forked from OSchip/llvm-project
823 lines
31 KiB
C++
823 lines
31 KiB
C++
//===--- TUScheduler.cpp -----------------------------------------*-C++-*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
// For each file, managed by TUScheduler, we create a single ASTWorker that
|
|
// manages an AST for that file. All operations that modify or read the AST are
|
|
// run on a separate dedicated thread asynchronously in FIFO order.
|
|
//
|
|
// We start processing each update immediately after we receive it. If two or
|
|
// more updates come subsequently without reads in-between, we attempt to drop
|
|
// an older one to not waste time building the ASTs we don't need.
|
|
//
|
|
// The processing thread of the ASTWorker is also responsible for building the
|
|
// preamble. However, unlike AST, the same preamble can be read concurrently, so
|
|
// we run each of async preamble reads on its own thread.
|
|
//
|
|
// To limit the concurrent load that clangd produces we maintain a semaphore that
|
|
// keeps more than a fixed number of threads from running concurrently.
|
|
//
|
|
// Rationale for cancelling updates.
|
|
// LSP clients can send updates to clangd on each keystroke. Some files take
|
|
// significant time to parse (e.g. a few seconds) and clangd can get starved by
|
|
// the updates to those files. Therefore we try to process only the last update,
|
|
// if possible.
|
|
// Our current strategy to do that is the following:
|
|
// - For each update we immediately schedule rebuild of the AST.
|
|
// - Rebuild of the AST checks if it was cancelled before doing any actual work.
|
|
// If it was, it does not do an actual rebuild, only reports llvm::None to the
|
|
// callback
|
|
// - When adding an update, we cancel the last update in the queue if it didn't
|
|
// have any reads.
|
|
// There is probably a optimal ways to do that. One approach we might take is
|
|
// the following:
|
|
// - For each update we remember the pending inputs, but delay rebuild of the
|
|
// AST for some timeout.
|
|
// - If subsequent updates come before rebuild was started, we replace the
|
|
// pending inputs and reset the timer.
|
|
// - If any reads of the AST are scheduled, we start building the AST
|
|
// immediately.
|
|
|
|
#include "TUScheduler.h"
|
|
#include "Logger.h"
|
|
#include "Trace.h"
|
|
#include "clang/Frontend/CompilerInvocation.h"
|
|
#include "clang/Frontend/PCHContainerOperations.h"
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
#include "llvm/Support/Errc.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <queue>
|
|
#include <thread>
|
|
|
|
using namespace llvm;
|
|
namespace clang {
|
|
namespace clangd {
|
|
using std::chrono::steady_clock;
|
|
|
|
namespace {
|
|
class ASTWorker;
|
|
}
|
|
|
|
static clang::clangd::Key<std::string> kFileBeingProcessed;
|
|
|
|
Optional<StringRef> TUScheduler::getFileBeingProcessedInContext() {
|
|
if (auto *File = Context::current().get(kFileBeingProcessed))
|
|
return StringRef(*File);
|
|
return None;
|
|
}
|
|
|
|
/// An LRU cache of idle ASTs.
|
|
/// Because we want to limit the overall number of these we retain, the cache
|
|
/// owns ASTs (and may evict them) while their workers are idle.
|
|
/// Workers borrow ASTs when active, and return them when done.
|
|
class TUScheduler::ASTCache {
|
|
public:
|
|
using Key = const ASTWorker *;
|
|
|
|
ASTCache(unsigned MaxRetainedASTs) : MaxRetainedASTs(MaxRetainedASTs) {}
|
|
|
|
/// Returns result of getUsedBytes() for the AST cached by \p K.
|
|
/// If no AST is cached, 0 is returned.
|
|
std::size_t getUsedBytes(Key K) {
|
|
std::lock_guard<std::mutex> Lock(Mut);
|
|
auto It = findByKey(K);
|
|
if (It == LRU.end() || !It->second)
|
|
return 0;
|
|
return It->second->getUsedBytes();
|
|
}
|
|
|
|
/// Store the value in the pool, possibly removing the last used AST.
|
|
/// The value should not be in the pool when this function is called.
|
|
void put(Key K, std::unique_ptr<ParsedAST> V) {
|
|
std::unique_lock<std::mutex> Lock(Mut);
|
|
assert(findByKey(K) == LRU.end());
|
|
|
|
LRU.insert(LRU.begin(), {K, std::move(V)});
|
|
if (LRU.size() <= MaxRetainedASTs)
|
|
return;
|
|
// We're past the limit, remove the last element.
|
|
std::unique_ptr<ParsedAST> ForCleanup = std::move(LRU.back().second);
|
|
LRU.pop_back();
|
|
// Run the expensive destructor outside the lock.
|
|
Lock.unlock();
|
|
ForCleanup.reset();
|
|
}
|
|
|
|
/// Returns the cached value for \p K, or llvm::None if the value is not in
|
|
/// the cache anymore. If nullptr was cached for \p K, this function will
|
|
/// return a null unique_ptr wrapped into an optional.
