forked from OSchip/llvm-project
3114 lines
116 KiB
C++
3114 lines
116 KiB
C++
//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This coordinates the per-module state used while generating code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenModule.h"
|
|
#include "CGCUDARuntime.h"
|
|
#include "CGCXXABI.h"
|
|
#include "CGCall.h"
|
|
#include "CGDebugInfo.h"
|
|
#include "CGObjCRuntime.h"
|
|
#include "CGOpenCLRuntime.h"
|
|
#include "CodeGenFunction.h"
|
|
#include "CodeGenTBAA.h"
|
|
#include "TargetInfo.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/Mangle.h"
|
|
#include "clang/AST/RecordLayout.h"
|
|
#include "clang/AST/RecursiveASTVisitor.h"
|
|
#include "clang/Basic/Builtins.h"
|
|
#include "clang/Basic/CharInfo.h"
|
|
#include "clang/Basic/Diagnostic.h"
|
|
#include "clang/Basic/Module.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Frontend/CodeGenOptions.h"
|
|
#include "llvm/ADT/APSInt.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/CallSite.h"
|
|
#include "llvm/Support/ConvertUTF.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Target/Mangler.h"
|
|
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
static const char AnnotationSection[] = "llvm.metadata";
|
|
|
|
static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
|
|
switch (CGM.getTarget().getCXXABI().getKind()) {
|
|
case TargetCXXABI::GenericAArch64:
|
|
case TargetCXXABI::GenericARM:
|
|
case TargetCXXABI::iOS:
|
|
case TargetCXXABI::GenericItanium:
|
|
return *CreateItaniumCXXABI(CGM);
|
|
case TargetCXXABI::Microsoft:
|
|
return *CreateMicrosoftCXXABI(CGM);
|
|
}
|
|
|
|
llvm_unreachable("invalid C++ ABI kind");
|
|
}
|
|
|
|
|
|
CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
|
|
llvm::Module &M, const llvm::DataLayout &TD,
|
|
DiagnosticsEngine &diags)
|
|
: Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
|
|
Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
|
|
ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
|
|
TheTargetCodeGenInfo(0), Types(*this), VTables(*this),
|
|
ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
|
|
DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
|
|
RRData(0), CFConstantStringClassRef(0),
|
|
ConstantStringClassRef(0), NSConstantStringType(0),
|
|
NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
|
|
BlockObjectAssign(0), BlockObjectDispose(0),
|
|
BlockDescriptorType(0), GenericBlockLiteralType(0),
|
|
LifetimeStartFn(0), LifetimeEndFn(0),
|
|
SanitizerBlacklist(CGO.SanitizerBlacklistFile),
|
|
SanOpts(SanitizerBlacklist.isIn(M) ?
|
|
SanitizerOptions::Disabled : LangOpts.Sanitize) {
|
|
|
|
// Initialize the type cache.
|
|
llvm::LLVMContext &LLVMContext = M.getContext();
|
|
VoidTy = llvm::Type::getVoidTy(LLVMContext);
|
|
Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
|
|
Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
|
|
Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
|
|
Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
|
|
FloatTy = llvm::Type::getFloatTy(LLVMContext);
|
|
DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
|
|
PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
|
|
PointerAlignInBytes =
|
|
C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
|
|
IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
|
|
IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
|
|
Int8PtrTy = Int8Ty->getPointerTo(0);
|
|
Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
|
|
|
|
RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
|
|
|
|
if (LangOpts.ObjC1)
|
|
createObjCRuntime();
|
|
if (LangOpts.OpenCL)
|
|
createOpenCLRuntime();
|
|
if (LangOpts.CUDA)
|
|
createCUDARuntime();
|
|
|
|
// Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
|
|
if (SanOpts.Thread ||
|
|
(!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
|
|
TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
|
|
ABI.getMangleContext());
|
|
|
|
// If debug info or coverage generation is enabled, create the CGDebugInfo
|
|
// object.
|
|
if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
|
|
CodeGenOpts.EmitGcovArcs ||
|
|
CodeGenOpts.EmitGcovNotes)
|
|
DebugInfo = new CGDebugInfo(*this);
|
|
|
|
Block.GlobalUniqueCount = 0;
|
|
|
|
if (C.getLangOpts().ObjCAutoRefCount)
|
|
ARCData = new ARCEntrypoints();
|
|
RRData = new RREntrypoints();
|
|
}
|
|
|
|
CodeGenModule::~CodeGenModule() {
|
|
delete ObjCRuntime;
|
|
delete OpenCLRuntime;
|
|
delete CUDARuntime;
|
|
delete TheTargetCodeGenInfo;
|
|
delete &ABI;
|
|
delete TBAA;
|
|
delete DebugInfo;
|
|
delete ARCData;
|
|
delete RRData;
|
|
}
|
|
|
|
void CodeGenModule::createObjCRuntime() {
|
|
// This is just isGNUFamily(), but we want to force implementors of
|
|
// new ABIs to decide how best to do this.
|
|
switch (LangOpts.ObjCRuntime.getKind()) {
|
|
case ObjCRuntime::GNUstep:
|
|
case ObjCRuntime::GCC:
|
|
case ObjCRuntime::ObjFW:
|
|
ObjCRuntime = CreateGNUObjCRuntime(*this);
|
|
return;
|
|
|
|
case ObjCRuntime::FragileMacOSX:
|
|
case ObjCRuntime::MacOSX:
|
|
case ObjCRuntime::iOS:
|
|
ObjCRuntime = CreateMacObjCRuntime(*this);
|
|
return;
|
|
}
|
|
llvm_unreachable("bad runtime kind");
|
|
}
|
|
|
|
void CodeGenModule::createOpenCLRuntime() {
|
|
OpenCLRuntime = new CGOpenCLRuntime(*this);
|
|
}
|
|
|
|
void CodeGenModule::createCUDARuntime() {
|
|
CUDARuntime = CreateNVCUDARuntime(*this);
|
|
}
|
|
|
|
void CodeGenModule::Release() {
|
|
EmitDeferred();
|
|
EmitCXXGlobalInitFunc();
|
|
EmitCXXGlobalDtorFunc();
|
|
EmitCXXThreadLocalInitFunc();
|
|
if (ObjCRuntime)
|
|
if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
|
|
AddGlobalCtor(ObjCInitFunction);
|
|
EmitCtorList(GlobalCtors, "llvm.global_ctors");
|
|
EmitCtorList(GlobalDtors, "llvm.global_dtors");
|
|
EmitGlobalAnnotations();
|
|
EmitStaticExternCAliases();
|
|
EmitLLVMUsed();
|
|
|
|
if (CodeGenOpts.Autolink &&
|
|
(Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
|
|
EmitModuleLinkOptions();
|
|
}
|
|
if (CodeGenOpts.DwarfVersion)
|
|
// We actually want the latest version when there are conflicts.
|
|
// We can change from Warning to Latest if such mode is supported.
|
|
getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
|
|
CodeGenOpts.DwarfVersion);
|
|
|
|
SimplifyPersonality();
|
|
|
|
if (getCodeGenOpts().EmitDeclMetadata)
|
|
EmitDeclMetadata();
|
|
|
|
if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
|
|
EmitCoverageFile();
|
|
|
|
if (DebugInfo)
|
|
DebugInfo->finalize();
|
|
}
|
|
|
|
void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
|
|
// Make sure that this type is translated.
|
|
Types.UpdateCompletedType(TD);
|
|
}
|
|
|
|
llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
|
|
if (!TBAA)
|
|
return 0;
|
|
return TBAA->getTBAAInfo(QTy);
|
|
}
|
|
|
|
llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
|
|
if (!TBAA)
|
|
return 0;
|
|
return TBAA->getTBAAInfoForVTablePtr();
|
|
}
|
|
|
|
llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
|
|
if (!TBAA)
|
|
return 0;
|
|
return TBAA->getTBAAStructInfo(QTy);
|
|
}
|
|
|
|
llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
|
|
if (!TBAA)
|
|
return 0;
|
|
return TBAA->getTBAAStructTypeInfo(QTy);
|
|
}
|
|
|
|
llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
|
|
llvm::MDNode *AccessN,
|
|
uint64_t O) {
|
|
if (!TBAA)
|
|
return 0;
|
|
return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
|
|
}
|
|
|
|
/// Decorate the instruction with a TBAA tag. For scalar TBAA, the tag
|
|
/// is the same as the type. For struct-path aware TBAA, the tag
|
|
/// is different from the type: base type, access type and offset.
|
|
/// When ConvertTypeToTag is true, we create a tag based on the scalar type.
|
|
void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
|
|
llvm::MDNode *TBAAInfo,
|
|
bool ConvertTypeToTag) {
|
|
if (ConvertTypeToTag && TBAA && CodeGenOpts.StructPathTBAA)
|
|
Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
|
|
TBAA->getTBAAScalarTagInfo(TBAAInfo));
|
|
else
|
|
Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
|
|
}
|
|
|
|
void CodeGenModule::Error(SourceLocation loc, StringRef error) {
|
|
unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
|
|
getDiags().Report(Context.getFullLoc(loc), diagID);
|
|
}
|
|
|
|
/// ErrorUnsupported - Print out an error that codegen doesn't support the
|
|
/// specified stmt yet.
|
|
void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
|
|
bool OmitOnError) {
|
|
if (OmitOnError && getDiags().hasErrorOccurred())
|
|
return;
|
|
unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot compile this %0 yet");
|
|
std::string Msg = Type;
|
|
getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
|
|
<< Msg << S->getSourceRange();
|
|
}
|
|
|
|
/// ErrorUnsupported - Print out an error that codegen doesn't support the
|
|
/// specified decl yet.
|
|
void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
|
|
bool OmitOnError) {
|
|
if (OmitOnError && getDiags().hasErrorOccurred())
|
|
return;
|
|
unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot compile this %0 yet");
|
|
std::string Msg = Type;
|
|
getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
|
|
}
|
|
|
|
llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
|
|
return llvm::ConstantInt::get(SizeTy, size.getQuantity());
|
|
}
|
|
|
|
void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
|
|
const NamedDecl *D) const {
|
|
// Internal definitions always have default visibility.
|
|
if (GV->hasLocalLinkage()) {
|
|
GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
|
|
return;
|
|
}
|
|
|
|
// Set visibility for definitions.
|
|
LinkageInfo LV = D->getLinkageAndVisibility();
|
|
if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
|
|
GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
|
|
}
|
|
|
|
static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
|
|
return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
|
|
.Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
|
|
.Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
|
|
.Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
|
|
.Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
|
|
}
|
|
|
|
static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
|
|
CodeGenOptions::TLSModel M) {
|
|
switch (M) {
|
|
case CodeGenOptions::GeneralDynamicTLSModel:
|
|
return llvm::GlobalVariable::GeneralDynamicTLSModel;
|
|
case CodeGenOptions::LocalDynamicTLSModel:
|
|
return llvm::GlobalVariable::LocalDynamicTLSModel;
|
|
case CodeGenOptions::InitialExecTLSModel:
|
|
return llvm::GlobalVariable::InitialExecTLSModel;
|
|
case CodeGenOptions::LocalExecTLSModel:
|
|
return llvm::GlobalVariable::LocalExecTLSModel;
|
|
}
|
|
llvm_unreachable("Invalid TLS model!");
|
|
}
|
|
|
|
void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
|
|
const VarDecl &D) const {
|
|
assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
|
|
|
|
llvm::GlobalVariable::ThreadLocalMode TLM;
|
|
TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
|
|
|
|
// Override the TLS model if it is explicitly specified.
|
|
if (D.hasAttr<TLSModelAttr>()) {
|
|
const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
|
|
TLM = GetLLVMTLSModel(Attr->getModel());
|
|
}
|
|
|
|
GV->setThreadLocalMode(TLM);
|
|
}
|
|
|
|
/// Set the symbol visibility of type information (vtable and RTTI)
|
|
/// associated with the given type.
|
|
void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
|
|
const CXXRecordDecl *RD,
|
|
TypeVisibilityKind TVK) const {
|
|
setGlobalVisibility(GV, RD);
|
|
|
|
if (!CodeGenOpts.HiddenWeakVTables)
|
|
return;
|
|
|
|
// We never want to drop the visibility for RTTI names.
|
|
if (TVK == TVK_ForRTTIName)
|
|
return;
|
|
|
|
// We want to drop the visibility to hidden for weak type symbols.
|
|
// This isn't possible if there might be unresolved references
|
|
// elsewhere that rely on this symbol being visible.
|
|
|
|
// This should be kept roughly in sync with setThunkVisibility
|
|
// in CGVTables.cpp.
|
|
|
|
// Preconditions.
|
|
if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
|
|
GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
|
|
return;
|
|
|
|
// Don't override an explicit visibility attribute.
|
|
if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
|
|
return;
|
|
|
|
switch (RD->getTemplateSpecializationKind()) {
|
|
// We have to disable the optimization if this is an EI definition
|
|
// because there might be EI declarations in other shared objects.
|
|
case TSK_ExplicitInstantiationDefinition:
|
|
case TSK_ExplicitInstantiationDeclaration:
|
|
return;
|
|
|
|
// Every use of a non-template class's type information has to emit it.
|
|
case TSK_Undeclared:
|
|
break;
|
|
|
|
// In theory, implicit instantiations can ignore the possibility of
|
|
// an explicit instantiation declaration because there necessarily
|
|
// must be an EI definition somewhere with default visibility. In
|
|
// practice, it's possible to have an explicit instantiation for
|
|
// an arbitrary template class, and linkers aren't necessarily able
|
|
// to deal with mixed-visibility symbols.
|
|
case TSK_ExplicitSpecialization:
|
|
case TSK_ImplicitInstantiation:
|
|
return;
|
|
}
|
|
|
|
// If there's a key function, there may be translation units
|
|
// that don't have the key function's definition. But ignore
|
|
// this if we're emitting RTTI under -fno-rtti.
|
|
if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
|
|
// FIXME: what should we do if we "lose" the key function during
|
|
// the emission of the file?
|
|
if (Context.getCurrentKeyFunction(RD))
|
|
return;
|
|
}
|
|
|
|
// Otherwise, drop the visibility to hidden.
