forked from OSchip/llvm-project
2629 lines
100 KiB
C++
2629 lines
100 KiB
C++
//===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// These classes wrap the information about a call or function
|
|
// definition used to handle ABI compliancy.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CGCall.h"
|
|
#include "ABIInfo.h"
|
|
#include "CGCXXABI.h"
|
|
#include "CodeGenFunction.h"
|
|
#include "CodeGenModule.h"
|
|
#include "TargetInfo.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Frontend/CodeGenOptions.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/MC/SubtargetFeature.h"
|
|
#include "llvm/Support/CallSite.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
/***/
|
|
|
|
static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
|
|
switch (CC) {
|
|
default: return llvm::CallingConv::C;
|
|
case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
|
|
case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
|
|
case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
|
|
case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
|
|
case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
|
|
case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
|
|
// TODO: add support for CC_X86Pascal to llvm
|
|
}
|
|
}
|
|
|
|
/// Derives the 'this' type for codegen purposes, i.e. ignoring method
|
|
/// qualification.
|
|
/// FIXME: address space qualification?
|
|
static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
|
|
QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
|
|
return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
|
|
}
|
|
|
|
/// Returns the canonical formal type of the given C++ method.
|
|
static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
|
|
return MD->getType()->getCanonicalTypeUnqualified()
|
|
.getAs<FunctionProtoType>();
|
|
}
|
|
|
|
/// Returns the "extra-canonicalized" return type, which discards
|
|
/// qualifiers on the return type. Codegen doesn't care about them,
|
|
/// and it makes ABI code a little easier to be able to assume that
|
|
/// all parameter and return types are top-level unqualified.
|
|
static CanQualType GetReturnType(QualType RetTy) {
|
|
return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
|
|
}
|
|
|
|
/// Arrange the argument and result information for a value of the given
|
|
/// unprototyped freestanding function type.
|
|
const CGFunctionInfo &
|
|
CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
|
|
// When translating an unprototyped function type, always use a
|
|
// variadic type.
|
|
return arrangeLLVMFunctionInfo(FTNP->getResultType().getUnqualifiedType(),
|
|
None, FTNP->getExtInfo(), RequiredArgs(0));
|
|
}
|
|
|
|
/// Arrange the LLVM function layout for a value of the given function
|
|
/// type, on top of any implicit parameters already stored. Use the
|
|
/// given ExtInfo instead of the ExtInfo from the function type.
|
|
static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT,
|
|
SmallVectorImpl<CanQualType> &prefix,
|
|
CanQual<FunctionProtoType> FTP,
|
|
FunctionType::ExtInfo extInfo) {
|
|
RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
|
|
// FIXME: Kill copy.
|
|
for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
|
|
prefix.push_back(FTP->getArgType(i));
|
|
CanQualType resultType = FTP->getResultType().getUnqualifiedType();
|
|
return CGT.arrangeLLVMFunctionInfo(resultType, prefix, extInfo, required);
|
|
}
|
|
|
|
/// Arrange the argument and result information for a free function (i.e.
|
|
/// not a C++ or ObjC instance method) of the given type.
|
|
static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT,
|
|
SmallVectorImpl<CanQualType> &prefix,
|
|
CanQual<FunctionProtoType> FTP) {
|
|
return arrangeLLVMFunctionInfo(CGT, prefix, FTP, FTP->getExtInfo());
|
|
}
|
|
|
|
/// Given the formal ext-info of a C++ instance method, adjust it
|
|
/// according to the C++ ABI in effect.
|
|
static void adjustCXXMethodInfo(CodeGenTypes &CGT,
|
|
FunctionType::ExtInfo &extInfo,
|
|
bool isVariadic) {
|
|
if (extInfo.getCC() == CC_Default) {
|
|
CallingConv CC = CGT.getContext().getDefaultCXXMethodCallConv(isVariadic);
|
|
extInfo = extInfo.withCallingConv(CC);
|
|
}
|
|
}
|
|
|
|
/// Arrange the argument and result information for a free function (i.e.
|
|
/// not a C++ or ObjC instance method) of the given type.
|
|
static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT,
|
|
SmallVectorImpl<CanQualType> &prefix,
|
|
CanQual<FunctionProtoType> FTP) {
|
|
FunctionType::ExtInfo extInfo = FTP->getExtInfo();
|
|
adjustCXXMethodInfo(CGT, extInfo, FTP->isVariadic());
|
|
return arrangeLLVMFunctionInfo(CGT, prefix, FTP, extInfo);
|
|
}
|
|
|
|
/// Arrange the argument and result information for a value of the
|
|
/// given freestanding function type.
|
|
const CGFunctionInfo &
|
|
CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
|
|
SmallVector<CanQualType, 16> argTypes;
|
|
return ::arrangeFreeFunctionType(*this, argTypes, FTP);
|
|
}
|
|
|
|
static CallingConv getCallingConventionForDecl(const Decl *D) {
|
|
// Set the appropriate calling convention for the Function.
|
|
if (D->hasAttr<StdCallAttr>())
|
|
return CC_X86StdCall;
|
|
|
|
if (D->hasAttr<FastCallAttr>())
|
|
return CC_X86FastCall;
|
|
|
|
if (D->hasAttr<ThisCallAttr>())
|
|
return CC_X86ThisCall;
|
|
|
|
if (D->hasAttr<PascalAttr>())
|
|
return CC_X86Pascal;
|
|
|
|
if (PcsAttr *PCS = D->getAttr<PcsAttr>())
|
|
return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
|
|
|
|
if (D->hasAttr<PnaclCallAttr>())
|
|
return CC_PnaclCall;
|
|
|
|
if (D->hasAttr<IntelOclBiccAttr>())
|
|
return CC_IntelOclBicc;
|
|
|
|
return CC_C;
|
|
}
|
|
|
|
/// Arrange the argument and result information for a call to an
|
|
/// unknown C++ non-static member function of the given abstract type.
|
|
/// The member function must be an ordinary function, i.e. not a
|
|
/// constructor or destructor.
|
|
const CGFunctionInfo &
|
|
CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
|
|
const FunctionProtoType *FTP) {
|
|
SmallVector<CanQualType, 16> argTypes;
|
|
|
|
// Add the 'this' pointer.
|
|
argTypes.push_back(GetThisType(Context, RD));
|
|
|
|
return ::arrangeCXXMethodType(*this, argTypes,
|
|
FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
|
|
}
|
|
|
|
/// Arrange the argument and result information for a declaration or
|
|
/// definition of the given C++ non-static member function. The
|
|
/// member function must be an ordinary function, i.e. not a
|
|
/// constructor or destructor.
|
|
const CGFunctionInfo &
|
|
CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
|
|
assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!");
|
|
assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
|
|
|
|
CanQual<FunctionProtoType> prototype = GetFormalType(MD);
|
|
|
|
if (MD->isInstance()) {
|
|
// The abstract case is perfectly fine.
|
|
return arrangeCXXMethodType(MD->getParent(), prototype.getTypePtr());
|
|
}
|
|
|
|
return arrangeFreeFunctionType(prototype);
|
|
}
|
|
|
|
/// Arrange the argument and result information for a declaration
|
|
/// or definition to the given constructor variant.
|
|
const CGFunctionInfo &
|
|
CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
|
|
CXXCtorType ctorKind) {
|
|
SmallVector<CanQualType, 16> argTypes;
|
|
argTypes.push_back(GetThisType(Context, D->getParent()));
|
|
|
|
GlobalDecl GD(D, ctorKind);
|
|
CanQualType resultType =
|
|
TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy;
|
|
|
|
TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
|
|
|
|
CanQual<FunctionProtoType> FTP = GetFormalType(D);
|
|
|
|
RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size());
|
|
|
|
// Add the formal parameters.