|
|
Optional<std::unique_ptr<ParsedAST>> take(Key K) {
|
|
std::unique_lock<std::mutex> Lock(Mut);
|
|
auto Existing = findByKey(K);
|
|
if (Existing == LRU.end())
|
|
return None;
|
|
std::unique_ptr<ParsedAST> V = std::move(Existing->second);
|
|
LRU.erase(Existing);
|
|
// GCC 4.8 fails to compile `return V;`, as it tries to call the copy
|
|
// constructor of unique_ptr, so we call the move ctor explicitly to avoid
|
|
// this miscompile.
|
|
return Optional<std::unique_ptr<ParsedAST>>(std::move(V));
|
|
}
|
|
|
|
private:
|
|
using KVPair = std::pair<Key, std::unique_ptr<ParsedAST>>;
|
|
|
|
std::vector<KVPair>::iterator findByKey(Key K) {
|
|
return llvm::find_if(LRU, [K](const KVPair &P) { return P.first == K; });
|
|
}
|
|
|
|
std::mutex Mut;
|
|
unsigned MaxRetainedASTs;
|
|
/// Items sorted in LRU order, i.e. first item is the most recently accessed
|
|
/// one.
|
|
std::vector<KVPair> LRU; /* GUARDED_BY(Mut) */
|
|
};
|
|
|
|
namespace {
|
|
class ASTWorkerHandle;
|
|
|
|
/// Owns one instance of the AST, schedules updates and reads of it.
|
|
/// Also responsible for building and providing access to the preamble.
|
|
/// Each ASTWorker processes the async requests sent to it on a separate
|
|
/// dedicated thread.
|
|
/// The ASTWorker that manages the AST is shared by both the processing thread
|
|
/// and the TUScheduler. The TUScheduler should discard an ASTWorker when
|
|
/// remove() is called, but its thread may be busy and we don't want to block.
|
|
/// So the workers are accessed via an ASTWorkerHandle. Destroying the handle
|
|
/// signals the worker to exit its run loop and gives up shared ownership of the
|
|
/// worker.
|
|
class ASTWorker {
|
|
friend class ASTWorkerHandle;
|
|
ASTWorker(PathRef FileName, TUScheduler::ASTCache &LRUCache,
|
|
Semaphore &Barrier, bool RunSync,
|
|
steady_clock::duration UpdateDebounce,
|
|
std::shared_ptr<PCHContainerOperations> PCHs,
|
|
bool StorePreamblesInMemory, ParsingCallbacks &Callbacks);
|
|
|
|
public:
|
|
/// Create a new ASTWorker and return a handle to it.
|
|
/// The processing thread is spawned using \p Tasks. However, when \p Tasks
|
|
/// is null, all requests will be processed on the calling thread
|
|
/// synchronously instead. \p Barrier is acquired when processing each
|
|
/// request, it is used to limit the number of actively running threads.
|
|
static ASTWorkerHandle create(PathRef FileName,
|
|
TUScheduler::ASTCache &IdleASTs,
|
|
AsyncTaskRunner *Tasks, Semaphore &Barrier,
|
|
steady_clock::duration UpdateDebounce,
|
|
std::shared_ptr<PCHContainerOperations> PCHs,
|
|
bool StorePreamblesInMemory,
|
|
ParsingCallbacks &Callbacks);
|
|
~ASTWorker();
|
|
|
|
void update(ParseInputs Inputs, WantDiagnostics,
|
|
llvm::unique_function<void(std::vector<Diag>)> OnUpdated);
|
|
void runWithAST(StringRef Name,
|
|
unique_function<void(Expected<InputsAndAST>)> Action);
|
|
bool blockUntilIdle(Deadline Timeout) const;
|
|
|
|
std::shared_ptr<const PreambleData> getPossiblyStalePreamble() const;
|
|
/// Obtain a preamble reflecting all updates so far. Threadsafe.
|
|
/// It may be delivered immediately, or later on the worker thread.
|
|
void getCurrentPreamble(
|
|
unique_function<void(std::shared_ptr<const PreambleData>)>);
|
|
/// Wait for the first build of preamble to finish. Preamble itself can be
|
|
/// accessed via getPossiblyStalePreamble(). Note that this function will
|
|
/// return after an unsuccessful build of the preamble too, i.e. result of
|
|
/// getPossiblyStalePreamble() can be null even after this function returns.
|
|
void waitForFirstPreamble() const;
|
|
|
|
std::size_t getUsedBytes() const;
|
|
bool isASTCached() const;
|
|
|
|
private:
|
|
// Must be called exactly once on processing thread. Will return after
|
|
// stop() is called on a separate thread and all pending requests are
|
|
// processed.
|
|
void run();
|
|
/// Signal that run() should finish processing pending requests and exit.