|
|
GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
|
|
GV->setUnnamedAddr(true);
|
|
}
|
|
|
|
StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
|
|
const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
|
|
|
|
StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
|
|
if (!Str.empty())
|
|
return Str;
|
|
|
|
if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
|
|
IdentifierInfo *II = ND->getIdentifier();
|
|
assert(II && "Attempt to mangle unnamed decl.");
|
|
|
|
Str = II->getName();
|
|
return Str;
|
|
}
|
|
|
|
SmallString<256> Buffer;
|
|
llvm::raw_svector_ostream Out(Buffer);
|
|
if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
|
|
getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
|
|
else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
|
|
getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
|
|
else
|
|
getCXXABI().getMangleContext().mangleName(ND, Out);
|
|
|
|
// Allocate space for the mangled name.
|
|
Out.flush();
|
|
size_t Length = Buffer.size();
|
|
char *Name = MangledNamesAllocator.Allocate<char>(Length);
|
|
std::copy(Buffer.begin(), Buffer.end(), Name);
|
|
|
|
Str = StringRef(Name, Length);
|
|
|
|
return Str;
|
|
}
|
|
|
|
void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
|
|
const BlockDecl *BD) {
|
|
MangleContext &MangleCtx = getCXXABI().getMangleContext();
|
|
const Decl *D = GD.getDecl();
|
|
llvm::raw_svector_ostream Out(Buffer.getBuffer());
|
|
if (D == 0)
|
|
MangleCtx.mangleGlobalBlock(BD,
|
|
dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
|
|
else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
|
|
MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
|
|
else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
|
|
MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
|
|
else
|
|
MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
|
|
}
|
|
|
|
llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
|
|
return getModule().getNamedValue(Name);
|
|
}
|
|
|
|
/// AddGlobalCtor - Add a function to the list that will be called before
|
|
/// main() runs.
|
|
void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
|
|
// FIXME: Type coercion of void()* types.
|
|
GlobalCtors.push_back(std::make_pair(Ctor, Priority));
|
|
}
|
|
|
|
/// AddGlobalDtor - Add a function to the list that will be called
|
|
/// when the module is unloaded.
|
|
void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
|
|
// FIXME: Type coercion of void()* types.
|
|
GlobalDtors.push_back(std::make_pair(Dtor, Priority));
|
|
}
|
|
|
|
void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
|
|
// Ctor function type is void()*.
|
|
llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
|
|
llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
|
|
|
|
// Get the type of a ctor entry, { i32, void ()* }.
|
|
llvm::StructType *CtorStructTy =
|
|
llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
|
|
|
|
// Construct the constructor and destructor arrays.
|
|
SmallVector<llvm::Constant*, 8> Ctors;
|
|
for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
|
|
llvm::Constant *S[] = {
|
|
llvm::ConstantInt::get(Int32Ty, I->second, false),
|
|
llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
|
|
};
|
|
Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
|
|
}
|
|
|
|
if (!Ctors.empty()) {
|
|
llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
|
|
new llvm::GlobalVariable(TheModule, AT, false,
|
|
llvm::GlobalValue::AppendingLinkage,
|
|
llvm::ConstantArray::get(AT, Ctors),
|
|
GlobalName);
|
|
}
|
|
}
|
|
|
|
llvm::GlobalValue::LinkageTypes
|
|
CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
|
|
const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
|
|
|
|
if (isa<CXXDestructorDecl>(D) &&
|
|
getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
|
|
GD.getDtorType()))
|
|
return llvm::Function::LinkOnceODRLinkage;
|
|
|
|
GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
|
|
|
|
if (Linkage == GVA_Internal)
|
|
return llvm::Function::InternalLinkage;
|
|
|
|
if (D->hasAttr<DLLExportAttr>())
|
|
return llvm::Function::DLLExportLinkage;
|
|
|
|
if (D->hasAttr<WeakAttr>())
|
|
return llvm::Function::WeakAnyLinkage;
|
|
|
|
// In C99 mode, 'inline' functions are guaranteed to have a strong
|
|
// definition somewhere else, so we can use available_externally linkage.
|
|
if (Linkage == GVA_C99Inline)
|
|
return llvm::Function::AvailableExternallyLinkage;
|
|
|
|
// Note that Apple's kernel linker doesn't support symbol
|
|
// coalescing, so we need to avoid linkonce and weak linkages there.
|
|
// Normally, this means we just map to internal, but for explicit
|
|
// instantiations we'll map to external.
|
|
|
|
// In C++, the compiler has to emit a definition in every translation unit
|
|
// that references the function. We should use linkonce_odr because
|
|
// a) if all references in this translation unit are optimized away, we
|
|
// don't need to codegen it. b) if the function persists, it needs to be
|
|
// merged with other definitions. c) C++ has the ODR, so we know the
|
|
// definition is dependable.
|
|
if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
|
|
return !Context.getLangOpts().AppleKext
|
|
? llvm::Function::LinkOnceODRLinkage
|
|
: llvm::Function::InternalLinkage;
|
|
|
|
// An explicit instantiation of a template has weak linkage, since
|
|
// explicit instantiations can occur in multiple translation units
|
|
// and must all be equivalent. However, we are not allowed to
|
|
// throw away these explicit instantiations.
|
|
if (Linkage == GVA_ExplicitTemplateInstantiation)
|
|
return !Context.getLangOpts().AppleKext
|
|
? llvm::Function::WeakODRLinkage
|
|
: llvm::Function::ExternalLinkage;
|
|
|
|
// Otherwise, we have strong external linkage.
|
|
assert(Linkage == GVA_StrongExternal);
|
|
return llvm::Function::ExternalLinkage;
|
|
}
|
|
|
|
|
|
/// SetFunctionDefinitionAttributes - Set attributes for a global.
|
|
///
|
|
/// FIXME: This is currently only done for aliases and functions, but not for
|
|
/// variables (these details are set in EmitGlobalVarDefinition for variables).
|
|
void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
|
|
llvm::GlobalValue *GV) {
|
|
SetCommonAttributes(D, GV);
|
|
}
|
|
|
|
void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
|
|
const CGFunctionInfo &Info,
|
|
llvm::Function *F) {
|
|
unsigned CallingConv;
|
|
AttributeListType AttributeList;
|
|
ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
|
|
F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
|
|
F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
|
|
}
|
|
|
|
/// Determines whether the language options require us to model
|
|
/// unwind exceptions. We treat -fexceptions as mandating this
|
|
/// except under the fragile ObjC ABI with only ObjC exceptions
|
|
/// enabled. This means, for example, that C with -fexceptions
|
|
/// enables this.
|
|
static bool hasUnwindExceptions(const LangOptions &LangOpts) {
|
|
// If exceptions are completely disabled, obviously this is false.
|
|
if (!LangOpts.Exceptions) return false;
|
|
|
|
// If C++ exceptions are enabled, this is true.
|
|
if (LangOpts.CXXExceptions) return true;
|
|
|
|
// If ObjC exceptions are enabled, this depends on the ABI.
|
|
if (LangOpts.ObjCExceptions) {
|
|
return LangOpts.ObjCRuntime.hasUnwindExceptions();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
|
|
llvm::Function *F) {
|
|
llvm::AttrBuilder B;
|
|
|
|
if (CodeGenOpts.UnwindTables)
|
|
B.addAttribute(llvm::Attribute::UWTable);
|
|
|
|
if (!hasUnwindExceptions(LangOpts))
|
|
B.addAttribute(llvm::Attribute::NoUnwind);
|
|
|
|
if (D->hasAttr<NakedAttr>()) {
|
|
// Naked implies noinline: we should not be inlining such functions.
|
|
B.addAttribute(llvm::Attribute::Naked);
|
|
B.addAttribute(llvm::Attribute::NoInline);
|
|
} else if (D->hasAttr<NoInlineAttr>()) {
|
|
B.addAttribute(llvm::Attribute::NoInline);
|
|
} else if ((D->hasAttr<AlwaysInlineAttr>() ||
|
|
D->hasAttr<ForceInlineAttr>()) &&
|
|
!F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
|
|
llvm::Attribute::NoInline)) {
|
|
// (noinline wins over always_inline, and we can't specify both in IR)
|
|
B.addAttribute(llvm::Attribute::AlwaysInline);
|
|
}
|
|
|
|
if (D->hasAttr<ColdAttr>()) {
|
|
B.addAttribute(llvm::Attribute::OptimizeForSize);
|
|
B.addAttribute(llvm::Attribute::Cold);
|
|
}
|
|
|
|
if (D->hasAttr<MinSizeAttr>())
|
|
B.addAttribute(llvm::Attribute::MinSize);
|
|
|
|
if (LangOpts.getStackProtector() == LangOptions::SSPOn)
|
|
B.addAttribute(llvm::Attribute::StackProtect);
|
|
else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
|
|
B.addAttribute(llvm::Attribute::StackProtectReq);
|
|
|
|
// Add sanitizer attributes if function is not blacklisted.
|
|
if (!SanitizerBlacklist.isIn(*F)) {
|
|
// When AddressSanitizer is enabled, set SanitizeAddress attribute
|
|
// unless __attribute__((no_sanitize_address)) is used.
|
|
if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
|
|
B.addAttribute(llvm::Attribute::SanitizeAddress);
|
|
// Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
|
|
if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
|
|
B.addAttribute(llvm::Attribute::SanitizeThread);
|
|
}
|
|
// Same for MemorySanitizer and __attribute__((no_sanitize_memory))
|
|
if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
|
|
B.addAttribute(llvm::Attribute::SanitizeMemory);
|
|
}
|
|
|
|
F->addAttributes(llvm::AttributeSet::FunctionIndex,
|
|
llvm::AttributeSet::get(
|
|
F->getContext(), llvm::AttributeSet::FunctionIndex, B));
|
|
|
|
if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
|
|
F->setUnnamedAddr(true);
|
|
else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
|
|
if (MD->isVirtual())
|
|
F->setUnnamedAddr(true);
|
|
|
|
unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
|
|
if (alignment)
|
|
F->setAlignment(alignment);
|
|
|
|
// C++ ABI requires 2-byte alignment for member functions.
|
|
if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
|
|
F->setAlignment(2);
|
|
}
|
|
|
|
void CodeGenModule::SetCommonAttributes(const Decl *D,
|
|
llvm::GlobalValue *GV) {
|
|
if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
|
|
setGlobalVisibility(GV, ND);
|
|
else
|
|
GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
|
|
|
|
if (D->hasAttr<UsedAttr>())
|
|
AddUsedGlobal(GV);
|
|
|
|
if (const SectionAttr *SA = D->getAttr<SectionAttr>())
|
|
GV->setSection(SA->getName());
|
|
|
|
// Alias cannot have attributes. Filter them here.
|
|
if (!isa<llvm::GlobalAlias>(GV))
|
|
getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
|
|
}
|
|
|
|
void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
|
|
llvm::Function *F,
|
|
const CGFunctionInfo &FI) {
|
|
SetLLVMFunctionAttributes(D, FI, F);
|
|
SetLLVMFunctionAttributesForDefinition(D, F);
|
|
|
|
F->setLinkage(llvm::Function::InternalLinkage);
|
|
|
|
SetCommonAttributes(D, F);
|
|
}
|
|
|
|
void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
|
|
llvm::Function *F,
|
|
bool IsIncompleteFunction) {
|
|
if (unsigned IID = F->getIntrinsicID()) {
|
|
// If this is an intrinsic function, set the function's attributes
|
|
// to the intrinsic's attributes.
|
|
F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
|
|
(llvm::Intrinsic::ID)IID));
|
|
return;
|
|
}
|
|
|
|
const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
|
|
|
|
if (!IsIncompleteFunction)
|
|
SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
|
|
|
|
if (getCXXABI().HasThisReturn(GD)) {
|
|
assert(!F->arg_empty() &&
|
|
F->arg_begin()->getType()
|
|
->canLosslesslyBitCastTo(F->getReturnType()) &&
|
|
"unexpected this return");
|
|
F->addAttribute(1, llvm::Attribute::Returned);
|
|
}
|
|
|
|
// Only a few attributes are set on declarations; these may later be
|
|
// overridden by a definition.
|
|
|
|
if (FD->hasAttr<DLLImportAttr>()) {
|
|
F->setLinkage(llvm::Function::DLLImportLinkage);
|
|
} else if (FD->hasAttr<WeakAttr>() ||
|
|
FD->isWeakImported()) {
|
|
// "extern_weak" is overloaded in LLVM; we probably should have
|
|
// separate linkage types for this.
|
|
F->setLinkage(llvm::Function::ExternalWeakLinkage);
|
|
} else {
|
|
F->setLinkage(llvm::Function::ExternalLinkage);
|
|
|
|
LinkageInfo LV = FD->getLinkageAndVisibility();
|
|
if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
|
|
F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
|
|
}
|
|
}
|
|
|
|
if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
|
|
F->setSection(SA->getName());
|
|
|
|
// A replaceable global allocation function does not act like a builtin by
|
|
// default, only if it is invoked by a new-expression or delete-expression.
|
|
if (FD->isReplaceableGlobalAllocationFunction())
|
|
F->addAttribute(llvm::AttributeSet::FunctionIndex,
|
|
llvm::Attribute::NoBuiltin);
|
|
}
|
|
|
|
void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
|
|
assert(!GV->isDeclaration() &&
|
|
"Only globals with definition can force usage.");
|
|
LLVMUsed.push_back(GV);
|
|
}
|
|
|
|
void CodeGenModule::EmitLLVMUsed() {
|
|
// Don't create llvm.used if there is no need.
|
|
if (LLVMUsed.empty())
|
|
return;
|
|
|
|
// Convert LLVMUsed to what ConstantArray needs.
|
|
SmallVector<llvm::Constant*, 8> UsedArray;
|
|
UsedArray.resize(LLVMUsed.size());
|
|
for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
|
|
UsedArray[i] =
|
|
llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
|
|
Int8PtrTy);
|
|
}
|
|
|
|
if (UsedArray.empty())
|
|
return;
|
|
llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
|
|
|
|
llvm::GlobalVariable *GV =
|
|
new llvm::GlobalVariable(getModule(), ATy, false,
|
|
llvm::GlobalValue::AppendingLinkage,
|
|
llvm::ConstantArray::get(ATy, UsedArray),
|
|
"llvm.used");
|
|
|
|
GV->setSection("llvm.metadata");
|
|
}
|
|
|
|
void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
|
|
llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
|
|
LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
|
|
}
|
|
|
|
void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
|
|
llvm::SmallString<32> Opt;
|
|
getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
|
|
llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
|
|
LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
|
|
}
|
|
|
|
void CodeGenModule::AddDependentLib(StringRef Lib) {
|
|
llvm::SmallString<24> Opt;
|
|
getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
|
|
llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
|
|
LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
|
|
}
|
|
|
|
/// \brief Add link options implied by the given module, including modules
|
|
/// it depends on, using a postorder walk.