|
|
for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
|
|
argTypes.push_back(FTP->getArgType(i));
|
|
|
|
FunctionType::ExtInfo extInfo = FTP->getExtInfo();
|
|
adjustCXXMethodInfo(*this, extInfo, FTP->isVariadic());
|
|
return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, required);
|
|
}
|
|
|
|
/// Arrange the argument and result information for a declaration,
|
|
/// definition, or call to the given destructor variant. It so
|
|
/// happens that all three cases produce the same information.
|
|
const CGFunctionInfo &
|
|
CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
|
|
CXXDtorType dtorKind) {
|
|
SmallVector<CanQualType, 2> argTypes;
|
|
argTypes.push_back(GetThisType(Context, D->getParent()));
|
|
|
|
GlobalDecl GD(D, dtorKind);
|
|
CanQualType resultType =
|
|
TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy;
|
|
|
|
TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
|
|
|
|
CanQual<FunctionProtoType> FTP = GetFormalType(D);
|
|
assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
|
|
assert(FTP->isVariadic() == 0 && "dtor with formal parameters");
|
|
|
|
FunctionType::ExtInfo extInfo = FTP->getExtInfo();
|
|
adjustCXXMethodInfo(*this, extInfo, false);
|
|
return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo,
|
|
RequiredArgs::All);
|
|
}
|
|
|
|
/// Arrange the argument and result information for the declaration or
|
|
/// definition of the given function.
|
|
const CGFunctionInfo &
|
|
CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
|
|
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
|
|
if (MD->isInstance())
|
|
return arrangeCXXMethodDeclaration(MD);
|
|
|
|
CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
|
|
|
|
assert(isa<FunctionType>(FTy));
|
|
|
|
// When declaring a function without a prototype, always use a
|
|
// non-variadic type.
|
|
if (isa<FunctionNoProtoType>(FTy)) {
|
|
CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
|
|
return arrangeLLVMFunctionInfo(noProto->getResultType(), None,
|
|
noProto->getExtInfo(), RequiredArgs::All);
|
|
}
|
|
|
|
assert(isa<FunctionProtoType>(FTy));
|
|
return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
|
|
}
|
|
|
|
/// Arrange the argument and result information for the declaration or
|
|
/// definition of an Objective-C method.
|
|
const CGFunctionInfo &
|
|
CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
|
|
// It happens that this is the same as a call with no optional
|
|
// arguments, except also using the formal 'self' type.
|
|
return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
|
|
}
|
|
|
|
/// Arrange the argument and result information for the function type
|
|
/// through which to perform a send to the given Objective-C method,
|
|
/// using the given receiver type. The receiver type is not always
|
|
/// the 'self' type of the method or even an Objective-C pointer type.
|
|
/// This is *not* the right method for actually performing such a
|
|
/// message send, due to the possibility of optional arguments.
|
|
const CGFunctionInfo &
|
|
CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
|
|
QualType receiverType) {
|
|
SmallVector<CanQualType, 16> argTys;
|
|
argTys.push_back(Context.getCanonicalParamType(receiverType));
|
|
argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
|
|
// FIXME: Kill copy?
|
|
for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
|
|
e = MD->param_end(); i != e; ++i) {
|
|
argTys.push_back(Context.getCanonicalParamType((*i)->getType()));
|
|
}
|
|
|
|
FunctionType::ExtInfo einfo;
|
|
einfo = einfo.withCallingConv(getCallingConventionForDecl(MD));
|
|
|
|
if (getContext().getLangOpts().ObjCAutoRefCount &&
|
|
MD->hasAttr<NSReturnsRetainedAttr>())
|
|
einfo = einfo.withProducesResult(true);
|
|
|
|
RequiredArgs required =
|
|
(MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
|
|
|
|
return arrangeLLVMFunctionInfo(GetReturnType(MD->getResultType()), argTys,
|
|
einfo, required);
|
|
}
|
|
|
|
const CGFunctionInfo &
|
|
CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
|
|
// FIXME: Do we need to handle ObjCMethodDecl?
|
|
const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
|
|
|
|
if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
|
|
return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
|
|
|
|
if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
|
|
return arrangeCXXDestructor(DD, GD.getDtorType());
|
|
|
|
return arrangeFunctionDeclaration(FD);
|
|
}
|
|
|
|
/// Arrange a call as unto a free function, except possibly with an
|
|
/// additional number of formal parameters considered required.
|
|
static const CGFunctionInfo &
|
|
arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
|
|
const CallArgList &args,
|
|
const FunctionType *fnType,
|
|
unsigned numExtraRequiredArgs) {
|
|
assert(args.size() >= numExtraRequiredArgs);
|
|
|
|
// In most cases, there are no optional arguments.
|
|
RequiredArgs required = RequiredArgs::All;
|
|
|
|
// If we have a variadic prototype, the required arguments are the
|
|
// extra prefix plus the arguments in the prototype.
|
|
if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
|
|
if (proto->isVariadic())
|
|
required = RequiredArgs(proto->getNumArgs() + numExtraRequiredArgs);
|
|
|
|
// If we don't have a prototype at all, but we're supposed to
|
|
// explicitly use the variadic convention for unprototyped calls,
|
|
// treat all of the arguments as required but preserve the nominal
|
|
// possibility of variadics.
|
|
} else if (CGT.CGM.getTargetCodeGenInfo()
|
|
.isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) {
|
|
required = RequiredArgs(args.size());
|
|
}
|
|
|
|
return CGT.arrangeFreeFunctionCall(fnType->getResultType(), args,
|
|
fnType->getExtInfo(), required);
|
|
}
|
|
|
|
/// Figure out the rules for calling a function with the given formal
|
|
/// type using the given arguments. The arguments are necessary
|
|
/// because the function might be unprototyped, in which case it's
|
|
/// target-dependent in crazy ways.
|
|
const CGFunctionInfo &
|
|
CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
|
|
const FunctionType *fnType) {
|
|
return arrangeFreeFunctionLikeCall(*this, args, fnType, 0);
|
|
}
|
|
|
|
/// A block function call is essentially a free-function call with an
|
|
/// extra implicit argument.
|
|
const CGFunctionInfo &
|
|
CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
|
|
const FunctionType *fnType) {
|
|
return arrangeFreeFunctionLikeCall(*this, args, fnType, 1);
|
|
}
|
|
|
|
const CGFunctionInfo &
|
|
CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
|
|
const CallArgList &args,
|
|
FunctionType::ExtInfo info,
|
|
RequiredArgs required) {
|
|
// FIXME: Kill copy.
|
|
SmallVector<CanQualType, 16> argTypes;
|
|
for (CallArgList::const_iterator i = args.begin(), e = args.end();
|
|
i != e; ++i)
|
|
argTypes.push_back(Context.getCanonicalParamType(i->Ty));
|
|
return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
|
|
required);
|
|
}
|
|
|
|
/// Arrange a call to a C++ method, passing the given arguments.
|
|
const CGFunctionInfo &
|
|
CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
|
|
const FunctionProtoType *FPT,
|
|
RequiredArgs required) {
|
|
// FIXME: Kill copy.
|
|
SmallVector<CanQualType, 16> argTypes;
|
|
for (CallArgList::const_iterator i = args.begin(), e = args.end();
|
|
i != e; ++i)
|
|
argTypes.push_back(Context.getCanonicalParamType(i->Ty));
|
|
|
|
FunctionType::ExtInfo info = FPT->getExtInfo();
|
|
adjustCXXMethodInfo(*this, info, FPT->isVariadic());
|
|
return arrangeLLVMFunctionInfo(GetReturnType(FPT->getResultType()),
|
|
argTypes, info, required);
|
|
}
|
|
|
|
const CGFunctionInfo &
|
|
CodeGenTypes::arrangeFunctionDeclaration(QualType resultType,
|
|
const FunctionArgList &args,
|
|
const FunctionType::ExtInfo &info,
|
|
bool isVariadic) {
|
|
// FIXME: Kill copy.
