llvm-project/llvm/utils/TableGen/AsmWriterEmitter.cpp

555 lines
19 KiB
C++

//===- AsmWriterEmitter.cpp - Generate an assembly writer -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend is emits an assembly printer for the current target.
// Note that this is currently fairly skeletal, but will grow over time.
//
//===----------------------------------------------------------------------===//
#include "AsmWriterEmitter.h"
#include "AsmWriterInst.h"
#include "CodeGenTarget.h"
#include "Record.h"
#include "StringToOffsetTable.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
using namespace llvm;
static void PrintCases(std::vector<std::pair<std::string,
AsmWriterOperand> > &OpsToPrint, raw_ostream &O) {
O << " case " << OpsToPrint.back().first << ": ";
AsmWriterOperand TheOp = OpsToPrint.back().second;
OpsToPrint.pop_back();
// Check to see if any other operands are identical in this list, and if so,
// emit a case label for them.
for (unsigned i = OpsToPrint.size(); i != 0; --i)
if (OpsToPrint[i-1].second == TheOp) {
O << "\n case " << OpsToPrint[i-1].first << ": ";
OpsToPrint.erase(OpsToPrint.begin()+i-1);
}
// Finally, emit the code.
O << TheOp.getCode();
O << "break;\n";
}
/// EmitInstructions - Emit the last instruction in the vector and any other
/// instructions that are suitably similar to it.
static void EmitInstructions(std::vector<AsmWriterInst> &Insts,
raw_ostream &O) {
AsmWriterInst FirstInst = Insts.back();
Insts.pop_back();
std::vector<AsmWriterInst> SimilarInsts;
unsigned DifferingOperand = ~0;
for (unsigned i = Insts.size(); i != 0; --i) {
unsigned DiffOp = Insts[i-1].MatchesAllButOneOp(FirstInst);
if (DiffOp != ~1U) {
if (DifferingOperand == ~0U) // First match!
DifferingOperand = DiffOp;
// If this differs in the same operand as the rest of the instructions in
// this class, move it to the SimilarInsts list.
if (DifferingOperand == DiffOp || DiffOp == ~0U) {
SimilarInsts.push_back(Insts[i-1]);
Insts.erase(Insts.begin()+i-1);
}
}
}
O << " case " << FirstInst.CGI->Namespace << "::"
<< FirstInst.CGI->TheDef->getName() << ":\n";
for (unsigned i = 0, e = SimilarInsts.size(); i != e; ++i)
O << " case " << SimilarInsts[i].CGI->Namespace << "::"
<< SimilarInsts[i].CGI->TheDef->getName() << ":\n";
for (unsigned i = 0, e = FirstInst.Operands.size(); i != e; ++i) {
if (i != DifferingOperand) {
// If the operand is the same for all instructions, just print it.
O << " " << FirstInst.Operands[i].getCode();
} else {
// If this is the operand that varies between all of the instructions,
// emit a switch for just this operand now.
O << " switch (MI->getOpcode()) {\n";
std::vector<std::pair<std::string, AsmWriterOperand> > OpsToPrint;
OpsToPrint.push_back(std::make_pair(FirstInst.CGI->Namespace + "::" +
FirstInst.CGI->TheDef->getName(),
FirstInst.Operands[i]));
for (unsigned si = 0, e = SimilarInsts.size(); si != e; ++si) {
AsmWriterInst &AWI = SimilarInsts[si];
OpsToPrint.push_back(std::make_pair(AWI.CGI->Namespace+"::"+
AWI.CGI->TheDef->getName(),
AWI.Operands[i]));
}
std::reverse(OpsToPrint.begin(), OpsToPrint.end());
while (!OpsToPrint.empty())
PrintCases(OpsToPrint, O);
O << " }";
}
O << "\n";
}
O << " break;\n";
}
void AsmWriterEmitter::
FindUniqueOperandCommands(std::vector<std::string> &UniqueOperandCommands,
std::vector<unsigned> &InstIdxs,
std::vector<unsigned> &InstOpsUsed) const {
InstIdxs.assign(NumberedInstructions.size(), ~0U);
// This vector parallels UniqueOperandCommands, keeping track of which
// instructions each case are used for. It is a comma separated string of
// enums.
std::vector<std::string> InstrsForCase;
InstrsForCase.resize(UniqueOperandCommands.size());
InstOpsUsed.assign(UniqueOperandCommands.size(), 0);
for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) {
const AsmWriterInst *Inst = getAsmWriterInstByID(i);
if (Inst == 0) continue; // PHI, INLINEASM, PROLOG_LABEL, etc.
std::string Command;
if (Inst->Operands.empty())
continue; // Instruction already done.
