forked from OSchip/llvm-project
219 lines
7.4 KiB
C++
219 lines
7.4 KiB
C++
//===- LoopUnrollAnalyzer.cpp - Unrolling Effect Estimation -----*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements UnrolledInstAnalyzer class. It's used for predicting
|
|
// potential effects that loop unrolling might have, such as enabling constant
|
|
// propagation and other optimizations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/LoopUnrollAnalyzer.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/IR/Operator.h"
|
|
|
|
using namespace llvm;
|
|
|
|
/// Try to simplify instruction \param I using its SCEV expression.
|
|
///
|
|
/// The idea is that some AddRec expressions become constants, which then
|
|
/// could trigger folding of other instructions. However, that only happens
|
|
/// for expressions whose start value is also constant, which isn't always the
|
|
/// case. In another common and important case the start value is just some
|
|
/// address (i.e. SCEVUnknown) - in this case we compute the offset and save
|
|
/// it along with the base address instead.
|
|
bool UnrolledInstAnalyzer::simplifyInstWithSCEV(Instruction *I) {
|
|
if (!SE.isSCEVable(I->getType()))
|
|
return false;
|
|
|
|
const SCEV *S = SE.getSCEV(I);
|
|
if (auto *SC = dyn_cast<SCEVConstant>(S)) {
|
|
SimplifiedValues[I] = SC->getValue();
|
|
return true;
|
|
}
|
|
|
|
// If we have a loop invariant computation, we only need to compute it once.
|
|
// Given that, all but the first occurance are free.
|
|
if (!IterationNumber->isZero() && SE.isLoopInvariant(S, L))
|
|
return true;
|
|
|
|
auto *AR = dyn_cast<SCEVAddRecExpr>(S);
|
|
if (!AR || AR->getLoop() != L)
|
|
return false;
|
|
|
|
const SCEV *ValueAtIteration = AR->evaluateAtIteration(IterationNumber, SE);
|
|
// Check if the AddRec expression becomes a constant.
|
|
if (auto *SC = dyn_cast<SCEVConstant>(ValueAtIteration)) {
|
|
SimplifiedValues[I] = SC->getValue();
|
|
return true;
|
|
}
|
|
|
|
// Check if the offset from the base address becomes a constant.
|
|
auto *Base = dyn_cast<SCEVUnknown>(SE.getPointerBase(S));
|
|
if (!Base)
|
|
return false;
|
|
auto *Offset =
|
|
dyn_cast<SCEVConstant>(SE.getMinusSCEV(ValueAtIteration, Base));
|
|
if (!Offset)
|
|
return false;
|
|
SimplifiedAddress Address;
|
|
Address.Base = Base->getValue();
|
|
Address.Offset = Offset->getValue();
|
|
SimplifiedAddresses[I] = Address;
|
|
return false;
|
|
}
|
|
|
|
/// Try to simplify binary operator I.
|
|
///
|
|
/// TODO: Probably it's worth to hoist the code for estimating the
|
|
/// simplifications effects to a separate class, since we have a very similar
|
|
/// code in InlineCost already.
|
|
bool UnrolledInstAnalyzer::visitBinaryOperator(BinaryOperator &I) {
|
|
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
|
|
if (!isa<Constant>(LHS))
|
|
if (Value *SimpleLHS = SimplifiedValues.lookup(LHS))
|
|
LHS = SimpleLHS;
|
|
if (!isa<Constant>(RHS))
|
|
if (Value *SimpleRHS = SimplifiedValues.lookup(RHS))
|
|
RHS = SimpleRHS;
|
|
|
|
Value *SimpleV = nullptr;
|
|
const DataLayout &DL = I.getModule()->getDataLayout();
|
|
if (auto FI = dyn_cast<FPMathOperator>(&I))
|
|
SimpleV =
|
|
SimplifyBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL);
|
|
else
|
|
SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL);
|
|
|
|
if (SimpleV) {
|
|
SimplifiedValues[&I] = SimpleV;
|
|
return true;
|
|
}
|
|
return Base::visitBinaryOperator(I);
|
|
}
|
|
|
|
/// Try to fold load I.
|
|
bool UnrolledInstAnalyzer::visitLoad(LoadInst &I) {
|
|
Value *AddrOp = I.getPointerOperand();
|
|
|
|
auto AddressIt = SimplifiedAddresses.find(AddrOp);
|
|
if (AddressIt == SimplifiedAddresses.end())
|
|
return false;
|
|
ConstantInt *SimplifiedAddrOp = AddressIt->second.Offset;
|
|
|
|
auto *GV = dyn_cast<GlobalVariable>(AddressIt->second.Base);
|
|
// We're only interested in loads that can be completely folded to a
|
|
// constant.
