitiveShadow(V1, Pos);
if (V1 == V2)
return collapseToPrimitiveShadow(V1, Pos);
auto V1Elems = ShadowElements.find(V1);
auto V2Elems = ShadowElements.find(V2);
if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) {
if (std::includes(V1Elems->second.begin(), V1Elems->second.end(),
V2Elems->second.begin(), V2Elems->second.end())) {
return collapseToPrimitiveShadow(V1, Pos);
}
if (std::includes(V2Elems->second.begin(), V2Elems->second.end(),
V1Elems->second.begin(), V1Elems->second.end())) {
return collapseToPrimitiveShadow(V2, Pos);
}
} else if (V1Elems != ShadowElements.end()) {
if (V1Elems->second.count(V2))
return collapseToPrimitiveShadow(V1, Pos);
} else if (V2Elems != ShadowElements.end()) {
if (V2Elems->second.count(V1))
return collapseToPrimitiveShadow(V2, Pos);
}
auto Key = std::make_pair(V1, V2);
if (V1 > V2)
std::swap(Key.first, Key.second);
CachedShadow &CCS = CachedShadows[Key];
if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent()))
return CCS.Shadow;
// Converts inputs shadows to shadows with primitive types.
Value *PV1 = collapseToPrimitiveShadow(V1, Pos);
Value *PV2 = collapseToPrimitiveShadow(V2, Pos);
IRBuilder<> IRB(Pos);
CCS.Block = Pos->getParent();
CCS.Shadow = IRB.CreateOr(PV1, PV2);
std::set<Value *> UnionElems;
if (V1Elems != ShadowElements.end()) {
UnionElems = V1Elems->second;
} else {
UnionElems.insert(V1);
}
if (V2Elems != ShadowElements.end()) {
UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end());
} else {
UnionElems.insert(V2);
}
ShadowElements[CCS.Shadow] = std::move(UnionElems);
return CCS.Shadow;
}
// A convenience function which folds the shadows of each of the operands
// of the provided instruction Inst, inserting the IR before Inst. Returns
// the computed union Value.
Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
if (Inst->getNumOperands() == 0)
return DFS.getZeroShadow(Inst);
Value *Shadow = getShadow(Inst->getOperand(0));
for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I)
Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(I)), Inst);
return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst);
}
void DFSanVisitor::visitInstOperands(Instruction &I) {
Value *CombinedShadow = DFSF.combineOperandShadows(&I);
DFSF.setShadow(&I, CombinedShadow);
visitInstOperandOrigins(I);
}
Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows,
const std::vector<Value *> &Origins,
Instruction *Pos, ConstantInt *Zero) {
assert(Shadows.size() == Origins.size());
size_t Size = Origins.size();
if (Size == 0)
return DFS.ZeroOrigin;
Value *Origin = nullptr;
if (!Zero)
Zero = DFS.ZeroPrimitiveShadow;
for (size_t I = 0; I != Size; ++I) {
Value *OpOrigin = Origins[I];
Constant *ConstOpOrigin = dyn_cast<Constant>(OpOrigin);
if (ConstOpOrigin && ConstOpOrigin->isNullValue())
continue;
if (!Origin) {
Origin = OpOrigin;
continue;
}
Value *OpShadow = Shadows[I];
Value *PrimitiveShadow = collapseToPrimitiveShadow(OpShadow, Pos);
IRBuilder<> IRB(Pos);
Value *Cond = IRB.CreateICmpNE(PrimitiveShadow, Zero);
Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
}
return Origin ? Origin : DFS.ZeroOrigin;
}
Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) {
size_t Size = Inst->getNumOperands();
std::vector<Value *> Shadows(Size);
std::vector<Value *> Origins(Size);
for (unsigned I = 0; I != Size; ++I) {
Shadows[I] = getShadow(Inst->getOperand(I));
Origins[I] = getOrigin(Inst->getOperand(I));
}
return combineOrigins(Shadows, Origins, Inst);
}
void DFSanVisitor::visitInstOperandOrigins(Instruction &I) {
if (!DFSF.DFS.shouldTrackOrigins())
return;
Value *CombinedOrigin = DFSF.combineOperandOrigins(&I);
DFSF.setOrigin(&I, CombinedOrigin);
}
Align DFSanFunction::getShadowAlign(Align InstAlignment) {
const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1);
return Align(Alignment.value() * DFS.ShadowWidthBytes);
}
Align DFSanFunction::getOriginAlign(Align InstAlignment) {
const Align Alignment = llvm::assumeAligned(InstAlignment.value());
return Align(std::max(MinOriginAlignment, Alignment));
}
bool DFSanFunction::isLookupTableConstant(Value *P) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P->stripPointerCasts()))
if (GV->isConstant() && GV->hasName())
return DFS.CombineTaintLookupTableNames.count(GV->getName());
return false;
}
bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size,
Align InstAlignment) {
// When enabling tracking load instructions, we always use
// __dfsan_load_label_and_origin to reduce code size.
if (ClTrackOrigins == 2)
return true;
assert(Size != 0);
// * if Size == 1, it is sufficient to load its origin aligned at 4.
// * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to
// load its origin aligned at 4. If not, although origins may be lost, it
// should not happen very often.
// * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When
// Size % 4 == 0, it is more efficient to load origins without callbacks.
// * Otherwise we use __dfsan_load_label_and_origin.