|
|
void stop();
|
|
/// Adds a new task to the end of the request queue.
|
|
void startTask(StringRef Name, unique_function<void()> Task,
|
|
Optional<WantDiagnostics> UpdateType);
|
|
/// Determines the next action to perform.
|
|
/// All actions that should never run are discarded.
|
|
/// Returns a deadline for the next action. If it's expired, run now.
|
|
/// scheduleLocked() is called again at the deadline, or if requests arrive.
|
|
Deadline scheduleLocked();
|
|
/// Should the first task in the queue be skipped instead of run?
|
|
bool shouldSkipHeadLocked() const;
|
|
|
|
struct Request {
|
|
unique_function<void()> Action;
|
|
std::string Name;
|
|
steady_clock::time_point AddTime;
|
|
Context Ctx;
|
|
Optional<WantDiagnostics> UpdateType;
|
|
};
|
|
|
|
/// Handles retention of ASTs.
|
|
TUScheduler::ASTCache &IdleASTs;
|
|
const bool RunSync;
|
|
/// Time to wait after an update to see whether another update obsoletes it.
|
|
const steady_clock::duration UpdateDebounce;
|
|
/// File that ASTWorker is responsible for.
|
|
const Path FileName;
|
|
/// Whether to keep the built preambles in memory or on disk.
|
|
const bool StorePreambleInMemory;
|
|
/// Callback, invoked when preamble or main file AST is built.
|
|
ParsingCallbacks &Callbacks;
|
|
/// Helper class required to build the ASTs.
|
|
const std::shared_ptr<PCHContainerOperations> PCHs;
|
|
|
|
Semaphore &Barrier;
|
|
/// Inputs, corresponding to the current state of AST.
|
|
ParseInputs FileInputs;
|
|
/// Whether the diagnostics for the current FileInputs were reported to the
|
|
/// users before.
|
|
bool DiagsWereReported = false;
|
|
/// Size of the last AST
|
|
/// Guards members used by both TUScheduler and the worker thread.
|
|
mutable std::mutex Mutex;
|
|
std::shared_ptr<const PreambleData> LastBuiltPreamble; /* GUARDED_BY(Mutex) */
|
|
/// Becomes ready when the first preamble build finishes.
|
|
Notification PreambleWasBuilt;
|
|
/// Set to true to signal run() to finish processing.
|
|
bool Done; /* GUARDED_BY(Mutex) */
|
|
std::deque<Request> Requests; /* GUARDED_BY(Mutex) */
|
|
mutable std::condition_variable RequestsCV;
|
|
};
|
|
|
|
/// A smart-pointer-like class that points to an active ASTWorker.
|
|
/// In destructor, signals to the underlying ASTWorker that no new requests will
|
|
/// be sent and the processing loop may exit (after running all pending
|
|
/// requests).
|
|
class ASTWorkerHandle {
|
|
friend class ASTWorker;
|
|
ASTWorkerHandle(std::shared_ptr<ASTWorker> Worker)
|
|
: Worker(std::move(Worker)) {
|
|
assert(this->Worker);
|
|
}
|
|
|
|
public:
|
|
ASTWorkerHandle(const ASTWorkerHandle &) = delete;
|
|
ASTWorkerHandle &operator=(const ASTWorkerHandle &) = delete;
|
|
ASTWorkerHandle(ASTWorkerHandle &&) = default;
|
|
ASTWorkerHandle &operator=(ASTWorkerHandle &&) = default;
|
|
|
|
~ASTWorkerHandle() {
|
|
if (Worker)
|
|
Worker->stop();
|
|
}
|
|
|
|
ASTWorker &operator*() {
|
|
assert(Worker && "Handle was moved from");
|
|
return *Worker;
|
|
}
|
|
|
|
ASTWorker *operator->() {
|
|
assert(Worker && "Handle was moved from");
|
|
return Worker.get();
|
|
}
|
|
|
|
/// Returns an owning reference to the underlying ASTWorker that can outlive
|
|
/// the ASTWorkerHandle. However, no new requests to an active ASTWorker can
|
|
/// be schedule via the returned reference, i.e. only reads of the preamble
|
|
/// are possible.