|
|
if (!GV || !GV->hasDefinitiveInitializer() || !GV->isConstant())
|
|
return false;
|
|
|
|
ConstantDataSequential *CDS =
|
|
dyn_cast<ConstantDataSequential>(GV->getInitializer());
|
|
if (!CDS)
|
|
return false;
|
|
|
|
// We might have a vector load from an array. FIXME: for now we just bail
|
|
// out in this case, but we should be able to resolve and simplify such
|
|
// loads.
|
|
if (CDS->getElementType() != I.getType())
|
|
return false;
|
|
|
|
unsigned ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U;
|
|
if (SimplifiedAddrOp->getValue().getActiveBits() > 64)
|
|
return false;
|
|
int64_t SimplifiedAddrOpV = SimplifiedAddrOp->getSExtValue();
|
|
if (SimplifiedAddrOpV < 0) {
|
|
// FIXME: For now we conservatively ignore out of bound accesses, but
|
|
// we're allowed to perform the optimization in this case.
|
|
return false;
|
|
}
|
|
uint64_t Index = static_cast<uint64_t>(SimplifiedAddrOpV) / ElemSize;
|
|
if (Index >= CDS->getNumElements()) {
|
|
// FIXME: For now we conservatively ignore out of bound accesses, but
|
|
// we're allowed to perform the optimization in this case.
|
|
return false;
|
|
}
|
|
|
|
Constant *CV = CDS->getElementAsConstant(Index);
|
|
assert(CV && "Constant expected.");
|
|
SimplifiedValues[&I] = CV;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Try to simplify cast instruction.
|
|
bool UnrolledInstAnalyzer::visitCastInst(CastInst &I) {
|
|
Value *Op = I.getOperand(0);
|
|
if (Value *Simplified = SimplifiedValues.lookup(Op))
|
|
Op = Simplified;
|
|
|
|
// The cast can be invalid, because SimplifiedValues contains results of SCEV
|
|
// analysis, which operates on integers (and, e.g., might convert i8* null to
|
|
// i32 0).
|
|
if (CastInst::castIsValid(I.getOpcode(), Op, I.getType())) {
|
|
const DataLayout &DL = I.getModule()->getDataLayout();
|
|
if (Value *V = SimplifyCastInst(I.getOpcode(), Op, I.getType(), DL)) {
|
|
SimplifiedValues[&I] = V;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return Base::visitCastInst(I);
|
|
}
|
|
|
|
/// Try to simplify cmp instruction.
|
|
bool UnrolledInstAnalyzer::visitCmpInst(CmpInst &I) {
|
|
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
|
|
|
|
// First try to handle simplified comparisons.
|
|
if (!isa<Constant>(LHS))
|
|
if (Value *SimpleLHS = SimplifiedValues.lookup(LHS))
|
|
LHS = SimpleLHS;
|
|
if (!isa<Constant>(RHS))
|
|
if (Value *SimpleRHS = SimplifiedValues.lookup(RHS))
|
|
RHS = SimpleRHS;
|
|
|
|
if (!isa<Constant>(LHS) && !isa<Constant>(RHS)) {
|
|
auto SimplifiedLHS = SimplifiedAddresses.find(LHS);
|
|
if (SimplifiedLHS != SimplifiedAddresses.end()) {
|
|
auto SimplifiedRHS = SimplifiedAddresses.find(RHS);
|
|
if (SimplifiedRHS != SimplifiedAddresses.end()) {
|
|
SimplifiedAddress &LHSAddr = SimplifiedLHS->second;
|
|
SimplifiedAddress &RHSAddr = SimplifiedRHS->second;
|
|
if (LHSAddr.Base == RHSAddr.Base) {
|
|
LHS = LHSAddr.Offset;
|
|
RHS = RHSAddr.Offset;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const DataLayout &DL = I.getModule()->getDataLayout();
|
|
if (Value *V = SimplifyCmpInst(I.getPredicate(), LHS, RHS, DL)) {
|
|
SimplifiedValues[&I] = V;
|
|
return true;
|
|
}
|
|
|
|
return Base::visitCmpInst(I);
|
|
}
|
|
|
|
bool UnrolledInstAnalyzer::visitPHINode(PHINode &PN) {
|
|
// Run base visitor first. This way we can gather some useful for later
|
|
// analysis information.
|
|
if (Base::visitPHINode(PN))
|
|
return true;
|
|
|
|
// The loop induction PHI nodes are definitionally free.
|
|
return PN.getParent() == L->getHeader();
|
|
}
|
|
|
|
bool UnrolledInstAnalyzer::visitInstruction(Instruction &I) {
|
|
return simplifyInstWithSCEV(&I);
|
|
}
|