llvm-project/llvm/lib/ExecutionEngine/JITLink/JITLinkGeneric.cpp

469 lines
16 KiB
C++

//===--------- JITLinkGeneric.cpp - Generic JIT linker utilities ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Generic JITLinker utility class.
//
//===----------------------------------------------------------------------===//
#include "JITLinkGeneric.h"
#include "EHFrameSupportImpl.h"
#include "llvm/Support/BinaryStreamReader.h"
#include "llvm/Support/MemoryBuffer.h"
#define DEBUG_TYPE "jitlink"
namespace llvm {
namespace jitlink {
JITLinkerBase::~JITLinkerBase() {}
void JITLinkerBase::linkPhase1(std::unique_ptr<JITLinkerBase> Self) {
// Build the atom graph.
if (auto GraphOrErr = buildGraph(Ctx->getObjectBuffer()))
G = std::move(*GraphOrErr);
else
return Ctx->notifyFailed(GraphOrErr.takeError());
assert(G && "Graph should have been created by buildGraph above");
// Prune and optimize the graph.
if (auto Err = runPasses(Passes.PrePrunePasses, *G))
return Ctx->notifyFailed(std::move(Err));
LLVM_DEBUG({
dbgs() << "Atom graph \"" << G->getName() << "\" pre-pruning:\n";
dumpGraph(dbgs());
});
prune(*G);
LLVM_DEBUG({
dbgs() << "Atom graph \"" << G->getName() << "\" post-pruning:\n";
dumpGraph(dbgs());
});
// Run post-pruning passes.
if (auto Err = runPasses(Passes.PostPrunePasses, *G))
return Ctx->notifyFailed(std::move(Err));
// Sort atoms into segments.
layOutAtoms();
// Allocate memory for segments.
if (auto Err = allocateSegments(Layout))
return Ctx->notifyFailed(std::move(Err));
// Notify client that the defined atoms have been assigned addresses.
Ctx->notifyResolved(*G);
auto ExternalSymbols = getExternalSymbolNames();
// We're about to hand off ownership of ourself to the continuation. Grab a
// pointer to the context so that we can call it to initiate the lookup.
//
// FIXME: Once callee expressions are defined to be sequenced before argument
// expressions (c++17) we can simplify all this to:
//
// Ctx->lookup(std::move(UnresolvedExternals),
// [Self=std::move(Self)](Expected<AsyncLookupResult> Result) {
// Self->linkPhase2(std::move(Self), std::move(Result));
// });
//
// FIXME: Use move capture once we have c++14.
auto *TmpCtx = Ctx.get();
auto *UnownedSelf = Self.release();
auto Phase2Continuation =
[UnownedSelf](Expected<AsyncLookupResult> LookupResult) {
std::unique_ptr<JITLinkerBase> Self(UnownedSelf);
UnownedSelf->linkPhase2(std::move(Self), std::move(LookupResult));
};
TmpCtx->lookup(std::move(ExternalSymbols), std::move(Phase2Continuation));
}
void JITLinkerBase::linkPhase2(std::unique_ptr<JITLinkerBase> Self,
Expected<AsyncLookupResult> LR) {
// If the lookup failed, bail out.
if (!LR)
return deallocateAndBailOut(LR.takeError());
// Assign addresses to external atoms.
applyLookupResult(*LR);
LLVM_DEBUG({
dbgs() << "Atom graph \"" << G->getName() << "\" before copy-and-fixup:\n";
dumpGraph(dbgs());
});
// Copy atom content to working memory and fix up.
if (auto Err = copyAndFixUpAllAtoms(Layout, *Alloc))
return deallocateAndBailOut(std::move(Err));
LLVM_DEBUG({
dbgs() << "Atom graph \"" << G->getName() << "\" after copy-and-fixup:\n";
dumpGraph(dbgs());
});
if (auto Err = runPasses(Passes.PostFixupPasses, *G))
return deallocateAndBailOut(std::move(Err));
// FIXME: Use move capture once we have c++14.