|
|
std::shared_ptr<const ASTWorker> lock() { return Worker; }
|
|
|
|
private:
|
|
std::shared_ptr<ASTWorker> Worker;
|
|
};
|
|
|
|
ASTWorkerHandle ASTWorker::create(PathRef FileName,
|
|
TUScheduler::ASTCache &IdleASTs,
|
|
AsyncTaskRunner *Tasks, Semaphore &Barrier,
|
|
steady_clock::duration UpdateDebounce,
|
|
std::shared_ptr<PCHContainerOperations> PCHs,
|
|
bool StorePreamblesInMemory,
|
|
ParsingCallbacks &Callbacks) {
|
|
std::shared_ptr<ASTWorker> Worker(new ASTWorker(
|
|
FileName, IdleASTs, Barrier, /*RunSync=*/!Tasks, UpdateDebounce,
|
|
std::move(PCHs), StorePreamblesInMemory, Callbacks));
|
|
if (Tasks)
|
|
Tasks->runAsync("worker:" + sys::path::filename(FileName),
|
|
[Worker]() { Worker->run(); });
|
|
|
|
return ASTWorkerHandle(std::move(Worker));
|
|
}
|
|
|
|
ASTWorker::ASTWorker(PathRef FileName, TUScheduler::ASTCache &LRUCache,
|
|
Semaphore &Barrier, bool RunSync,
|
|
steady_clock::duration UpdateDebounce,
|
|
std::shared_ptr<PCHContainerOperations> PCHs,
|
|
bool StorePreamblesInMemory, ParsingCallbacks &Callbacks)
|
|
: IdleASTs(LRUCache), RunSync(RunSync), UpdateDebounce(UpdateDebounce),
|
|
FileName(FileName), StorePreambleInMemory(StorePreamblesInMemory),
|
|
Callbacks(Callbacks), PCHs(std::move(PCHs)), Barrier(Barrier),
|
|
Done(false) {}
|
|
|
|
ASTWorker::~ASTWorker() {
|
|
// Make sure we remove the cached AST, if any.
|
|
IdleASTs.take(this);
|
|
#ifndef NDEBUG
|
|
std::lock_guard<std::mutex> Lock(Mutex);
|
|
assert(Done && "handle was not destroyed");
|
|
assert(Requests.empty() && "unprocessed requests when destroying ASTWorker");
|
|
#endif
|
|
}
|
|
|
|
void ASTWorker::update(ParseInputs Inputs, WantDiagnostics WantDiags,
|
|
unique_function<void(std::vector<Diag>)> OnUpdated) {
|
|
auto Task = [=](decltype(OnUpdated) OnUpdated) mutable {
|
|
// Will be used to check if we can avoid rebuilding the AST.
|
|
bool InputsAreTheSame =
|
|
std::tie(FileInputs.CompileCommand, FileInputs.Contents) ==
|
|
std::tie(Inputs.CompileCommand, Inputs.Contents);
|
|
|
|
tooling::CompileCommand OldCommand = std::move(FileInputs.CompileCommand);
|
|
bool PrevDiagsWereReported = DiagsWereReported;
|
|
FileInputs = Inputs;
|
|
DiagsWereReported = false;
|
|
|
|
log("Updating file {0} with command [{1}] {2}", FileName,
|
|
Inputs.CompileCommand.Directory,
|
|
join(Inputs.CompileCommand.CommandLine, " "));
|
|
// Rebuild the preamble and the AST.
|
|
std::unique_ptr<CompilerInvocation> Invocation =
|
|
buildCompilerInvocation(Inputs);
|
|
if (!Invocation) {
|
|
elog("Could not build CompilerInvocation for file {0}", FileName);
|
|
// Remove the old AST if it's still in cache.
|
|
IdleASTs.take(this);
|
|
// Make sure anyone waiting for the preamble gets notified it could not
|
|
// be built.
|
|
PreambleWasBuilt.notify();
|
|
return;
|
|
}
|
|
|
|
std::shared_ptr<const PreambleData> OldPreamble =
|
|
getPossiblyStalePreamble();
|
|
std::shared_ptr<const PreambleData> NewPreamble = buildPreamble(
|
|
FileName, *Invocation, OldPreamble, OldCommand, Inputs, PCHs,
|
|
StorePreambleInMemory,
|
|
[this](ASTContext &Ctx, std::shared_ptr<clang::Preprocessor> PP) {
|
|
Callbacks.onPreambleAST(FileName, Ctx, std::move(PP));
|
|
});
|
|
|
|
bool CanReuseAST = InputsAreTheSame && (OldPreamble == NewPreamble);
|
|
{
|
|
std::lock_guard<std::mutex> Lock(Mutex);
|
|
LastBuiltPreamble = NewPreamble;
|
|
}
|
|
// Before doing the expensive AST reparse, we want to release our reference
|
|
// to the old preamble, so it can be freed if there are no other references
|
|
// to it.
|
|
OldPreamble.reset();
|
|
PreambleWasBuilt.notify();
|
|
|
|
if (!CanReuseAST) {
|
|
IdleASTs.take(this); // Remove the old AST if it's still in cache.
|
|
} else {
|
|
// Since we don't need to rebuild the AST, we might've already reported
|
|
// the diagnostics for it.
|
|
if (PrevDiagsWereReported) {
|
|
DiagsWereReported = true;
|
|
// Take a shortcut and don't report the diagnostics, since they should
|
|
// not changed. All the clients should handle the lack of OnUpdated()
|
|
// call anyway to handle empty result from buildAST.
