llvm-project/llvm/lib/Target/AMDGPU/SIOptimizeExecMasking.cpp

707 lines
23 KiB
C++

//===-- SIOptimizeExecMasking.cpp -----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/InitializePasses.h"
using namespace llvm;
#define DEBUG_TYPE "si-optimize-exec-masking"
namespace {
class SIOptimizeExecMasking : public MachineFunctionPass {
public:
static char ID;
public:
SIOptimizeExecMasking() : MachineFunctionPass(ID) {
initializeSIOptimizeExecMaskingPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override {
return "SI optimize exec mask operations";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
} // End anonymous namespace.
INITIALIZE_PASS_BEGIN(SIOptimizeExecMasking, DEBUG_TYPE,
"SI optimize exec mask operations", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_END(SIOptimizeExecMasking, DEBUG_TYPE,
"SI optimize exec mask operations", false, false)
char SIOptimizeExecMasking::ID = 0;
char &llvm::SIOptimizeExecMaskingID = SIOptimizeExecMasking::ID;
/// If \p MI is a copy from exec, return the register copied to.
static Register isCopyFromExec(const MachineInstr &MI, const GCNSubtarget &ST) {
switch (MI.getOpcode()) {
case AMDGPU::COPY:
case AMDGPU::S_MOV_B64:
case AMDGPU::S_MOV_B64_term:
case AMDGPU::S_MOV_B32:
case AMDGPU::S_MOV_B32_term: {
const MachineOperand &Src = MI.getOperand(1);
if (Src.isReg() &&
Src.getReg() == (ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC))
return MI.getOperand(0).getReg();
}
}
return AMDGPU::NoRegister;
}
/// If \p MI is a copy to exec, return the register copied from.
static Register isCopyToExec(const MachineInstr &MI, const GCNSubtarget &ST) {
switch (MI.getOpcode()) {
case AMDGPU::COPY:
case AMDGPU::S_MOV_B64:
case AMDGPU::S_MOV_B32: {
const MachineOperand &Dst = MI.getOperand(0);
if (Dst.isReg() &&
Dst.getReg() == (ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC) &&
MI.getOperand(1).isReg())
return MI.getOperand(1).getReg();
break;
}
case AMDGPU::S_MOV_B64_term:
case AMDGPU::S_MOV_B32_term:
llvm_unreachable("should have been replaced");
}
return Register();
}
/// If \p MI is a logical operation on an exec value,
/// return the register copied to.
static Register isLogicalOpOnExec(const MachineInstr &MI) {
switch (MI.getOpcode()) {
case AMDGPU::S_AND_B64:
case AMDGPU::S_OR_B64:
case AMDGPU::S_XOR_B64:
case AMDGPU::S_ANDN2_B64:
case AMDGPU::S_ORN2_B64:
case AMDGPU::S_NAND_B64:
case AMDGPU::S_NOR_B64:
case AMDGPU::S_XNOR_B64: {
const MachineOperand &Src1 = MI.getOperand(1);
if (Src1.isReg() && Src1.getReg() == AMDGPU::EXEC)
return MI.getOperand(0).getReg();
const MachineOperand &Src2 = MI.getOperand(2);
if (Src2.isReg() && Src2.getReg() == AMDGPU::EXEC)
return MI.getOperand(0).getReg();
break;
}
case AMDGPU::S_AND_B32:
case AMDGPU::S_OR_B32:
case AMDGPU::S_XOR_B32:
case AMDGPU::S_ANDN2_B32:
case AMDGPU::S_ORN2_B32:
case AMDGPU::S_NAND_B32:
case AMDGPU::S_NOR_B32:
case AMDGPU::S_XNOR_B32: {
const MachineOperand &Src1 = MI.getOperand(1);
if (Src1.isReg() && Src1.getReg() == AMDGPU::EXEC_LO)
return MI.getOperand(0).getReg();
const MachineOperand &Src2 = MI.getOperand(2);
if (Src2.isReg() && Src2.getReg() == AMDGPU::EXEC_LO)