// This should ensure that common cases run efficiently.
if (Size <= 2)
return false;
const Align Alignment = llvm::assumeAligned(InstAlignment.value());
return Alignment < MinOriginAlignment || !DFS.hasLoadSizeForFastPath(Size);
}
Value *DataFlowSanitizer::loadNextOrigin(Instruction *Pos, Align OriginAlign,
Value **OriginAddr) {
IRBuilder<> IRB(Pos);
*OriginAddr =
IRB.CreateGEP(OriginTy, *OriginAddr, ConstantInt::get(IntptrTy, 1));
return IRB.CreateAlignedLoad(OriginTy, *OriginAddr, OriginAlign);
}
std::pair<Value *, Value *> DFSanFunction::loadShadowFast(
Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign,
Align OriginAlign, Value *FirstOrigin, Instruction *Pos) {
const bool ShouldTrackOrigins = DFS.shouldTrackOrigins();
const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes;
assert(Size >= 4 && "Not large enough load size for fast path!");
// Used for origin tracking.
std::vector<Value *> Shadows;
std::vector<Value *> Origins;
// Load instructions in LLVM can have arbitrary byte sizes (e.g., 3, 12, 20)
// but this function is only used in a subset of cases that make it possible
// to optimize the instrumentation.
//
// Specifically, when the shadow size in bytes (i.e., loaded bytes x shadow
// per byte) is either:
// - a multiple of 8 (common)
// - equal to 4 (only for load32)
//
// For the second case, we can fit the wide shadow in a 32-bit integer. In all
// other cases, we use a 64-bit integer to hold the wide shadow.
Type *WideShadowTy =
ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx);
IRBuilder<> IRB(Pos);
Value *WideAddr = IRB.CreateBitCast(ShadowAddr, WideShadowTy->getPointerTo());
Value *CombinedWideShadow =
IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign);
unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth();
const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits;
auto AppendWideShadowAndOrigin = [&](Value *WideShadow, Value *Origin) {
if (BytesPerWideShadow > 4) {
assert(BytesPerWideShadow == 8);
// The wide shadow relates to two origin pointers: one for the first four
// application bytes, and one for the latest four. We use a left shift to
// get just the shadow bytes that correspond to the first origin pointer,
// and then the entire shadow for the second origin pointer (which will be
// chosen by combineOrigins() iff the least-significant half of the wide
// shadow was empty but the other half was not).
Value *WideShadowLo = IRB.CreateShl(
WideShadow, ConstantInt::get(WideShadowTy, WideShadowBitWidth / 2));
Shadows.push_back(WideShadow);
Origins.push_back(DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr));
Shadows.push_back(WideShadowLo);
Origins.push_back(Origin);
} else {
Shadows.push_back(WideShadow);
Origins.push_back(Origin);
}
};
if (ShouldTrackOrigins)
AppendWideShadowAndOrigin(CombinedWideShadow, FirstOrigin);
// First OR all the WideShadows (i.e., 64bit or 32bit shadow chunks) linearly;
// then OR individual shadows within the combined WideShadow by binary ORing.
// This is fewer instructions than ORing shadows individually, since it
// needs logN shift/or instructions (N being the bytes of the combined wide
// shadow).
for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size;
ByteOfs += BytesPerWideShadow) {
WideAddr = IRB.CreateGEP(WideShadowTy, WideAddr,
ConstantInt::get(DFS.IntptrTy, 1));
Value *NextWideShadow =
IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign);
CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow);
if (ShouldTrackOrigins) {
Value *NextOrigin = DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr);
AppendWideShadowAndOrigin(NextWideShadow, NextOrigin);
}
}
for (unsigned Width = WideShadowBitWidth / 2; Width >= DFS.ShadowWidthBits;
Width >>= 1) {
Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width);
CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow);
}
return {IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy),
ShouldTrackOrigins
? combineOrigins(Shadows, Origins, Pos,
ConstantInt::getSigned(IRB.getInt64Ty(), 0))
: DFS.ZeroOrigin};
}
std::pair<Value *, Value *> DFSanFunction::loadShadowOriginSansLoadTracking(
Value *Addr, uint64_t Size, Align InstAlignment, Instruction *Pos) {
const bool ShouldTrackOrigins = DFS.shouldTrackOrigins();
// Non-escaped loads.
if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
const auto SI = AllocaShadowMap.find(AI);
if (SI != AllocaShadowMap.end()) {
IRBuilder<> IRB(Pos);
Value *ShadowLI = IRB.CreateLoad(DFS.PrimitiveShadowTy, SI->second);
const auto OI = AllocaOriginMap.find(AI);
assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end());
return {ShadowLI, ShouldTrackOrigins
? IRB.CreateLoad(DFS.OriginTy, OI->second)
: nullptr};
}
}
// Load from constant addresses.
SmallVector<const Value *, 2> Objs;
getUnderlyingObjects(Addr, Objs);
bool AllConstants = true;
for (const Value *Obj : Objs) {
if (isa<Function>(Obj) || isa<BlockAddress>(Obj))
continue;
if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant())
continue;
AllConstants = false;
break;
}
if (AllConstants)
return {DFS.ZeroPrimitiveShadow,
ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr};
if (Size == 0)
return {DFS.ZeroPrimitiveShadow,
ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr};
// Use callback to load if this is not an optimizable case for origin
// tracking.
if (ShouldTrackOrigins &&
useCallbackLoadLabelAndOrigin(Size, InstAlignment)) {
IRBuilder<> IRB(Pos);
CallInst *Call =
IRB.CreateCall(DFS.DFSanLoadLabelAndOriginFn,
{IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
ConstantInt::get(DFS.IntptrTy, Size)});
Call->addRetAttr(Attribute::ZExt);
return {IRB.CreateTrunc(IRB.CreateLShr(Call, DFS.OriginWidthBits),
DFS.PrimitiveShadowTy),
IRB.CreateTrunc(Call, DFS.OriginTy)};
}
// Other cases that support loading shadows or origins in a fast way.
