llvm-project/llvm/lib/Target/AArch64/AArch64SchedKryo.td

134 lines
6.0 KiB
TableGen

//==- AArch64SchedKryo.td - Qualcomm Kryo Scheduling Defs ---*- tablegen -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the machine model for Qualcomm Kryo to support
// instruction scheduling and other instruction cost heuristics.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// The issue width is set to five, matching the five issue queues for expanded
// uops. Now, the latency spreadsheet has information based on fragmented uops,
// but these do not actually take up an issue queue.
def KryoModel : SchedMachineModel {
let IssueWidth = 5; // 5-wide issue for expanded uops
let MicroOpBufferSize = 128; // Out-of-order with temporary unified issue buffer
let LoadLatency = 4; // Optimistic load latency
let MispredictPenalty = 14; // Fetch + Decode/Rename/Dispatch + Branch
// Enable partial & runtime unrolling. The magic number is chosen based on
// experiments and benchmarking data.
let LoopMicroOpBufferSize = 16;
let CompleteModel = 1;
}
//===----------------------------------------------------------------------===//
// Define each kind of processor resource and number available on Kryo.
let SchedModel = KryoModel in {
def KryoUnitXA : ProcResource<1>; // Type X(A) micro-ops
def KryoUnitXB : ProcResource<1>; // Type X(B) micro-ops
def KryoUnitYA : ProcResource<1>; // Type Y(A) micro-ops
def KryoUnitYB : ProcResource<1>; // Type Y(B) micro-ops
def KryoUnitX : ProcResGroup<[KryoUnitXA, // Type X micro-ops
KryoUnitXB]>;
def KryoUnitY : ProcResGroup<[KryoUnitYA, // Type Y micro-ops
KryoUnitYB]>;
def KryoUnitXY : ProcResGroup<[KryoUnitXA, // Type XY micro-ops
KryoUnitXB,
KryoUnitYA,
KryoUnitYB]>;
def KryoUnitLSA : ProcResource<1>; // Type LS(A) micro-ops
def KryoUnitLSB : ProcResource<1>; // Type LS(B) micro-ops
def KryoUnitLS : ProcResGroup<[KryoUnitLSA, // Type LS micro-ops
KryoUnitLSB]>;
}
let SchedModel = KryoModel in {
//===----------------------------------------------------------------------===//
// Map the target-defined scheduler read/write resources and latency for
// Kryo.
def : WriteRes<WriteImm, [KryoUnitXY]> { let Latency = 1; }
def : WriteRes<WriteI, [KryoUnitXY]> { let Latency = 1; }
def : WriteRes<WriteISReg, [KryoUnitXY, KryoUnitXY]>
{ let Latency = 2; let NumMicroOps = 2; }
def : WriteRes<WriteIEReg, [KryoUnitXY, KryoUnitXY]>
{ let Latency = 2; let NumMicroOps = 2; }
def : WriteRes<WriteExtr, [KryoUnitXY, KryoUnitX]>
{ let Latency = 2; let NumMicroOps = 2; }
def : WriteRes<WriteIS, [KryoUnitXY]> { let Latency = 2; }
def : WriteRes<WriteID32, [KryoUnitXA, KryoUnitY]>
{ let Latency = 8; let NumMicroOps = 1; } // Fragent -1
def : WriteRes<WriteID64, [KryoUnitXA, KryoUnitY]>
{ let Latency = 8; let NumMicroOps = 1; } // Fragent -1
def : WriteRes<WriteIM32, [KryoUnitX]> { let Latency = 5; }
def : WriteRes<WriteIM64, [KryoUnitX]> { let Latency = 5; }
def : WriteRes<WriteBr, [KryoUnitXY]> { let Latency = 1; }
def : WriteRes<WriteBrReg, [KryoUnitXY]> { let Latency = 1; }
def : WriteRes<WriteLD, [KryoUnitLS]> { let Latency = 4; }
def : WriteRes<WriteST, [KryoUnitLS]> { let Latency = 4; }
def : WriteRes<WriteSTP, [KryoUnitLS]> { let Latency = 4; }
def : WriteRes<WriteAdr, [KryoUnitXY]> { let Latency = 6; }
def : WriteRes<WriteLDIdx, [KryoUnitLS]> { let Latency = 4; }
def : WriteRes<WriteSTIdx, [KryoUnitLS]> { let Latency = 4; }
def : WriteRes<WriteF, [KryoUnitXY, KryoUnitXY]>
{ let Latency = 3; let NumMicroOps = 2; }
def : WriteRes<WriteFCmp, [KryoUnitXY]> { let Latency = 2; }
def : WriteRes<WriteFCvt, [KryoUnitX]> { let Latency = 4; }
def : WriteRes<WriteFCopy, [KryoUnitXY]> { let Latency = 6; }
def : WriteRes<WriteFImm, [KryoUnitXY]> { let Latency = 6; }
def : WriteRes<WriteFMul, [KryoUnitX, KryoUnitX]>
{ let Latency = 6; let NumMicroOps = 2; }
def : WriteRes<WriteFDiv, [KryoUnitXA, KryoUnitY]>
{ let Latency = 12; let NumMicroOps = 2; } // Fragent -1 / NoRSV +1
def : WriteRes<WriteV, [KryoUnitXY]> { let Latency = 6; }
def : WriteRes<WriteVLD, [KryoUnitLS]> { let Latency = 4; }
def : WriteRes<WriteVST, [KryoUnitLS]> { let Latency = 4; }
def : WriteRes<WriteSys, []> { let Latency = 1; }
def : WriteRes<WriteBarrier, []> { let Latency = 1; }
def : WriteRes<WriteHint, []> { let Latency = 1; }
def : WriteRes<WriteLDHi, []> { let Latency = 4; }
def : WriteRes<WriteAtomic, []> { let Unsupported = 1; }
// No forwarding logic is modelled yet.
def : ReadAdvance<ReadI, 0>;
def : ReadAdvance<ReadISReg, 0>;
def : ReadAdvance<ReadIEReg, 0>;
def : ReadAdvance<ReadIM, 0>;
def : ReadAdvance<ReadIMA, 0>;
def : ReadAdvance<ReadID, 0>;
def : ReadAdvance<ReadExtrHi, 0>;
def : ReadAdvance<ReadAdrBase, 0>;
def : ReadAdvance<ReadVLD, 0>;
//===----------------------------------------------------------------------===//
// Specialize the coarse model by associating instruction groups with the
// subtarget-defined types. As the modeled is refined, this will override most
// of the above SchedWriteRes and SchedAlias mappings.
// Miscellaneous
// -----------------------------------------------------------------------------
def : InstRW<[WriteI], (instrs COPY)>;
// Detailed Refinedments
// -----------------------------------------------------------------------------
include "AArch64SchedKryoDetails.td"
} // SchedModel = KryoModel