return MI.getOperand(0).getReg();
break;
}
}
return AMDGPU::NoRegister;
}
static unsigned getSaveExecOp(unsigned Opc) {
switch (Opc) {
case AMDGPU::S_AND_B64:
return AMDGPU::S_AND_SAVEEXEC_B64;
case AMDGPU::S_OR_B64:
return AMDGPU::S_OR_SAVEEXEC_B64;
case AMDGPU::S_XOR_B64:
return AMDGPU::S_XOR_SAVEEXEC_B64;
case AMDGPU::S_ANDN2_B64:
return AMDGPU::S_ANDN2_SAVEEXEC_B64;
case AMDGPU::S_ORN2_B64:
return AMDGPU::S_ORN2_SAVEEXEC_B64;
case AMDGPU::S_NAND_B64:
return AMDGPU::S_NAND_SAVEEXEC_B64;
case AMDGPU::S_NOR_B64:
return AMDGPU::S_NOR_SAVEEXEC_B64;
case AMDGPU::S_XNOR_B64:
return AMDGPU::S_XNOR_SAVEEXEC_B64;
case AMDGPU::S_AND_B32:
return AMDGPU::S_AND_SAVEEXEC_B32;
case AMDGPU::S_OR_B32:
return AMDGPU::S_OR_SAVEEXEC_B32;
case AMDGPU::S_XOR_B32:
return AMDGPU::S_XOR_SAVEEXEC_B32;
case AMDGPU::S_ANDN2_B32:
return AMDGPU::S_ANDN2_SAVEEXEC_B32;
case AMDGPU::S_ORN2_B32:
return AMDGPU::S_ORN2_SAVEEXEC_B32;
case AMDGPU::S_NAND_B32:
return AMDGPU::S_NAND_SAVEEXEC_B32;
case AMDGPU::S_NOR_B32:
return AMDGPU::S_NOR_SAVEEXEC_B32;
case AMDGPU::S_XNOR_B32:
return AMDGPU::S_XNOR_SAVEEXEC_B32;
default:
return AMDGPU::INSTRUCTION_LIST_END;
}
}
// These are only terminators to get correct spill code placement during
// register allocation, so turn them back into normal instructions.
static bool removeTerminatorBit(const SIInstrInfo &TII, MachineInstr &MI) {
switch (MI.getOpcode()) {
case AMDGPU::S_MOV_B32_term: {
bool RegSrc = MI.getOperand(1).isReg();
MI.setDesc(TII.get(RegSrc ? AMDGPU::COPY : AMDGPU::S_MOV_B32));
return true;
}
case AMDGPU::S_MOV_B64_term: {
bool RegSrc = MI.getOperand(1).isReg();
MI.setDesc(TII.get(RegSrc ? AMDGPU::COPY : AMDGPU::S_MOV_B64));
return true;
}
case AMDGPU::S_XOR_B64_term: {
// This is only a terminator to get the correct spill code placement during
// register allocation.
MI.setDesc(TII.get(AMDGPU::S_XOR_B64));
return true;
}
case AMDGPU::S_XOR_B32_term: {
// This is only a terminator to get the correct spill code placement during
// register allocation.
MI.setDesc(TII.get(AMDGPU::S_XOR_B32));
return true;
}
case AMDGPU::S_OR_B64_term: {
// This is only a terminator to get the correct spill code placement during
// register allocation.
MI.setDesc(TII.get(AMDGPU::S_OR_B64));
return true;
}
case AMDGPU::S_OR_B32_term: {
// This is only a terminator to get the correct spill code placement during
// register allocation.
MI.setDesc(TII.get(AMDGPU::S_OR_B32));
return true;
}
case AMDGPU::S_ANDN2_B64_term: {
// This is only a terminator to get the correct spill code placement during
// register allocation.
MI.setDesc(TII.get(AMDGPU::S_ANDN2_B64));
return true;
}
case AMDGPU::S_ANDN2_B32_term: {
// This is only a terminator to get the correct spill code placement during
// register allocation.
MI.setDesc(TII.get(AMDGPU::S_ANDN2_B32));
return true;
}
case AMDGPU::S_AND_B64_term: {
// This is only a terminator to get the correct spill code placement during
// register allocation.
MI.setDesc(TII.get(AMDGPU::S_AND_B64));
return true;
}
case AMDGPU::S_AND_B32_term: {
// This is only a terminator to get the correct spill code placement during
// register allocation.