|
|
static void addLinkOptionsPostorder(CodeGenModule &CGM,
|
|
Module *Mod,
|
|
SmallVectorImpl<llvm::Value *> &Metadata,
|
|
llvm::SmallPtrSet<Module *, 16> &Visited) {
|
|
// Import this module's parent.
|
|
if (Mod->Parent && Visited.insert(Mod->Parent)) {
|
|
addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
|
|
}
|
|
|
|
// Import this module's dependencies.
|
|
for (unsigned I = Mod->Imports.size(); I > 0; --I) {
|
|
if (Visited.insert(Mod->Imports[I-1]))
|
|
addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
|
|
}
|
|
|
|
// Add linker options to link against the libraries/frameworks
|
|
// described by this module.
|
|
llvm::LLVMContext &Context = CGM.getLLVMContext();
|
|
for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
|
|
// Link against a framework. Frameworks are currently Darwin only, so we
|
|
// don't to ask TargetCodeGenInfo for the spelling of the linker option.
|
|
if (Mod->LinkLibraries[I-1].IsFramework) {
|
|
llvm::Value *Args[2] = {
|
|
llvm::MDString::get(Context, "-framework"),
|
|
llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
|
|
};
|
|
|
|
Metadata.push_back(llvm::MDNode::get(Context, Args));
|
|
continue;
|
|
}
|
|
|
|
// Link against a library.
|
|
llvm::SmallString<24> Opt;
|
|
CGM.getTargetCodeGenInfo().getDependentLibraryOption(
|
|
Mod->LinkLibraries[I-1].Library, Opt);
|
|
llvm::Value *OptString = llvm::MDString::get(Context, Opt);
|
|
Metadata.push_back(llvm::MDNode::get(Context, OptString));
|
|
}
|
|
}
|
|
|
|
void CodeGenModule::EmitModuleLinkOptions() {
|
|
// Collect the set of all of the modules we want to visit to emit link
|
|
// options, which is essentially the imported modules and all of their
|
|
// non-explicit child modules.
|
|
llvm::SetVector<clang::Module *> LinkModules;
|
|
llvm::SmallPtrSet<clang::Module *, 16> Visited;
|
|
SmallVector<clang::Module *, 16> Stack;
|
|
|
|
// Seed the stack with imported modules.
|
|
for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
|
|
MEnd = ImportedModules.end();
|
|
M != MEnd; ++M) {
|
|
if (Visited.insert(*M))
|
|
Stack.push_back(*M);
|
|
}
|
|
|
|
// Find all of the modules to import, making a little effort to prune
|
|
// non-leaf modules.
|
|
while (!Stack.empty()) {
|
|
clang::Module *Mod = Stack.back();
|
|
Stack.pop_back();
|
|
|
|
bool AnyChildren = false;
|
|
|
|
// Visit the submodules of this module.
|
|
for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
|
|
SubEnd = Mod->submodule_end();
|
|
Sub != SubEnd; ++Sub) {
|
|
// Skip explicit children; they need to be explicitly imported to be
|
|
// linked against.
|
|
if ((*Sub)->IsExplicit)
|
|
continue;
|
|
|
|
if (Visited.insert(*Sub)) {
|
|
Stack.push_back(*Sub);
|
|
AnyChildren = true;
|
|
}
|
|
}
|
|
|
|
// We didn't find any children, so add this module to the list of
|
|
// modules to link against.
|
|
if (!AnyChildren) {
|
|
LinkModules.insert(Mod);
|
|
}
|
|
}
|
|
|
|
// Add link options for all of the imported modules in reverse topological
|
|
// order. We don't do anything to try to order import link flags with respect
|
|
// to linker options inserted by things like #pragma comment().
|
|
SmallVector<llvm::Value *, 16> MetadataArgs;
|
|
Visited.clear();
|
|
for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
|
|
MEnd = LinkModules.end();
|
|
M != MEnd; ++M) {
|
|
if (Visited.insert(*M))
|
|
addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
|
|
}
|
|
std::reverse(MetadataArgs.begin(), MetadataArgs.end());
|
|
LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
|
|
|
|
// Add the linker options metadata flag.
|
|
getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
|
|
llvm::MDNode::get(getLLVMContext(),
|
|
LinkerOptionsMetadata));
|
|
}
|
|
|
|
void CodeGenModule::EmitDeferred() {
|
|
// Emit code for any potentially referenced deferred decls. Since a
|
|
// previously unused static decl may become used during the generation of code
|
|
// for a static function, iterate until no changes are made.
|
|
|
|
while (true) {
|
|
if (!DeferredVTables.empty()) {
|
|
EmitDeferredVTables();
|
|
|
|
// Emitting a v-table doesn't directly cause more v-tables to
|
|
// become deferred, although it can cause functions to be
|
|
// emitted that then need those v-tables.
|
|
assert(DeferredVTables.empty());
|
|
}
|
|
|
|
// Stop if we're out of both deferred v-tables and deferred declarations.
|
|
if (DeferredDeclsToEmit.empty()) break;
|
|
|
|
GlobalDecl D = DeferredDeclsToEmit.back();
|
|
DeferredDeclsToEmit.pop_back();
|
|
|
|
// Check to see if we've already emitted this. This is necessary
|
|
// for a couple of reasons: first, decls can end up in the
|
|
// deferred-decls queue multiple times, and second, decls can end
|
|
// up with definitions in unusual ways (e.g. by an extern inline
|
|
// function acquiring a strong function redefinition). Just
|
|
// ignore these cases.
|
|
//
|
|
// TODO: That said, looking this up multiple times is very wasteful.
|
|
StringRef Name = getMangledName(D);
|
|
llvm::GlobalValue *CGRef = GetGlobalValue(Name);
|
|
assert(CGRef && "Deferred decl wasn't referenced?");
|
|
|
|
if (!CGRef->isDeclaration())
|
|
continue;
|
|
|
|
// GlobalAlias::isDeclaration() defers to the aliasee, but for our
|
|
// purposes an alias counts as a definition.
|
|
if (isa<llvm::GlobalAlias>(CGRef))
|
|
continue;
|
|
|
|
// Otherwise, emit the definition and move on to the next one.
|
|
EmitGlobalDefinition(D);
|
|
}
|
|
}
|
|
|
|
void CodeGenModule::EmitGlobalAnnotations() {
|
|
if (Annotations.empty())
|
|
return;
|
|
|
|
// Create a new global variable for the ConstantStruct in the Module.
|
|
llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
|
|
Annotations[0]->getType(), Annotations.size()), Annotations);
|
|
llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
|
|
Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
|
|
"llvm.global.annotations");
|
|
gv->setSection(AnnotationSection);
|
|
}
|
|
|
|
llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
|
|
llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
|
|
if (i != AnnotationStrings.end())
|
|
return i->second;
|
|
|
|
// Not found yet, create a new global.
|
|
llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
|
|
llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
|
|
true, llvm::GlobalValue::PrivateLinkage, s, ".str");
|
|
gv->setSection(AnnotationSection);
|
|
gv->setUnnamedAddr(true);
|
|
AnnotationStrings[Str] = gv;
|
|
return gv;
|
|
}
|
|
|
|
llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
|
|
SourceManager &SM = getContext().getSourceManager();
|
|
PresumedLoc PLoc = SM.getPresumedLoc(Loc);
|
|
if (PLoc.isValid())
|
|
return EmitAnnotationString(PLoc.getFilename());
|
|
return EmitAnnotationString(SM.getBufferName(Loc));
|
|
}
|
|
|
|
llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
|
|
SourceManager &SM = getContext().getSourceManager();
|
|
PresumedLoc PLoc = SM.getPresumedLoc(L);
|
|
unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
|
|
SM.getExpansionLineNumber(L);
|
|
return llvm::ConstantInt::get(Int32Ty, LineNo);
|
|
}
|
|
|
|
llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
|
|
const AnnotateAttr *AA,
|
|
SourceLocation L) {
|
|
// Get the globals for file name, annotation, and the line number.
|
|
llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
|
|
*UnitGV = EmitAnnotationUnit(L),
|
|
*LineNoCst = EmitAnnotationLineNo(L);
|
|
|
|
// Create the ConstantStruct for the global annotation.
|
|
llvm::Constant *Fields[4] = {
|
|
llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
|
|
llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
|
|
llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
|
|
LineNoCst
|
|
};
|
|
return llvm::ConstantStruct::getAnon(Fields);
|
|
}
|
|
|
|
void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
|
|
llvm::GlobalValue *GV) {
|
|
assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
|
|
// Get the struct elements for these annotations.
|
|
for (specific_attr_iterator<AnnotateAttr>
|
|
ai = D->specific_attr_begin<AnnotateAttr>(),
|
|
ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
|
|
Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
|
|
}
|
|
|
|
bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
|
|
// Never defer when EmitAllDecls is specified.
|
|
if (LangOpts.EmitAllDecls)
|
|
return false;
|
|
|
|
return !getContext().DeclMustBeEmitted(Global);
|
|
}
|
|
|
|
llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
|
|
const CXXUuidofExpr* E) {
|
|
// Sema has verified that IIDSource has a __declspec(uuid()), and that its
|
|
// well-formed.
|
|
StringRef Uuid;
|
|
if (E->isTypeOperand())
|
|
Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
|
|
else {
|
|
// Special case: __uuidof(0) means an all-zero GUID.
|
|
Expr *Op = E->getExprOperand();
|
|
if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
|
|
Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
|
|
else
|
|
Uuid = "00000000-0000-0000-0000-000000000000";
|
|
}
|
|
std::string Name = "__uuid_" + Uuid.str();
|
|
|
|
// Look for an existing global.
|
|
if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
|
|
return GV;
|
|
|
|
llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
|
|
assert(Init && "failed to initialize as constant");
|
|
|
|
// GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
|
|
// first field is declared as "long", which for many targets is 8 bytes.
|
|
// Those architectures are not supported. (With the MS abi, long is always 4
|
|
// bytes.)
|
|
llvm::Type *GuidType = getTypes().ConvertType(E->getType());
|
|
if (Init->getType() != GuidType) {
|
|
DiagnosticsEngine &Diags = getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"__uuidof codegen is not supported on this architecture");
|
|
Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
|
|
Init = llvm::UndefValue::get(GuidType);
|
|
}
|
|
|
|
llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
|
|
/*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
|
|
GV->setUnnamedAddr(true);
|
|
return GV;
|
|
}
|
|
|
|
llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
|
|
const AliasAttr *AA = VD->getAttr<AliasAttr>();
|
|
assert(AA && "No alias?");
|
|
|
|
llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
|
|
|
|
// See if there is already something with the target's name in the module.
|
|
llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
|
|
if (Entry) {
|
|
unsigned AS = getContext().getTargetAddressSpace(VD->getType());
|
|
return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
|
|
}
|
|
|
|
llvm::Constant *Aliasee;
|
|
if (isa<llvm::FunctionType>(DeclTy))
|
|
Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
|
|
GlobalDecl(cast<FunctionDecl>(VD)),
|
|
/*ForVTable=*/false);
|
|
else
|
|
Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
|
|
llvm::PointerType::getUnqual(DeclTy), 0);
|
|
|
|
llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
|
|
F->setLinkage(llvm::Function::ExternalWeakLinkage);
|
|
WeakRefReferences.insert(F);
|
|
|
|
return Aliasee;
|
|
}
|
|
|
|
void CodeGenModule::EmitGlobal(GlobalDecl GD) {
|
|
const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
|
|
|
|
// Weak references don't produce any output by themselves.
|
|
if (Global->hasAttr<WeakRefAttr>())
|
|
return;
|
|
|
|
// If this is an alias definition (which otherwise looks like a declaration)
|
|
// emit it now.
|
|
if (Global->hasAttr<AliasAttr>())
|
|
return EmitAliasDefinition(GD);
|
|
|
|
// If this is CUDA, be selective about which declarations we emit.
|
|
if (LangOpts.CUDA) {
|
|
if (CodeGenOpts.CUDAIsDevice) {
|
|
if (!Global->hasAttr<CUDADeviceAttr>() &&
|
|
!Global->hasAttr<CUDAGlobalAttr>() &&
|
|
!Global->hasAttr<CUDAConstantAttr>() &&
|
|
!Global->hasAttr<CUDASharedAttr>())
|
|
return;
|
|
} else {
|
|
if (!Global->hasAttr<CUDAHostAttr>() && (
|
|
Global->hasAttr<CUDADeviceAttr>() ||
|
|
Global->hasAttr<CUDAConstantAttr>() ||
|
|
Global->hasAttr<CUDASharedAttr>()))
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Ignore declarations, they will be emitted on their first use.