auto *UnownedSelf = Self.release();
auto Phase3Continuation = [UnownedSelf](Error Err) {
std::unique_ptr<JITLinkerBase> Self(UnownedSelf);
UnownedSelf->linkPhase3(std::move(Self), std::move(Err));
};
Alloc->finalizeAsync(std::move(Phase3Continuation));
}
void JITLinkerBase::linkPhase3(std::unique_ptr<JITLinkerBase> Self, Error Err) {
if (Err)
return deallocateAndBailOut(std::move(Err));
Ctx->notifyFinalized(std::move(Alloc));
}
Error JITLinkerBase::runPasses(AtomGraphPassList &Passes, AtomGraph &G) {
for (auto &P : Passes)
if (auto Err = P(G))
return Err;
return Error::success();
}
void JITLinkerBase::layOutAtoms() {
// Group sections by protections, and whether or not they're zero-fill.
for (auto &S : G->sections()) {
// Skip empty sections.
if (S.atoms_empty())
continue;
auto &SL = Layout[S.getProtectionFlags()];
if (S.isZeroFill())
SL.ZeroFillSections.push_back(SegmentLayout::SectionLayout(S));
else
SL.ContentSections.push_back(SegmentLayout::SectionLayout(S));
}
// Sort sections within the layout by ordinal.
{
auto CompareByOrdinal = [](const SegmentLayout::SectionLayout &LHS,
const SegmentLayout::SectionLayout &RHS) {
return LHS.S->getSectionOrdinal() < RHS.S->getSectionOrdinal();
};
for (auto &KV : Layout) {
auto &SL = KV.second;
std::sort(SL.ContentSections.begin(), SL.ContentSections.end(),
CompareByOrdinal);
std::sort(SL.ZeroFillSections.begin(), SL.ZeroFillSections.end(),
CompareByOrdinal);
}
}
// Add atoms to the sections.
for (auto &KV : Layout) {
auto &SL = KV.second;
for (auto *SIList : {&SL.ContentSections, &SL.ZeroFillSections}) {
for (auto &SI : *SIList) {
// First build the set of layout-heads (i.e. "heads" of layout-next
// chains) by copying the section atoms, then eliminating any that
// appear as layout-next targets.
DenseSet<DefinedAtom *> LayoutHeads;
for (auto *DA : SI.S->atoms())
LayoutHeads.insert(DA);
for (auto *DA : SI.S->atoms())
if (DA->hasLayoutNext())
LayoutHeads.erase(&DA->getLayoutNext());
// Next, sort the layout heads by address order.
std::vector<DefinedAtom *> OrderedLayoutHeads;
OrderedLayoutHeads.reserve(LayoutHeads.size());
for (auto *DA : LayoutHeads)
OrderedLayoutHeads.push_back(DA);
// Now sort the list of layout heads by address.
std::sort(OrderedLayoutHeads.begin(), OrderedLayoutHeads.end(),
[](const DefinedAtom *LHS, const DefinedAtom *RHS) {
return LHS->getAddress() < RHS->getAddress();
});
// Now populate the SI.Atoms field by appending each of the chains.
for (auto *DA : OrderedLayoutHeads) {
SI.Atoms.push_back(DA);
while (DA->hasLayoutNext()) {
auto &Next = DA->getLayoutNext();
SI.Atoms.push_back(&Next);
DA = &Next;
}
}
}
}
}
LLVM_DEBUG({
dbgs() << "Segment ordering:\n";
for (auto &KV : Layout) {
dbgs() << " Segment "
<< static_cast<sys::Memory::ProtectionFlags>(KV.first) << ":\n";
auto &SL = KV.second;
for (auto &SIEntry :
{std::make_pair(&SL.ContentSections, "content sections"),
std::make_pair(&SL.ZeroFillSections, "zero-fill sections")}) {
auto &SIList = *SIEntry.first;
dbgs() << " " << SIEntry.second << ":\n";
for (auto &SI : SIList) {
dbgs() << " " << SI.S->getName() << ":\n";
for (auto *DA : SI.Atoms)
dbgs() << " " << *DA << "\n";
}
}
}
});
}
Error JITLinkerBase::allocateSegments(const SegmentLayoutMap &Layout) {
// Compute segment sizes and allocate memory.
LLVM_DEBUG(dbgs() << "JIT linker requesting: { ");
JITLinkMemoryManager::SegmentsRequestMap Segments;
for (auto &KV : Layout) {
auto &Prot = KV.first;
auto &SegLayout = KV.second;
// Calculate segment content size.
size_t SegContentSize = 0;
uint32_t SegContentAlign = 1;
for (auto &SI : SegLayout.ContentSections) {
assert(!SI.S->atoms_empty() && "Sections in layout must not be empty");
assert(!SI.Atoms.empty() && "Section layouts must not be empty");
// Bump to section alignment before processing atoms.