Command = " " + Inst->Operands[0].getCode() + "\n";
// Check to see if we already have 'Command' in UniqueOperandCommands.
// If not, add it.
bool FoundIt = false;
for (unsigned idx = 0, e = UniqueOperandCommands.size(); idx != e; ++idx)
if (UniqueOperandCommands[idx] == Command) {
InstIdxs[i] = idx;
InstrsForCase[idx] += ", ";
InstrsForCase[idx] += Inst->CGI->TheDef->getName();
FoundIt = true;
break;
}
if (!FoundIt) {
InstIdxs[i] = UniqueOperandCommands.size();
UniqueOperandCommands.push_back(Command);
InstrsForCase.push_back(Inst->CGI->TheDef->getName());
// This command matches one operand so far.
InstOpsUsed.push_back(1);
}
}
// For each entry of UniqueOperandCommands, there is a set of instructions
// that uses it. If the next command of all instructions in the set are
// identical, fold it into the command.
for (unsigned CommandIdx = 0, e = UniqueOperandCommands.size();
CommandIdx != e; ++CommandIdx) {
for (unsigned Op = 1; ; ++Op) {
// Scan for the first instruction in the set.
std::vector<unsigned>::iterator NIT =
std::find(InstIdxs.begin(), InstIdxs.end(), CommandIdx);
if (NIT == InstIdxs.end()) break; // No commonality.
// If this instruction has no more operands, we isn't anything to merge
// into this command.
const AsmWriterInst *FirstInst =
getAsmWriterInstByID(NIT-InstIdxs.begin());
if (!FirstInst || FirstInst->Operands.size() == Op)
break;
// Otherwise, scan to see if all of the other instructions in this command
// set share the operand.
bool AllSame = true;
// Keep track of the maximum, number of operands or any
// instruction we see in the group.
size_t MaxSize = FirstInst->Operands.size();
for (NIT = std::find(NIT+1, InstIdxs.end(), CommandIdx);
NIT != InstIdxs.end();
NIT = std::find(NIT+1, InstIdxs.end(), CommandIdx)) {
// Okay, found another instruction in this command set. If the operand
// matches, we're ok, otherwise bail out.
const AsmWriterInst *OtherInst =
getAsmWriterInstByID(NIT-InstIdxs.begin());
if (OtherInst &&
OtherInst->Operands.size() > FirstInst->Operands.size())
MaxSize = std::max(MaxSize, OtherInst->Operands.size());
if (!OtherInst || OtherInst->Operands.size() == Op ||
OtherInst->Operands[Op] != FirstInst->Operands[Op]) {
AllSame = false;
break;
}
}
if (!AllSame) break;
// Okay, everything in this command set has the same next operand. Add it
// to UniqueOperandCommands and remember that it was consumed.
std::string Command = " " + FirstInst->Operands[Op].getCode() + "\n";
UniqueOperandCommands[CommandIdx] += Command;
InstOpsUsed[CommandIdx]++;
}
}
// Prepend some of the instructions each case is used for onto the case val.
for (unsigned i = 0, e = InstrsForCase.size(); i != e; ++i) {
std::string Instrs = InstrsForCase[i];
if (Instrs.size() > 70) {
Instrs.erase(Instrs.begin()+70, Instrs.end());
Instrs += "...";
}
if (!Instrs.empty())
UniqueOperandCommands[i] = " // " + Instrs + "\n" +
UniqueOperandCommands[i];
}
}
static void UnescapeString(std::string &Str) {
for (unsigned i = 0; i != Str.size(); ++i) {
if (Str[i] == '\\' && i != Str.size()-1) {
switch (Str[i+1]) {
default: continue; // Don't execute the code after the switch.