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
|
|
// Forward declarations are emitted lazily on first use.
|
|
if (!FD->doesThisDeclarationHaveABody()) {
|
|
if (!FD->doesDeclarationForceExternallyVisibleDefinition())
|
|
return;
|
|
|
|
const FunctionDecl *InlineDefinition = 0;
|
|
FD->getBody(InlineDefinition);
|
|
|
|
StringRef MangledName = getMangledName(GD);
|
|
DeferredDecls.erase(MangledName);
|
|
EmitGlobalDefinition(InlineDefinition);
|
|
return;
|
|
}
|
|
} else {
|
|
const VarDecl *VD = cast<VarDecl>(Global);
|
|
assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
|
|
|
|
if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
|
|
return;
|
|
}
|
|
|
|
// Defer code generation when possible if this is a static definition, inline
|
|
// function etc. These we only want to emit if they are used.
|
|
if (!MayDeferGeneration(Global)) {
|
|
// Emit the definition if it can't be deferred.
|
|
EmitGlobalDefinition(GD);
|
|
return;
|
|
}
|
|
|
|
// If we're deferring emission of a C++ variable with an
|
|
// initializer, remember the order in which it appeared in the file.
|
|
if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
|
|
cast<VarDecl>(Global)->hasInit()) {
|
|
DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
|
|
CXXGlobalInits.push_back(0);
|
|
}
|
|
|
|
// If the value has already been used, add it directly to the
|
|
// DeferredDeclsToEmit list.
|
|
StringRef MangledName = getMangledName(GD);
|
|
if (GetGlobalValue(MangledName))
|
|
DeferredDeclsToEmit.push_back(GD);
|
|
else {
|
|
// Otherwise, remember that we saw a deferred decl with this name. The
|
|
// first use of the mangled name will cause it to move into
|
|
// DeferredDeclsToEmit.
|
|
DeferredDecls[MangledName] = GD;
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
struct FunctionIsDirectlyRecursive :
|
|
public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
|
|
const StringRef Name;
|
|
const Builtin::Context &BI;
|
|
bool Result;
|
|
FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
|
|
Name(N), BI(C), Result(false) {
|
|
}
|
|
typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
|
|
|
|
bool TraverseCallExpr(CallExpr *E) {
|
|
const FunctionDecl *FD = E->getDirectCallee();
|
|
if (!FD)
|
|
return true;
|
|
AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
|
|
if (Attr && Name == Attr->getLabel()) {
|
|
Result = true;
|
|
return false;
|
|
}
|
|
unsigned BuiltinID = FD->getBuiltinID();
|
|
if (!BuiltinID)
|
|
return true;
|
|
StringRef BuiltinName = BI.GetName(BuiltinID);
|
|
if (BuiltinName.startswith("__builtin_") &&
|
|
Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
|
|
Result = true;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
}
|
|
|
|
// isTriviallyRecursive - Check if this function calls another
|
|
// decl that, because of the asm attribute or the other decl being a builtin,
|
|
// ends up pointing to itself.
|
|
bool
|
|
CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
|
|
StringRef Name;
|
|
if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
|
|
// asm labels are a special kind of mangling we have to support.
|
|
AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
|
|
if (!Attr)
|
|
return false;
|
|
Name = Attr->getLabel();
|
|
} else {
|
|
Name = FD->getName();
|
|
}
|
|
|
|
FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
|
|
Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
|
|
return Walker.Result;
|
|
}
|
|
|
|
bool
|
|
CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
|
|
if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
|
|
return true;
|
|
const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl());
|
|
if (CodeGenOpts.OptimizationLevel == 0 &&
|
|
!F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
|
|
return false;
|
|
// PR9614. Avoid cases where the source code is lying to us. An available
|
|
// externally function should have an equivalent function somewhere else,
|
|
// but a function that calls itself is clearly not equivalent to the real
|
|
// implementation.
|
|
// This happens in glibc's btowc and in some configure checks.
|
|
return !isTriviallyRecursive(F);
|
|
}
|
|
|
|
/// If the type for the method's class was generated by
|
|
/// CGDebugInfo::createContextChain(), the cache contains only a
|
|
/// limited DIType without any declarations. Since EmitFunctionStart()
|
|
/// needs to find the canonical declaration for each method, we need
|
|
/// to construct the complete type prior to emitting the method.
|
|
void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
|
|
if (!D->isInstance())
|
|
return;
|
|
|
|
if (CGDebugInfo *DI = getModuleDebugInfo())
|
|
if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
|
|
const PointerType *ThisPtr =
|
|
cast<PointerType>(D->getThisType(getContext()));
|
|
DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
|
|
}
|
|
}
|
|
|
|
void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
|
|
const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
|
|
|
|
PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
|
|
Context.getSourceManager(),
|
|
"Generating code for declaration");
|
|
|
|
if (isa<FunctionDecl>(D)) {
|
|
// At -O0, don't generate IR for functions with available_externally
|
|
// linkage.
|
|
if (!shouldEmitFunction(GD))
|
|
return;
|
|
|
|
if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
|
|
CompleteDIClassType(Method);
|
|
// Make sure to emit the definition(s) before we emit the thunks.
|
|
// This is necessary for the generation of certain thunks.
|
|
if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
|
|
EmitCXXConstructor(CD, GD.getCtorType());
|
|
else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
|
|
EmitCXXDestructor(DD, GD.getDtorType());
|
|
else
|
|
EmitGlobalFunctionDefinition(GD);
|
|
|
|
if (Method->isVirtual())
|
|
getVTables().EmitThunks(GD);
|
|
|
|
return;
|
|
}
|
|
|
|
return EmitGlobalFunctionDefinition(GD);
|
|
}
|
|
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(D))
|
|
return EmitGlobalVarDefinition(VD);
|
|
|
|
llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
|
|
}
|
|
|
|
/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
|
|
/// module, create and return an llvm Function with the specified type. If there
|
|
/// is something in the module with the specified name, return it potentially
|
|
/// bitcasted to the right type.
|
|
///
|
|
/// If D is non-null, it specifies a decl that correspond to this. This is used
|
|
/// to set the attributes on the function when it is first created.
|
|
llvm::Constant *
|
|
CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
|
|
llvm::Type *Ty,
|
|
GlobalDecl GD, bool ForVTable,
|
|
llvm::AttributeSet ExtraAttrs) {
|
|
const Decl *D = GD.getDecl();
|
|
|
|
// Lookup the entry, lazily creating it if necessary.
|
|
llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
|
|
if (Entry) {
|
|
if (WeakRefReferences.erase(Entry)) {
|
|
const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
|
|
if (FD && !FD->hasAttr<WeakAttr>())
|
|
Entry->setLinkage(llvm::Function::ExternalLinkage);
|
|
}
|
|
|
|
if (Entry->getType()->getElementType() == Ty)
|
|
return Entry;
|
|
|
|
// Make sure the result is of the correct type.
|
|
return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
|
|
}
|
|
|
|
// All MSVC dtors other than the base dtor are linkonce_odr and delegate to
|
|
// each other bottoming out with the base dtor. Therefore we emit non-base
|
|
// dtors on usage, even if there is no dtor definition in the TU.
|
|
if (D && isa<CXXDestructorDecl>(D) &&
|
|
getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
|
|
GD.getDtorType()))
|
|
DeferredDeclsToEmit.push_back(GD);
|
|
|
|
// This function doesn't have a complete type (for example, the return
|
|
// type is an incomplete struct). Use a fake type instead, and make
|
|
// sure not to try to set attributes.
|
|
bool IsIncompleteFunction = false;
|
|
|
|
llvm::FunctionType *FTy;
|
|
if (isa<llvm::FunctionType>(Ty)) {
|
|
FTy = cast<llvm::FunctionType>(Ty);
|
|
} else {
|
|
FTy = llvm::FunctionType::get(VoidTy, false);
|
|
IsIncompleteFunction = true;
|
|
}
|
|
|
|
llvm::Function *F = llvm::Function::Create(FTy,
|
|
llvm::Function::ExternalLinkage,
|
|
MangledName, &getModule());
|
|
assert(F->getName() == MangledName && "name was uniqued!");
|
|
if (D)
|
|
SetFunctionAttributes(GD, F, IsIncompleteFunction);
|
|
if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
|
|
llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
|
|
F->addAttributes(llvm::AttributeSet::FunctionIndex,
|
|
llvm::AttributeSet::get(VMContext,
|
|
llvm::AttributeSet::FunctionIndex,
|
|
B));
|
|
}
|
|
|
|
// This is the first use or definition of a mangled name. If there is a
|
|
// deferred decl with this name, remember that we need to emit it at the end
|
|
// of the file.
|
|
llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
|
|
if (DDI != DeferredDecls.end()) {
|
|
// Move the potentially referenced deferred decl to the DeferredDeclsToEmit
|
|
// list, and remove it from DeferredDecls (since we don't need it anymore).
|
|
DeferredDeclsToEmit.push_back(DDI->second);
|
|
DeferredDecls.erase(DDI);
|
|
|
|
// Otherwise, there are cases we have to worry about where we're
|
|
// using a declaration for which we must emit a definition but where
|
|
// we might not find a top-level definition:
|
|
// - member functions defined inline in their classes
|
|
// - friend functions defined inline in some class
|
|
// - special member functions with implicit definitions
|
|
// If we ever change our AST traversal to walk into class methods,
|
|
// this will be unnecessary.
|
|
//
|
|
// We also don't emit a definition for a function if it's going to be an entry
|
|
// in a vtable, unless it's already marked as used.
|
|
} else if (getLangOpts().CPlusPlus && D) {
|
|
// Look for a declaration that's lexically in a record.
|
|
const FunctionDecl *FD = cast<FunctionDecl>(D);
|
|
FD = FD->getMostRecentDecl();
|
|
do {
|
|
if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
|
|
if (FD->isImplicit() && !ForVTable) {
|
|
assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
|
|
DeferredDeclsToEmit.push_back(GD.getWithDecl(FD));
|
|
break;
|
|
} else if (FD->doesThisDeclarationHaveABody()) {
|
|
DeferredDeclsToEmit.push_back(GD.getWithDecl(FD));
|
|
break;
|
|
}
|
|
}
|
|
FD = FD->getPreviousDecl();
|
|
} while (FD);
|
|
}
|
|
|
|
// Make sure the result is of the requested type.
|
|
if (!IsIncompleteFunction) {
|
|
assert(F->getType()->getElementType() == Ty);
|
|
return F;
|
|
}
|
|
|
|
llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
|
|
return llvm::ConstantExpr::getBitCast(F, PTy);
|
|
}
|
|
|
|
/// GetAddrOfFunction - Return the address of the given function. If Ty is
|
|
/// non-null, then this function will use the specified type if it has to
|
|
/// create it (this occurs when we see a definition of the function).
|
|
llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
|
|
llvm::Type *Ty,
|
|
bool ForVTable) {
|
|
// If there was no specific requested type, just convert it now.
|
|
if (!Ty)
|
|
Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
|
|
|
|
StringRef MangledName = getMangledName(GD);
|
|
return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
|
|
}
|
|
|
|
/// CreateRuntimeFunction - Create a new runtime function with the specified
|
|
/// type and name.
|
|
llvm::Constant *
|
|
CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
|
|
StringRef Name,
|
|
llvm::AttributeSet ExtraAttrs) {
|
|
llvm::Constant *C
|
|
= GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
|
|
ExtraAttrs);
|
|
if (llvm::Function *F = dyn_cast<llvm::Function>(C))
|
|
if (F->empty())
|
|
F->setCallingConv(getRuntimeCC());
|
|
return C;
|
|
}
|
|
|
|
/// isTypeConstant - Determine whether an object of this type can be emitted
|
|
/// as a constant.
|
|
///
|
|
/// If ExcludeCtor is true, the duration when the object's constructor runs
|
|
/// will not be considered. The caller will need to verify that the object is
|
|
/// not written to during its construction.
|
|
bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
|
|
if (!Ty.isConstant(Context) && !Ty->isReferenceType())
|
|
return false;
|
|
|
|
if (Context.getLangOpts().CPlusPlus) {
|
|
if (const CXXRecordDecl *Record
|
|
= Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
|
|
return ExcludeCtor && !Record->hasMutableFields() &&
|
|
Record->hasTrivialDestructor();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
|
|
/// create and return an llvm GlobalVariable with the specified type. If there
|
|
/// is something in the module with the specified name, return it potentially
|
|
/// bitcasted to the right type.
|
|
///
|
|
/// If D is non-null, it specifies a decl that correspond to this. This is used
|
|
/// to set the attributes on the global when it is first created.
|
|
llvm::Constant *
|
|
CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
|
|
llvm::PointerType *Ty,
|
|
const VarDecl *D,
|
|
bool UnnamedAddr) {
|
|
// Lookup the entry, lazily creating it if necessary.
|
|
llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
|
|
if (Entry) {
|
|
if (WeakRefReferences.erase(Entry)) {
|
|
if (D && !D->hasAttr<WeakAttr>())
|
|
Entry->setLinkage(llvm::Function::ExternalLinkage);
|
|
}
|
|
|
|
if (UnnamedAddr)
|
|
Entry->setUnnamedAddr(true);
|
|
|
|
if (Entry->getType() == Ty)
|
|
return Entry;
|
|
|
|
// Make sure the result is of the correct type.
|
|
return llvm::ConstantExpr::getBitCast(Entry, Ty);
|
|
}
|
|
|
|
// This is the first use or definition of a mangled name. If there is a
|
|
// deferred decl with this name, remember that we need to emit it at the end
|
|
// of the file.
|
|
llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
|
|
if (DDI != DeferredDecls.end()) {
|
|
// Move the potentially referenced deferred decl to the DeferredDeclsToEmit
|
|
// list, and remove it from DeferredDecls (since we don't need it anymore).
|
|
DeferredDeclsToEmit.push_back(DDI->second);
|
|
DeferredDecls.erase(DDI);
|
|
}
|
|
|
|
unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
|
|
llvm::GlobalVariable *GV =
|
|
new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
|
|
llvm::GlobalValue::ExternalLinkage,
|
|
0, MangledName, 0,
|
|
llvm::GlobalVariable::NotThreadLocal, AddrSpace);
|
|
|
|
// Handle things which are present even on external declarations.
|
|
if (D) {
|
|
// FIXME: This code is overly simple and should be merged with other global
|
|
// handling.
|
|
GV->setConstant(isTypeConstant(D->getType(), false));
|
|
|
|
// Set linkage and visibility in case we never see a definition.
|
|
LinkageInfo LV = D->getLinkageAndVisibility();
|
|
if (LV.getLinkage() != ExternalLinkage) {
|
|
// Don't set internal linkage on declarations.
|
|
} else {
|
|
if (D->hasAttr<DLLImportAttr>())
|
|
GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
|
|
else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
|
|
GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
|
|
|
|
// Set visibility on a declaration only if it's explicit.
|
|
if (LV.isVisibilityExplicit())
|
|
GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
|
|
}
|
|
|
|
if (D->getTLSKind()) {
|
|
if (D->getTLSKind() == VarDecl::TLS_Dynamic)
|
|
CXXThreadLocals.push_back(std::make_pair(D, GV));
|
|
setTLSMode(GV, *D);
|
|
}
|
|
}
|
|
|
|
if (AddrSpace != Ty->getAddressSpace())
|
|
return llvm::ConstantExpr::getBitCast(GV, Ty);
|
|
else
|
|
return GV;
|
|
}
|
|
|
|
|
|
llvm::GlobalVariable *
|
|
CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
|
|
llvm::Type *Ty,
|
|
llvm::GlobalValue::LinkageTypes Linkage) {
|
|
llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
|
|
llvm::GlobalVariable *OldGV = 0;
|
|
|
|
|
|
if (GV) {
|
|
// Check if the variable has the right type.