MI.setDesc(TII.get(AMDGPU::S_AND_B32));
return true;
}
default:
return false;
}
}
// Turn all pseudoterminators in the block into their equivalent non-terminator
// instructions. Returns the reverse iterator to the first non-terminator
// instruction in the block.
static MachineBasicBlock::reverse_iterator fixTerminators(
const SIInstrInfo &TII,
MachineBasicBlock &MBB) {
MachineBasicBlock::reverse_iterator I = MBB.rbegin(), E = MBB.rend();
bool Seen = false;
MachineBasicBlock::reverse_iterator FirstNonTerm = I;
for (; I != E; ++I) {
if (!I->isTerminator())
return Seen ? FirstNonTerm : I;
if (removeTerminatorBit(TII, *I)) {
if (!Seen) {
FirstNonTerm = I;
Seen = true;
}
}
}
return FirstNonTerm;
}
static MachineBasicBlock::reverse_iterator findExecCopy(
const SIInstrInfo &TII,
const GCNSubtarget &ST,
MachineBasicBlock &MBB,
MachineBasicBlock::reverse_iterator I,
unsigned CopyToExec) {
const unsigned InstLimit = 25;
auto E = MBB.rend();
for (unsigned N = 0; N <= InstLimit && I != E; ++I, ++N) {
Register CopyFromExec = isCopyFromExec(*I, ST);
if (CopyFromExec.isValid())
return I;
}
return E;
}
// XXX - Seems LivePhysRegs doesn't work correctly since it will incorrectly
// report the register as unavailable because a super-register with a lane mask
// is unavailable.
static bool isLiveOut(const MachineBasicBlock &MBB, unsigned Reg) {
for (MachineBasicBlock *Succ : MBB.successors()) {
if (Succ->isLiveIn(Reg))
return true;
}
return false;
}
// Backwards-iterate from Origin (for n=MaxInstructions iterations) until either
// the beginning of the BB is reached or Pred evaluates to true - which can be
// an arbitrary condition based on the current MachineInstr, for instance an
// target instruction. Breaks prematurely by returning nullptr if one of the
// registers given in NonModifiableRegs is modified by the current instruction.
static MachineInstr *
findInstrBackwards(MachineInstr &Origin,
std::function<bool(MachineInstr *)> Pred,
ArrayRef<MCRegister> NonModifiableRegs,
const SIRegisterInfo *TRI, unsigned MaxInstructions = 20) {
MachineBasicBlock::reverse_iterator A = Origin.getReverseIterator(),
E = Origin.getParent()->rend();
unsigned CurrentIteration = 0;
for (++A; CurrentIteration < MaxInstructions && A != E; ++A) {
if (A->isDebugInstr())
continue;
if (Pred(&*A))
return &*A;
for (MCRegister Reg : NonModifiableRegs) {
if (A->modifiesRegister(Reg, TRI))
return nullptr;
}
++CurrentIteration;
}
return nullptr;
}
// Determine if a register Reg is not re-defined and still in use
// in the range (Stop..Start].
// It does so by backwards calculating liveness from the end of the BB until
// either Stop or the beginning of the BB is reached.
// After liveness is calculated, we can determine if Reg is still in use and not
// defined inbetween the instructions.
static bool isRegisterInUseBetween(MachineInstr &Stop, MachineInstr &Start,
MCRegister Reg, const SIRegisterInfo *TRI,
MachineRegisterInfo &MRI,
bool useLiveOuts = false,
bool ignoreStart = false) {
LivePhysRegs LR(*TRI);
if (useLiveOuts)
LR.addLiveOuts(*Stop.getParent());
MachineBasicBlock::reverse_iterator A(Start);
MachineBasicBlock::reverse_iterator E(Stop);
if (ignoreStart)
++A;
for (; A != Stop.getParent()->rend() && A != Stop; ++A) {
LR.stepBackward(*A);
}
return !LR.available(MRI, Reg);
}
// Determine if a register Reg is not re-defined and still in use
// in the range (Stop..BB.end].
static bool isRegisterInUseAfter(MachineInstr &Stop, MCRegister Reg,
const SIRegisterInfo *TRI,
MachineRegisterInfo &MRI) {
return isRegisterInUseBetween(Stop, *Stop.getParent()->rbegin(), Reg, TRI,
MRI, true);
}
// Tries to find a possibility to optimize a v_cmp ..., s_and_saveexec sequence
// by looking at an instance of a s_and_saveexec instruction. Returns a pointer
// to the v_cmp instruction if it is safe to replace the sequence (see the
// conditions in the function body). This is after register allocation, so some
// checks on operand dependencies need to be considered.