|
|
SmallVector<CanQualType, 16> argTypes;
|
|
for (FunctionArgList::const_iterator i = args.begin(), e = args.end();
|
|
i != e; ++i)
|
|
argTypes.push_back(Context.getCanonicalParamType((*i)->getType()));
|
|
|
|
RequiredArgs required =
|
|
(isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
|
|
return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
|
|
required);
|
|
}
|
|
|
|
const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
|
|
return arrangeLLVMFunctionInfo(getContext().VoidTy, None,
|
|
FunctionType::ExtInfo(), RequiredArgs::All);
|
|
}
|
|
|
|
/// Arrange the argument and result information for an abstract value
|
|
/// of a given function type. This is the method which all of the
|
|
/// above functions ultimately defer to.
|
|
const CGFunctionInfo &
|
|
CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
|
|
ArrayRef<CanQualType> argTypes,
|
|
FunctionType::ExtInfo info,
|
|
RequiredArgs required) {
|
|
#ifndef NDEBUG
|
|
for (ArrayRef<CanQualType>::const_iterator
|
|
I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
|
|
assert(I->isCanonicalAsParam());
|
|
#endif
|
|
|
|
unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
|
|
|
|
// Lookup or create unique function info.
|
|
llvm::FoldingSetNodeID ID;
|
|
CGFunctionInfo::Profile(ID, info, required, resultType, argTypes);
|
|
|
|
void *insertPos = 0;
|
|
CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
|
|
if (FI)
|
|
return *FI;
|
|
|
|
// Construct the function info. We co-allocate the ArgInfos.
|
|
FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required);
|
|
FunctionInfos.InsertNode(FI, insertPos);
|
|
|
|
bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
|
|
assert(inserted && "Recursively being processed?");
|
|
|
|
// Compute ABI information.
|
|
getABIInfo().computeInfo(*FI);
|
|
|
|
// Loop over all of the computed argument and return value info. If any of
|
|
// them are direct or extend without a specified coerce type, specify the
|
|
// default now.
|
|
ABIArgInfo &retInfo = FI->getReturnInfo();
|
|
if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0)
|
|
retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
|
|
|
|
for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
|
|
I != E; ++I)
|
|
if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
|
|
I->info.setCoerceToType(ConvertType(I->type));
|
|
|
|
bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
|
|
assert(erased && "Not in set?");
|
|
|
|
return *FI;
|
|
}
|
|
|
|
CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
|
|
const FunctionType::ExtInfo &info,
|
|
CanQualType resultType,
|
|
ArrayRef<CanQualType> argTypes,
|
|
RequiredArgs required) {
|
|
void *buffer = operator new(sizeof(CGFunctionInfo) +
|
|
sizeof(ArgInfo) * (argTypes.size() + 1));
|
|
CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
|
|
FI->CallingConvention = llvmCC;
|
|
FI->EffectiveCallingConvention = llvmCC;
|
|
FI->ASTCallingConvention = info.getCC();
|
|
FI->NoReturn = info.getNoReturn();
|
|
FI->ReturnsRetained = info.getProducesResult();
|
|
FI->Required = required;
|
|
FI->HasRegParm = info.getHasRegParm();
|
|
FI->RegParm = info.getRegParm();
|
|
FI->NumArgs = argTypes.size();
|
|
FI->getArgsBuffer()[0].type = resultType;
|
|
for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
|
|
FI->getArgsBuffer()[i + 1].type = argTypes[i];
|
|
return FI;
|
|
}
|
|
|
|
/***/
|
|
|
|
void CodeGenTypes::GetExpandedTypes(QualType type,
|
|
SmallVectorImpl<llvm::Type*> &expandedTypes) {
|
|
if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
|
|
uint64_t NumElts = AT->getSize().getZExtValue();
|
|
for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
|
|
GetExpandedTypes(AT->getElementType(), expandedTypes);
|
|
} else if (const RecordType *RT = type->getAs<RecordType>()) {
|
|
const RecordDecl *RD = RT->getDecl();
|
|
assert(!RD->hasFlexibleArrayMember() &&
|
|
"Cannot expand structure with flexible array.");
|
|
if (RD->isUnion()) {
|
|
// Unions can be here only in degenerative cases - all the fields are same
|
|
// after flattening. Thus we have to use the "largest" field.
|
|
const FieldDecl *LargestFD = 0;
|
|
CharUnits UnionSize = CharUnits::Zero();
|
|
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
i != e; ++i) {
|
|
const FieldDecl *FD = *i;
|
|
assert(!FD->isBitField() &&
|
|
"Cannot expand structure with bit-field members.");
|
|
CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
|
|
if (UnionSize < FieldSize) {
|
|
UnionSize = FieldSize;
|
|
LargestFD = FD;
|
|
}
|
|
}
|
|
if (LargestFD)
|
|
GetExpandedTypes(LargestFD->getType(), expandedTypes);
|
|
} else {
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
i != e; ++i) {
|
|
assert(!i->isBitField() &&
|
|
"Cannot expand structure with bit-field members.");
|
|
GetExpandedTypes(i->getType(), expandedTypes);
|
|
}
|
|
}
|
|
} else if (const ComplexType *CT = type->getAs<ComplexType>()) {
|
|
llvm::Type *EltTy = ConvertType(CT->getElementType());
|
|
expandedTypes.push_back(EltTy);
|
|
expandedTypes.push_back(EltTy);
|
|
} else
|
|
expandedTypes.push_back(ConvertType(type));
|
|
}
|
|
|
|
llvm::Function::arg_iterator
|
|
CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
|
|
llvm::Function::arg_iterator AI) {
|
|
assert(LV.isSimple() &&
|
|
"Unexpected non-simple lvalue during struct expansion.");
|
|
|
|
if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
|
|
unsigned NumElts = AT->getSize().getZExtValue();
|
|
QualType EltTy = AT->getElementType();
|
|
for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
|
|
llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt);
|
|
LValue LV = MakeAddrLValue(EltAddr, EltTy);
|
|
AI = ExpandTypeFromArgs(EltTy, LV, AI);
|
|
}
|
|
} else if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
|
RecordDecl *RD = RT->getDecl();
|
|
if (RD->isUnion()) {
|
|
// Unions can be here only in degenerative cases - all the fields are same
|
|
// after flattening. Thus we have to use the "largest" field.
|
|
const FieldDecl *LargestFD = 0;
|
|
CharUnits UnionSize = CharUnits::Zero();
|
|
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
i != e; ++i) {
|
|
const FieldDecl *FD = *i;
|
|
assert(!FD->isBitField() &&
|
|
"Cannot expand structure with bit-field members.");
|
|
CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
|
|
if (UnionSize < FieldSize) {
|
|
UnionSize = FieldSize;
|
|
LargestFD = FD;
|
|
}
|
|
}
|
|
if (LargestFD) {
|
|
// FIXME: What are the right qualifiers here?
|
|
LValue SubLV = EmitLValueForField(LV, LargestFD);
|
|
AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI);
|
|
}
|
|
} else {
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
i != e; ++i) {
|
|
FieldDecl *FD = *i;
|
|
QualType FT = FD->getType();
|
|
|
|
// FIXME: What are the right qualifiers here?
|
|
LValue SubLV = EmitLValueForField(LV, FD);
|
|
AI = ExpandTypeFromArgs(FT, SubLV, AI);
|
|
}
|
|
}
|
|
} else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
|
|
QualType EltTy = CT->getElementType();
|
|
llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real");
|
|
EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
|
|
llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag");
|
|
EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
|
|
} else {
|
|
EmitStoreThroughLValue(RValue::get(AI), LV);
|
|
++AI;
|
|
}
|
|
|
|
return AI;
|
|
}
|
|
|
|
/// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
|
|
/// accessing some number of bytes out of it, try to gep into the struct to get
|
|
/// at its inner goodness. Dive as deep as possible without entering an element
|
|
/// with an in-memory size smaller than DstSize.
|
|
static llvm::Value *
|
|
EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
|
|
llvm::StructType *SrcSTy,
|
|
uint64_t DstSize, CodeGenFunction &CGF) {
|
|
// We can't dive into a zero-element struct.