case 'a': Str[i] = '\a'; break;
case 'b': Str[i] = '\b'; break;
case 'e': Str[i] = 27; break;
case 'f': Str[i] = '\f'; break;
case 'n': Str[i] = '\n'; break;
case 'r': Str[i] = '\r'; break;
case 't': Str[i] = '\t'; break;
case 'v': Str[i] = '\v'; break;
case '"': Str[i] = '\"'; break;
case '\'': Str[i] = '\''; break;
case '\\': Str[i] = '\\'; break;
}
// Nuke the second character.
Str.erase(Str.begin()+i+1);
}
}
}
/// EmitPrintInstruction - Generate the code for the "printInstruction" method
/// implementation.
void AsmWriterEmitter::EmitPrintInstruction(raw_ostream &O) {
CodeGenTarget Target;
Record *AsmWriter = Target.getAsmWriter();
std::string ClassName = AsmWriter->getValueAsString("AsmWriterClassName");
bool isMC = AsmWriter->getValueAsBit("isMCAsmWriter");
const char *MachineInstrClassName = isMC ? "MCInst" : "MachineInstr";
O <<
"/// printInstruction - This method is automatically generated by tablegen\n"
"/// from the instruction set description.\n"
"void " << Target.getName() << ClassName
<< "::printInstruction(const " << MachineInstrClassName
<< " *MI, raw_ostream &O) {\n";
std::vector<AsmWriterInst> Instructions;
for (CodeGenTarget::inst_iterator I = Target.inst_begin(),
E = Target.inst_end(); I != E; ++I)
if (!(*I)->AsmString.empty() &&
(*I)->TheDef->getName() != "PHI")
Instructions.push_back(
AsmWriterInst(**I,
AsmWriter->getValueAsInt("Variant"),
AsmWriter->getValueAsInt("FirstOperandColumn"),
AsmWriter->getValueAsInt("OperandSpacing")));
// Get the instruction numbering.
NumberedInstructions = Target.getInstructionsByEnumValue();
// Compute the CodeGenInstruction -> AsmWriterInst mapping. Note that not
// all machine instructions are necessarily being printed, so there may be
// target instructions not in this map.
for (unsigned i = 0, e = Instructions.size(); i != e; ++i)
CGIAWIMap.insert(std::make_pair(Instructions[i].CGI, &Instructions[i]));
// Build an aggregate string, and build a table of offsets into it.
StringToOffsetTable StringTable;
/// OpcodeInfo - This encodes the index of the string to use for the first
/// chunk of the output as well as indices used for operand printing.
std::vector<unsigned> OpcodeInfo;
unsigned MaxStringIdx = 0;
for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) {
AsmWriterInst *AWI = CGIAWIMap[NumberedInstructions[i]];
unsigned Idx;
if (AWI == 0) {
// Something not handled by the asmwriter printer.
Idx = ~0U;
} else if (AWI->Operands[0].OperandType !=
AsmWriterOperand::isLiteralTextOperand ||
AWI->Operands[0].Str.empty()) {
// Something handled by the asmwriter printer, but with no leading string.
Idx = StringTable.GetOrAddStringOffset("");
} else {
std::string Str = AWI->Operands[0].Str;
UnescapeString(Str);
Idx = StringTable.GetOrAddStringOffset(Str);
MaxStringIdx = std::max(MaxStringIdx, Idx);
// Nuke the string from the operand list. It is now handled!
AWI->Operands.erase(AWI->Operands.begin());
}
// Bias offset by one since we want 0 as a sentinel.