Value *ShadowAddr, *OriginAddr;
std::tie(ShadowAddr, OriginAddr) =
DFS.getShadowOriginAddress(Addr, InstAlignment, Pos);
const Align ShadowAlign = getShadowAlign(InstAlignment);
const Align OriginAlign = getOriginAlign(InstAlignment);
Value *Origin = nullptr;
if (ShouldTrackOrigins) {
IRBuilder<> IRB(Pos);
Origin = IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign);
}
// When the byte size is small enough, we can load the shadow directly with
// just a few instructions.
switch (Size) {
case 1: {
LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos);
LI->setAlignment(ShadowAlign);
return {LI, Origin};
}
case 2: {
IRBuilder<> IRB(Pos);
Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr,
ConstantInt::get(DFS.IntptrTy, 1));
Value *Load =
IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign);
Value *Load1 =
IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign);
return {combineShadows(Load, Load1, Pos), Origin};
}
}
bool HasSizeForFastPath = DFS.hasLoadSizeForFastPath(Size);
if (HasSizeForFastPath)
return loadShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign,
OriginAlign, Origin, Pos);
IRBuilder<> IRB(Pos);
CallInst *FallbackCall = IRB.CreateCall(
DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
FallbackCall->addRetAttr(Attribute::ZExt);
return {FallbackCall, Origin};
}
std::pair<Value *, Value *> DFSanFunction::loadShadowOrigin(Value *Addr,
uint64_t Size,
Align InstAlignment,
Instruction *Pos) {
Value *PrimitiveShadow, *Origin;
std::tie(PrimitiveShadow, Origin) =
loadShadowOriginSansLoadTracking(Addr, Size, InstAlignment, Pos);
if (DFS.shouldTrackOrigins()) {
if (ClTrackOrigins == 2) {
IRBuilder<> IRB(Pos);
auto *ConstantShadow = dyn_cast<Constant>(PrimitiveShadow);
if (!ConstantShadow || !ConstantShadow->isZeroValue())
Origin = updateOriginIfTainted(PrimitiveShadow, Origin, IRB);
}
}
return {PrimitiveShadow, Origin};
}
static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) {
switch (AO) {
case AtomicOrdering::NotAtomic:
return AtomicOrdering::NotAtomic;
case AtomicOrdering::Unordered:
case AtomicOrdering::Monotonic:
case AtomicOrdering::Acquire:
return AtomicOrdering::Acquire;
case AtomicOrdering::Release:
case AtomicOrdering::AcquireRelease:
return AtomicOrdering::AcquireRelease;
case AtomicOrdering::SequentiallyConsistent:
return AtomicOrdering::SequentiallyConsistent;
}
llvm_unreachable("Unknown ordering");
}
Value *StripPointerGEPsAndCasts(Value *V) {
if (!V->getType()->isPointerTy())
return V;
// DFSan pass should be running on valid IR, but we'll
// keep a seen set to ensure there are no issues.
SmallPtrSet<const Value *, 4> Visited;
Visited.insert(V);
do {
if (auto *GEP = dyn_cast<GEPOperator>(V)) {
V = GEP->getPointerOperand();
} else if (Operator::getOpcode(V) == Instruction::BitCast) {
V = cast<Operator>(V)->getOperand(0);
if (!V->getType()->isPointerTy())
return V;
} else if (isa<GlobalAlias>(V)) {
V = cast<GlobalAlias>(V)->getAliasee();
}
} while (Visited.insert(V).second);
return V;
}
void DFSanVisitor::visitLoadInst(LoadInst &LI) {
auto &DL = LI.getModule()->getDataLayout();
uint64_t Size = DL.getTypeStoreSize(LI.getType());
if (Size == 0) {
DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI));
DFSF.setOrigin(&LI, DFSF.DFS.ZeroOrigin);
return;
}
// When an application load is atomic, increase atomic ordering between
// atomic application loads and stores to ensure happen-before order; load
// shadow data after application data; store zero shadow data before
// application data. This ensure shadow loads return either labels of the
// initial application data or zeros.
if (LI.isAtomic())
LI.setOrdering(addAcquireOrdering(LI.getOrdering()));
Instruction *Pos = LI.isAtomic() ? LI.getNextNode() : &LI;
std::vector<Value *> Shadows;
std::vector<Value *> Origins;
Value *PrimitiveShadow, *Origin;
std::tie(PrimitiveShadow, Origin) =
DFSF.loadShadowOrigin(LI.getPointerOperand(), Size, LI.getAlign(), Pos);
const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
if (ShouldTrackOrigins) {
Shadows.push_back(PrimitiveShadow);
Origins.push_back(Origin);
}
if (ClCombinePointerLabelsOnLoad ||
DFSF.isLookupTableConstant(
StripPointerGEPsAndCasts(LI.getPointerOperand()))) {
Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, Pos);
if (ShouldTrackOrigins) {
Shadows.push_back(PtrShadow);
Origins.push_back(DFSF.getOrigin(LI.getPointerOperand()));
}
}
if (!DFSF.DFS.isZeroShadow(PrimitiveShadow))
DFSF.NonZeroChecks.push_back(PrimitiveShadow);
Value *Shadow =
DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, Pos);
DFSF.setShadow(&LI, Shadow);
if (ShouldTrackOrigins) {
DFSF.setOrigin(&LI, DFSF.combineOrigins(Shadows, Origins, Pos));
}
if (ClEventCallbacks) {
IRBuilder<> IRB(Pos);
Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr);
IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr8});
}
}
Value *DFSanFunction::updateOriginIfTainted(Value *Shadow, Value *Origin,
IRBuilder<> &IRB) {
assert(DFS.shouldTrackOrigins());
return IRB.CreateCall(DFS.DFSanChainOriginIfTaintedFn, {Shadow, Origin});
}
Value *DFSanFunction::updateOrigin(Value *V, IRBuilder<> &IRB) {
if (!DFS.shouldTrackOrigins())
return V;
return IRB.CreateCall(DFS.DFSanChainOriginFn, V);
}
Value *DFSanFunction::originToIntptr(IRBuilder<> &IRB, Value *Origin) {
const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes;
const DataLayout &DL = F->getParent()->getDataLayout();
unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy);
if (IntptrSize == OriginSize)
return Origin;
assert(IntptrSize == OriginSize * 2);
Origin = IRB.CreateIntCast(Origin, DFS.IntptrTy, /* isSigned */ false);
return IRB.CreateOr(Origin, IRB.CreateShl(Origin, OriginSize * 8));
}
void DFSanFunction::paintOrigin(IRBuilder<> &IRB, Value *Origin,
Value *StoreOriginAddr,
uint64_t StoreOriginSize, Align Alignment) {
const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes;
const DataLayout &DL = F->getParent()->getDataLayout();
const Align IntptrAlignment = DL.getABITypeAlign(DFS.IntptrTy);
unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy);
assert(IntptrAlignment >= MinOriginAlignment);
assert(IntptrSize >= OriginSize);
unsigned Ofs = 0;
Align CurrentAlignment = Alignment;
if (Alignment >= IntptrAlignment && IntptrSize > OriginSize) {
Value *IntptrOrigin = originToIntptr(IRB, Origin);
Value *IntptrStoreOriginPtr = IRB.CreatePointerCast(
StoreOriginAddr, PointerType::get(DFS.IntptrTy, 0));
for (unsigned I = 0; I < StoreOriginSize / IntptrSize; ++I) {
Value *Ptr =
I ? IRB.CreateConstGEP1_32(DFS.IntptrTy, IntptrStoreOriginPtr, I)
: IntptrStoreOriginPtr;
IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
Ofs += IntptrSize / OriginSize;
CurrentAlignment = IntptrAlignment;
}
}
for (unsigned I = Ofs; I < (StoreOriginSize + OriginSize - 1) / OriginSize;
++I) {
Value *GEP = I ? IRB.CreateConstGEP1_32(DFS.OriginTy, StoreOriginAddr, I)
: StoreOriginAddr;
IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
CurrentAlignment = MinOriginAlignment;
}
}
Value *DFSanFunction::convertToBool(Value *V, IRBuilder<> &IRB,
const Twine &Name) {
Type *VTy = V->getType();
assert(VTy->isIntegerTy());
if (VTy->getIntegerBitWidth() == 1)
// Just converting a bool to a bool, so do nothing.
return V;
return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), Name);
}
void DFSanFunction::storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size,
Value *Shadow, Value *Origin,
Value *StoreOriginAddr, Align InstAlignment) {
// Do not write origins for zero shadows because we do not trace origins for
// untainted sinks.
const Align OriginAlignment = getOriginAlign(InstAlignment);
Value *CollapsedShadow = collapseToPrimitiveShadow(Shadow, Pos);
IRBuilder<> IRB(Pos);
if (auto *ConstantShadow = dyn_cast<Constant>(CollapsedShadow)) {
if (!ConstantShadow->isZeroValue())
paintOrigin(IRB, updateOrigin(Origin, IRB), StoreOriginAddr, Size,
OriginAlignment);
return;
}
if (shouldInstrumentWithCall()) {
IRB.CreateCall(DFS.DFSanMaybeStoreOriginFn,
{CollapsedShadow,
IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
ConstantInt::get(DFS.IntptrTy, Size), Origin});
} else {
Value *Cmp = convertToBool(CollapsedShadow, IRB, "_dfscmp");
Instruction *CheckTerm = SplitBlockAndInsertIfThen(
Cmp, &*IRB.GetInsertPoint(), false, DFS.OriginStoreWeights, &DT);
IRBuilder<> IRBNew(CheckTerm);
paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), StoreOriginAddr, Size,
OriginAlignment);
++NumOriginStores;
}
}
void DFSanFunction::storeZeroPrimitiveShadow(Value *Addr, uint64_t Size,
Align ShadowAlign,
Instruction *Pos) {
IRBuilder<> IRB(Pos);
IntegerType *ShadowTy =
IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits);
Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0);
Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
Value *ExtShadowAddr =
IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy));
IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign);
// Do not write origins for 0 shadows because we do not trace origins for
// untainted sinks.
}
void DFSanFunction::storePrimitiveShadowOrigin(Value *Addr, uint64_t Size,
Align InstAlignment,
Value *PrimitiveShadow,
Value *Origin,
Instruction *Pos) {
const bool ShouldTrackOrigins = DFS.shouldTrackOrigins() && Origin;
if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
const auto SI = AllocaShadowMap.find(AI);
if (SI != AllocaShadowMap.end()) {
IRBuilder<> IRB(Pos);
IRB.CreateStore(PrimitiveShadow, SI->second);
// Do not write origins for 0 shadows because we do not trace origins for
// untainted sinks.