|
|
if (SrcSTy->getNumElements() == 0) return SrcPtr;
|
|
|
|
llvm::Type *FirstElt = SrcSTy->getElementType(0);
|
|
|
|
// If the first elt is at least as large as what we're looking for, or if the
|
|
// first element is the same size as the whole struct, we can enter it.
|
|
uint64_t FirstEltSize =
|
|
CGF.CGM.getDataLayout().getTypeAllocSize(FirstElt);
|
|
if (FirstEltSize < DstSize &&
|
|
FirstEltSize < CGF.CGM.getDataLayout().getTypeAllocSize(SrcSTy))
|
|
return SrcPtr;
|
|
|
|
// GEP into the first element.
|
|
SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
|
|
|
|
// If the first element is a struct, recurse.
|
|
llvm::Type *SrcTy =
|
|
cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
|
|
if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
|
|
return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
|
|
|
|
return SrcPtr;
|
|
}
|
|
|
|
/// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
|
|
/// are either integers or pointers. This does a truncation of the value if it
|
|
/// is too large or a zero extension if it is too small.
|
|
///
|
|
/// This behaves as if the value were coerced through memory, so on big-endian
|
|
/// targets the high bits are preserved in a truncation, while little-endian
|
|
/// targets preserve the low bits.
|
|
static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
|
|
llvm::Type *Ty,
|
|
CodeGenFunction &CGF) {
|
|
if (Val->getType() == Ty)
|
|
return Val;
|
|
|
|
if (isa<llvm::PointerType>(Val->getType())) {
|
|
// If this is Pointer->Pointer avoid conversion to and from int.
|
|
if (isa<llvm::PointerType>(Ty))
|
|
return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
|
|
|
|
// Convert the pointer to an integer so we can play with its width.
|
|
Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
|
|
}
|
|
|
|
llvm::Type *DestIntTy = Ty;
|
|
if (isa<llvm::PointerType>(DestIntTy))
|
|
DestIntTy = CGF.IntPtrTy;
|
|
|
|
if (Val->getType() != DestIntTy) {
|
|
const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
|
|
if (DL.isBigEndian()) {
|
|
// Preserve the high bits on big-endian targets.
|
|
// That is what memory coercion does.
|
|
uint64_t SrcSize = DL.getTypeAllocSizeInBits(Val->getType());
|
|
uint64_t DstSize = DL.getTypeAllocSizeInBits(DestIntTy);
|
|
if (SrcSize > DstSize) {
|
|
Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
|
|
Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
|
|
} else {
|
|
Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
|
|
Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
|
|
}
|
|
} else {
|
|
// Little-endian targets preserve the low bits. No shifts required.
|
|
Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
|
|
}
|
|
}
|
|
|
|
if (isa<llvm::PointerType>(Ty))
|
|
Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
|
|
return Val;
|
|
}
|
|
|
|
|
|
|
|
/// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
|
|
/// a pointer to an object of type \arg Ty.
|
|
///
|
|
/// This safely handles the case when the src type is smaller than the
|
|
/// destination type; in this situation the values of bits which not
|
|
/// present in the src are undefined.
|
|
static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
|
|
llvm::Type *Ty,
|
|
CodeGenFunction &CGF) {
|
|
llvm::Type *SrcTy =
|
|
cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
|
|
|
|
// If SrcTy and Ty are the same, just do a load.
|
|
if (SrcTy == Ty)
|
|
return CGF.Builder.CreateLoad(SrcPtr);
|
|
|
|
uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
|
|
|
|
if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
|
|
SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
|
|
SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
|
|
}
|
|
|
|
uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
|
|
|
|
// If the source and destination are integer or pointer types, just do an
|
|
// extension or truncation to the desired type.
|
|
if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
|
|
(isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
|
|
llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
|
|
return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
|
|
}
|
|
|
|
// If load is legal, just bitcast the src pointer.
|
|
if (SrcSize >= DstSize) {
|
|
// Generally SrcSize is never greater than DstSize, since this means we are
|
|
// losing bits. However, this can happen in cases where the structure has
|
|
// additional padding, for example due to a user specified alignment.
|
|
//
|
|
// FIXME: Assert that we aren't truncating non-padding bits when have access
|
|
// to that information.
|
|
llvm::Value *Casted =
|
|
CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
|
|
llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
|
|
// FIXME: Use better alignment / avoid requiring aligned load.
|
|
Load->setAlignment(1);
|
|
return Load;
|
|
}
|
|
|
|
// Otherwise do coercion through memory. This is stupid, but
|
|
// simple.
|
|
llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
|
|
llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
|
|
llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
|
|
llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy);
|
|
// FIXME: Use better alignment.
|
|
CGF.Builder.CreateMemCpy(Casted, SrcCasted,
|
|
llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
|
|
1, false);
|
|
return CGF.Builder.CreateLoad(Tmp);
|
|
}
|
|
|
|
// Function to store a first-class aggregate into memory. We prefer to
|
|
// store the elements rather than the aggregate to be more friendly to
|
|
// fast-isel.
|
|
// FIXME: Do we need to recurse here?
|
|
static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
|
|
llvm::Value *DestPtr, bool DestIsVolatile,
|
|
bool LowAlignment) {
|
|
// Prefer scalar stores to first-class aggregate stores.
|
|
if (llvm::StructType *STy =
|
|
dyn_cast<llvm::StructType>(Val->getType())) {
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
|
|
llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
|
|
llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
|
|
llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
|
|
DestIsVolatile);
|
|
if (LowAlignment)
|
|
SI->setAlignment(1);
|
|
}
|
|
} else {
|
|
llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
|
|
if (LowAlignment)
|
|
SI->setAlignment(1);
|
|
}
|
|
}
|
|
|
|
/// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
|
|
/// where the source and destination may have different types.
|
|
///
|
|
/// This safely handles the case when the src type is larger than the
|
|
/// destination type; the upper bits of the src will be lost.
|
|
static void CreateCoercedStore(llvm::Value *Src,
|
|
llvm::Value *DstPtr,
|
|
bool DstIsVolatile,
|
|
CodeGenFunction &CGF) {
|
|
llvm::Type *SrcTy = Src->getType();
|
|
llvm::Type *DstTy =
|
|
cast<llvm::PointerType>(DstPtr->getType())->getElementType();
|
|
if (SrcTy == DstTy) {
|
|
CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
|
|
return;
|
|
}
|
|
|
|
uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
|
|
|
|
if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
|
|
DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
|
|
DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
|
|
}
|
|
|
|
// If the source and destination are integer or pointer types, just do an
|
|
// extension or truncation to the desired type.
|
|
if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
|
|
(isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
|
|
Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
|
|
CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
|
|
return;
|
|
}
|
|
|
|
uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
|
|
|
|
// If store is legal, just bitcast the src pointer.
|
|
if (SrcSize <= DstSize) {
|
|
llvm::Value *Casted =
|
|
CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
|
|
// FIXME: Use better alignment / avoid requiring aligned store.
|
|
BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
|
|
} else {
|
|
// Otherwise do coercion through memory. This is stupid, but
|
|
// simple.
|
|
|
|
// Generally SrcSize is never greater than DstSize, since this means we are
|
|
// losing bits. However, this can happen in cases where the structure has
|
|
// additional padding, for example due to a user specified alignment.
|
|
//
|
|
// FIXME: Assert that we aren't truncating non-padding bits when have access
|
|
// to that information.
|
|
llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
|
|
CGF.Builder.CreateStore(Src, Tmp);
|
|
llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
|
|
llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
|
|
llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy);
|
|
// FIXME: Use better alignment.