|
|
// FIXME(ibiryukov): the AST could actually change if non-preamble
|
|
// includes changed, but we choose to ignore it.
|
|
// FIXME(ibiryukov): should we refresh the cache in IdleASTs for the
|
|
// current file at this point?
|
|
log("Skipping rebuild of the AST for {0}, inputs are the same.",
|
|
FileName);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// We only need to build the AST if diagnostics were requested.
|
|
if (WantDiags == WantDiagnostics::No)
|
|
return;
|
|
|
|
// Get the AST for diagnostics.
|
|
Optional<std::unique_ptr<ParsedAST>> AST = IdleASTs.take(this);
|
|
if (!AST) {
|
|
Optional<ParsedAST> NewAST =
|
|
buildAST(FileName, std::move(Invocation), Inputs, NewPreamble, PCHs);
|
|
AST = NewAST ? llvm::make_unique<ParsedAST>(std::move(*NewAST)) : nullptr;
|
|
}
|
|
// We want to report the diagnostics even if this update was cancelled.
|
|
// It seems more useful than making the clients wait indefinitely if they
|
|
// spam us with updates.
|
|
// Note *AST can still be null if buildAST fails.
|
|
if (*AST) {
|
|
OnUpdated((*AST)->getDiagnostics());
|
|
trace::Span Span("Running main AST callback");
|
|
Callbacks.onMainAST(FileName, **AST);
|
|
DiagsWereReported = true;
|
|
}
|
|
// Stash the AST in the cache for further use.
|
|
IdleASTs.put(this, std::move(*AST));
|
|
};
|
|
|
|
startTask("Update", Bind(Task, std::move(OnUpdated)), WantDiags);
|
|
}
|
|
|
|
void ASTWorker::runWithAST(
|
|
StringRef Name, unique_function<void(Expected<InputsAndAST>)> Action) {
|
|
auto Task = [=](decltype(Action) Action) {
|
|
Optional<std::unique_ptr<ParsedAST>> AST = IdleASTs.take(this);
|
|
if (!AST) {
|
|
std::unique_ptr<CompilerInvocation> Invocation =
|
|
buildCompilerInvocation(FileInputs);
|
|
// Try rebuilding the AST.
|
|
Optional<ParsedAST> NewAST =
|
|
Invocation
|
|
? buildAST(FileName,
|
|
llvm::make_unique<CompilerInvocation>(*Invocation),
|
|
FileInputs, getPossiblyStalePreamble(), PCHs)
|
|
: None;
|
|
AST = NewAST ? llvm::make_unique<ParsedAST>(std::move(*NewAST)) : nullptr;
|
|
}
|
|
// Make sure we put the AST back into the LRU cache.
|
|
auto _ = make_scope_exit(
|
|
[&AST, this]() { IdleASTs.put(this, std::move(*AST)); });
|
|
// Run the user-provided action.
|
|
if (!*AST)
|
|
return Action(
|
|
make_error<StringError>("invalid AST", errc::invalid_argument));
|
|
Action(InputsAndAST{FileInputs, **AST});
|
|
};
|
|
startTask(Name, Bind(Task, std::move(Action)),
|
|
/*UpdateType=*/None);
|
|
}
|
|
|
|
std::shared_ptr<const PreambleData>
|
|
ASTWorker::getPossiblyStalePreamble() const {
|
|
std::lock_guard<std::mutex> Lock(Mutex);
|
|
return LastBuiltPreamble;
|
|
}
|
|
|
|
void ASTWorker::getCurrentPreamble(
|
|
unique_function<void(std::shared_ptr<const PreambleData>)> Callback) {
|
|
// We could just call startTask() to throw the read on the queue, knowing
|
|
// it will run after any updates. But we know this task is cheap, so to
|
|
// improve latency we cheat: insert it on the queue after the last update.
|
|
std::unique_lock<std::mutex> Lock(Mutex);
|
|
auto LastUpdate =
|
|
std::find_if(Requests.rbegin(), Requests.rend(),
|
|
[](const Request &R) { return R.UpdateType.hasValue(); });
|
|
// If there were no writes in the queue, the preamble is ready now.
|
|
if (LastUpdate == Requests.rend()) {
|
|
Lock.unlock();
|
|
return Callback(getPossiblyStalePreamble());
|
|
}
|
|
assert(!RunSync && "Running synchronously, but queue is non-empty!");
|
|
Requests.insert(LastUpdate.base(),
|
|
Request{Bind(
|
|
[this](decltype(Callback) Callback) {
|
|
Callback(getPossiblyStalePreamble());
|
|
},
|
|
std::move(Callback)),
|
|
"GetPreamble", steady_clock::now(),
|
|
Context::current().clone(),
|
|
/*UpdateType=*/None});
|
|
Lock.unlock();
|
|
RequestsCV.notify_all();
|
|
}
|
|
|
|
void ASTWorker::waitForFirstPreamble() const {
|
|
PreambleWasBuilt.wait();
|
|
}
|
|
|
|
std::size_t ASTWorker::getUsedBytes() const {
|
|
// Note that we don't report the size of ASTs currently used for processing
|
|
// the in-flight requests. We used this information for debugging purposes
|
|
// only, so this should be fine.