if (ShouldTrackOrigins && !DFS.isZeroShadow(PrimitiveShadow)) {
const auto OI = AllocaOriginMap.find(AI);
assert(OI != AllocaOriginMap.end() && Origin);
IRB.CreateStore(Origin, OI->second);
}
return;
}
}
const Align ShadowAlign = getShadowAlign(InstAlignment);
if (DFS.isZeroShadow(PrimitiveShadow)) {
storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos);
return;
}
IRBuilder<> IRB(Pos);
Value *ShadowAddr, *OriginAddr;
std::tie(ShadowAddr, OriginAddr) =
DFS.getShadowOriginAddress(Addr, InstAlignment, Pos);
const unsigned ShadowVecSize = 8;
assert(ShadowVecSize * DFS.ShadowWidthBits <= 128 &&
"Shadow vector is too large!");
uint64_t Offset = 0;
uint64_t LeftSize = Size;
if (LeftSize >= ShadowVecSize) {
auto *ShadowVecTy =
FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize);
Value *ShadowVec = UndefValue::get(ShadowVecTy);
for (unsigned I = 0; I != ShadowVecSize; ++I) {
ShadowVec = IRB.CreateInsertElement(
ShadowVec, PrimitiveShadow,
ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), I));
}
Value *ShadowVecAddr =
IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy));
do {
Value *CurShadowVecAddr =
IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset);
IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign);
LeftSize -= ShadowVecSize;
++Offset;
} while (LeftSize >= ShadowVecSize);
Offset *= ShadowVecSize;
}
while (LeftSize > 0) {
Value *CurShadowAddr =
IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset);
IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign);
--LeftSize;
++Offset;
}
if (ShouldTrackOrigins) {
storeOrigin(Pos, Addr, Size, PrimitiveShadow, Origin, OriginAddr,
InstAlignment);
}
}
static AtomicOrdering addReleaseOrdering(AtomicOrdering AO) {
switch (AO) {
case AtomicOrdering::NotAtomic:
return AtomicOrdering::NotAtomic;
case AtomicOrdering::Unordered:
case AtomicOrdering::Monotonic:
case AtomicOrdering::Release:
return AtomicOrdering::Release;
case AtomicOrdering::Acquire:
case AtomicOrdering::AcquireRelease:
return AtomicOrdering::AcquireRelease;
case AtomicOrdering::SequentiallyConsistent:
return AtomicOrdering::SequentiallyConsistent;
}
llvm_unreachable("Unknown ordering");
}
void DFSanVisitor::visitStoreInst(StoreInst &SI) {
auto &DL = SI.getModule()->getDataLayout();
Value *Val = SI.getValueOperand();
uint64_t Size = DL.getTypeStoreSize(Val->getType());
if (Size == 0)
return;
// When an application store is atomic, increase atomic ordering between
// atomic application loads and stores to ensure happen-before order; load
// shadow data after application data; store zero shadow data before
// application data. This ensure shadow loads return either labels of the
// initial application data or zeros.
if (SI.isAtomic())
SI.setOrdering(addReleaseOrdering(SI.getOrdering()));
const bool ShouldTrackOrigins =
DFSF.DFS.shouldTrackOrigins() && !SI.isAtomic();
std::vector<Value *> Shadows;
std::vector<Value *> Origins;
Value *Shadow =
SI.isAtomic() ? DFSF.DFS.getZeroShadow(Val) : DFSF.getShadow(Val);
if (ShouldTrackOrigins) {
Shadows.push_back(Shadow);
Origins.push_back(DFSF.getOrigin(Val));
}
Value *PrimitiveShadow;
if (ClCombinePointerLabelsOnStore) {
Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
if (ShouldTrackOrigins) {
Shadows.push_back(PtrShadow);
Origins.push_back(DFSF.getOrigin(SI.getPointerOperand()));
}
PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI);
} else {
PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI);
}
Value *Origin = nullptr;
if (ShouldTrackOrigins)
Origin = DFSF.combineOrigins(Shadows, Origins, &SI);
DFSF.storePrimitiveShadowOrigin(SI.getPointerOperand(), Size, SI.getAlign(),
PrimitiveShadow, Origin, &SI);
if (ClEventCallbacks) {
IRBuilder<> IRB(&SI);
Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr);
IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr8});
}
}
void DFSanVisitor::visitCASOrRMW(Align InstAlignment, Instruction &I) {
assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
Value *Val = I.getOperand(1);
const auto &DL = I.getModule()->getDataLayout();
uint64_t Size = DL.getTypeStoreSize(Val->getType());
if (Size == 0)
return;
// Conservatively set data at stored addresses and return with zero shadow to
// prevent shadow data races.
IRBuilder<> IRB(&I);
Value *Addr = I.getOperand(0);
const Align ShadowAlign = DFSF.getShadowAlign(InstAlignment);
DFSF.storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, &I);
DFSF.setShadow(&I, DFSF.DFS.getZeroShadow(&I));
DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin);
}
void DFSanVisitor::visitAtomicRMWInst(AtomicRMWInst &I) {
visitCASOrRMW(I.getAlign(), I);
// TODO: The ordering change follows MSan. It is possible not to change
// ordering because we always set and use 0 shadows.
I.setOrdering(addReleaseOrdering(I.getOrdering()));
}
void DFSanVisitor::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
visitCASOrRMW(I.getAlign(), I);
// TODO: The ordering change follows MSan. It is possible not to change
// ordering because we always set and use 0 shadows.
I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
}
void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) {
visitInstOperands(UO);
}
void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) {
visitInstOperands(BO);
}
void DFSanVisitor::visitBitCastInst(BitCastInst &BCI) {
// Special case: if this is the bitcast (there is exactly 1 allowed) between
// a musttail call and a ret, don't instrument. New instructions are not
// allowed after a musttail call.
if (auto *CI = dyn_cast<CallInst>(BCI.getOperand(0)))
if (CI->isMustTailCall())
return;
visitInstOperands(BCI);
}
void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(CI); }
void DFSanVisitor::visitCmpInst(CmpInst &CI) {
visitInstOperands(CI);
if (ClEventCallbacks) {
IRBuilder<> IRB(&CI);
Value *CombinedShadow = DFSF.getShadow(&CI);
IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow);
}
}
void DFSanVisitor::visitLandingPadInst(LandingPadInst &LPI) {
// We do not need to track data through LandingPadInst.
//
// For the C++ exceptions, if a value is thrown, this value will be stored
// in a memory location provided by __cxa_allocate_exception(...) (on the
// throw side) or __cxa_begin_catch(...) (on the catch side).
// This memory will have a shadow, so with the loads and stores we will be
// able to propagate labels on data thrown through exceptions, without any
// special handling of the LandingPadInst.
//
// The second element in the pair result of the LandingPadInst is a
// register value, but it is for a type ID and should never be tainted.
DFSF.setShadow(&LPI, DFSF.DFS.getZeroShadow(&LPI));
DFSF.setOrigin(&LPI, DFSF.DFS.ZeroOrigin);
}
void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
if (ClCombineOffsetLabelsOnGEP ||
DFSF.isLookupTableConstant(
StripPointerGEPsAndCasts(GEPI.getPointerOperand()))) {
visitInstOperands(GEPI);
return;
}
// Only propagate shadow/origin of base pointer value but ignore those of
// offset operands.