|
|
CGF.Builder.CreateMemCpy(DstCasted, Casted,
|
|
llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
|
|
1, false);
|
|
}
|
|
}
|
|
|
|
/***/
|
|
|
|
bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
|
|
return FI.getReturnInfo().isIndirect();
|
|
}
|
|
|
|
bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
|
|
if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
|
|
switch (BT->getKind()) {
|
|
default:
|
|
return false;
|
|
case BuiltinType::Float:
|
|
return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
|
|
case BuiltinType::Double:
|
|
return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
|
|
case BuiltinType::LongDouble:
|
|
return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
|
|
if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
|
|
if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
|
|
if (BT->getKind() == BuiltinType::LongDouble)
|
|
return getTarget().useObjCFP2RetForComplexLongDouble();
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
|
|
const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
|
|
return GetFunctionType(FI);
|
|
}
|
|
|
|
llvm::FunctionType *
|
|
CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
|
|
|
|
bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
|
|
assert(Inserted && "Recursively being processed?");
|
|
|
|
SmallVector<llvm::Type*, 8> argTypes;
|
|
llvm::Type *resultType = 0;
|
|
|
|
const ABIArgInfo &retAI = FI.getReturnInfo();
|
|
switch (retAI.getKind()) {
|
|
case ABIArgInfo::Expand:
|
|
llvm_unreachable("Invalid ABI kind for return argument");
|
|
|
|
case ABIArgInfo::Extend:
|
|
case ABIArgInfo::Direct:
|
|
resultType = retAI.getCoerceToType();
|
|
break;
|
|
|
|
case ABIArgInfo::Indirect: {
|
|
assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
|
|
resultType = llvm::Type::getVoidTy(getLLVMContext());
|
|
|
|
QualType ret = FI.getReturnType();
|
|
llvm::Type *ty = ConvertType(ret);
|
|
unsigned addressSpace = Context.getTargetAddressSpace(ret);
|
|
argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
|
|
break;
|
|
}
|
|
|
|
case ABIArgInfo::Ignore:
|
|
resultType = llvm::Type::getVoidTy(getLLVMContext());
|
|
break;
|
|
}
|
|
|
|
// Add in all of the required arguments.
|
|
CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), ie;
|
|
if (FI.isVariadic()) {
|
|
ie = it + FI.getRequiredArgs().getNumRequiredArgs();
|
|
} else {
|
|
ie = FI.arg_end();
|
|
}
|
|
for (; it != ie; ++it) {
|
|
const ABIArgInfo &argAI = it->info;
|
|
|
|
// Insert a padding type to ensure proper alignment.
|
|
if (llvm::Type *PaddingType = argAI.getPaddingType())
|
|
argTypes.push_back(PaddingType);
|
|
|
|
switch (argAI.getKind()) {
|
|
case ABIArgInfo::Ignore:
|
|
break;
|
|
|
|
case ABIArgInfo::Indirect: {
|
|
// indirect arguments are always on the stack, which is addr space #0.
|
|
llvm::Type *LTy = ConvertTypeForMem(it->type);
|
|
argTypes.push_back(LTy->getPointerTo());
|
|
break;
|
|
}
|
|
|
|
case ABIArgInfo::Extend:
|
|
case ABIArgInfo::Direct: {
|
|
// If the coerce-to type is a first class aggregate, flatten it. Either
|
|
// way is semantically identical, but fast-isel and the optimizer
|
|
// generally likes scalar values better than FCAs.
|
|
llvm::Type *argType = argAI.getCoerceToType();
|
|
if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) {
|
|
for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
|
|
argTypes.push_back(st->getElementType(i));
|
|
} else {
|
|
argTypes.push_back(argType);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ABIArgInfo::Expand:
|
|
GetExpandedTypes(it->type, argTypes);
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
|
|
assert(Erased && "Not in set?");
|
|
|
|
return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
|
|
}
|
|
|
|
llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
|
|
const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
|
|
const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
|
|
|
|
if (!isFuncTypeConvertible(FPT))
|
|
return llvm::StructType::get(getLLVMContext());
|
|
|
|
const CGFunctionInfo *Info;
|
|
if (isa<CXXDestructorDecl>(MD))
|
|
Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
|
|
else
|
|
Info = &arrangeCXXMethodDeclaration(MD);
|
|
return GetFunctionType(*Info);
|
|
}
|
|
|
|
void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
|
|
const Decl *TargetDecl,
|
|
AttributeListType &PAL,
|
|
unsigned &CallingConv,
|
|
bool AttrOnCallSite) {
|
|
llvm::AttrBuilder FuncAttrs;
|
|
llvm::AttrBuilder RetAttrs;
|
|
|
|
CallingConv = FI.getEffectiveCallingConvention();
|
|
|
|
if (FI.isNoReturn())
|
|
FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
|
|
|
|
// FIXME: handle sseregparm someday...
|
|
if (TargetDecl) {
|
|
if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
|
|
FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
|
|
if (TargetDecl->hasAttr<NoThrowAttr>())
|
|
FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
|
|
if (TargetDecl->hasAttr<NoReturnAttr>())
|
|
FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
|
|
|
|
if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
|
|
const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
|
|
if (FPT && FPT->isNothrow(getContext()))
|
|
FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
|
|
// Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
|
|
// These attributes are not inherited by overloads.
|
|
const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
|
|
if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
|
|
FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
|
|
}
|
|
|
|
// 'const' and 'pure' attribute functions are also nounwind.
|
|
if (TargetDecl->hasAttr<ConstAttr>()) {
|
|
FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
|
|
FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
|
|
} else if (TargetDecl->hasAttr<PureAttr>()) {
|
|
FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
|
|
FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
|
|
}
|
|
if (TargetDecl->hasAttr<MallocAttr>())
|
|
RetAttrs.addAttribute(llvm::Attribute::NoAlias);
|
|
}
|
|
|
|
if (CodeGenOpts.OptimizeSize)
|
|
FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
|
|
if (CodeGenOpts.OptimizeSize == 2)
|
|
FuncAttrs.addAttribute(llvm::Attribute::MinSize);
|
|
if (CodeGenOpts.DisableRedZone)
|
|
FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
|
|
if (CodeGenOpts.NoImplicitFloat)
|
|
FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
|
|
|
|
if (AttrOnCallSite) {
|
|
// Attributes that should go on the call site only.
|
|
if (!CodeGenOpts.SimplifyLibCalls)
|
|
FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
|
|
} else {
|
|
// Attributes that should go on the function, but not the call site.