|
|
if (GV->getType()->getElementType() == Ty)
|
|
return GV;
|
|
|
|
// Because C++ name mangling, the only way we can end up with an already
|
|
// existing global with the same name is if it has been declared extern "C".
|
|
assert(GV->isDeclaration() && "Declaration has wrong type!");
|
|
OldGV = GV;
|
|
}
|
|
|
|
// Create a new variable.
|
|
GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
|
|
Linkage, 0, Name);
|
|
|
|
if (OldGV) {
|
|
// Replace occurrences of the old variable if needed.
|
|
GV->takeName(OldGV);
|
|
|
|
if (!OldGV->use_empty()) {
|
|
llvm::Constant *NewPtrForOldDecl =
|
|
llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
|
|
OldGV->replaceAllUsesWith(NewPtrForOldDecl);
|
|
}
|
|
|
|
OldGV->eraseFromParent();
|
|
}
|
|
|
|
return GV;
|
|
}
|
|
|
|
/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
|
|
/// given global variable. If Ty is non-null and if the global doesn't exist,
|
|
/// then it will be created with the specified type instead of whatever the
|
|
/// normal requested type would be.
|
|
llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
|
|
llvm::Type *Ty) {
|
|
assert(D->hasGlobalStorage() && "Not a global variable");
|
|
QualType ASTTy = D->getType();
|
|
if (Ty == 0)
|
|
Ty = getTypes().ConvertTypeForMem(ASTTy);
|
|
|
|
llvm::PointerType *PTy =
|
|
llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
|
|
|
|
StringRef MangledName = getMangledName(D);
|
|
return GetOrCreateLLVMGlobal(MangledName, PTy, D);
|
|
}
|
|
|
|
/// CreateRuntimeVariable - Create a new runtime global variable with the
|
|
/// specified type and name.
|
|
llvm::Constant *
|
|
CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
|
|
StringRef Name) {
|
|
return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
|
|
true);
|
|
}
|
|
|
|
void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
|
|
assert(!D->getInit() && "Cannot emit definite definitions here!");
|
|
|
|
if (MayDeferGeneration(D)) {
|
|
// If we have not seen a reference to this variable yet, place it
|
|
// into the deferred declarations table to be emitted if needed
|
|
// later.
|
|
StringRef MangledName = getMangledName(D);
|
|
if (!GetGlobalValue(MangledName)) {
|
|
DeferredDecls[MangledName] = D;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// The tentative definition is the only definition.
|
|
EmitGlobalVarDefinition(D);
|
|
}
|
|
|
|
CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
|
|
return Context.toCharUnitsFromBits(
|
|
TheDataLayout.getTypeStoreSizeInBits(Ty));
|
|
}
|
|
|
|
unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
|
|
unsigned AddrSpace) {
|
|
if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
|
|
if (D->hasAttr<CUDAConstantAttr>())
|
|
AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
|
|
else if (D->hasAttr<CUDASharedAttr>())
|
|
AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
|
|
else
|
|
AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
|
|
}
|
|
|
|
return AddrSpace;
|
|
}
|
|
|
|
template<typename SomeDecl>
|
|
void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
|
|
llvm::GlobalValue *GV) {
|
|
if (!getLangOpts().CPlusPlus)
|
|
return;
|
|
|
|
// Must have 'used' attribute, or else inline assembly can't rely on
|
|
// the name existing.
|
|
if (!D->template hasAttr<UsedAttr>())
|
|
return;
|
|
|
|
// Must have internal linkage and an ordinary name.
|
|
if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
|
|
return;
|
|
|
|
// Must be in an extern "C" context. Entities declared directly within
|
|
// a record are not extern "C" even if the record is in such a context.
|
|
const SomeDecl *First = D->getFirstDeclaration();
|
|
if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
|
|
return;
|
|
|
|
// OK, this is an internal linkage entity inside an extern "C" linkage
|
|
// specification. Make a note of that so we can give it the "expected"
|
|
// mangled name if nothing else is using that name.
|
|
std::pair<StaticExternCMap::iterator, bool> R =
|
|
StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
|
|
|
|
// If we have multiple internal linkage entities with the same name
|
|
// in extern "C" regions, none of them gets that name.
|
|
if (!R.second)
|
|
R.first->second = 0;
|
|
}
|
|
|
|
void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
|
|
llvm::Constant *Init = 0;
|
|
QualType ASTTy = D->getType();
|
|
CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
|
|
bool NeedsGlobalCtor = false;
|
|
bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
|
|
|
|
const VarDecl *InitDecl;
|
|
const Expr *InitExpr = D->getAnyInitializer(InitDecl);
|
|
|
|
if (!InitExpr) {
|
|
// This is a tentative definition; tentative definitions are
|
|
// implicitly initialized with { 0 }.
|
|
//
|
|
// Note that tentative definitions are only emitted at the end of
|
|
// a translation unit, so they should never have incomplete
|
|
// type. In addition, EmitTentativeDefinition makes sure that we
|
|
// never attempt to emit a tentative definition if a real one
|
|
// exists. A use may still exists, however, so we still may need
|
|
// to do a RAUW.
|
|
assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
|
|
Init = EmitNullConstant(D->getType());
|
|
} else {
|
|
initializedGlobalDecl = GlobalDecl(D);
|
|
Init = EmitConstantInit(*InitDecl);
|
|
|
|
if (!Init) {
|
|
QualType T = InitExpr->getType();
|
|
if (D->getType()->isReferenceType())
|
|
T = D->getType();
|
|
|
|
if (getLangOpts().CPlusPlus) {
|
|
Init = EmitNullConstant(T);
|
|
NeedsGlobalCtor = true;
|
|
} else {
|
|
ErrorUnsupported(D, "static initializer");
|
|
Init = llvm::UndefValue::get(getTypes().ConvertType(T));
|
|
}
|
|
} else {
|
|
// We don't need an initializer, so remove the entry for the delayed
|
|
// initializer position (just in case this entry was delayed) if we
|
|
// also don't need to register a destructor.
|
|
if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
|
|
DelayedCXXInitPosition.erase(D);
|
|
}
|
|
}
|
|
|
|
llvm::Type* InitType = Init->getType();
|
|
llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
|
|
|
|
// Strip off a bitcast if we got one back.
|
|
if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
|
|
assert(CE->getOpcode() == llvm::Instruction::BitCast ||
|
|
// all zero index gep.
|
|
CE->getOpcode() == llvm::Instruction::GetElementPtr);
|
|
Entry = CE->getOperand(0);
|
|
}
|
|
|
|
// Entry is now either a Function or GlobalVariable.
|
|
llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
|
|
|
|
// We have a definition after a declaration with the wrong type.
|
|
// We must make a new GlobalVariable* and update everything that used OldGV
|
|
// (a declaration or tentative definition) with the new GlobalVariable*
|
|
// (which will be a definition).
|
|
//
|
|
// This happens if there is a prototype for a global (e.g.
|
|
// "extern int x[];") and then a definition of a different type (e.g.
|
|
// "int x[10];"). This also happens when an initializer has a different type
|
|
// from the type of the global (this happens with unions).
|
|
if (GV == 0 ||
|
|
GV->getType()->getElementType() != InitType ||
|
|
GV->getType()->getAddressSpace() !=
|
|
GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
|
|
|
|
// Move the old entry aside so that we'll create a new one.
|
|
Entry->setName(StringRef());
|
|
|
|
// Make a new global with the correct type, this is now guaranteed to work.
|
|
GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
|
|
|
|
// Replace all uses of the old global with the new global
|
|
llvm::Constant *NewPtrForOldDecl =
|
|
llvm::ConstantExpr::getBitCast(GV, Entry->getType());
|
|
Entry->replaceAllUsesWith(NewPtrForOldDecl);
|
|
|
|
// Erase the old global, since it is no longer used.
|
|
cast<llvm::GlobalValue>(Entry)->eraseFromParent();
|
|
}
|
|
|
|
MaybeHandleStaticInExternC(D, GV);
|
|
|
|
if (D->hasAttr<AnnotateAttr>())
|
|
AddGlobalAnnotations(D, GV);
|
|
|
|
GV->setInitializer(Init);
|
|
|
|
// If it is safe to mark the global 'constant', do so now.
|
|
GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
|
|
isTypeConstant(D->getType(), true));
|
|
|
|
GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
|
|
|
|
// Set the llvm linkage type as appropriate.
|
|
llvm::GlobalValue::LinkageTypes Linkage =
|
|
GetLLVMLinkageVarDefinition(D, GV->isConstant());
|
|
GV->setLinkage(Linkage);
|
|
if (Linkage == llvm::GlobalVariable::CommonLinkage)
|
|
// common vars aren't constant even if declared const.
|
|
GV->setConstant(false);
|
|
|
|
SetCommonAttributes(D, GV);
|
|
|
|
// Emit the initializer function if necessary.
|
|
if (NeedsGlobalCtor || NeedsGlobalDtor)
|
|
EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
|
|
|
|
// If we are compiling with ASan, add metadata indicating dynamically
|
|
// initialized globals.
|
|
if (SanOpts.Address && NeedsGlobalCtor) {
|
|
llvm::Module &M = getModule();
|
|
|
|
llvm::NamedMDNode *DynamicInitializers =
|
|
M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
|
|
llvm::Value *GlobalToAdd[] = { GV };
|
|
llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
|
|
DynamicInitializers->addOperand(ThisGlobal);
|
|
}
|
|
|
|
// Emit global variable debug information.
|
|
if (CGDebugInfo *DI = getModuleDebugInfo())
|
|
if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
|
|
DI->EmitGlobalVariable(GV, D);
|
|
}
|
|
|
|
llvm::GlobalValue::LinkageTypes
|
|
CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) {
|
|
GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
|
|
if (Linkage == GVA_Internal)
|
|
return llvm::Function::InternalLinkage;
|
|
else if (D->hasAttr<DLLImportAttr>())
|
|
return llvm::Function::DLLImportLinkage;
|
|
else if (D->hasAttr<DLLExportAttr>())
|
|
return llvm::Function::DLLExportLinkage;
|
|
else if (D->hasAttr<SelectAnyAttr>()) {
|
|
// selectany symbols are externally visible, so use weak instead of
|
|
// linkonce. MSVC optimizes away references to const selectany globals, so
|
|
// all definitions should be the same and ODR linkage should be used.
|
|
// http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
|
|
return llvm::GlobalVariable::WeakODRLinkage;
|
|
} else if (D->hasAttr<WeakAttr>()) {
|
|
if (isConstant)
|
|
return llvm::GlobalVariable::WeakODRLinkage;
|
|
else
|
|
return llvm::GlobalVariable::WeakAnyLinkage;
|
|
} else if (Linkage == GVA_TemplateInstantiation ||
|
|
Linkage == GVA_ExplicitTemplateInstantiation)
|
|
return llvm::GlobalVariable::WeakODRLinkage;
|
|
else if (!getLangOpts().CPlusPlus &&
|
|
((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
|
|
D->getAttr<CommonAttr>()) &&
|
|
!D->hasExternalStorage() && !D->getInit() &&
|
|
!D->getAttr<SectionAttr>() && !D->getTLSKind() &&
|
|
!D->getAttr<WeakImportAttr>()) {
|
|
// Thread local vars aren't considered common linkage.
|
|
return llvm::GlobalVariable::CommonLinkage;
|
|
} else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
|
|
getTarget().getTriple().isMacOSX())
|
|
// On Darwin, the backing variable for a C++11 thread_local variable always
|
|
// has internal linkage; all accesses should just be calls to the
|
|
// Itanium-specified entry point, which has the normal linkage of the
|
|
// variable.
|
|
return llvm::GlobalValue::InternalLinkage;
|
|
return llvm::GlobalVariable::ExternalLinkage;
|
|
}
|
|
|
|
/// Replace the uses of a function that was declared with a non-proto type.
|
|
/// We want to silently drop extra arguments from call sites
|
|
static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
|
|
llvm::Function *newFn) {
|
|
// Fast path.
|
|
if (old->use_empty()) return;
|
|
|
|
llvm::Type *newRetTy = newFn->getReturnType();
|
|
SmallVector<llvm::Value*, 4> newArgs;
|
|
|
|
for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
|
|
ui != ue; ) {
|
|
llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
|
|
llvm::User *user = *use;
|
|
|
|
// Recognize and replace uses of bitcasts. Most calls to
|
|
// unprototyped functions will use bitcasts.
|
|
if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
|
|
if (bitcast->getOpcode() == llvm::Instruction::BitCast)
|
|
replaceUsesOfNonProtoConstant(bitcast, newFn);
|
|
continue;
|
|
}
|
|
|
|
// Recognize calls to the function.
|
|
llvm::CallSite callSite(user);
|
|
if (!callSite) continue;
|
|
if (!callSite.isCallee(use)) continue;
|
|
|
|
// If the return types don't match exactly, then we can't
|
|
// transform this call unless it's dead.
|
|
if (callSite->getType() != newRetTy && !callSite->use_empty())
|
|
continue;
|
|
|
|
// Get the call site's attribute list.
|
|
SmallVector<llvm::AttributeSet, 8> newAttrs;
|
|
llvm::AttributeSet oldAttrs = callSite.getAttributes();
|
|
|
|
// Collect any return attributes from the call.
|
|
if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
|
|
newAttrs.push_back(
|
|
llvm::AttributeSet::get(newFn->getContext(),
|
|
oldAttrs.getRetAttributes()));
|
|
|
|
// If the function was passed too few arguments, don't transform.
|
|
unsigned newNumArgs = newFn->arg_size();
|
|
if (callSite.arg_size() < newNumArgs) continue;
|
|
|
|
// If extra arguments were passed, we silently drop them.
|
|
// If any of the types mismatch, we don't transform.
|
|
unsigned argNo = 0;
|
|
bool dontTransform = false;
|
|
for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
|
|
ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
|
|
if (callSite.getArgument(argNo)->getType() != ai->getType()) {
|
|
dontTransform = true;
|
|
break;
|
|
}
|
|
|
|
// Add any parameter attributes.