|
|
std::size_t Result = IdleASTs.getUsedBytes(this);
|
|
if (auto Preamble = getPossiblyStalePreamble())
|
|
Result += Preamble->Preamble.getSize();
|
|
return Result;
|
|
}
|
|
|
|
bool ASTWorker::isASTCached() const { return IdleASTs.getUsedBytes(this) != 0; }
|
|
|
|
void ASTWorker::stop() {
|
|
{
|
|
std::lock_guard<std::mutex> Lock(Mutex);
|
|
assert(!Done && "stop() called twice");
|
|
Done = true;
|
|
}
|
|
RequestsCV.notify_all();
|
|
}
|
|
|
|
void ASTWorker::startTask(StringRef Name, unique_function<void()> Task,
|
|
Optional<WantDiagnostics> UpdateType) {
|
|
if (RunSync) {
|
|
assert(!Done && "running a task after stop()");
|
|
trace::Span Tracer(Name + ":" + sys::path::filename(FileName));
|
|
Task();
|
|
return;
|
|
}
|
|
|
|
{
|
|
std::lock_guard<std::mutex> Lock(Mutex);
|
|
assert(!Done && "running a task after stop()");
|
|
Requests.push_back(
|
|
{std::move(Task), Name, steady_clock::now(),
|
|
Context::current().derive(kFileBeingProcessed, FileName), UpdateType});
|
|
}
|
|
RequestsCV.notify_all();
|
|
}
|
|
|
|
void ASTWorker::run() {
|
|
while (true) {
|
|
Request Req;
|
|
{
|
|
std::unique_lock<std::mutex> Lock(Mutex);
|
|
for (auto Wait = scheduleLocked(); !Wait.expired();
|
|
Wait = scheduleLocked()) {
|
|
if (Done) {
|
|
if (Requests.empty())
|
|
return;
|
|
else // Even though Done is set, finish pending requests.
|
|
break; // However, skip delays to shutdown fast.
|
|
}
|
|
|
|
// Tracing: we have a next request, attribute this sleep to it.
|
|
Optional<WithContext> Ctx;
|
|
Optional<trace::Span> Tracer;
|
|
if (!Requests.empty()) {
|
|
Ctx.emplace(Requests.front().Ctx.clone());
|
|
Tracer.emplace("Debounce");
|
|
SPAN_ATTACH(*Tracer, "next_request", Requests.front().Name);
|
|
if (!(Wait == Deadline::infinity()))
|
|
SPAN_ATTACH(*Tracer, "sleep_ms",
|
|
std::chrono::duration_cast<std::chrono::milliseconds>(
|
|
Wait.time() - steady_clock::now())
|
|
.count());
|
|
}
|
|
|
|
wait(Lock, RequestsCV, Wait);
|
|
}
|
|
Req = std::move(Requests.front());
|
|
// Leave it on the queue for now, so waiters don't see an empty queue.
|
|
} // unlock Mutex
|
|
|
|
{
|
|
std::lock_guard<Semaphore> BarrierLock(Barrier);
|
|
WithContext Guard(std::move(Req.Ctx));
|
|
trace::Span Tracer(Req.Name);
|
|
Req.Action();
|
|
}
|
|
|
|
{
|
|
std::lock_guard<std::mutex> Lock(Mutex);
|
|
Requests.pop_front();
|
|
}
|
|
RequestsCV.notify_all();
|
|
}
|
|
}
|
|
|
|
Deadline ASTWorker::scheduleLocked() {
|
|
if (Requests.empty())
|
|
return Deadline::infinity(); // Wait for new requests.
|
|
while (shouldSkipHeadLocked())
|
|
Requests.pop_front();
|
|
assert(!Requests.empty() && "skipped the whole queue");
|
|
// Some updates aren't dead yet, but never end up being used.
|
|
// e.g. the first keystroke is live until obsoleted by the second.
|
|
// We debounce "maybe-unused" writes, sleeping 500ms in case they become dead.
|
|
// But don't delay reads (including updates where diagnostics are needed).
|
|
for (const auto &R : Requests)
|
|
if (R.UpdateType == None || R.UpdateType == WantDiagnostics::Yes)
|
|
return Deadline::zero();
|
|
// Front request needs to be debounced, so determine when we're ready.
|
|
Deadline D(Requests.front().AddTime + UpdateDebounce);
|
|
return D;
|
|
}
|
|
|
|
// Returns true if Requests.front() is a dead update that can be skipped.