|
|
if (!CodeGenOpts.DisableFPElim) {
|
|
FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
|
|
FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "false");
|
|
} else if (CodeGenOpts.OmitLeafFramePointer) {
|
|
FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
|
|
FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "true");
|
|
} else {
|
|
FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
|
|
FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "true");
|
|
}
|
|
|
|
FuncAttrs.addAttribute("less-precise-fpmad",
|
|
llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
|
|
FuncAttrs.addAttribute("no-infs-fp-math",
|
|
llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
|
|
FuncAttrs.addAttribute("no-nans-fp-math",
|
|
llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
|
|
FuncAttrs.addAttribute("unsafe-fp-math",
|
|
llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
|
|
FuncAttrs.addAttribute("use-soft-float",
|
|
llvm::toStringRef(CodeGenOpts.SoftFloat));
|
|
FuncAttrs.addAttribute("stack-protector-buffer-size",
|
|
llvm::utostr(CodeGenOpts.SSPBufferSize));
|
|
|
|
bool NoFramePointerElimNonLeaf;
|
|
if (!CodeGenOpts.DisableFPElim) {
|
|
NoFramePointerElimNonLeaf = false;
|
|
} else if (CodeGenOpts.OmitLeafFramePointer) {
|
|
NoFramePointerElimNonLeaf = true;
|
|
} else {
|
|
NoFramePointerElimNonLeaf = true;
|
|
}
|
|
|
|
FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf",
|
|
llvm::toStringRef(NoFramePointerElimNonLeaf));
|
|
|
|
if (!CodeGenOpts.StackRealignment)
|
|
FuncAttrs.addAttribute("no-realign-stack");
|
|
}
|
|
|
|
QualType RetTy = FI.getReturnType();
|
|
unsigned Index = 1;
|
|
const ABIArgInfo &RetAI = FI.getReturnInfo();
|
|
switch (RetAI.getKind()) {
|
|
case ABIArgInfo::Extend:
|
|
if (RetTy->hasSignedIntegerRepresentation())
|
|
RetAttrs.addAttribute(llvm::Attribute::SExt);
|
|
else if (RetTy->hasUnsignedIntegerRepresentation())
|
|
RetAttrs.addAttribute(llvm::Attribute::ZExt);
|
|
// FALL THROUGH
|
|
case ABIArgInfo::Direct:
|
|
if (RetAI.getInReg())
|
|
RetAttrs.addAttribute(llvm::Attribute::InReg);
|
|
break;
|
|
case ABIArgInfo::Ignore:
|
|
break;
|
|
|
|
case ABIArgInfo::Indirect: {
|
|
llvm::AttrBuilder SRETAttrs;
|
|
SRETAttrs.addAttribute(llvm::Attribute::StructRet);
|
|
if (RetAI.getInReg())
|
|
SRETAttrs.addAttribute(llvm::Attribute::InReg);
|
|
PAL.push_back(llvm::
|
|
AttributeSet::get(getLLVMContext(), Index, SRETAttrs));
|
|
|
|
++Index;
|
|
// sret disables readnone and readonly
|
|
FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
|
|
.removeAttribute(llvm::Attribute::ReadNone);
|
|
break;
|
|
}
|
|
|
|
case ABIArgInfo::Expand:
|
|
llvm_unreachable("Invalid ABI kind for return argument");
|
|
}
|
|
|
|
if (RetAttrs.hasAttributes())
|
|
PAL.push_back(llvm::
|
|
AttributeSet::get(getLLVMContext(),
|
|
llvm::AttributeSet::ReturnIndex,
|
|
RetAttrs));
|
|
|
|
for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
|
|
ie = FI.arg_end(); it != ie; ++it) {
|
|
QualType ParamType = it->type;
|
|
const ABIArgInfo &AI = it->info;
|
|
llvm::AttrBuilder Attrs;
|
|
|
|
if (AI.getPaddingType()) {
|
|
if (AI.getPaddingInReg())
|
|
PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index,
|
|
llvm::Attribute::InReg));
|
|
// Increment Index if there is padding.
|
|
++Index;
|
|
}
|
|
|
|
// 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
|
|
// have the corresponding parameter variable. It doesn't make
|
|
// sense to do it here because parameters are so messed up.
|
|
switch (AI.getKind()) {
|
|
case ABIArgInfo::Extend:
|
|
if (ParamType->isSignedIntegerOrEnumerationType())
|
|
Attrs.addAttribute(llvm::Attribute::SExt);
|
|
else if (ParamType->isUnsignedIntegerOrEnumerationType())
|
|
Attrs.addAttribute(llvm::Attribute::ZExt);
|
|
// FALL THROUGH
|
|
case ABIArgInfo::Direct:
|
|
if (AI.getInReg())
|
|
Attrs.addAttribute(llvm::Attribute::InReg);
|
|
|
|
// FIXME: handle sseregparm someday...
|
|
|
|
if (llvm::StructType *STy =
|
|
dyn_cast<llvm::StructType>(AI.getCoerceToType())) {
|
|
unsigned Extra = STy->getNumElements()-1; // 1 will be added below.
|
|
if (Attrs.hasAttributes())
|
|
for (unsigned I = 0; I < Extra; ++I)
|
|
PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index + I,
|
|
Attrs));
|
|
Index += Extra;
|
|
}
|
|
break;
|
|
|
|
case ABIArgInfo::Indirect:
|
|
if (AI.getInReg())
|
|
Attrs.addAttribute(llvm::Attribute::InReg);
|
|
|
|
if (AI.getIndirectByVal())
|
|
Attrs.addAttribute(llvm::Attribute::ByVal);
|
|
|
|
Attrs.addAlignmentAttr(AI.getIndirectAlign());
|
|
|
|
// byval disables readnone and readonly.
|
|
FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
|
|
.removeAttribute(llvm::Attribute::ReadNone);
|
|
break;
|
|
|
|
case ABIArgInfo::Ignore:
|
|
// Skip increment, no matching LLVM parameter.
|
|
continue;
|
|
|
|
case ABIArgInfo::Expand: {
|
|
SmallVector<llvm::Type*, 8> types;
|
|
// FIXME: This is rather inefficient. Do we ever actually need to do
|
|
// anything here? The result should be just reconstructed on the other
|
|
// side, so extension should be a non-issue.
|
|
getTypes().GetExpandedTypes(ParamType, types);
|
|
Index += types.size();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (Attrs.hasAttributes())
|
|
PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs));
|
|
++Index;
|
|
}
|
|
if (FuncAttrs.hasAttributes())
|
|
PAL.push_back(llvm::
|
|
AttributeSet::get(getLLVMContext(),
|
|
llvm::AttributeSet::FunctionIndex,
|
|
FuncAttrs));
|
|
}
|
|
|
|
/// An argument came in as a promoted argument; demote it back to its
|
|
/// declared type.
|
|
static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
|
|
const VarDecl *var,
|
|
llvm::Value *value) {
|
|
llvm::Type *varType = CGF.ConvertType(var->getType());
|
|
|
|
// This can happen with promotions that actually don't change the
|
|
// underlying type, like the enum promotions.
|
|
if (value->getType() == varType) return value;
|
|
|
|
assert((varType->isIntegerTy() || varType->isFloatingPointTy())
|
|
&& "unexpected promotion type");
|
|
|
|
if (isa<llvm::IntegerType>(varType))
|
|
return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
|
|
|
|
return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
|
|
}
|
|
|
|
void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
|
|
llvm::Function *Fn,
|
|
const FunctionArgList &Args) {
|
|
// If this is an implicit-return-zero function, go ahead and
|
|
// initialize the return value. TODO: it might be nice to have
|
|
// a more general mechanism for this that didn't require synthesized
|
|
// return statements.
|
|
if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
|
|
if (FD->hasImplicitReturnZero()) {
|
|
QualType RetTy = FD->getResultType().getUnqualifiedType();
|
|
llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
|
|
llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
|
|
Builder.CreateStore(Zero, ReturnValue);
|
|
}
|
|
}
|
|
|
|
// FIXME: We no longer need the types from FunctionArgList; lift up and
|
|
// simplify.
|
|
|
|
// Emit allocs for param decls. Give the LLVM Argument nodes names.
|
|
llvm::Function::arg_iterator AI = Fn->arg_begin();
|
|
|
|
// Name the struct return argument.
|
|
if (CGM.ReturnTypeUsesSRet(FI)) {
|
|
AI->setName("agg.result");
|
|
AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
|
|
AI->getArgNo() + 1,
|
|
llvm::Attribute::NoAlias));
|
|
++AI;
|
|
}
|
|
|
|
assert(FI.arg_size() == Args.size() &&
|
|
"Mismatch between function signature & arguments.");
|
|
unsigned ArgNo = 1;
|
|
CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
|
|
for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
|
|
i != e; ++i, ++info_it, ++ArgNo) {
|
|
const VarDecl *Arg = *i;
|
|
QualType Ty = info_it->type;
|
|
const ABIArgInfo &ArgI = info_it->info;
|
|
|
|
bool isPromoted =
|
|
isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
|
|
|
|
// Skip the dummy padding argument.
|
|
if (ArgI.getPaddingType())
|
|
++AI;
|
|
|
|
switch (ArgI.getKind()) {
|
|
case ABIArgInfo::Indirect: {
|
|
llvm::Value *V = AI;
|
|
|
|
if (!hasScalarEvaluationKind(Ty)) {
|
|
// Aggregates and complex variables are accessed by reference. All we
|
|
// need to do is realign the value, if requested
|
|
if (ArgI.getIndirectRealign()) {
|
|
llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
|
|
|
|
// Copy from the incoming argument pointer to the temporary with the
|
|
// appropriate alignment.