|
|
if (oldAttrs.hasAttributes(argNo + 1))
|
|
newAttrs.
|
|
push_back(llvm::
|
|
AttributeSet::get(newFn->getContext(),
|
|
oldAttrs.getParamAttributes(argNo + 1)));
|
|
}
|
|
if (dontTransform)
|
|
continue;
|
|
|
|
if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
|
|
newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
|
|
oldAttrs.getFnAttributes()));
|
|
|
|
// Okay, we can transform this. Create the new call instruction and copy
|
|
// over the required information.
|
|
newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
|
|
|
|
llvm::CallSite newCall;
|
|
if (callSite.isCall()) {
|
|
newCall = llvm::CallInst::Create(newFn, newArgs, "",
|
|
callSite.getInstruction());
|
|
} else {
|
|
llvm::InvokeInst *oldInvoke =
|
|
cast<llvm::InvokeInst>(callSite.getInstruction());
|
|
newCall = llvm::InvokeInst::Create(newFn,
|
|
oldInvoke->getNormalDest(),
|
|
oldInvoke->getUnwindDest(),
|
|
newArgs, "",
|
|
callSite.getInstruction());
|
|
}
|
|
newArgs.clear(); // for the next iteration
|
|
|
|
if (!newCall->getType()->isVoidTy())
|
|
newCall->takeName(callSite.getInstruction());
|
|
newCall.setAttributes(
|
|
llvm::AttributeSet::get(newFn->getContext(), newAttrs));
|
|
newCall.setCallingConv(callSite.getCallingConv());
|
|
|
|
// Finally, remove the old call, replacing any uses with the new one.
|
|
if (!callSite->use_empty())
|
|
callSite->replaceAllUsesWith(newCall.getInstruction());
|
|
|
|
// Copy debug location attached to CI.
|
|
if (!callSite->getDebugLoc().isUnknown())
|
|
newCall->setDebugLoc(callSite->getDebugLoc());
|
|
callSite->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
|
|
/// implement a function with no prototype, e.g. "int foo() {}". If there are
|
|
/// existing call uses of the old function in the module, this adjusts them to
|
|
/// call the new function directly.
|
|
///
|
|
/// This is not just a cleanup: the always_inline pass requires direct calls to
|
|
/// functions to be able to inline them. If there is a bitcast in the way, it
|
|
/// won't inline them. Instcombine normally deletes these calls, but it isn't
|
|
/// run at -O0.
|
|
static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
|
|
llvm::Function *NewFn) {
|
|
// If we're redefining a global as a function, don't transform it.
|
|
if (!isa<llvm::Function>(Old)) return;
|
|
|
|
replaceUsesOfNonProtoConstant(Old, NewFn);
|
|
}
|
|
|
|
void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
|
|
TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
|
|
// If we have a definition, this might be a deferred decl. If the
|
|
// instantiation is explicit, make sure we emit it at the end.
|
|
if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
|
|
GetAddrOfGlobalVar(VD);
|
|
|
|
EmitTopLevelDecl(VD);
|
|
}
|
|
|
|
void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
|
|
const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
|
|
|
|
// Compute the function info and LLVM type.
|
|
const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
|
|
llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
|
|
|
|
// Get or create the prototype for the function.
|
|
llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
|
|
|
|
// Strip off a bitcast if we got one back.
|
|
if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
|
|
assert(CE->getOpcode() == llvm::Instruction::BitCast);
|
|
Entry = CE->getOperand(0);
|
|
}
|
|
|
|
|
|
if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
|
|
llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
|
|
|
|
// If the types mismatch then we have to rewrite the definition.
|
|
assert(OldFn->isDeclaration() &&
|
|
"Shouldn't replace non-declaration");
|
|
|
|
// F is the Function* for the one with the wrong type, we must make a new
|
|
// Function* and update everything that used F (a declaration) with the new
|
|
// Function* (which will be a definition).
|
|
//
|
|
// This happens if there is a prototype for a function
|
|
// (e.g. "int f()") and then a definition of a different type
|
|
// (e.g. "int f(int x)"). Move the old function aside so that it
|
|
// doesn't interfere with GetAddrOfFunction.
|
|
OldFn->setName(StringRef());
|
|
llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
|
|
|
|
// This might be an implementation of a function without a
|
|
// prototype, in which case, try to do special replacement of
|
|
// calls which match the new prototype. The really key thing here
|
|
// is that we also potentially drop arguments from the call site
|
|
// so as to make a direct call, which makes the inliner happier
|
|
// and suppresses a number of optimizer warnings (!) about
|
|
// dropping arguments.
|
|
if (!OldFn->use_empty()) {
|
|
ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
|
|
OldFn->removeDeadConstantUsers();
|
|
}
|
|
|
|
// Replace uses of F with the Function we will endow with a body.
|
|
if (!Entry->use_empty()) {
|
|
llvm::Constant *NewPtrForOldDecl =
|
|
llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
|
|
Entry->replaceAllUsesWith(NewPtrForOldDecl);
|
|
}
|
|
|
|
// Ok, delete the old function now, which is dead.
|
|
OldFn->eraseFromParent();
|
|
|
|
Entry = NewFn;
|
|
}
|
|
|
|
// We need to set linkage and visibility on the function before
|
|
// generating code for it because various parts of IR generation
|
|
// want to propagate this information down (e.g. to local static
|
|
// declarations).
|
|
llvm::Function *Fn = cast<llvm::Function>(Entry);
|
|
setFunctionLinkage(GD, Fn);
|
|
|
|
// FIXME: this is redundant with part of SetFunctionDefinitionAttributes
|
|
setGlobalVisibility(Fn, D);
|
|
|
|
MaybeHandleStaticInExternC(D, Fn);
|
|
|
|
CodeGenFunction(*this).GenerateCode(D, Fn, FI);
|
|
|
|
SetFunctionDefinitionAttributes(D, Fn);
|
|
SetLLVMFunctionAttributesForDefinition(D, Fn);
|
|
|
|
if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
|
|
AddGlobalCtor(Fn, CA->getPriority());
|
|
if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
|
|
AddGlobalDtor(Fn, DA->getPriority());
|
|
if (D->hasAttr<AnnotateAttr>())
|
|
AddGlobalAnnotations(D, Fn);
|
|
}
|
|
|
|
void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
|
|
const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
|
|
const AliasAttr *AA = D->getAttr<AliasAttr>();
|
|
assert(AA && "Not an alias?");
|
|
|
|
StringRef MangledName = getMangledName(GD);
|
|
|
|
// If there is a definition in the module, then it wins over the alias.
|
|
// This is dubious, but allow it to be safe. Just ignore the alias.
|
|
llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
|
|
if (Entry && !Entry->isDeclaration())
|
|
return;
|
|
|
|
llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
|
|
|
|
// Create a reference to the named value. This ensures that it is emitted
|
|
// if a deferred decl.
|
|
llvm::Constant *Aliasee;
|
|
if (isa<llvm::FunctionType>(DeclTy))
|
|
Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
|
|
/*ForVTable=*/false);
|
|
else
|
|
Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
|
|
llvm::PointerType::getUnqual(DeclTy), 0);
|
|
|
|
// Create the new alias itself, but don't set a name yet.
|
|
llvm::GlobalValue *GA =
|
|
new llvm::GlobalAlias(Aliasee->getType(),
|
|
llvm::Function::ExternalLinkage,
|
|
"", Aliasee, &getModule());
|
|
|
|
if (Entry) {
|
|
assert(Entry->isDeclaration());
|
|
|
|
// If there is a declaration in the module, then we had an extern followed
|
|
// by the alias, as in:
|
|
// extern int test6();
|
|
// ...
|
|
// int test6() __attribute__((alias("test7")));
|
|
//
|
|
// Remove it and replace uses of it with the alias.
|
|
GA->takeName(Entry);
|
|
|
|
Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
|
|
Entry->getType()));
|
|
Entry->eraseFromParent();
|
|
} else {
|
|
GA->setName(MangledName);
|
|
}
|
|
|
|
// Set attributes which are particular to an alias; this is a
|
|
// specialization of the attributes which may be set on a global
|
|
// variable/function.
|
|
if (D->hasAttr<DLLExportAttr>()) {
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
// The dllexport attribute is ignored for undefined symbols.
|
|
if (FD->hasBody())
|
|
GA->setLinkage(llvm::Function::DLLExportLinkage);
|
|
} else {
|
|
GA->setLinkage(llvm::Function::DLLExportLinkage);
|
|
}
|
|
} else if (D->hasAttr<WeakAttr>() ||
|
|
D->hasAttr<WeakRefAttr>() ||
|
|
D->isWeakImported()) {
|
|
GA->setLinkage(llvm::Function::WeakAnyLinkage);
|
|
}
|
|
|
|
SetCommonAttributes(D, GA);
|
|
}
|
|
|
|
llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
|
|
ArrayRef<llvm::Type*> Tys) {
|
|
return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
|
|
Tys);
|
|
}
|
|
|
|
static llvm::StringMapEntry<llvm::Constant*> &
|
|
GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
|
|
const StringLiteral *Literal,
|
|
bool TargetIsLSB,
|
|
bool &IsUTF16,
|
|
unsigned &StringLength) {
|
|
StringRef String = Literal->getString();
|
|
unsigned NumBytes = String.size();
|
|
|
|
// Check for simple case.
|
|
if (!Literal->containsNonAsciiOrNull()) {
|
|
StringLength = NumBytes;
|
|
return Map.GetOrCreateValue(String);
|
|
}
|
|
|
|
// Otherwise, convert the UTF8 literals into a string of shorts.
|
|
IsUTF16 = true;
|
|
|
|
SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
|
|
const UTF8 *FromPtr = (const UTF8 *)String.data();
|
|
UTF16 *ToPtr = &ToBuf[0];
|
|
|
|
(void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
|
|
&ToPtr, ToPtr + NumBytes,
|
|
strictConversion);
|
|
|
|
// ConvertUTF8toUTF16 returns the length in ToPtr.
|
|
StringLength = ToPtr - &ToBuf[0];
|
|
|
|
// Add an explicit null.
|
|
*ToPtr = 0;
|
|
return Map.
|
|
GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
|
|
(StringLength + 1) * 2));
|
|
}
|
|
|
|
static llvm::StringMapEntry<llvm::Constant*> &
|
|
GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
|
|
const StringLiteral *Literal,
|
|
unsigned &StringLength) {
|
|
StringRef String = Literal->getString();
|
|
StringLength = String.size();
|
|
return Map.GetOrCreateValue(String);
|
|
}
|
|
|
|
llvm::Constant *
|
|
CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
|
|
unsigned StringLength = 0;
|
|
bool isUTF16 = false;
|
|
llvm::StringMapEntry<llvm::Constant*> &Entry =
|
|
GetConstantCFStringEntry(CFConstantStringMap, Literal,
|
|
getDataLayout().isLittleEndian(),
|
|
isUTF16, StringLength);
|
|
|
|
if (llvm::Constant *C = Entry.getValue())
|
|
return C;
|
|
|
|
llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
|
|
llvm::Constant *Zeros[] = { Zero, Zero };
|
|
llvm::Value *V;
|
|
|
|
// If we don't already have it, get __CFConstantStringClassReference.
|
|
if (!CFConstantStringClassRef) {
|
|
llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
|
|
Ty = llvm::ArrayType::get(Ty, 0);
|
|
llvm::Constant *GV = CreateRuntimeVariable(Ty,
|
|
"__CFConstantStringClassReference");
|
|
// Decay array -> ptr
|
|
V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
|
|
CFConstantStringClassRef = V;
|
|
}
|
|
else
|
|
V = CFConstantStringClassRef;
|
|
|
|
QualType CFTy = getContext().getCFConstantStringType();
|
|
|
|
llvm::StructType *STy =
|
|
cast<llvm::StructType>(getTypes().ConvertType(CFTy));
|
|
|
|
llvm::Constant *Fields[4];
|
|
|
|
// Class pointer.
|
|
Fields[0] = cast<llvm::ConstantExpr>(V);
|
|
|
|
// Flags.
|
|
llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
|
|
Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
|
|
llvm::ConstantInt::get(Ty, 0x07C8);
|
|
|
|
// String pointer.
|
|
llvm::Constant *C = 0;
|
|
if (isUTF16) {
|
|
ArrayRef<uint16_t> Arr =
|
|
llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
|
|
const_cast<char *>(Entry.getKey().data())),
|
|
Entry.getKey().size() / 2);
|
|
C = llvm::ConstantDataArray::get(VMContext, Arr);
|
|
} else {
|
|
C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
|
|
}
|
|
|
|
llvm::GlobalValue::LinkageTypes Linkage;
|
|
if (isUTF16)
|
|
// FIXME: why do utf strings get "_" labels instead of "L" labels?
|
|
Linkage = llvm::GlobalValue::InternalLinkage;
|
|
else
|
|
// FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
|
|
// when using private linkage. It is not clear if this is a bug in ld
|
|
// or a reasonable new restriction.
|
|
Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
|
|
|
|
// Note: -fwritable-strings doesn't make the backing store strings of
|
|
// CFStrings writable. (See <rdar://problem/10657500>)
|
|
llvm::GlobalVariable *GV =
|
|
new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
|
|
Linkage, C, ".str");
|
|
GV->setUnnamedAddr(true);
|
|
// Don't enforce the target's minimum global alignment, since the only use
|
|
// of the string is via this class initializer.
|
|
if (isUTF16) {
|
|
CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
|
|
GV->setAlignment(Align.getQuantity());
|
|
} else {
|
|
CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
|
|
GV->setAlignment(Align.getQuantity());
|
|
}
|
|
|
|
// String.
|
|
Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
|
|
|
|
if (isUTF16)
|
|
// Cast the UTF16 string to the correct type.
|
|
Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
|
|
|
|
// String length.
|
|
Ty = getTypes().ConvertType(getContext().LongTy);
|
|
Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
|
|
|
|
// The struct.