static MachineInstr *findPossibleVCMPVCMPXOptimization(
MachineInstr &SaveExec, MCRegister Exec, const SIRegisterInfo *TRI,
const SIInstrInfo *TII, MachineRegisterInfo &MRI) {
MachineInstr *VCmp = nullptr;
Register SaveExecDest = SaveExec.getOperand(0).getReg();
if (!TRI->isSGPRReg(MRI, SaveExecDest))
return nullptr;
MachineOperand *SaveExecSrc0 =
TII->getNamedOperand(SaveExec, AMDGPU::OpName::src0);
if (!SaveExecSrc0->isReg())
return nullptr;
// Try to find the last v_cmp instruction that defs the saveexec input
// operand without any write to Exec or the saveexec input operand inbetween.
VCmp = findInstrBackwards(
SaveExec,
[&](MachineInstr *Check) {
return AMDGPU::getVCMPXOpFromVCMP(Check->getOpcode()) != -1 &&
Check->modifiesRegister(SaveExecSrc0->getReg(), TRI);
},
{Exec, SaveExecSrc0->getReg()}, TRI);
if (!VCmp)
return nullptr;
MachineOperand *VCmpDest = TII->getNamedOperand(*VCmp, AMDGPU::OpName::sdst);
assert(VCmpDest && "Should have an sdst operand!");
// Check if any of the v_cmp source operands is written by the saveexec.
MachineOperand *Src0 = TII->getNamedOperand(*VCmp, AMDGPU::OpName::src0);
if (Src0->isReg() && TRI->isSGPRReg(MRI, Src0->getReg()) &&
SaveExec.modifiesRegister(Src0->getReg(), TRI))
return nullptr;
MachineOperand *Src1 = TII->getNamedOperand(*VCmp, AMDGPU::OpName::src1);
if (Src1->isReg() && TRI->isSGPRReg(MRI, Src1->getReg()) &&
SaveExec.modifiesRegister(Src1->getReg(), TRI))
return nullptr;
// Don't do the transformation if the destination operand is included in
// it's MBB Live-outs, meaning it's used in any of it's successors, leading
// to incorrect code if the v_cmp and therefore the def of
// the dest operand is removed.
if (isLiveOut(*VCmp->getParent(), VCmpDest->getReg()))
return nullptr;
// If the v_cmp target is in use between v_cmp and s_and_saveexec or after the
// s_and_saveexec, skip the optimization.
if (isRegisterInUseBetween(*VCmp, SaveExec, VCmpDest->getReg(), TRI, MRI,
false, true) ||
isRegisterInUseAfter(SaveExec, VCmpDest->getReg(), TRI, MRI))
return nullptr;
// Try to determine if there is a write to any of the VCmp
// operands between the saveexec and the vcmp.
// If yes, additional VGPR spilling might need to be inserted. In this case,
// it's not worth replacing the instruction sequence.
SmallVector<MCRegister, 2> NonDefRegs;
if (Src0->isReg())
NonDefRegs.push_back(Src0->getReg());
if (Src1->isReg())
NonDefRegs.push_back(Src1->getReg());
if (!findInstrBackwards(
SaveExec, [&](MachineInstr *Check) { return Check == VCmp; },
NonDefRegs, TRI))
return nullptr;
return VCmp;
}
// Inserts the optimized s_mov_b32 / v_cmpx sequence based on the
// operands extracted from a v_cmp ..., s_and_saveexec pattern.
static bool optimizeVCMPSaveExecSequence(MachineInstr &SaveExecInstr,
MachineInstr &VCmp, MCRegister Exec,
const SIInstrInfo *TII,
const SIRegisterInfo *TRI,
MachineRegisterInfo &MRI) {
const int NewOpcode = AMDGPU::getVCMPXOpFromVCMP(VCmp.getOpcode());
if (NewOpcode == -1)
return false;
MachineOperand *Src0 = TII->getNamedOperand(VCmp, AMDGPU::OpName::src0);
MachineOperand *Src1 = TII->getNamedOperand(VCmp, AMDGPU::OpName::src1);
Register MoveDest = SaveExecInstr.getOperand(0).getReg();
MachineBasicBlock::instr_iterator InsertPosIt = SaveExecInstr.getIterator();
if (!SaveExecInstr.uses().empty()) {
bool isSGPR32 = TRI->getRegSizeInBits(MoveDest, MRI) == 32;
unsigned MovOpcode = isSGPR32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
BuildMI(*SaveExecInstr.getParent(), InsertPosIt,
SaveExecInstr.getDebugLoc(), TII->get(MovOpcode), MoveDest)
.addReg(Exec);
}
// Omit dst as V_CMPX is implicitly writing to EXEC.