|
|
//
|
|
// FIXME: We should have a common utility for generating an aggregate
|
|
// copy.
|
|
llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
|
|
CharUnits Size = getContext().getTypeSizeInChars(Ty);
|
|
llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
|
|
llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
|
|
Builder.CreateMemCpy(Dst,
|
|
Src,
|
|
llvm::ConstantInt::get(IntPtrTy,
|
|
Size.getQuantity()),
|
|
ArgI.getIndirectAlign(),
|
|
false);
|
|
V = AlignedTemp;
|
|
}
|
|
} else {
|
|
// Load scalar value from indirect argument.
|
|
CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
|
|
V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty);
|
|
|
|
if (isPromoted)
|
|
V = emitArgumentDemotion(*this, Arg, V);
|
|
}
|
|
EmitParmDecl(*Arg, V, ArgNo);
|
|
break;
|
|
}
|
|
|
|
case ABIArgInfo::Extend:
|
|
case ABIArgInfo::Direct: {
|
|
|
|
// If we have the trivial case, handle it with no muss and fuss.
|
|
if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
|
|
ArgI.getCoerceToType() == ConvertType(Ty) &&
|
|
ArgI.getDirectOffset() == 0) {
|
|
assert(AI != Fn->arg_end() && "Argument mismatch!");
|
|
llvm::Value *V = AI;
|
|
|
|
if (Arg->getType().isRestrictQualified())
|
|
AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
|
|
AI->getArgNo() + 1,
|
|
llvm::Attribute::NoAlias));
|
|
|
|
// Ensure the argument is the correct type.
|
|
if (V->getType() != ArgI.getCoerceToType())
|
|
V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
|
|
|
|
if (isPromoted)
|
|
V = emitArgumentDemotion(*this, Arg, V);
|
|
|
|
// Because of merging of function types from multiple decls it is
|
|
// possible for the type of an argument to not match the corresponding
|
|
// type in the function type. Since we are codegening the callee
|
|
// in here, add a cast to the argument type.
|
|
llvm::Type *LTy = ConvertType(Arg->getType());
|
|
if (V->getType() != LTy)
|
|
V = Builder.CreateBitCast(V, LTy);
|
|
|
|
EmitParmDecl(*Arg, V, ArgNo);
|
|
break;
|
|
}
|
|
|
|
llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
|
|
|
|
// The alignment we need to use is the max of the requested alignment for
|
|
// the argument plus the alignment required by our access code below.
|
|
unsigned AlignmentToUse =
|
|
CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType());
|
|
AlignmentToUse = std::max(AlignmentToUse,
|
|
(unsigned)getContext().getDeclAlign(Arg).getQuantity());
|
|
|
|
Alloca->setAlignment(AlignmentToUse);
|
|
llvm::Value *V = Alloca;
|
|
llvm::Value *Ptr = V; // Pointer to store into.
|
|
|
|
// If the value is offset in memory, apply the offset now.
|
|
if (unsigned Offs = ArgI.getDirectOffset()) {
|
|
Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
|
|
Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
|
|
Ptr = Builder.CreateBitCast(Ptr,
|
|
llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
|
|
}
|
|
|
|
// If the coerce-to type is a first class aggregate, we flatten it and
|
|
// pass the elements. Either way is semantically identical, but fast-isel
|
|
// and the optimizer generally likes scalar values better than FCAs.
|
|
llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
|
|
if (STy && STy->getNumElements() > 1) {
|
|
uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
|
|
llvm::Type *DstTy =
|
|
cast<llvm::PointerType>(Ptr->getType())->getElementType();
|
|
uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
|
|
|
|
if (SrcSize <= DstSize) {
|
|
Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
|
|
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
|
|
assert(AI != Fn->arg_end() && "Argument mismatch!");
|
|
AI->setName(Arg->getName() + ".coerce" + Twine(i));
|
|
llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
|
|
Builder.CreateStore(AI++, EltPtr);
|
|
}
|
|
} else {
|
|
llvm::AllocaInst *TempAlloca =
|
|
CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
|
|
TempAlloca->setAlignment(AlignmentToUse);
|
|
llvm::Value *TempV = TempAlloca;
|
|
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
|
|
assert(AI != Fn->arg_end() && "Argument mismatch!");
|
|
AI->setName(Arg->getName() + ".coerce" + Twine(i));
|
|
llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
|
|
Builder.CreateStore(AI++, EltPtr);
|
|
}
|
|
|
|
Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
|
|
}
|
|
} else {
|
|
// Simple case, just do a coerced store of the argument into the alloca.
|
|
assert(AI != Fn->arg_end() && "Argument mismatch!");
|
|
AI->setName(Arg->getName() + ".coerce");
|
|
CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
|
|
}
|
|
|
|
|
|
// Match to what EmitParmDecl is expecting for this type.
|
|
if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
|
|
V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty);
|
|
if (isPromoted)
|
|
V = emitArgumentDemotion(*this, Arg, V);
|
|
}
|
|
EmitParmDecl(*Arg, V, ArgNo);
|
|
continue; // Skip ++AI increment, already done.
|
|
}
|
|
|
|
case ABIArgInfo::Expand: {
|
|
// If this structure was expanded into multiple arguments then
|
|
// we need to create a temporary and reconstruct it from the
|
|
// arguments.
|
|
llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
|
|
CharUnits Align = getContext().getDeclAlign(Arg);
|
|
Alloca->setAlignment(Align.getQuantity());
|
|
LValue LV = MakeAddrLValue(Alloca, Ty, Align);
|
|
llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
|
|
EmitParmDecl(*Arg, Alloca, ArgNo);
|
|
|
|
// Name the arguments used in expansion and increment AI.
|
|
unsigned Index = 0;
|
|
for (; AI != End; ++AI, ++Index)
|
|
AI->setName(Arg->getName() + "." + Twine(Index));
|
|
continue;
|
|
}
|
|
|
|
case ABIArgInfo::Ignore:
|
|
// Initialize the local variable appropriately.
|
|
if (!hasScalarEvaluationKind(Ty))
|
|
EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo);
|
|
else
|
|
EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())),
|
|
ArgNo);
|
|
|
|
// Skip increment, no matching LLVM parameter.
|
|
continue;
|
|
}
|
|
|
|
++AI;
|
|
}
|
|
assert(AI == Fn->arg_end() && "Argument mismatch!");
|
|
}
|
|
|
|
static void eraseUnusedBitCasts(llvm::Instruction *insn) {
|
|
while (insn->use_empty()) {
|
|
llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
|
|
if (!bitcast) return;
|
|
|
|
// This is "safe" because we would have used a ConstantExpr otherwise.
|
|
insn = cast<llvm::Instruction>(bitcast->getOperand(0));
|
|
bitcast->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
/// Try to emit a fused autorelease of a return result.
|
|
static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
|
|
llvm::Value *result) {
|
|
// We must be immediately followed the cast.
|
|
llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
|
|
if (BB->empty()) return 0;
|
|
if (&BB->back() != result) return 0;
|
|
|
|
llvm::Type *resultType = result->getType();
|
|
|
|
// result is in a BasicBlock and is therefore an Instruction.
|
|
llvm::Instruction *generator = cast<llvm::Instruction>(result);
|
|
|
|
SmallVector<llvm::Instruction*,4> insnsToKill;
|
|
|
|
// Look for:
|
|
// %generator = bitcast %type1* %generator2 to %type2*
|
|
while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
|
|
// We would have emitted this as a constant if the operand weren't
|
|
// an Instruction.
|
|
generator = cast<llvm::Instruction>(bitcast->getOperand(0));
|
|
|
|
// Require the generator to be immediately followed by the cast.