Value *BasePointer = GEPI.getPointerOperand();
DFSF.setShadow(&GEPI, DFSF.getShadow(BasePointer));
if (DFSF.DFS.shouldTrackOrigins())
DFSF.setOrigin(&GEPI, DFSF.getOrigin(BasePointer));
}
void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) {
visitInstOperands(I);
}
void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) {
visitInstOperands(I);
}
void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) {
visitInstOperands(I);
}
void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) {
IRBuilder<> IRB(&I);
Value *Agg = I.getAggregateOperand();
Value *AggShadow = DFSF.getShadow(Agg);
Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
DFSF.setShadow(&I, ResShadow);
visitInstOperandOrigins(I);
}
void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) {
IRBuilder<> IRB(&I);
Value *AggShadow = DFSF.getShadow(I.getAggregateOperand());
Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand());
Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
DFSF.setShadow(&I, Res);
visitInstOperandOrigins(I);
}
void DFSanVisitor::visitAllocaInst(AllocaInst &I) {
bool AllLoadsStores = true;
for (User *U : I.users()) {
if (isa<LoadInst>(U))
continue;
if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
if (SI->getPointerOperand() == &I)
continue;
}
AllLoadsStores = false;
break;
}
if (AllLoadsStores) {
IRBuilder<> IRB(&I);
DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy);
if (DFSF.DFS.shouldTrackOrigins()) {
DFSF.AllocaOriginMap[&I] =
IRB.CreateAlloca(DFSF.DFS.OriginTy, nullptr, "_dfsa");
}
}
DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow);
DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin);
}
void DFSanVisitor::visitSelectInst(SelectInst &I) {
Value *CondShadow = DFSF.getShadow(I.getCondition());
Value *TrueShadow = DFSF.getShadow(I.getTrueValue());
Value *FalseShadow = DFSF.getShadow(I.getFalseValue());
Value *ShadowSel = nullptr;
const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
std::vector<Value *> Shadows;
std::vector<Value *> Origins;
Value *TrueOrigin =
ShouldTrackOrigins ? DFSF.getOrigin(I.getTrueValue()) : nullptr;
Value *FalseOrigin =
ShouldTrackOrigins ? DFSF.getOrigin(I.getFalseValue()) : nullptr;
DFSF.addConditionalCallbacksIfEnabled(I, I.getCondition());
if (isa<VectorType>(I.getCondition()->getType())) {
ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow,
FalseShadow, &I);
if (ShouldTrackOrigins) {
Shadows.push_back(TrueShadow);
Shadows.push_back(FalseShadow);
Origins.push_back(TrueOrigin);
Origins.push_back(FalseOrigin);
}
} else {
if (TrueShadow == FalseShadow) {
ShadowSel = TrueShadow;
if (ShouldTrackOrigins) {
Shadows.push_back(TrueShadow);
Origins.push_back(TrueOrigin);
}
} else {
ShadowSel =
SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I);
if (ShouldTrackOrigins) {
Shadows.push_back(ShadowSel);
Origins.push_back(SelectInst::Create(I.getCondition(), TrueOrigin,
FalseOrigin, "", &I));
}
}
}
DFSF.setShadow(&I, ClTrackSelectControlFlow
? DFSF.combineShadowsThenConvert(
I.getType(), CondShadow, ShadowSel, &I)
: ShadowSel);
if (ShouldTrackOrigins) {
if (ClTrackSelectControlFlow) {
Shadows.push_back(CondShadow);
Origins.push_back(DFSF.getOrigin(I.getCondition()));
}
DFSF.setOrigin(&I, DFSF.combineOrigins(Shadows, Origins, &I));
}
}
void DFSanVisitor::visitMemSetInst(MemSetInst &I) {
IRBuilder<> IRB(&I);
Value *ValShadow = DFSF.getShadow(I.getValue());
Value *ValOrigin = DFSF.DFS.shouldTrackOrigins()
? DFSF.getOrigin(I.getValue())
: DFSF.DFS.ZeroOrigin;
IRB.CreateCall(
DFSF.DFS.DFSanSetLabelFn,
{ValShadow, ValOrigin,
IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)),
IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
}
void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
IRBuilder<> IRB(&I);
// CopyOrMoveOrigin transfers origins by refering to their shadows. So we
// need to move origins before moving shadows.
if (DFSF.DFS.shouldTrackOrigins()) {
IRB.CreateCall(
DFSF.DFS.DFSanMemOriginTransferFn,
{IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
IRB.CreateIntCast(I.getArgOperand(2), DFSF.DFS.IntptrTy, false)});
}
Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I);
Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I);
Value *LenShadow =
IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(),
DFSF.DFS.ShadowWidthBytes));
Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx);
Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr);
SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr);
auto *MTI = cast<MemTransferInst>(
IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(),
{DestShadow, SrcShadow, LenShadow, I.getVolatileCst()}));
if (ClPreserveAlignment) {
MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes);
MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes);
} else {
MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes));
MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes));
}
if (ClEventCallbacks) {
IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn,
{RawDestShadow,
IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
}
}
void DFSanVisitor::visitBranchInst(BranchInst &BR) {
if (!BR.isConditional())
return;
DFSF.addConditionalCallbacksIfEnabled(BR, BR.getCondition());
}
void DFSanVisitor::visitSwitchInst(SwitchInst &SW) {
DFSF.addConditionalCallbacksIfEnabled(SW, SW.getCondition());
}
static bool isAMustTailRetVal(Value *RetVal) {
// Tail call may have a bitcast between return.
if (auto *I = dyn_cast<BitCastInst>(RetVal)) {
RetVal = I->getOperand(0);
}
if (auto *I = dyn_cast<CallInst>(RetVal)) {
return I->isMustTailCall();
}
return false;
}
void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
if (!DFSF.IsNativeABI && RI.getReturnValue()) {
// Don't emit the instrumentation for musttail call returns.
if (isAMustTailRetVal(RI.getReturnValue()))
return;
Value *S = DFSF.getShadow(RI.getReturnValue());
IRBuilder<> IRB(&RI);
Type *RT = DFSF.F->getFunctionType()->getReturnType();
unsigned Size = getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT));
if (Size <= RetvalTLSSize) {
// If the size overflows, stores nothing. At callsite, oversized return
// shadows are set to zero.
IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB), ShadowTLSAlignment);
}
if (DFSF.DFS.shouldTrackOrigins()) {
Value *O = DFSF.getOrigin(RI.getReturnValue());
IRB.CreateStore(O, DFSF.getRetvalOriginTLS());
}
}
}
void DFSanVisitor::addShadowArguments(Function &F, CallBase &CB,
std::vector<Value *> &Args,
IRBuilder<> &IRB) {
FunctionType *FT = F.getFunctionType();
auto *I = CB.arg_begin();
// Adds non-variable argument shadows.
for (unsigned N = FT->getNumParams(); N != 0; ++I, --N)
Args.push_back(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB));
// Adds variable argument shadows.
if (FT->isVarArg()) {
auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy,
CB.arg_size() - FT->getNumParams());
auto *LabelVAAlloca =
new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(),
"labelva", &DFSF.F->getEntryBlock().front());
for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) {
auto *LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, N);
IRB.CreateStore(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB),
LabelVAPtr);
}
Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0));
}
// Adds the return value shadow.
if (!FT->getReturnType()->isVoidTy()) {
if (!DFSF.LabelReturnAlloca) {
DFSF.LabelReturnAlloca = new AllocaInst(
DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(),
"labelreturn", &DFSF.F->getEntryBlock().front());
}
Args.push_back(DFSF.LabelReturnAlloca);
}
}
void DFSanVisitor::addOriginArguments(Function &F, CallBase &CB,
std::vector<Value *> &Args,
IRBuilder<> &IRB) {
FunctionType *FT = F.getFunctionType();
auto *I = CB.arg_begin();
// Add non-variable argument origins.
for (unsigned N = FT->getNumParams(); N != 0; ++I, --N)
Args.push_back(DFSF.getOrigin(*I));
// Add variable argument origins.
if (FT->isVarArg()) {
auto *OriginVATy =
ArrayType::get(DFSF.DFS.OriginTy, CB.arg_size() - FT->getNumParams());
auto *OriginVAAlloca =
new AllocaInst(OriginVATy, getDataLayout().getAllocaAddrSpace(),
"originva", &DFSF.F->getEntryBlock().front());
for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) {
auto *OriginVAPtr = IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, N);
IRB.CreateStore(DFSF.getOrigin(*I), OriginVAPtr);
}
Args.push_back(IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, 0));
}
// Add the return value origin.
if (!FT->getReturnType()->isVoidTy()) {
if (!DFSF.OriginReturnAlloca) {
DFSF.OriginReturnAlloca = new AllocaInst(
DFSF.DFS.OriginTy, getDataLayout().getAllocaAddrSpace(),
"originreturn", &DFSF.F->getEntryBlock().front());
}
Args.push_back(DFSF.OriginReturnAlloca);
}
}
bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) {
IRBuilder<> IRB(&CB);
switch (DFSF.DFS.getWrapperKind(&F)) {
case DataFlowSanitizer::WK_Warning:
CB.setCalledFunction(&F);
IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
IRB.CreateGlobalStringPtr(F.getName()));
DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin);
return true;
case DataFlowSanitizer::WK_Discard:
CB.setCalledFunction(&F);
DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin);
return true;
case DataFlowSanitizer::WK_Functional:
CB.setCalledFunction(&F);
visitInstOperands(CB);
return true;
case DataFlowSanitizer::WK_Custom:
// Don't try to handle invokes of custom functions, it's too complicated.
// Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
// wrapper.
CallInst *CI = dyn_cast<CallInst>(&CB);
if (!CI)
return false;
const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
FunctionType *FT = F.getFunctionType();
TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT);
std::string CustomFName = ShouldTrackOrigins ? "__dfso_" : "__dfsw_";
CustomFName += F.getName();
FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction(
CustomFName, CustomFn.TransformedType);
if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) {
CustomFn->copyAttributesFrom(&F);
// Custom functions returning non-void will write to the return label.
if (!FT->getReturnType()->isVoidTy()) {
CustomFn->removeFnAttrs(DFSF.DFS.ReadOnlyNoneAttrs);
}
}
std::vector<Value *> Args;
// Adds non-variable arguments.
auto *I = CB.arg_begin();
for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) {
Args.push_back(*I);
}
// Adds shadow arguments.
const unsigned ShadowArgStart = Args.size();
addShadowArguments(F, CB, Args, IRB);
// Adds origin arguments.
const unsigned OriginArgStart = Args.size();
if (ShouldTrackOrigins)
addOriginArguments(F, CB, Args, IRB);
// Adds variable arguments.
append_range(Args, drop_begin(CB.args(), FT->getNumParams()));
CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
CustomCI->setCallingConv(CI->getCallingConv());
CustomCI->setAttributes(transformFunctionAttributes(
CustomFn, CI->getContext(), CI->getAttributes()));
// Update the parameter attributes of the custom call instruction to
// zero extend the shadow parameters. This is required for targets
// which consider PrimitiveShadowTy an illegal type.
for (unsigned N = 0; N < FT->getNumParams(); N++) {
const unsigned ArgNo = ShadowArgStart + N;
if (CustomCI->getArgOperand(ArgNo)->getType() ==
DFSF.DFS.PrimitiveShadowTy)
CustomCI->addParamAttr(ArgNo, Attribute::ZExt);
if (ShouldTrackOrigins) {
const unsigned OriginArgNo = OriginArgStart + N;
if (CustomCI->getArgOperand(OriginArgNo)->getType() ==
DFSF.DFS.OriginTy)
CustomCI->addParamAttr(OriginArgNo, Attribute::ZExt);
}
}
// Loads the return value shadow and origin.