// Add dummy src and clamp modifiers, if needed.
auto Builder = BuildMI(*VCmp.getParent(), std::next(InsertPosIt),
VCmp.getDebugLoc(), TII->get(NewOpcode));
auto TryAddImmediateValueFromNamedOperand =
[&](unsigned OperandName) -> void {
if (auto *Mod = TII->getNamedOperand(VCmp, OperandName))
Builder.addImm(Mod->getImm());
};
TryAddImmediateValueFromNamedOperand(AMDGPU::OpName::src0_modifiers);
Builder.add(*Src0);
TryAddImmediateValueFromNamedOperand(AMDGPU::OpName::src1_modifiers);
Builder.add(*Src1);
TryAddImmediateValueFromNamedOperand(AMDGPU::OpName::clamp);
return true;
}
bool SIOptimizeExecMasking::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()))
return false;
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
const SIRegisterInfo *TRI = ST.getRegisterInfo();
const SIInstrInfo *TII = ST.getInstrInfo();
MachineRegisterInfo *MRI = &MF.getRegInfo();
MCRegister Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
// Optimize sequences emitted for control flow lowering. They are originally
// emitted as the separate operations because spill code may need to be
// inserted for the saved copy of exec.
//
// x = copy exec
// z = s_<op>_b64 x, y
// exec = copy z
// =>
// x = s_<op>_saveexec_b64 y
//
bool Changed = false;
for (MachineBasicBlock &MBB : MF) {
MachineBasicBlock::reverse_iterator I = fixTerminators(*TII, MBB);
MachineBasicBlock::reverse_iterator E = MBB.rend();
if (I == E)
continue;
// It's possible to see other terminator copies after the exec copy. This
// can happen if control flow pseudos had their outputs used by phis.
Register CopyToExec;
unsigned SearchCount = 0;
const unsigned SearchLimit = 5;
while (I != E && SearchCount++ < SearchLimit) {
CopyToExec = isCopyToExec(*I, ST);
if (CopyToExec)
break;
++I;
}
if (!CopyToExec)
continue;
// Scan backwards to find the def.
auto CopyToExecInst = &*I;
auto CopyFromExecInst = findExecCopy(*TII, ST, MBB, I, CopyToExec);
if (CopyFromExecInst == E) {
auto PrepareExecInst = std::next(I);
if (PrepareExecInst == E)
continue;
// Fold exec = COPY (S_AND_B64 reg, exec) -> exec = S_AND_B64 reg, exec
if (CopyToExecInst->getOperand(1).isKill() &&
isLogicalOpOnExec(*PrepareExecInst) == CopyToExec) {
LLVM_DEBUG(dbgs() << "Fold exec copy: " << *PrepareExecInst);
PrepareExecInst->getOperand(0).setReg(Exec);
LLVM_DEBUG(dbgs() << "into: " << *PrepareExecInst << '\n');
CopyToExecInst->eraseFromParent();
Changed = true;
}
continue;
}
if (isLiveOut(MBB, CopyToExec)) {
// The copied register is live out and has a second use in another block.
LLVM_DEBUG(dbgs() << "Exec copy source register is live out\n");
continue;
}
Register CopyFromExec = CopyFromExecInst->getOperand(0).getReg();
MachineInstr *SaveExecInst = nullptr;
SmallVector<MachineInstr *, 4> OtherUseInsts;
for (MachineBasicBlock::iterator J
= std::next(CopyFromExecInst->getIterator()), JE = I->getIterator();
J != JE; ++J) {
if (SaveExecInst && J->readsRegister(Exec, TRI)) {
LLVM_DEBUG(dbgs() << "exec read prevents saveexec: " << *J << '\n');
// Make sure this is inserted after any VALU ops that may have been
// scheduled in between.