OpcodeInfo.push_back(Idx+1);
}
// Figure out how many bits we used for the string index.
unsigned AsmStrBits = Log2_32_Ceil(MaxStringIdx+2);
// To reduce code size, we compactify common instructions into a few bits
// in the opcode-indexed table.
unsigned BitsLeft = 32-AsmStrBits;
std::vector<std::vector<std::string> > TableDrivenOperandPrinters;
while (1) {
std::vector<std::string> UniqueOperandCommands;
std::vector<unsigned> InstIdxs;
std::vector<unsigned> NumInstOpsHandled;
FindUniqueOperandCommands(UniqueOperandCommands, InstIdxs,
NumInstOpsHandled);
// If we ran out of operands to print, we're done.
if (UniqueOperandCommands.empty()) break;
// Compute the number of bits we need to represent these cases, this is
// ceil(log2(numentries)).
unsigned NumBits = Log2_32_Ceil(UniqueOperandCommands.size());
// If we don't have enough bits for this operand, don't include it.
if (NumBits > BitsLeft) {
DEBUG(errs() << "Not enough bits to densely encode " << NumBits
<< " more bits\n");
break;
}
// Otherwise, we can include this in the initial lookup table. Add it in.
BitsLeft -= NumBits;
for (unsigned i = 0, e = InstIdxs.size(); i != e; ++i)
if (InstIdxs[i] != ~0U)
OpcodeInfo[i] |= InstIdxs[i] << (BitsLeft+AsmStrBits);
// Remove the info about this operand.
for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) {
if (AsmWriterInst *Inst = getAsmWriterInstByID(i))
if (!Inst->Operands.empty()) {
unsigned NumOps = NumInstOpsHandled[InstIdxs[i]];
assert(NumOps <= Inst->Operands.size() &&
"Can't remove this many ops!");
Inst->Operands.erase(Inst->Operands.begin(),
Inst->Operands.begin()+NumOps);
}
}
// Remember the handlers for this set of operands.
TableDrivenOperandPrinters.push_back(UniqueOperandCommands);
}
O<<" static const unsigned OpInfo[] = {\n";
for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) {
O << " " << OpcodeInfo[i] << "U,\t// "
<< NumberedInstructions[i]->TheDef->getName() << "\n";
}
// Add a dummy entry so the array init doesn't end with a comma.
O << " 0U\n";
O << " };\n\n";
// Emit the string itself.
O << " const char *AsmStrs = \n";
StringTable.EmitString(O);
O << ";\n\n";
O << " O << \"\\t\";\n\n";
O << " // Emit the opcode for the instruction.\n"
<< " unsigned Bits = OpInfo[MI->getOpcode()];\n"
<< " assert(Bits != 0 && \"Cannot print this instruction.\");\n"
<< " O << AsmStrs+(Bits & " << (1 << AsmStrBits)-1 << ")-1;\n\n";
// Output the table driven operand information.
BitsLeft = 32-AsmStrBits;
for (unsigned i = 0, e = TableDrivenOperandPrinters.size(); i != e; ++i) {
std::vector<std::string> &Commands = TableDrivenOperandPrinters[i];
// Compute the number of bits we need to represent these cases, this is
// ceil(log2(numentries)).
unsigned NumBits = Log2_32_Ceil(Commands.size());
assert(NumBits <= BitsLeft && "consistency error");
// Emit code to extract this field from Bits.
BitsLeft -= NumBits;
O << "\n // Fragment " << i << " encoded into " << NumBits
<< " bits for " << Commands.size() << " unique commands.\n";
if (Commands.size() == 2) {
// Emit two possibilitys with if/else.
O << " if ((Bits >> " << (BitsLeft+AsmStrBits) << ") & "
<< ((1 << NumBits)-1) << ") {\n"
<< Commands[1]
<< " } else {\n"
<< Commands[0]
<< " }\n\n";
} else if (Commands.size() == 1) {
// Emit a single possibility.
O << Commands[0] << "\n\n";
} else {
O << " switch ((Bits >> " << (BitsLeft+AsmStrBits) << ") & "
<< ((1 << NumBits)-1) << ") {\n"
<< " default: // unreachable.\n";
// Print out all the cases.
for (unsigned i = 0, e = Commands.size(); i != e; ++i) {
O << " case " << i << ":\n";
O << Commands[i];
O << " break;\n";
}
O << " }\n\n";
}
}
// Okay, delete instructions with no operand info left.
for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
// Entire instruction has been emitted?