|
|
C = llvm::ConstantStruct::get(STy, Fields);
|
|
GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
|
|
llvm::GlobalVariable::PrivateLinkage, C,
|
|
"_unnamed_cfstring_");
|
|
if (const char *Sect = getTarget().getCFStringSection())
|
|
GV->setSection(Sect);
|
|
Entry.setValue(GV);
|
|
|
|
return GV;
|
|
}
|
|
|
|
static RecordDecl *
|
|
CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
|
|
DeclContext *DC, IdentifierInfo *Id) {
|
|
SourceLocation Loc;
|
|
if (Ctx.getLangOpts().CPlusPlus)
|
|
return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
|
|
else
|
|
return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
|
|
}
|
|
|
|
llvm::Constant *
|
|
CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
|
|
unsigned StringLength = 0;
|
|
llvm::StringMapEntry<llvm::Constant*> &Entry =
|
|
GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
|
|
|
|
if (llvm::Constant *C = Entry.getValue())
|
|
return C;
|
|
|
|
llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
|
|
llvm::Constant *Zeros[] = { Zero, Zero };
|
|
llvm::Value *V;
|
|
// If we don't already have it, get _NSConstantStringClassReference.
|
|
if (!ConstantStringClassRef) {
|
|
std::string StringClass(getLangOpts().ObjCConstantStringClass);
|
|
llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
|
|
llvm::Constant *GV;
|
|
if (LangOpts.ObjCRuntime.isNonFragile()) {
|
|
std::string str =
|
|
StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
|
|
: "OBJC_CLASS_$_" + StringClass;
|
|
GV = getObjCRuntime().GetClassGlobal(str);
|
|
// Make sure the result is of the correct type.
|
|
llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
|
|
V = llvm::ConstantExpr::getBitCast(GV, PTy);
|
|
ConstantStringClassRef = V;
|
|
} else {
|
|
std::string str =
|
|
StringClass.empty() ? "_NSConstantStringClassReference"
|
|
: "_" + StringClass + "ClassReference";
|
|
llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
|
|
GV = CreateRuntimeVariable(PTy, str);
|
|
// Decay array -> ptr
|
|
V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
|
|
ConstantStringClassRef = V;
|
|
}
|
|
}
|
|
else
|
|
V = ConstantStringClassRef;
|
|
|
|
if (!NSConstantStringType) {
|
|
// Construct the type for a constant NSString.
|
|
RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
|
|
Context.getTranslationUnitDecl(),
|
|
&Context.Idents.get("__builtin_NSString"));
|
|
D->startDefinition();
|
|
|
|
QualType FieldTypes[3];
|
|
|
|
// const int *isa;
|
|
FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
|
|
// const char *str;
|
|
FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
|
|
// unsigned int length;
|
|
FieldTypes[2] = Context.UnsignedIntTy;
|
|
|
|
// Create fields
|
|
for (unsigned i = 0; i < 3; ++i) {
|
|
FieldDecl *Field = FieldDecl::Create(Context, D,
|
|
SourceLocation(),
|
|
SourceLocation(), 0,
|
|
FieldTypes[i], /*TInfo=*/0,
|
|
/*BitWidth=*/0,
|
|
/*Mutable=*/false,
|
|
ICIS_NoInit);
|
|
Field->setAccess(AS_public);
|
|
D->addDecl(Field);
|
|
}
|
|
|
|
D->completeDefinition();
|
|
QualType NSTy = Context.getTagDeclType(D);
|
|
NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
|
|
}
|
|
|
|
llvm::Constant *Fields[3];
|
|
|
|
// Class pointer.
|
|
Fields[0] = cast<llvm::ConstantExpr>(V);
|
|
|
|
// String pointer.
|
|
llvm::Constant *C =
|
|
llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
|
|
|
|
llvm::GlobalValue::LinkageTypes Linkage;
|
|
bool isConstant;
|
|
Linkage = llvm::GlobalValue::PrivateLinkage;
|
|
isConstant = !LangOpts.WritableStrings;
|
|
|
|
llvm::GlobalVariable *GV =
|
|
new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
|
|
".str");
|
|
GV->setUnnamedAddr(true);
|
|
// Don't enforce the target's minimum global alignment, since the only use
|
|
// of the string is via this class initializer.
|
|
CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
|
|
GV->setAlignment(Align.getQuantity());
|
|
Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
|
|
|
|
// String length.
|
|
llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
|
|
Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
|
|
|
|
// The struct.
|
|
C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
|
|
GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
|
|
llvm::GlobalVariable::PrivateLinkage, C,
|
|
"_unnamed_nsstring_");
|
|
// FIXME. Fix section.
|
|
if (const char *Sect =
|
|
LangOpts.ObjCRuntime.isNonFragile()
|
|
? getTarget().getNSStringNonFragileABISection()
|
|
: getTarget().getNSStringSection())
|
|
GV->setSection(Sect);
|
|
Entry.setValue(GV);
|
|
|
|
return GV;
|
|
}
|
|
|
|
QualType CodeGenModule::getObjCFastEnumerationStateType() {
|
|
if (ObjCFastEnumerationStateType.isNull()) {
|
|
RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
|
|
Context.getTranslationUnitDecl(),
|
|
&Context.Idents.get("__objcFastEnumerationState"));
|
|
D->startDefinition();
|
|
|
|
QualType FieldTypes[] = {
|
|
Context.UnsignedLongTy,
|
|
Context.getPointerType(Context.getObjCIdType()),
|
|
Context.getPointerType(Context.UnsignedLongTy),
|
|
Context.getConstantArrayType(Context.UnsignedLongTy,
|
|
llvm::APInt(32, 5), ArrayType::Normal, 0)
|
|
};
|
|
|
|
for (size_t i = 0; i < 4; ++i) {
|
|
FieldDecl *Field = FieldDecl::Create(Context,
|
|
D,
|
|
SourceLocation(),
|
|
SourceLocation(), 0,
|
|
FieldTypes[i], /*TInfo=*/0,
|
|
/*BitWidth=*/0,
|
|
/*Mutable=*/false,
|
|
ICIS_NoInit);
|
|
Field->setAccess(AS_public);
|
|
D->addDecl(Field);
|
|
}
|
|
|
|
D->completeDefinition();
|
|
ObjCFastEnumerationStateType = Context.getTagDeclType(D);
|
|
}
|
|
|
|
return ObjCFastEnumerationStateType;
|
|
}
|
|
|
|
llvm::Constant *
|
|
CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
|
|
assert(!E->getType()->isPointerType() && "Strings are always arrays");
|
|
|
|
// Don't emit it as the address of the string, emit the string data itself
|
|
// as an inline array.
|
|
if (E->getCharByteWidth() == 1) {
|
|
SmallString<64> Str(E->getString());
|
|
|
|
// Resize the string to the right size, which is indicated by its type.
|
|
const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
|
|
Str.resize(CAT->getSize().getZExtValue());
|
|
return llvm::ConstantDataArray::getString(VMContext, Str, false);
|
|
}
|
|
|
|
llvm::ArrayType *AType =
|
|
cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
|
|
llvm::Type *ElemTy = AType->getElementType();
|
|
unsigned NumElements = AType->getNumElements();
|
|
|
|
// Wide strings have either 2-byte or 4-byte elements.
|
|
if (ElemTy->getPrimitiveSizeInBits() == 16) {
|
|
SmallVector<uint16_t, 32> Elements;
|
|
Elements.reserve(NumElements);
|
|
|
|
for(unsigned i = 0, e = E->getLength(); i != e; ++i)
|
|
Elements.push_back(E->getCodeUnit(i));
|
|
Elements.resize(NumElements);
|
|
return llvm::ConstantDataArray::get(VMContext, Elements);
|
|
}
|
|
|
|
assert(ElemTy->getPrimitiveSizeInBits() == 32);
|
|
SmallVector<uint32_t, 32> Elements;
|
|
Elements.reserve(NumElements);
|
|
|
|
for(unsigned i = 0, e = E->getLength(); i != e; ++i)
|
|
Elements.push_back(E->getCodeUnit(i));
|
|
Elements.resize(NumElements);
|
|
return llvm::ConstantDataArray::get(VMContext, Elements);
|
|
}
|
|
|
|
/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
|
|
/// constant array for the given string literal.
|
|
llvm::Constant *
|
|
CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
|
|
CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
|
|
if (S->isAscii() || S->isUTF8()) {
|
|
SmallString<64> Str(S->getString());
|
|
|
|
// Resize the string to the right size, which is indicated by its type.
|
|
const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
|
|
Str.resize(CAT->getSize().getZExtValue());
|
|
return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
|
|
}
|
|
|
|
// FIXME: the following does not memoize wide strings.
|
|
llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
|
|
llvm::GlobalVariable *GV =
|
|
new llvm::GlobalVariable(getModule(),C->getType(),
|
|
!LangOpts.WritableStrings,
|
|
llvm::GlobalValue::PrivateLinkage,
|
|
C,".str");
|
|
|
|
GV->setAlignment(Align.getQuantity());
|
|
GV->setUnnamedAddr(true);
|
|
return GV;
|
|
}
|
|
|
|
/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
|
|
/// array for the given ObjCEncodeExpr node.
|
|
llvm::Constant *
|
|
CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
|
|
std::string Str;
|
|
getContext().getObjCEncodingForType(E->getEncodedType(), Str);
|
|
|
|
return GetAddrOfConstantCString(Str);
|
|
}
|
|
|
|
|
|
/// GenerateWritableString -- Creates storage for a string literal.
|
|
static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
|
|
bool constant,
|
|
CodeGenModule &CGM,
|
|
const char *GlobalName,
|
|
unsigned Alignment) {
|
|
// Create Constant for this string literal. Don't add a '\0'.
|
|
llvm::Constant *C =
|
|
llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
|
|
|
|
// Create a global variable for this string
|
|
llvm::GlobalVariable *GV =
|
|
new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
|
|
llvm::GlobalValue::PrivateLinkage,
|
|
C, GlobalName);
|
|
GV->setAlignment(Alignment);
|
|
GV->setUnnamedAddr(true);
|
|
return GV;
|
|
}
|
|
|
|
/// GetAddrOfConstantString - Returns a pointer to a character array
|
|
/// containing the literal. This contents are exactly that of the
|
|
/// given string, i.e. it will not be null terminated automatically;
|
|
/// see GetAddrOfConstantCString. Note that whether the result is
|
|
/// actually a pointer to an LLVM constant depends on
|
|
/// Feature.WriteableStrings.
|
|
///
|
|
/// The result has pointer to array type.
|
|
llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
|
|
const char *GlobalName,
|
|
unsigned Alignment) {
|
|
// Get the default prefix if a name wasn't specified.
|
|
if (!GlobalName)
|
|
GlobalName = ".str";
|
|
|
|
if (Alignment == 0)
|
|
Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
|
|
.getQuantity();
|
|
|
|
// Don't share any string literals if strings aren't constant.
|
|
if (LangOpts.WritableStrings)
|
|
return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
|
|
|
|
llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
|
|
ConstantStringMap.GetOrCreateValue(Str);
|
|
|
|
if (llvm::GlobalVariable *GV = Entry.getValue()) {
|
|
if (Alignment > GV->getAlignment()) {
|
|
GV->setAlignment(Alignment);
|
|
}
|
|
return GV;
|
|
}
|
|
|
|
// Create a global variable for this.
|
|
llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
|
|
Alignment);
|
|
Entry.setValue(GV);
|
|
return GV;
|
|
}
|
|
|
|
/// GetAddrOfConstantCString - Returns a pointer to a character
|
|
/// array containing the literal and a terminating '\0'
|
|
/// character. The result has pointer to array type.
|
|
llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
|
|
const char *GlobalName,
|
|
unsigned Alignment) {
|
|
StringRef StrWithNull(Str.c_str(), Str.size() + 1);
|
|
return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
|
|
}
|
|
|
|
llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
|
|
const MaterializeTemporaryExpr *E, const Expr *Init) {
|
|
assert((E->getStorageDuration() == SD_Static ||
|
|
E->getStorageDuration() == SD_Thread) && "not a global temporary");
|
|
const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl());
|
|
|
|
// If we're not materializing a subobject of the temporary, keep the
|
|
// cv-qualifiers from the type of the MaterializeTemporaryExpr.
|
|
QualType MaterializedType = Init->getType();
|
|
if (Init == E->GetTemporaryExpr())
|
|
MaterializedType = E->getType();
|
|
|
|
llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
|
|
if (Slot)
|
|
return Slot;
|
|
|
|
// FIXME: If an externally-visible declaration extends multiple temporaries,
|
|
// we need to give each temporary the same name in every translation unit (and
|
|
// we also need to make the temporaries externally-visible).
|
|
SmallString<256> Name;
|
|
llvm::raw_svector_ostream Out(Name);
|
|
getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
|
|
Out.flush();
|
|
|
|
APValue *Value = 0;
|
|
if (E->getStorageDuration() == SD_Static) {
|
|
// We might have a cached constant initializer for this temporary. Note
|
|
// that this might have a different value from the value computed by
|
|
// evaluating the initializer if the surrounding constant expression
|
|
// modifies the temporary.
|
|
Value = getContext().getMaterializedTemporaryValue(E, false);
|
|
if (Value && Value->isUninit())
|
|
Value = 0;
|
|
}
|
|
|
|
// Try evaluating it now, it might have a constant initializer.
|
|
Expr::EvalResult EvalResult;
|
|
if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
|
|
!EvalResult.hasSideEffects())
|
|
Value = &EvalResult.Val;
|
|
|
|
llvm::Constant *InitialValue = 0;
|
|
bool Constant = false;
|
|
llvm::Type *Type;
|
|
if (Value) {
|
|
// The temporary has a constant initializer, use it.
|
|
InitialValue = EmitConstantValue(*Value, MaterializedType, 0);
|
|
Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
|
|
Type = InitialValue->getType();
|
|
} else {
|
|
// No initializer, the initialization will be provided when we
|
|
// initialize the declaration which performed lifetime extension.
|
|
Type = getTypes().ConvertTypeForMem(MaterializedType);
|
|
}
|
|
|
|
// Create a global variable for this lifetime-extended temporary.
|
|
llvm::GlobalVariable *GV =
|
|
new llvm::GlobalVariable(getModule(), Type, Constant,
|
|
llvm::GlobalValue::PrivateLinkage,
|
|
InitialValue, Name.c_str());
|
|
GV->setAlignment(
|
|
getContext().getTypeAlignInChars(MaterializedType).getQuantity());
|
|
if (VD->getTLSKind())
|
|
setTLSMode(GV, *VD);
|
|
Slot = GV;
|
|
return GV;
|
|
}
|
|
|
|
/// EmitObjCPropertyImplementations - Emit information for synthesized
|
|
/// properties for an implementation.