SegContentSize = alignTo(SegContentSize, SI.S->getAlignment());
SegContentAlign = std::max(SegContentAlign, SI.S->getAlignment());
for (auto *DA : SI.Atoms) {
SegContentSize = alignTo(SegContentSize, DA->getAlignment());
SegContentSize += DA->getSize();
SegContentAlign = std::max(SegContentAlign, DA->getAlignment());
}
}
// Calculate segment zero-fill size.
uint64_t SegZeroFillSize = 0;
uint32_t SegZeroFillAlign = 1;
for (auto &SI : SegLayout.ZeroFillSections) {
assert(!SI.S->atoms_empty() && "Sections in layout must not be empty");
assert(!SI.Atoms.empty() && "Section layouts must not be empty");
// Bump to section alignment before processing atoms.
SegZeroFillSize = alignTo(SegZeroFillSize, SI.S->getAlignment());
SegZeroFillAlign = std::max(SegZeroFillAlign, SI.S->getAlignment());
for (auto *DA : SI.Atoms) {
SegZeroFillSize = alignTo(SegZeroFillSize, DA->getAlignment());
SegZeroFillSize += DA->getSize();
SegZeroFillAlign = std::max(SegZeroFillAlign, SI.S->getAlignment());
}
}
assert(isPowerOf2_32(SegContentAlign) &&
"Expected content alignment to be power of 2");
assert(isPowerOf2_32(SegZeroFillAlign) &&
"Expected zero-fill alignment to be power of 2");
// Round content alignment up to segment alignment.
SegContentAlign = std::max(SegContentAlign, SegZeroFillAlign);
Segments[Prot] = {SegContentSize, SegContentAlign, SegZeroFillSize,
SegZeroFillAlign};
LLVM_DEBUG({
dbgs() << (&KV == &*Layout.begin() ? "" : "; ")
<< static_cast<sys::Memory::ProtectionFlags>(Prot) << ": "
<< SegContentSize << " content bytes (alignment "
<< SegContentAlign << ") + " << SegZeroFillSize
<< " zero-fill bytes (alignment " << SegZeroFillAlign << ")";
});
}
LLVM_DEBUG(dbgs() << " }\n");
if (auto AllocOrErr = Ctx->getMemoryManager().allocate(Segments))
Alloc = std::move(*AllocOrErr);
else
return AllocOrErr.takeError();
LLVM_DEBUG({
dbgs() << "JIT linker got working memory:\n";
for (auto &KV : Layout) {
auto Prot = static_cast<sys::Memory::ProtectionFlags>(KV.first);
dbgs() << " " << Prot << ": "
<< (const void *)Alloc->getWorkingMemory(Prot).data() << "\n";
}
});
// Update atom target addresses.
for (auto &KV : Layout) {
auto &Prot = KV.first;
auto &SL = KV.second;
JITTargetAddress AtomTargetAddr =
Alloc->getTargetMemory(static_cast<sys::Memory::ProtectionFlags>(Prot));
for (auto *SIList : {&SL.ContentSections, &SL.ZeroFillSections})
for (auto &SI : *SIList) {
AtomTargetAddr = alignTo(AtomTargetAddr, SI.S->getAlignment());
for (auto *DA : SI.Atoms) {
AtomTargetAddr = alignTo(AtomTargetAddr, DA->getAlignment());
DA->setAddress(AtomTargetAddr);
AtomTargetAddr += DA->getSize();
}
}
}
return Error::success();
}
DenseSet<StringRef> JITLinkerBase::getExternalSymbolNames() const {
// Identify unresolved external atoms.
