forked from OSchip/llvm-project
212 lines
8.0 KiB
C++
212 lines
8.0 KiB
C++
//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Chris Lattner and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements type-related semantic analysis.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Sema.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/Parse/DeclSpec.h"
|
|
using namespace llvm;
|
|
using namespace clang;
|
|
|
|
/// ConvertDeclSpecToType - Convert the specified declspec to the appropriate
|
|
/// type object. This returns null on error.
|
|
static TypeRef ConvertDeclSpecToType(const DeclSpec &DS, ASTContext &Ctx) {
|
|
// FIXME: Should move the logic from DeclSpec::Finish to here for validity
|
|
// checking.
|
|
|
|
switch (DS.getTypeSpecType()) {
|
|
default: return TypeRef(); // FIXME: Handle unimp cases!
|
|
case DeclSpec::TST_void: return Ctx.VoidTy;
|
|
case DeclSpec::TST_char:
|
|
if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
|
|
return Ctx.CharTy;
|
|
else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
|
|
return Ctx.SignedCharTy;
|
|
else {
|
|
assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
|
|
"Unknown TSS value");
|
|
return Ctx.UnsignedCharTy;
|
|
}
|
|
case DeclSpec::TST_int:
|
|
if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
|
|
switch (DS.getTypeSpecWidth()) {
|
|
case DeclSpec::TSW_unspecified: return Ctx.IntTy;
|
|
case DeclSpec::TSW_short: return Ctx.ShortTy;
|
|
case DeclSpec::TSW_long: return Ctx.LongTy;
|
|
case DeclSpec::TSW_longlong: return Ctx.LongLongTy;
|
|
}
|
|
} else {
|
|
switch (DS.getTypeSpecWidth()) {
|
|
case DeclSpec::TSW_unspecified: return Ctx.UnsignedIntTy;
|
|
case DeclSpec::TSW_short: return Ctx.UnsignedShortTy;
|
|
case DeclSpec::TSW_long: return Ctx.UnsignedLongTy;
|
|
case DeclSpec::TSW_longlong: return Ctx.UnsignedLongLongTy;
|
|
}
|
|
}
|
|
case DeclSpec::TST_float:
|
|
if (DS.getTypeSpecComplex() == DeclSpec::TSC_unspecified)
|
|
return Ctx.FloatTy;
|
|
assert(DS.getTypeSpecComplex() == DeclSpec::TSC_complex &&
|
|
"FIXME: imaginary types not supported yet!");
|
|
return Ctx.FloatComplexTy;
|
|
|
|
case DeclSpec::TST_double: {
|
|
bool isLong = DS.getTypeSpecWidth() == DeclSpec::TSW_long;
|
|
if (DS.getTypeSpecComplex() == DeclSpec::TSC_unspecified)
|
|
return isLong ? Ctx.LongDoubleTy : Ctx.DoubleTy;
|
|
assert(DS.getTypeSpecComplex() == DeclSpec::TSC_complex &&
|
|
"FIXME: imaginary types not supported yet!");
|
|
return isLong ? Ctx.LongDoubleComplexTy : Ctx.DoubleComplexTy;
|
|
}
|
|
case DeclSpec::TST_bool: // _Bool
|
|
return Ctx.BoolTy;
|
|
case DeclSpec::TST_decimal32: // _Decimal32
|
|
case DeclSpec::TST_decimal64: // _Decimal64
|
|
case DeclSpec::TST_decimal128: // _Decimal128
|
|
assert(0 && "FIXME: GNU decimal extensions not supported yet!");
|
|
//case DeclSpec::TST_enum:
|
|
//case DeclSpec::TST_union:
|
|
//case DeclSpec::TST_struct:
|
|
case DeclSpec::TST_typedef: {
|
|
Decl *D = (Decl *)DS.getTypenameRep();
|
|
assert(D && "Didn't get a decl for a typedef?");
|
|
assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
|
|
DS.getTypeSpecSign() == 0 &&
|
|
"Can't handle qualifiers on typedef names yet!");
|
|
// TypeQuals handled by caller.
|
|
return Ctx.getTypeDeclType(cast<TypedefDecl>(D));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// GetTypeForDeclarator - Convert the type for the specified declarator to Type
|
|
/// instances.
|
|
TypeRef Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
|
|
TypeRef T = ConvertDeclSpecToType(D.getDeclSpec(), Context);
|
|
|
|
// If there was an error parsing declspecs, return a null type pointer.
|
|
if (T.isNull()) return T;
|
|
|
|
// Apply const/volatile/restrict qualifiers to T.