|
|
bool ASTWorker::shouldSkipHeadLocked() const {
|
|
assert(!Requests.empty());
|
|
auto Next = Requests.begin();
|
|
auto UpdateType = Next->UpdateType;
|
|
if (!UpdateType) // Only skip updates.
|
|
return false;
|
|
++Next;
|
|
// An update is live if its AST might still be read.
|
|
// That is, if it's not immediately followed by another update.
|
|
if (Next == Requests.end() || !Next->UpdateType)
|
|
return false;
|
|
// The other way an update can be live is if its diagnostics might be used.
|
|
switch (*UpdateType) {
|
|
case WantDiagnostics::Yes:
|
|
return false; // Always used.
|
|
case WantDiagnostics::No:
|
|
return true; // Always dead.
|
|
case WantDiagnostics::Auto:
|
|
// Used unless followed by an update that generates diagnostics.
|
|
for (; Next != Requests.end(); ++Next)
|
|
if (Next->UpdateType == WantDiagnostics::Yes ||
|
|
Next->UpdateType == WantDiagnostics::Auto)
|
|
return true; // Prefer later diagnostics.
|
|
return false;
|
|
}
|
|
llvm_unreachable("Unknown WantDiagnostics");
|
|
}
|
|
|
|
bool ASTWorker::blockUntilIdle(Deadline Timeout) const {
|
|
std::unique_lock<std::mutex> Lock(Mutex);
|
|
return wait(Lock, RequestsCV, Timeout, [&] { return Requests.empty(); });
|
|
}
|
|
|
|
} // namespace
|
|
|
|
unsigned getDefaultAsyncThreadsCount() {
|
|
unsigned HardwareConcurrency = std::thread::hardware_concurrency();
|
|
// C++ standard says that hardware_concurrency()
|
|
// may return 0, fallback to 1 worker thread in
|
|
// that case.
|
|
if (HardwareConcurrency == 0)
|
|
return 1;
|
|
return HardwareConcurrency;
|
|
}
|
|
|
|
struct TUScheduler::FileData {
|
|
/// Latest inputs, passed to TUScheduler::update().
|
|
std::string Contents;
|
|
tooling::CompileCommand Command;
|
|
ASTWorkerHandle Worker;
|
|
};
|
|
|
|
TUScheduler::TUScheduler(unsigned AsyncThreadsCount,
|
|
bool StorePreamblesInMemory,
|
|
std::unique_ptr<ParsingCallbacks> Callbacks,
|
|
std::chrono::steady_clock::duration UpdateDebounce,
|
|
ASTRetentionPolicy RetentionPolicy)
|
|
: StorePreamblesInMemory(StorePreamblesInMemory),
|
|
PCHOps(std::make_shared<PCHContainerOperations>()),
|
|
Callbacks(Callbacks ? move(Callbacks)
|
|
: llvm::make_unique<ParsingCallbacks>()),
|
|
Barrier(AsyncThreadsCount),
|
|
IdleASTs(llvm::make_unique<ASTCache>(RetentionPolicy.MaxRetainedASTs)),
|
|
UpdateDebounce(UpdateDebounce) {
|
|
if (0 < AsyncThreadsCount) {
|
|
PreambleTasks.emplace();
|
|
WorkerThreads.emplace();
|
|
}
|
|
}
|
|
|
|
TUScheduler::~TUScheduler() {
|
|
// Notify all workers that they need to stop.
|
|
Files.clear();
|
|
|
|
// Wait for all in-flight tasks to finish.
|
|
if (PreambleTasks)
|
|
PreambleTasks->wait();
|
|
if (WorkerThreads)
|
|
WorkerThreads->wait();
|
|
}
|
|
|
|
bool TUScheduler::blockUntilIdle(Deadline D) const {
|
|
for (auto &File : Files)
|
|
if (!File.getValue()->Worker->blockUntilIdle(D))
|
|
return false;
|
|
if (PreambleTasks)
|
|
if (!PreambleTasks->wait(D))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
void TUScheduler::update(PathRef File, ParseInputs Inputs,
|
|
WantDiagnostics WantDiags,
|
|
unique_function<void(std::vector<Diag>)> OnUpdated) {
|
|
std::unique_ptr<FileData> &FD = Files[File];
|
|
if (!FD) {
|
|
// Create a new worker to process the AST-related tasks.