SaveExecInst = nullptr;
break;
}
bool ReadsCopyFromExec = J->readsRegister(CopyFromExec, TRI);
if (J->modifiesRegister(CopyToExec, TRI)) {
if (SaveExecInst) {
LLVM_DEBUG(dbgs() << "Multiple instructions modify "
<< printReg(CopyToExec, TRI) << '\n');
SaveExecInst = nullptr;
break;
}
unsigned SaveExecOp = getSaveExecOp(J->getOpcode());
if (SaveExecOp == AMDGPU::INSTRUCTION_LIST_END)
break;
if (ReadsCopyFromExec) {
SaveExecInst = &*J;
LLVM_DEBUG(dbgs() << "Found save exec op: " << *SaveExecInst << '\n');
continue;
} else {
LLVM_DEBUG(dbgs()
<< "Instruction does not read exec copy: " << *J << '\n');
break;
}
} else if (ReadsCopyFromExec && !SaveExecInst) {
// Make sure no other instruction is trying to use this copy, before it
// will be rewritten by the saveexec, i.e. hasOneUse. There may have
// been another use, such as an inserted spill. For example:
//
// %sgpr0_sgpr1 = COPY %exec
// spill %sgpr0_sgpr1
// %sgpr2_sgpr3 = S_AND_B64 %sgpr0_sgpr1
//
LLVM_DEBUG(dbgs() << "Found second use of save inst candidate: " << *J
<< '\n');
break;
}
if (SaveExecInst && J->readsRegister(CopyToExec, TRI)) {
assert(SaveExecInst != &*J);
OtherUseInsts.push_back(&*J);
}
}
if (!SaveExecInst)
continue;
LLVM_DEBUG(dbgs() << "Insert save exec op: " << *SaveExecInst << '\n');
MachineOperand &Src0 = SaveExecInst->getOperand(1);
MachineOperand &Src1 = SaveExecInst->getOperand(2);
MachineOperand *OtherOp = nullptr;
if (Src0.isReg() && Src0.getReg() == CopyFromExec) {
OtherOp = &Src1;
} else if (Src1.isReg() && Src1.getReg() == CopyFromExec) {
if (!SaveExecInst->isCommutable())
break;
OtherOp = &Src0;
} else
llvm_unreachable("unexpected");
CopyFromExecInst->eraseFromParent();
auto InsPt = SaveExecInst->getIterator();
const DebugLoc &DL = SaveExecInst->getDebugLoc();
BuildMI(MBB, InsPt, DL, TII->get(getSaveExecOp(SaveExecInst->getOpcode())),
CopyFromExec)
.addReg(OtherOp->getReg());
SaveExecInst->eraseFromParent();
CopyToExecInst->eraseFromParent();
for (MachineInstr *OtherInst : OtherUseInsts) {
OtherInst->substituteRegister(CopyToExec, Exec,
AMDGPU::NoSubRegister, *TRI);
}
Changed = true;
}
// After all s_op_saveexec instructions are inserted,
// replace (on GFX10.3 and later)
// v_cmp_* SGPR, IMM, VGPR
// s_and_saveexec_b32 EXEC_SGPR_DEST, SGPR
// with
// s_mov_b32 EXEC_SGPR_DEST, exec_lo
// v_cmpx_* IMM, VGPR
// to reduce pipeline stalls.
if (ST.hasGFX10_3Insts()) {
DenseMap<MachineInstr *, MachineInstr *> SaveExecVCmpMapping;
const unsigned AndSaveExecOpcode =
ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 : AMDGPU::S_AND_SAVEEXEC_B64;
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
// Record relevant v_cmp / s_and_saveexec instruction pairs for
// replacement.
if (MI.getOpcode() != AndSaveExecOpcode)
continue;
if (MachineInstr *VCmp =
findPossibleVCMPVCMPXOptimization(MI, Exec, TRI, TII, *MRI))
SaveExecVCmpMapping[&MI] = VCmp;
}
}
for (const auto &Entry : SaveExecVCmpMapping) {
MachineInstr *SaveExecInstr = Entry.getFirst();
MachineInstr *VCmpInstr = Entry.getSecond();
if (optimizeVCMPSaveExecSequence(*SaveExecInstr, *VCmpInstr, Exec, TII,
TRI, *MRI)) {
SaveExecInstr->eraseFromParent();
VCmpInstr->eraseFromParent();
Changed = true;
}
}
}
return Changed;
}