|
|
T = T.getQualifiedType(D.getDeclSpec().getTypeQualifiers());
|
|
|
|
// Walk the DeclTypeInfo, building the recursive type as we go. DeclTypeInfos
|
|
// are ordered from the identifier out, which is opposite of what we want :).
|
|
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
|
|
const DeclaratorChunk &DeclType = D.getTypeObject(e-i-1);
|
|
switch (DeclType.Kind) {
|
|
default: assert(0 && "Unknown decltype!");
|
|
case DeclaratorChunk::Pointer:
|
|
T = Context.getPointerType(T);
|
|
|
|
// Apply the pointer typequals to the pointer object.
|
|
T = T.getQualifiedType(DeclType.Ptr.TypeQuals);
|
|
break;
|
|
case DeclaratorChunk::Array: {
|
|
const DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
|
|
ArrayType::ArraySizeModifier ASM;
|
|
if (ATI.isStar)
|
|
ASM = ArrayType::Star;
|
|
else if (ATI.hasStatic)
|
|
ASM = ArrayType::Static;
|
|
else
|
|
ASM = ArrayType::Normal;
|
|
|
|
T = Context.getArrayType(T, ASM, ATI.TypeQuals, ATI.NumElts);
|
|
break;
|
|
}
|
|
case DeclaratorChunk::Function:
|
|
// If the function declarator has a prototype (i.e. it is not () and
|
|
// does not have a K&R-style identifier list), then the arguments are part
|
|
// of the type, otherwise the argument list is ().
|
|
const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
|
|
if (!FTI.hasPrototype) {
|
|
// Simple void foo(), where the incoming T is the result type.
|
|
T = Context.getFunctionTypeNoProto(T);
|
|
|
|
// C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function definition.
|
|
if (FTI.NumArgs != 0)
|
|
Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
|
|
|
|
} else {
|
|
// Otherwise, we have a function with an argument list that is
|
|
// potentially variadic.
|
|
SmallVector<TypeRef, 16> ArgTys;
|
|
|
|
for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
|
|
TypeRef ArgTy = TypeRef::getFromOpaquePtr(FTI.ArgInfo[i].TypeInfo);
|
|
if (ArgTy.isNull())
|
|
return TypeRef(); // Error occurred parsing argument type.
|
|
|
|
// Look for 'void'. void is allowed only as a single argument to a
|
|
// function with no other parameters (C99 6.7.5.3p10). We record
|
|
// int(void) as a FunctionTypeProto with an empty argument list.
|
|
if (ArgTy->isVoidType()) {
|
|
// If this is something like 'float(int, void)', reject it. 'void'
|
|
// is an incomplete type (C99 6.2.5p19) and function decls cannot
|
|
// have arguments of incomplete type.
|
|
if (FTI.NumArgs != 1 || FTI.isVariadic) {
|
|
Diag(DeclType.Loc, diag::err_void_only_param);
|
|
return TypeRef();
|
|
}
|
|
// Reject, but continue to parse 'int(void abc)'.
|
|
if (FTI.ArgInfo[i].Ident)
|
|
Diag(FTI.ArgInfo[i].IdentLoc,
|
|
diag::err_void_param_with_identifier);
|
|
|
|
// Reject, but continue to parse 'float(const void)'.
|
|
if (ArgTy.getQualifiers())
|
|
Diag(DeclType.Loc, diag::err_void_param_qualified);
|
|
|
|
// Do not add 'void' to the ArgTys list.
|
|
break;
|
|
}
|
|
|
|
ArgTys.push_back(ArgTy);
|
|
}
|
|
T = Context.getFunctionType(T, &ArgTys[0], ArgTys.size(),
|
|
FTI.isVariadic);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return T;
|
|
}
|
|
|
|
Sema::TypeResult Sema::ParseTypeName(Scope *S, Declarator &D) {
|
|
// C99 6.7.6: Type names have no identifier. This is already validated by
|
|
// the parser.
|
|
assert(D.getIdentifier() == 0 && "Type name should have no identifier!");
|
|
|
|
TypeRef T = GetTypeForDeclarator(D, S);
|
|
|
|
// If the type of the declarator was invalid, this is an invalid typename.
|
|
if (T.isNull())
|
|
return true;
|
|
|
|
return T.getAsOpaquePtr();
|
|
}
|
|
|
|
Sema::TypeResult Sema::ParseParamDeclaratorType(Scope *S, Declarator &D) {
|
|
// Note: parameters have identifiers, but we don't care about them here, we
|
|
// just want the type converted.
|
|
TypeRef T = GetTypeForDeclarator(D, S);
|
|
|
|
// If the type of the declarator was invalid, this is an invalid typename.
|
|
if (T.isNull())
|
|
return true;
|
|
|
|
return T.getAsOpaquePtr();
|
|
}
|