AsmWriterInst &Inst = Instructions[i];
if (Inst.Operands.empty()) {
Instructions.erase(Instructions.begin()+i);
--i; --e;
}
}
// Because this is a vector, we want to emit from the end. Reverse all of the
// elements in the vector.
std::reverse(Instructions.begin(), Instructions.end());
// Now that we've emitted all of the operand info that fit into 32 bits, emit
// information for those instructions that are left. This is a less dense
// encoding, but we expect the main 32-bit table to handle the majority of
// instructions.
if (!Instructions.empty()) {
// Find the opcode # of inline asm.
O << " switch (MI->getOpcode()) {\n";
while (!Instructions.empty())
EmitInstructions(Instructions, O);
O << " }\n";
O << " return;\n";
}
O << "}\n";
}
void AsmWriterEmitter::EmitGetRegisterName(raw_ostream &O) {
CodeGenTarget Target;
Record *AsmWriter = Target.getAsmWriter();
std::string ClassName = AsmWriter->getValueAsString("AsmWriterClassName");
const std::vector<CodeGenRegister> &Registers = Target.getRegisters();
StringToOffsetTable StringTable;
O <<
"\n\n/// getRegisterName - This method is automatically generated by tblgen\n"
"/// from the register set description. This returns the assembler name\n"
"/// for the specified register.\n"
"const char *" << Target.getName() << ClassName
<< "::getRegisterName(unsigned RegNo) {\n"
<< " assert(RegNo && RegNo < " << (Registers.size()+1)
<< " && \"Invalid register number!\");\n"
<< "\n"
<< " static const unsigned RegAsmOffset[] = {";
for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
const CodeGenRegister &Reg = Registers[i];
std::string AsmName = Reg.TheDef->getValueAsString("AsmName");
if (AsmName.empty())
AsmName = Reg.getName();
if ((i % 14) == 0)
O << "\n ";
O << StringTable.GetOrAddStringOffset(AsmName) << ", ";
}
O << "0\n"
<< " };\n"
<< "\n";
O << " const char *AsmStrs =\n";
StringTable.EmitString(O);
O << ";\n";
O << " return AsmStrs+RegAsmOffset[RegNo-1];\n"
<< "}\n";
}
void AsmWriterEmitter::EmitGetInstructionName(raw_ostream &O) {
CodeGenTarget Target;
Record *AsmWriter = Target.getAsmWriter();
std::string ClassName = AsmWriter->getValueAsString("AsmWriterClassName");
const std::vector<const CodeGenInstruction*> &NumberedInstructions =
Target.getInstructionsByEnumValue();
StringToOffsetTable StringTable;
O <<
"\n\n#ifdef GET_INSTRUCTION_NAME\n"
"#undef GET_INSTRUCTION_NAME\n\n"
"/// getInstructionName: This method is automatically generated by tblgen\n"
"/// from the instruction set description. This returns the enum name of the\n"
"/// specified instruction.\n"
"const char *" << Target.getName() << ClassName
<< "::getInstructionName(unsigned Opcode) {\n"
<< " assert(Opcode < " << NumberedInstructions.size()
<< " && \"Invalid instruction number!\");\n"
<< "\n"
<< " static const unsigned InstAsmOffset[] = {";
for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) {
const CodeGenInstruction &Inst = *NumberedInstructions[i];
std::string AsmName = Inst.TheDef->getName();
if ((i % 14) == 0)
O << "\n ";
O << StringTable.GetOrAddStringOffset(AsmName) << ", ";
}
O << "0\n"
<< " };\n"
<< "\n";
O << " const char *Strs =\n";
StringTable.EmitString(O);
O << ";\n";
O << " return Strs+InstAsmOffset[Opcode];\n"
<< "}\n\n#endif\n";
}
void AsmWriterEmitter::run(raw_ostream &O) {
EmitSourceFileHeader("Assembly Writer Source Fragment", O);
EmitPrintInstruction(O);
EmitGetRegisterName(O);
EmitGetInstructionName(O);
}