|
|
void CodeGenModule::EmitObjCPropertyImplementations(const
|
|
ObjCImplementationDecl *D) {
|
|
for (ObjCImplementationDecl::propimpl_iterator
|
|
i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
|
|
ObjCPropertyImplDecl *PID = *i;
|
|
|
|
// Dynamic is just for type-checking.
|
|
if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
|
|
ObjCPropertyDecl *PD = PID->getPropertyDecl();
|
|
|
|
// Determine which methods need to be implemented, some may have
|
|
// been overridden. Note that ::isPropertyAccessor is not the method
|
|
// we want, that just indicates if the decl came from a
|
|
// property. What we want to know is if the method is defined in
|
|
// this implementation.
|
|
if (!D->getInstanceMethod(PD->getGetterName()))
|
|
CodeGenFunction(*this).GenerateObjCGetter(
|
|
const_cast<ObjCImplementationDecl *>(D), PID);
|
|
if (!PD->isReadOnly() &&
|
|
!D->getInstanceMethod(PD->getSetterName()))
|
|
CodeGenFunction(*this).GenerateObjCSetter(
|
|
const_cast<ObjCImplementationDecl *>(D), PID);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool needsDestructMethod(ObjCImplementationDecl *impl) {
|
|
const ObjCInterfaceDecl *iface = impl->getClassInterface();
|
|
for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
|
|
ivar; ivar = ivar->getNextIvar())
|
|
if (ivar->getType().isDestructedType())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// EmitObjCIvarInitializations - Emit information for ivar initialization
|
|
/// for an implementation.
|
|
void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
|
|
// We might need a .cxx_destruct even if we don't have any ivar initializers.
|
|
if (needsDestructMethod(D)) {
|
|
IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
|
|
Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
|
|
ObjCMethodDecl *DTORMethod =
|
|
ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
|
|
cxxSelector, getContext().VoidTy, 0, D,
|
|
/*isInstance=*/true, /*isVariadic=*/false,
|
|
/*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
|
|
/*isDefined=*/false, ObjCMethodDecl::Required);
|
|
D->addInstanceMethod(DTORMethod);
|
|
CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
|
|
D->setHasDestructors(true);
|
|
}
|
|
|
|
// If the implementation doesn't have any ivar initializers, we don't need
|
|
// a .cxx_construct.
|
|
if (D->getNumIvarInitializers() == 0)
|
|
return;
|
|
|
|
IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
|
|
Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
|
|
// The constructor returns 'self'.
|
|
ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
|
|
D->getLocation(),
|
|
D->getLocation(),
|
|
cxxSelector,
|
|
getContext().getObjCIdType(), 0,
|
|
D, /*isInstance=*/true,
|
|
/*isVariadic=*/false,
|
|
/*isPropertyAccessor=*/true,
|
|
/*isImplicitlyDeclared=*/true,
|
|
/*isDefined=*/false,
|
|
ObjCMethodDecl::Required);
|
|
D->addInstanceMethod(CTORMethod);
|
|
CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
|
|
D->setHasNonZeroConstructors(true);
|
|
}
|
|
|
|
/// EmitNamespace - Emit all declarations in a namespace.
|
|
void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
|
|
for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
|
|
I != E; ++I)
|
|
EmitTopLevelDecl(*I);
|
|
}
|
|
|
|
// EmitLinkageSpec - Emit all declarations in a linkage spec.
|
|
void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
|
|
if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
|
|
LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
|
|
ErrorUnsupported(LSD, "linkage spec");
|
|
return;
|
|
}
|
|
|
|
for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
|
|
I != E; ++I) {
|
|
// Meta-data for ObjC class includes references to implemented methods.
|
|
// Generate class's method definitions first.
|
|
if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
|
|
for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
|
|
MEnd = OID->meth_end();
|
|
M != MEnd; ++M)
|
|
EmitTopLevelDecl(*M);
|
|
}
|
|
EmitTopLevelDecl(*I);
|
|
}
|
|
}
|
|
|
|
/// EmitTopLevelDecl - Emit code for a single top level declaration.
|
|
void CodeGenModule::EmitTopLevelDecl(Decl *D) {
|
|
// If an error has occurred, stop code generation, but continue
|
|
// parsing and semantic analysis (to ensure all warnings and errors
|
|
// are emitted).
|
|
if (Diags.hasErrorOccurred())
|
|
return;
|
|
|
|
// Ignore dependent declarations.
|
|
if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
|
|
return;
|
|
|
|
switch (D->getKind()) {
|
|
case Decl::CXXConversion:
|
|
case Decl::CXXMethod:
|
|
case Decl::Function:
|
|
// Skip function templates
|
|
if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
|
|
cast<FunctionDecl>(D)->isLateTemplateParsed())
|
|
return;
|
|
|
|
EmitGlobal(cast<FunctionDecl>(D));
|
|
break;
|
|
|
|
case Decl::Var:
|
|
// Skip variable templates
|
|
if (cast<VarDecl>(D)->getDescribedVarTemplate())
|
|
return;
|
|
case Decl::VarTemplateSpecialization:
|
|
EmitGlobal(cast<VarDecl>(D));
|
|
break;
|
|
|
|
// Indirect fields from global anonymous structs and unions can be
|
|
// ignored; only the actual variable requires IR gen support.
|
|
case Decl::IndirectField:
|
|
break;
|
|
|
|
// C++ Decls
|
|
case Decl::Namespace:
|
|
EmitNamespace(cast<NamespaceDecl>(D));
|
|
break;
|
|
// No code generation needed.
|
|
case Decl::UsingShadow:
|
|
case Decl::Using:
|
|
case Decl::ClassTemplate:
|
|
case Decl::VarTemplate:
|
|
case Decl::VarTemplatePartialSpecialization:
|
|
case Decl::FunctionTemplate:
|
|
case Decl::TypeAliasTemplate:
|
|
case Decl::Block:
|
|
case Decl::Empty:
|
|
break;
|
|
case Decl::NamespaceAlias:
|
|
if (CGDebugInfo *DI = getModuleDebugInfo())
|
|
DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
|
|
return;
|
|
case Decl::UsingDirective: // using namespace X; [C++]
|
|
if (CGDebugInfo *DI = getModuleDebugInfo())
|
|
DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
|
|
return;
|
|
case Decl::CXXConstructor:
|
|
// Skip function templates
|
|
if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
|
|
cast<FunctionDecl>(D)->isLateTemplateParsed())
|
|
return;
|
|
|
|
getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
|
|
break;
|
|
case Decl::CXXDestructor:
|
|
if (cast<FunctionDecl>(D)->isLateTemplateParsed())
|
|
return;
|
|
getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
|
|
break;
|
|
|
|
case Decl::StaticAssert:
|
|
// Nothing to do.
|
|
break;
|
|
|
|
// Objective-C Decls
|
|
|
|
// Forward declarations, no (immediate) code generation.
|
|
case Decl::ObjCInterface:
|
|
case Decl::ObjCCategory:
|
|
break;
|
|
|
|
case Decl::ObjCProtocol: {
|
|
ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
|
|
if (Proto->isThisDeclarationADefinition())
|
|
ObjCRuntime->GenerateProtocol(Proto);
|
|
break;
|
|
}
|
|
|
|
case Decl::ObjCCategoryImpl:
|
|
// Categories have properties but don't support synthesize so we
|
|
// can ignore them here.
|
|
ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
|
|
break;
|
|
|
|
case Decl::ObjCImplementation: {
|
|
ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
|
|
EmitObjCPropertyImplementations(OMD);
|
|
EmitObjCIvarInitializations(OMD);
|
|
ObjCRuntime->GenerateClass(OMD);
|
|
// Emit global variable debug information.
|
|
if (CGDebugInfo *DI = getModuleDebugInfo())
|
|
if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
|
|
DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
|
|
OMD->getClassInterface()), OMD->getLocation());
|
|
break;
|
|
}
|
|
case Decl::ObjCMethod: {
|
|
ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
|
|
// If this is not a prototype, emit the body.
|
|
if (OMD->getBody())
|
|
CodeGenFunction(*this).GenerateObjCMethod(OMD);
|
|
break;
|
|
}
|
|
case Decl::ObjCCompatibleAlias:
|
|
ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
|
|
break;
|
|
|
|
case Decl::LinkageSpec:
|
|
EmitLinkageSpec(cast<LinkageSpecDecl>(D));
|
|
break;
|
|
|
|
case Decl::FileScopeAsm: {
|
|
FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
|
|
StringRef AsmString = AD->getAsmString()->getString();
|
|
|
|
const std::string &S = getModule().getModuleInlineAsm();
|
|
if (S.empty())
|
|
getModule().setModuleInlineAsm(AsmString);
|
|
else if (S.end()[-1] == '\n')
|
|
getModule().setModuleInlineAsm(S + AsmString.str());
|
|
else
|
|
getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
|
|
break;
|
|
}
|
|
|
|
case Decl::Import: {
|
|
ImportDecl *Import = cast<ImportDecl>(D);
|
|
|
|
// Ignore import declarations that come from imported modules.
|
|
if (clang::Module *Owner = Import->getOwningModule()) {
|
|
if (getLangOpts().CurrentModule.empty() ||
|
|
Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
|
|
break;
|
|
}
|
|
|
|
ImportedModules.insert(Import->getImportedModule());
|
|
break;
|
|
}
|
|
|
|
default:
|
|
// Make sure we handled everything we should, every other kind is a
|
|
// non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
|
|
// function. Need to recode Decl::Kind to do that easily.
|
|
assert(isa<TypeDecl>(D) && "Unsupported decl kind");
|
|
}
|
|
}
|
|
|
|
/// Turns the given pointer into a constant.
|
|
static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
|
|
const void *Ptr) {
|
|
uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
|
|
llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
|
|
return llvm::ConstantInt::get(i64, PtrInt);
|
|
}
|
|
|
|
static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
|
|
llvm::NamedMDNode *&GlobalMetadata,
|
|
GlobalDecl D,
|
|
llvm::GlobalValue *Addr) {
|
|
if (!GlobalMetadata)
|
|
GlobalMetadata =
|
|
CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
|
|
|
|
// TODO: should we report variant information for ctors/dtors?
|
|
llvm::Value *Ops[] = {
|
|
Addr,
|
|
GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
|
|
};
|
|
GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
|
|
}
|
|
|
|
/// For each function which is declared within an extern "C" region and marked
|
|
/// as 'used', but has internal linkage, create an alias from the unmangled
|
|
/// name to the mangled name if possible. People expect to be able to refer
|
|
/// to such functions with an unmangled name from inline assembly within the
|
|
/// same translation unit.
|
|
void CodeGenModule::EmitStaticExternCAliases() {
|
|
for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
|
|
E = StaticExternCValues.end();
|
|
I != E; ++I) {
|
|
IdentifierInfo *Name = I->first;
|
|
llvm::GlobalValue *Val = I->second;
|
|
if (Val && !getModule().getNamedValue(Name->getName()))
|
|
AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
|
|
Name->getName(), Val, &getModule()));
|
|
}
|
|
}
|
|
|
|
/// Emits metadata nodes associating all the global values in the
|
|
/// current module with the Decls they came from. This is useful for
|
|
/// projects using IR gen as a subroutine.
|
|
///
|
|
/// Since there's currently no way to associate an MDNode directly
|
|
/// with an llvm::GlobalValue, we create a global named metadata
|
|
/// with the name 'clang.global.decl.ptrs'.
|
|
void CodeGenModule::EmitDeclMetadata() {
|
|
llvm::NamedMDNode *GlobalMetadata = 0;
|
|
|
|
// StaticLocalDeclMap
|
|
for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
|
|
I = MangledDeclNames.begin(), E = MangledDeclNames.end();
|
|
I != E; ++I) {
|
|
llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
|
|
EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
|
|
}
|
|
}
|
|
|
|
/// Emits metadata nodes for all the local variables in the current
|
|
/// function.
|
|
void CodeGenFunction::EmitDeclMetadata() {
|
|
if (LocalDeclMap.empty()) return;
|
|
|
|
llvm::LLVMContext &Context = getLLVMContext();
|
|
|
|
// Find the unique metadata ID for this name.
|
|
unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
|
|
|
|
llvm::NamedMDNode *GlobalMetadata = 0;
|
|
|
|
for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
|
|
I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
|
|
const Decl *D = I->first;
|
|
llvm::Value *Addr = I->second;
|
|
|
|
if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
|
|
llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
|
|
Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
|
|
} else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
|
|
GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
|
|
EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeGenModule::EmitCoverageFile() {
|
|
if (!getCodeGenOpts().CoverageFile.empty()) {
|
|
if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
|
|
llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
|
|
llvm::LLVMContext &Ctx = TheModule.getContext();
|
|
llvm::MDString *CoverageFile =
|
|
llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
|
|
for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
|
|
llvm::MDNode *CU = CUNode->getOperand(i);
|
|
llvm::Value *node[] = { CoverageFile, CU };
|
|
llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
|
|
GCov->addOperand(N);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
|
|
QualType GuidType) {
|
|
// Sema has checked that all uuid strings are of the form
|
|
// "12345678-1234-1234-1234-1234567890ab".
|
|
assert(Uuid.size() == 36);
|
|
const char *Uuidstr = Uuid.data();
|
|
for (int i = 0; i < 36; ++i) {
|
|
if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
|
|
else assert(isHexDigit(Uuidstr[i]));
|
|
}
|
|
|
|
llvm::APInt Field0(32, StringRef(Uuidstr , 8), 16);
|
|
llvm::APInt Field1(16, StringRef(Uuidstr + 9, 4), 16);
|
|
llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
|
|
static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
|
|
|
|
APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
|
|
InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
|
|
InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
|
|
InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
|
|
APValue& Arr = InitStruct.getStructField(3);
|
|
Arr = APValue(APValue::UninitArray(), 8, 8);
|
|
for (int t = 0; t < 8; ++t)
|
|
Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
|
|
llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
|
|
|
|
return EmitConstantValue(InitStruct, GuidType);
|
|
}
|