llvm-project/polly/lib/Analysis/Dependences.cpp

272 lines
8.8 KiB
C++

//===- Dependency.cpp - Calculate dependency information for a Scop. -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Calculate the data dependency relations for a Scop using ISL.
//
// The integer set library (ISL) from Sven, has a integrated dependency analysis
// to calculate data dependences. This pass takes advantage of this and
// calculate those dependences a Scop.
//
// The dependences in this pass are exact in terms that for a specific read
// statement instance only the last write statement instance is returned. In
// case of may writes a set of possible write instances is returned. This
// analysis will never produce redundant dependences.
//
//===----------------------------------------------------------------------===//
//
#include "polly/Dependences.h"
#include "polly/LinkAllPasses.h"
#include "polly/ScopInfo.h"
#include "polly/Support/GICHelper.h"
#define DEBUG_TYPE "polly-dependences"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
#include <isl/flow.h>
#include <isl/aff.h>
#define CLOOG_INT_GMP 1
#include <cloog/cloog.h>
#include <cloog/isl/cloog.h>
using namespace polly;
using namespace llvm;
static cl::opt<bool>
LegalityCheckDisabled("disable-polly-legality",
cl::desc("Disable polly legality check"), cl::Hidden,
cl::init(false));
//===----------------------------------------------------------------------===//
Dependences::Dependences() : ScopPass(ID) {
RAW = WAR = WAW = NULL;
}
void Dependences::collectInfo(Scop &S,
isl_union_map **Read, isl_union_map **Write,
isl_union_map **MayWrite,
isl_union_map **Schedule) {
isl_space *Space = S.getParamSpace();
*Read = isl_union_map_empty(isl_space_copy(Space));
*Write = isl_union_map_empty(isl_space_copy(Space));
*MayWrite = isl_union_map_empty(isl_space_copy(Space));
*Schedule = isl_union_map_empty(Space);
for (Scop::iterator SI = S.begin(), SE = S.end(); SI != SE; ++SI) {
ScopStmt *Stmt = *SI;
for (ScopStmt::memacc_iterator MI = Stmt->memacc_begin(),
ME = Stmt->memacc_end(); MI != ME; ++MI) {
isl_set *domcp = Stmt->getDomain();
isl_map *accdom = (*MI)->getAccessRelation();
accdom = isl_map_intersect_domain(accdom, domcp);
if ((*MI)->isRead())
*Read = isl_union_map_add_map(*Read, accdom);
else
*Write = isl_union_map_add_map(*Write, accdom);
}
*Schedule = isl_union_map_add_map(*Schedule, Stmt->getScattering());
}
}
void Dependences::calculateDependences(Scop &S) {
isl_union_map *Read, *Write, *MayWrite, *Schedule;
collectInfo(S, &Read, &Write, &MayWrite, &Schedule);
isl_union_map_compute_flow(isl_union_map_copy(Read),
isl_union_map_copy(Write),
isl_union_map_copy(MayWrite),
isl_union_map_copy(Schedule),
&RAW, NULL, NULL, NULL);
isl_union_map_compute_flow(isl_union_map_copy(Write),
isl_union_map_copy(Write),
Read, Schedule,
&WAW, &WAR, NULL, NULL);
isl_union_map_free(MayWrite);
isl_union_map_free(Write);
RAW = isl_union_map_coalesce(RAW);
WAW = isl_union_map_coalesce(WAW);
WAR = isl_union_map_coalesce(WAR);
}
bool Dependences::runOnScop(Scop &S) {
releaseMemory();
calculateDependences(S);
return false;
}
bool Dependences::isValidScattering(StatementToIslMapTy *NewScattering) {
Scop &S = getCurScop();
if (LegalityCheckDisabled)
return true;
isl_union_map *Dependences = getDependences(TYPE_ALL);
isl_space *Space = S.getParamSpace();
isl_union_map *Scattering = isl_union_map_empty(Space);
isl_space *ScatteringSpace = 0;
for (Scop::iterator SI = S.begin(), SE = S.end(); SI != SE; ++SI) {
ScopStmt *Stmt = *SI;
isl_map *StmtScat;
if (NewScattering->find(*SI) == NewScattering->end())
StmtScat = Stmt->getScattering();
else
StmtScat = isl_map_copy((*NewScattering)[Stmt]);
if (!ScatteringSpace)
ScatteringSpace = isl_space_range(isl_map_get_space(StmtScat));
Scattering = isl_union_map_add_map(Scattering, StmtScat);
}
Dependences = isl_union_map_apply_domain(Dependences,
isl_union_map_copy(Scattering));
Dependences = isl_union_map_apply_range(Dependences, Scattering);
isl_set *Zero = isl_set_universe(isl_space_copy(ScatteringSpace));
for (unsigned i = 0; i < isl_set_dim(Zero, isl_dim_set); i++)
Zero = isl_set_fix_si(Zero, isl_dim_set, i, 0);
isl_union_set *UDeltas = isl_union_map_deltas(Dependences);
isl_set *Deltas = isl_union_set_extract_set(UDeltas, ScatteringSpace);
isl_union_set_free(UDeltas);
isl_map *NonPositive = isl_set_lex_le_set(Deltas, Zero);
bool IsValid = isl_map_is_empty(NonPositive);
isl_map_free(NonPositive);
return IsValid;
}
isl_union_map *getCombinedScheduleForSpace(Scop *scop, unsigned dimLevel) {
isl_space *Space = scop->getParamSpace();
isl_union_map *schedule = isl_union_map_empty(Space);
for (Scop::iterator SI = scop->begin(), SE = scop->end(); SI != SE; ++SI) {
ScopStmt *Stmt = *SI;
unsigned remainingDimensions = Stmt->getNumScattering() - dimLevel;
isl_map *Scattering = isl_map_project_out(Stmt->getScattering(),
isl_dim_out, dimLevel,
remainingDimensions);
schedule = isl_union_map_add_map(schedule, Scattering);
}
return schedule;
}
bool Dependences::isParallelDimension(__isl_take isl_set *ScheduleSubset,
unsigned ParallelDim) {
// To check if a loop is parallel, we perform the following steps:
//
// o Move dependences from 'Domain -> Domain' to 'Schedule -> Schedule' space.
