forked from OSchip/llvm-project
108 lines
4.1 KiB
C++
108 lines
4.1 KiB
C++
//===----- DivisonByConstantInfo.cpp - division by constant -*- C++ -*-----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// This file implements support for optimizing divisions by a constant
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Support/DivisionByConstantInfo.h"
|
|
|
|
using namespace llvm;
|
|
|
|
/// Calculate the magic numbers required to implement a signed integer division
|
|
/// by a constant as a sequence of multiplies, adds and shifts. Requires that
|
|
/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
|
|
/// Warren, Jr., Chapter 10.
|
|
SignedDivisionByConstantInfo SignedDivisionByConstantInfo::get(const APInt &D) {
|
|
unsigned P;
|
|
APInt AD, ANC, Delta, Q1, R1, Q2, R2, T;
|
|
APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth());
|
|
struct SignedDivisionByConstantInfo Retval;
|
|
|
|
AD = D.abs();
|
|
T = SignedMin + (D.lshr(D.getBitWidth() - 1));
|
|
ANC = T - 1 - T.urem(AD); // absolute value of NC
|
|
P = D.getBitWidth() - 1; // initialize P
|
|
Q1 = SignedMin.udiv(ANC); // initialize Q1 = 2P/abs(NC)
|
|
R1 = SignedMin - Q1 * ANC; // initialize R1 = rem(2P,abs(NC))
|
|
Q2 = SignedMin.udiv(AD); // initialize Q2 = 2P/abs(D)
|
|
R2 = SignedMin - Q2 * AD; // initialize R2 = rem(2P,abs(D))
|
|
do {
|
|
P = P + 1;
|
|
Q1 = Q1 << 1; // update Q1 = 2P/abs(NC)
|
|
R1 = R1 << 1; // update R1 = rem(2P/abs(NC))
|
|
if (R1.uge(ANC)) { // must be unsigned comparison
|
|
Q1 = Q1 + 1;
|
|
R1 = R1 - ANC;
|
|
}
|
|
Q2 = Q2 << 1; // update Q2 = 2P/abs(D)
|
|
R2 = R2 << 1; // update R2 = rem(2P/abs(D))
|
|
if (R2.uge(AD)) { // must be unsigned comparison
|
|
Q2 = Q2 + 1;
|
|
R2 = R2 - AD;
|
|
}
|
|
Delta = AD - R2;
|
|
} while (Q1.ult(Delta) || (Q1 == Delta && R1 == 0));
|
|
|
|
Retval.Magic = Q2 + 1;
|
|
if (D.isNegative())
|
|
Retval.Magic = -Retval.Magic; // resulting magic number
|
|
Retval.ShiftAmount = P - D.getBitWidth(); // resulting shift
|
|
return Retval;
|
|
}
|
|
|
|
/// Calculate the magic numbers required to implement an unsigned integer
|
|
/// division by a constant as a sequence of multiplies, adds and shifts.
|
|
/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
|
|
/// S. Warren, Jr., chapter 10.
|
|
/// LeadingZeros can be used to simplify the calculation if the upper bits
|
|
/// of the divided value are known zero.
|
|
UnsignedDivisonByConstantInfo
|
|
UnsignedDivisonByConstantInfo::get(const APInt &D, unsigned LeadingZeros) {
|
|
unsigned P;
|
|
APInt NC, Delta, Q1, R1, Q2, R2;
|
|
struct UnsignedDivisonByConstantInfo Retval;
|
|
Retval.IsAdd = false; // initialize "add" indicator
|
|
APInt AllOnes = APInt::getAllOnes(D.getBitWidth()).lshr(LeadingZeros);
|
|
APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth());
|
|
APInt SignedMax = APInt::getSignedMaxValue(D.getBitWidth());
|
|
|
|
NC = AllOnes - (AllOnes - D).urem(D);
|
|
P = D.getBitWidth() - 1; // initialize P
|
|
Q1 = SignedMin.udiv(NC); // initialize Q1 = 2P/NC
|
|
R1 = SignedMin - Q1 * NC; // initialize R1 = rem(2P,NC)
|
|
Q2 = SignedMax.udiv(D); // initialize Q2 = (2P-1)/D
|
|
R2 = SignedMax - Q2 * D; // initialize R2 = rem((2P-1),D)
|
|
do {
|
|
P = P + 1;
|
|
if (R1.uge(NC - R1)) {
|
|
Q1 = Q1 + Q1 + 1; // update Q1
|
|
R1 = R1 + R1 - NC; // update R1
|
|
} else {
|
|
Q1 = Q1 + Q1; // update Q1
|
|
R1 = R1 + R1; // update R1
|
|
}
|
|
if ((R2 + 1).uge(D - R2)) {
|
|
if (Q2.uge(SignedMax))
|
|
Retval.IsAdd = true;
|
|
Q2 = Q2 + Q2 + 1; // update Q2
|
|
R2 = R2 + R2 + 1 - D; // update R2
|
|
} else {
|
|
if (Q2.uge(SignedMin))
|
|
Retval.IsAdd = true;
|
|
Q2 = Q2 + Q2; // update Q2
|
|
R2 = R2 + R2 + 1; // update R2
|
|
}
|
|
Delta = D - 1 - R2;
|
|
} while (P < D.getBitWidth() * 2 &&
|
|
(Q1.ult(Delta) || (Q1 == Delta && R1 == 0)));
|
|
Retval.Magic = Q2 + 1; // resulting magic number
|
|
Retval.ShiftAmount = P - D.getBitWidth(); // resulting shift
|
|
return Retval;
|
|
}
|