|
|
ASTWorkerHandle Worker = ASTWorker::create(
|
|
File, *IdleASTs, WorkerThreads ? WorkerThreads.getPointer() : nullptr,
|
|
Barrier, UpdateDebounce, PCHOps, StorePreamblesInMemory, *Callbacks);
|
|
FD = std::unique_ptr<FileData>(new FileData{
|
|
Inputs.Contents, Inputs.CompileCommand, std::move(Worker)});
|
|
} else {
|
|
FD->Contents = Inputs.Contents;
|
|
FD->Command = Inputs.CompileCommand;
|
|
}
|
|
FD->Worker->update(std::move(Inputs), WantDiags, std::move(OnUpdated));
|
|
}
|
|
|
|
void TUScheduler::remove(PathRef File) {
|
|
bool Removed = Files.erase(File);
|
|
if (!Removed)
|
|
elog("Trying to remove file from TUScheduler that is not tracked: {0}",
|
|
File);
|
|
}
|
|
|
|
void TUScheduler::runWithAST(
|
|
StringRef Name, PathRef File,
|
|
unique_function<void(Expected<InputsAndAST>)> Action) {
|
|
auto It = Files.find(File);
|
|
if (It == Files.end()) {
|
|
Action(make_error<LSPError>("trying to get AST for non-added document",
|
|
ErrorCode::InvalidParams));
|
|
return;
|
|
}
|
|
|
|
It->second->Worker->runWithAST(Name, std::move(Action));
|
|
}
|
|
|
|
void TUScheduler::runWithPreamble(
|
|
StringRef Name, PathRef File, PreambleConsistency Consistency,
|
|
unique_function<void(Expected<InputsAndPreamble>)> Action) {
|
|
auto It = Files.find(File);
|
|
if (It == Files.end()) {
|
|
Action(make_error<LSPError>("trying to get preamble for non-added document",
|
|
ErrorCode::InvalidParams));
|
|
return;
|
|
}
|
|
|
|
if (!PreambleTasks) {
|
|
trace::Span Tracer(Name);
|
|
SPAN_ATTACH(Tracer, "file", File);
|
|
std::shared_ptr<const PreambleData> Preamble =
|
|
It->second->Worker->getPossiblyStalePreamble();
|
|
Action(InputsAndPreamble{It->second->Contents, It->second->Command,
|
|
Preamble.get()});
|
|
return;
|
|
}
|
|
|
|
// Future is populated if the task needs a specific preamble.
|
|
std::future<std::shared_ptr<const PreambleData>> ConsistentPreamble;
|
|
if (Consistency == Consistent) {
|
|
std::promise<std::shared_ptr<const PreambleData>> Promise;
|
|
ConsistentPreamble = Promise.get_future();
|
|
It->second->Worker->getCurrentPreamble(Bind(
|
|
[](decltype(Promise) Promise,
|
|
std::shared_ptr<const PreambleData> Preamble) {
|
|
Promise.set_value(std::move(Preamble));
|
|
},
|
|
std::move(Promise)));
|
|
}
|
|
|
|
std::shared_ptr<const ASTWorker> Worker = It->second->Worker.lock();
|
|
auto Task = [Worker, this](std::string Name, std::string File,
|
|
std::string Contents,
|
|
tooling::CompileCommand Command, Context Ctx,
|
|
decltype(ConsistentPreamble) ConsistentPreamble,
|
|
decltype(Action) Action) mutable {
|
|
std::shared_ptr<const PreambleData> Preamble;
|
|
if (ConsistentPreamble.valid()) {
|
|
Preamble = ConsistentPreamble.get();
|
|
} else {
|
|
// We don't want to be running preamble actions before the preamble was
|
|
// built for the first time. This avoids extra work of processing the
|
|
// preamble headers in parallel multiple times.
|
|
Worker->waitForFirstPreamble();
|
|
Preamble = Worker->getPossiblyStalePreamble();
|
|
}
|
|
|
|
std::lock_guard<Semaphore> BarrierLock(Barrier);
|
|
WithContext Guard(std::move(Ctx));
|
|
trace::Span Tracer(Name);
|
|
SPAN_ATTACH(Tracer, "file", File);
|
|
Action(InputsAndPreamble{Contents, Command, Preamble.get()});
|
|
};
|
|
|
|
PreambleTasks->runAsync(
|
|
"task:" + sys::path::filename(File),
|
|
Bind(Task, std::string(Name), std::string(File), It->second->Contents,
|
|
It->second->Command,
|
|
Context::current().derive(kFileBeingProcessed, File),
|
|
std::move(ConsistentPreamble), std::move(Action)));
|
|
}
|
|
|
|
std::vector<std::pair<Path, std::size_t>>
|
|
TUScheduler::getUsedBytesPerFile() const {
|
|
std::vector<std::pair<Path, std::size_t>> Result;
|
|
Result.reserve(Files.size());
|
|
for (auto &&PathAndFile : Files)
|
|
Result.push_back(
|
|
{PathAndFile.first(), PathAndFile.second->Worker->getUsedBytes()});
|
|
return Result;
|
|
}
|
|
|
|
std::vector<Path> TUScheduler::getFilesWithCachedAST() const {
|
|
std::vector<Path> Result;
|
|
for (auto &&PathAndFile : Files) {
|
|
if (!PathAndFile.second->Worker->isASTCached())
|
|
continue;
|
|
Result.push_back(PathAndFile.first());
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
} // namespace clangd
|
|
} // namespace clang
|