// o Limit dependences to the schedule space enumerated by the loop.
// o Calculate distances of the dependences.
// o Check if one of the distances is invalid in presence of parallelism.
isl_union_map *Schedule, *Deps;
isl_map *ScheduleDeps;
Scop *S = &getCurScop();
Deps = getDependences(TYPE_ALL);
if (isl_union_map_is_empty(Deps)) {
isl_union_map_free(Deps);
isl_set_free(ScheduleSubset);
return true;
}
Schedule = getCombinedScheduleForSpace(S, ParallelDim);
Deps = isl_union_map_apply_range(Deps, isl_union_map_copy(Schedule));
Deps = isl_union_map_apply_domain(Deps, Schedule);
ScheduleDeps = isl_map_from_union_map(Deps);
ScheduleDeps = isl_map_intersect_domain(ScheduleDeps,
isl_set_copy(ScheduleSubset));
ScheduleDeps = isl_map_intersect_range(ScheduleDeps, ScheduleSubset);
isl_set *Distances = isl_map_deltas(ScheduleDeps);
isl_space *Space = isl_set_get_space(Distances);
isl_set *Invalid = isl_set_universe(Space);
// [0, ..., 0, +] - All zeros and last dimension larger than zero
for (unsigned i = 0; i < ParallelDim - 1; i++)
Invalid = isl_set_fix_si(Invalid, isl_dim_set, i, 0);
Invalid = isl_set_lower_bound_si(Invalid, isl_dim_set, ParallelDim - 1, 1);
Invalid = isl_set_intersect(Invalid, Distances);
bool IsParallel = isl_set_is_empty(Invalid);
isl_set_free(Invalid);
return IsParallel;
}
bool Dependences::isParallelFor(const clast_for *f) {
isl_set *Domain = isl_set_from_cloog_domain(f->domain);
assert(Domain && "Cannot access domain of loop");
return isParallelDimension(isl_set_copy(Domain), isl_set_n_dim(Domain));
}
void Dependences::printScop(raw_ostream &OS) const {
}
void Dependences::releaseMemory() {
isl_union_map_free(RAW);
isl_union_map_free(WAR);
isl_union_map_free(WAW);
RAW = WAR = WAW = NULL;
}
isl_union_map *Dependences::getDependences(int Kinds) {
isl_space *Space = isl_union_map_get_space(RAW);
isl_union_map *Deps = isl_union_map_empty(Space);
if (Kinds & TYPE_RAW)
Deps = isl_union_map_union(Deps, isl_union_map_copy(RAW));
if (Kinds & TYPE_WAR)
Deps = isl_union_map_union(Deps, isl_union_map_copy(WAR));
if (Kinds & TYPE_WAW)
Deps = isl_union_map_union(Deps, isl_union_map_copy(WAW));
Deps = isl_union_map_coalesce(Deps);
Deps = isl_union_map_detect_equalities(Deps);
return Deps;
}
void Dependences::getAnalysisUsage(AnalysisUsage &AU) const {
ScopPass::getAnalysisUsage(AU);
}
char Dependences::ID = 0;
INITIALIZE_PASS_BEGIN(Dependences, "polly-dependences",
"Polly - Calculate dependences", false, false)
INITIALIZE_PASS_DEPENDENCY(ScopInfo)
INITIALIZE_PASS_END(Dependences, "polly-dependences",
"Polly - Calculate dependences", false, false)
Pass *polly::createDependencesPass() {
return new Dependences();
}