if (!FT->getReturnType()->isVoidTy()) {
LoadInst *LabelLoad =
IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.LabelReturnAlloca);
DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow(
FT->getReturnType(), LabelLoad, &CB));
if (ShouldTrackOrigins) {
LoadInst *OriginLoad =
IRB.CreateLoad(DFSF.DFS.OriginTy, DFSF.OriginReturnAlloca);
DFSF.setOrigin(CustomCI, OriginLoad);
}
}
CI->replaceAllUsesWith(CustomCI);
CI->eraseFromParent();
return true;
}
return false;
}
void DFSanVisitor::visitCallBase(CallBase &CB) {
Function *F = CB.getCalledFunction();
if ((F && F->isIntrinsic()) || CB.isInlineAsm()) {
visitInstOperands(CB);
return;
}
// Calls to this function are synthesized in wrappers, and we shouldn't
// instrument them.
if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts())
return;
DenseMap<Value *, Function *>::iterator UnwrappedFnIt =
DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand());
if (UnwrappedFnIt != DFSF.DFS.UnwrappedFnMap.end())
if (visitWrappedCallBase(*UnwrappedFnIt->second, CB))
return;
IRBuilder<> IRB(&CB);
const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
FunctionType *FT = CB.getFunctionType();
const DataLayout &DL = getDataLayout();
// Stores argument shadows.
unsigned ArgOffset = 0;
for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) {
if (ShouldTrackOrigins) {
// Ignore overflowed origins
Value *ArgShadow = DFSF.getShadow(CB.getArgOperand(I));
if (I < DFSF.DFS.NumOfElementsInArgOrgTLS &&
!DFSF.DFS.isZeroShadow(ArgShadow))
IRB.CreateStore(DFSF.getOrigin(CB.getArgOperand(I)),
DFSF.getArgOriginTLS(I, IRB));
}
unsigned Size =
DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I)));
// Stop storing if arguments' size overflows. Inside a function, arguments
// after overflow have zero shadow values.
if (ArgOffset + Size > ArgTLSSize)
break;
IRB.CreateAlignedStore(DFSF.getShadow(CB.getArgOperand(I)),
DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB),
ShadowTLSAlignment);
ArgOffset += alignTo(Size, ShadowTLSAlignment);
}
Instruction *Next = nullptr;
if (!CB.getType()->isVoidTy()) {
if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
if (II->getNormalDest()->getSinglePredecessor()) {
Next = &II->getNormalDest()->front();
} else {
BasicBlock *NewBB =
SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT);
Next = &NewBB->front();
}
} else {
assert(CB.getIterator() != CB.getParent()->end());
Next = CB.getNextNode();
}
// Don't emit the epilogue for musttail call returns.
if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall())
return;
// Loads the return value shadow.
IRBuilder<> NextIRB(Next);
unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB));
if (Size > RetvalTLSSize) {
// Set overflowed return shadow to be zero.
DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
} else {
LoadInst *LI = NextIRB.CreateAlignedLoad(
DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB),
ShadowTLSAlignment, "_dfsret");
DFSF.SkipInsts.insert(LI);
DFSF.setShadow(&CB, LI);
DFSF.NonZeroChecks.push_back(LI);
}
if (ShouldTrackOrigins) {
LoadInst *LI = NextIRB.CreateLoad(DFSF.DFS.OriginTy,
DFSF.getRetvalOriginTLS(), "_dfsret_o");
DFSF.SkipInsts.insert(LI);
DFSF.setOrigin(&CB, LI);
}
}
}
void DFSanVisitor::visitPHINode(PHINode &PN) {
Type *ShadowTy = DFSF.DFS.getShadowTy(&PN);
PHINode *ShadowPN =
PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN);
// Give the shadow phi node valid predecessors to fool SplitEdge into working.
Value *UndefShadow = UndefValue::get(ShadowTy);
for (BasicBlock *BB : PN.blocks())
ShadowPN->addIncoming(UndefShadow, BB);
DFSF.setShadow(&PN, ShadowPN);
PHINode *OriginPN = nullptr;
if (DFSF.DFS.shouldTrackOrigins()) {
OriginPN =
PHINode::Create(DFSF.DFS.OriginTy, PN.getNumIncomingValues(), "", &PN);
Value *UndefOrigin = UndefValue::get(DFSF.DFS.OriginTy);
for (BasicBlock *BB : PN.blocks())
OriginPN->addIncoming(UndefOrigin, BB);
DFSF.setOrigin(&PN, OriginPN);
}
DFSF.PHIFixups.push_back({&PN, ShadowPN, OriginPN});
}
namespace {
class DataFlowSanitizerLegacyPass : public ModulePass {
private:
std::vector<std::string> ABIListFiles;
public:
static char ID;
DataFlowSanitizerLegacyPass(
const std::vector<std::string> &ABIListFiles = std::vector<std::string>())
: ModulePass(ID), ABIListFiles(ABIListFiles) {}
bool runOnModule(Module &M) override {
return DataFlowSanitizer(ABIListFiles).runImpl(M);
}
};
} // namespace
char DataFlowSanitizerLegacyPass::ID;
INITIALIZE_PASS(DataFlowSanitizerLegacyPass, "dfsan",
"DataFlowSanitizer: dynamic data flow analysis.", false, false)
ModulePass *llvm::createDataFlowSanitizerLegacyPassPass(
const std::vector<std::string> &ABIListFiles) {
return new DataFlowSanitizerLegacyPass(ABIListFiles);
}
PreservedAnalyses DataFlowSanitizerPass::run(Module &M,
ModuleAnalysisManager &AM) {
if (DataFlowSanitizer(ABIListFiles).runImpl(M)) {
return PreservedAnalyses::none();
}
return PreservedAnalyses::all();
}