DenseSet<StringRef> UnresolvedExternals;
for (auto *DA : G->external_atoms()) {
assert(DA->getAddress() == 0 &&
"External has already been assigned an address");
assert(DA->getName() != StringRef() && DA->getName() != "" &&
"Externals must be named");
UnresolvedExternals.insert(DA->getName());
}
return UnresolvedExternals;
}
void JITLinkerBase::applyLookupResult(AsyncLookupResult Result) {
for (auto &KV : Result) {
Atom &A = G->getAtomByName(KV.first);
assert(A.getAddress() == 0 && "Atom already resolved");
A.setAddress(KV.second.getAddress());
}
LLVM_DEBUG({
dbgs() << "Externals after applying lookup result:\n";
for (auto *A : G->external_atoms())
dbgs() << " " << A->getName() << ": "
<< formatv("{0:x16}", A->getAddress()) << "\n";
});
assert(llvm::all_of(G->external_atoms(),
[](Atom *A) { return A->getAddress() != 0; }) &&
"All atoms should have been resolved by this point");
}
void JITLinkerBase::deallocateAndBailOut(Error Err) {
assert(Err && "Should not be bailing out on success value");
assert(Alloc && "can not call deallocateAndBailOut before allocation");
Ctx->notifyFailed(joinErrors(std::move(Err), Alloc->deallocate()));
}
void JITLinkerBase::dumpGraph(raw_ostream &OS) {
assert(G && "Graph is not set yet");
G->dump(dbgs(), [this](Edge::Kind K) { return getEdgeKindName(K); });
}
void prune(AtomGraph &G) {
std::vector<DefinedAtom *> Worklist;
DenseMap<DefinedAtom *, std::vector<Edge *>> EdgesToUpdate;
// Build the initial worklist from all atoms initially live.
for (auto *DA : G.defined_atoms()) {
if (!DA->isLive() || DA->shouldDiscard())
continue;
for (auto &E : DA->edges()) {
if (!E.getTarget().isDefined())
continue;
auto &EDT = static_cast<DefinedAtom &>(E.getTarget());
if (EDT.shouldDiscard())
EdgesToUpdate[&EDT].push_back(&E);
else if (E.isKeepAlive() && !EDT.isLive())
Worklist.push_back(&EDT);
}
}
// Propagate live flags to all atoms reachable from the initial live set.
while (!Worklist.empty()) {
DefinedAtom &NextLive = *Worklist.back();
Worklist.pop_back();
assert(!NextLive.shouldDiscard() &&
"should-discard nodes should never make it into the worklist");
// If this atom has already been marked as live, or is marked to be
// discarded, then skip it.
if (NextLive.isLive())
continue;
// Otherwise set it as live and add any non-live atoms that it points to
// to the worklist.
NextLive.setLive(true);
for (auto &E : NextLive.edges()) {
if (!E.getTarget().isDefined())
continue;
auto &EDT = static_cast<DefinedAtom &>(E.getTarget());
if (EDT.shouldDiscard())
EdgesToUpdate[&EDT].push_back(&E);
else if (E.isKeepAlive() && !EDT.isLive())
Worklist.push_back(&EDT);
}
}
// Collect atoms to remove, then remove them from the graph.
std::vector<DefinedAtom *> AtomsToRemove;
for (auto *DA : G.defined_atoms())
if (DA->shouldDiscard() || !DA->isLive())
AtomsToRemove.push_back(DA);
LLVM_DEBUG(dbgs() << "Pruning atoms:\n");
for (auto *DA : AtomsToRemove) {
LLVM_DEBUG(dbgs() << " " << *DA << "... ");
// Check whether we need to replace this atom with an external atom.
//
// We replace if all of the following hold:
// (1) The atom is marked should-discard,
// (2) it has live edges (i.e. edges from live atoms) pointing to it.
//
// Otherwise we simply delete the atom.
G.removeDefinedAtom(*DA);
auto EdgesToUpdateItr = EdgesToUpdate.find(DA);
if (EdgesToUpdateItr != EdgesToUpdate.end()) {
auto &ExternalReplacement = G.addExternalAtom(DA->getName());
for (auto *EdgeToUpdate : EdgesToUpdateItr->second)
EdgeToUpdate->setTarget(ExternalReplacement);
LLVM_DEBUG(dbgs() << "replaced with " << ExternalReplacement << "\n");
} else
LLVM_DEBUG(dbgs() << "deleted\n");
}
// Finally, discard any absolute symbols that were marked should-discard.
{
std::vector<Atom *> AbsoluteAtomsToRemove;
for (auto *A : G.absolute_atoms())
if (A->shouldDiscard() || A->isLive())
AbsoluteAtomsToRemove.push_back(A);
for (auto *A : AbsoluteAtomsToRemove)
G.removeAbsoluteAtom(*A);
}
}
} // end namespace jitlink
} // end namespace llvm