|
|
if (generator->getNextNode() != bitcast)
|
|
return 0;
|
|
|
|
insnsToKill.push_back(bitcast);
|
|
}
|
|
|
|
// Look for:
|
|
// %generator = call i8* @objc_retain(i8* %originalResult)
|
|
// or
|
|
// %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
|
|
llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
|
|
if (!call) return 0;
|
|
|
|
bool doRetainAutorelease;
|
|
|
|
if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
|
|
doRetainAutorelease = true;
|
|
} else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
|
|
.objc_retainAutoreleasedReturnValue) {
|
|
doRetainAutorelease = false;
|
|
|
|
// If we emitted an assembly marker for this call (and the
|
|
// ARCEntrypoints field should have been set if so), go looking
|
|
// for that call. If we can't find it, we can't do this
|
|
// optimization. But it should always be the immediately previous
|
|
// instruction, unless we needed bitcasts around the call.
|
|
if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
|
|
llvm::Instruction *prev = call->getPrevNode();
|
|
assert(prev);
|
|
if (isa<llvm::BitCastInst>(prev)) {
|
|
prev = prev->getPrevNode();
|
|
assert(prev);
|
|
}
|
|
assert(isa<llvm::CallInst>(prev));
|
|
assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
|
|
CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
|
|
insnsToKill.push_back(prev);
|
|
}
|
|
} else {
|
|
return 0;
|
|
}
|
|
|
|
result = call->getArgOperand(0);
|
|
insnsToKill.push_back(call);
|
|
|
|
// Keep killing bitcasts, for sanity. Note that we no longer care
|
|
// about precise ordering as long as there's exactly one use.
|
|
while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
|
|
if (!bitcast->hasOneUse()) break;
|
|
insnsToKill.push_back(bitcast);
|
|
result = bitcast->getOperand(0);
|
|
}
|
|
|
|
// Delete all the unnecessary instructions, from latest to earliest.
|
|
for (SmallVectorImpl<llvm::Instruction*>::iterator
|
|
i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
|
|
(*i)->eraseFromParent();
|
|
|
|
// Do the fused retain/autorelease if we were asked to.
|
|
if (doRetainAutorelease)
|
|
result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
|
|
|
|
// Cast back to the result type.
|
|
return CGF.Builder.CreateBitCast(result, resultType);
|
|
}
|
|
|
|
/// If this is a +1 of the value of an immutable 'self', remove it.
|
|
static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
|
|
llvm::Value *result) {
|
|
// This is only applicable to a method with an immutable 'self'.
|
|
const ObjCMethodDecl *method =
|
|
dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
|
|
if (!method) return 0;
|
|
const VarDecl *self = method->getSelfDecl();
|
|
if (!self->getType().isConstQualified()) return 0;
|
|
|
|
// Look for a retain call.
|
|
llvm::CallInst *retainCall =
|
|
dyn_cast<llvm::CallInst>(result->stripPointerCasts());
|
|
if (!retainCall ||
|
|
retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
|
|
return 0;
|
|
|
|
// Look for an ordinary load of 'self'.
|
|
llvm::Value *retainedValue = retainCall->getArgOperand(0);
|
|
llvm::LoadInst *load =
|
|
dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
|
|
if (!load || load->isAtomic() || load->isVolatile() ||
|
|
load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
|
|
return 0;
|
|
|
|
// Okay! Burn it all down. This relies for correctness on the
|
|
// assumption that the retain is emitted as part of the return and
|
|
// that thereafter everything is used "linearly".
|
|
llvm::Type *resultType = result->getType();
|
|
eraseUnusedBitCasts(cast<llvm::Instruction>(result));
|
|
assert(retainCall->use_empty());
|
|
retainCall->eraseFromParent();
|
|
eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
|
|
|
|
return CGF.Builder.CreateBitCast(load, resultType);
|
|
}
|
|
|
|
/// Emit an ARC autorelease of the result of a function.
|
|
///
|
|
/// \return the value to actually return from the function
|
|
static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
|
|
llvm::Value *result) {
|
|
// If we're returning 'self', kill the initial retain. This is a
|
|
// heuristic attempt to "encourage correctness" in the really unfortunate
|
|
// case where we have a return of self during a dealloc and we desperately
|
|
// need to avoid the possible autorelease.
|
|
if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
|
|
return self;
|
|
|
|
// At -O0, try to emit a fused retain/autorelease.
|
|
if (CGF.shouldUseFusedARCCalls())
|
|
if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
|
|
return fused;
|
|
|
|
return CGF.EmitARCAutoreleaseReturnValue(result);
|
|
}
|
|
|
|
/// Heuristically search for a dominating store to the return-value slot.
|
|
static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
|
|
// If there are multiple uses of the return-value slot, just check
|
|
// for something immediately preceding the IP. Sometimes this can
|
|
// happen with how we generate implicit-returns; it can also happen
|
|
// with noreturn cleanups.
|
|
if (!CGF.ReturnValue->hasOneUse()) {
|
|
llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
|
|
if (IP->empty()) return 0;
|
|
llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
|
|
if (!store) return 0;
|
|
if (store->getPointerOperand() != CGF.ReturnValue) return 0;
|
|
assert(!store->isAtomic() && !store->isVolatile()); // see below
|
|
return store;
|
|
}
|
|
|
|
llvm::StoreInst *store =
|
|
dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back());
|
|
if (!store) return 0;
|
|
|
|
// These aren't actually possible for non-coerced returns, and we
|
|
// only care about non-coerced returns on this code path.
|
|
assert(!store->isAtomic() && !store->isVolatile());
|
|
|
|
// Now do a first-and-dirty dominance check: just walk up the
|
|
// single-predecessors chain from the current insertion point.
|
|
llvm::BasicBlock *StoreBB = store->getParent();
|
|
llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
|
|
while (IP != StoreBB) {
|
|
if (!(IP = IP->getSinglePredecessor()))
|
|
return 0;
|
|
}
|
|
|
|
// Okay, the store's basic block dominates the insertion point; we
|
|
// can do our thing.
|
|
return store;
|
|
}
|
|
|
|
void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
|
|
bool EmitRetDbgLoc) {
|
|
// Functions with no result always return void.
|
|
if (ReturnValue == 0) {
|
|
Builder.CreateRetVoid();
|
|
return;
|
|
}
|
|
|
|
llvm::DebugLoc RetDbgLoc;
|
|
llvm::Value *RV = 0;
|
|
QualType RetTy = FI.getReturnType();
|
|
const ABIArgInfo &RetAI = FI.getReturnInfo();
|
|
|
|
switch (RetAI.getKind()) {
|
|
case ABIArgInfo::Indirect: {
|
|
switch (getEvaluationKind(RetTy)) {
|
|
case TEK_Complex: {
|
|
ComplexPairTy RT =
|
|
EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy));
|
|
EmitStoreOfComplex(RT,
|
|
MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy),
|
|
/*isInit*/ true);
|
|
break;
|
|
}
|
|
case TEK_Aggregate:
|
|
// Do nothing; aggregrates get evaluated directly into the destination.
|
|
break;
|
|
case TEK_Scalar:
|
|
EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
|
|
MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy),
|
|
/*isInit*/ true);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ABIArgInfo::Extend:
|
|
case ABIArgInfo::Direct:
|
|
if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
|
|
RetAI.getDirectOffset() == 0) {
|
|
// The internal return value temp always will have pointer-to-return-type
|
|
// type, just do a load.
|
|
|
|
// If there is a dominating store to ReturnValue, we can elide
|
|
// the load, zap the store, and usually zap the alloca.
|
|
if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
|
|
// Reuse the debug location from the store unless there is
|
|
// cleanup code to be emitted between the store and return
|
|
// instruction.
|
|
if (EmitRetDbgLoc && !AutoreleaseResult)
|
|
RetDbgLoc = SI->getDebugLoc();
|
|
// Get the stored value and nuke the now-dead store.
|
|
RV = SI->getValueOperand();
|
|
SI->eraseFromParent();
|
|
|
|
// If that was the only use of the return value, nuke it as well now.
|
|
if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
|
|
cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
|
|
ReturnValue = 0;
|
|
}
|
|
|
|
// Otherwise, we have to do a simple load.
|
|
} else {
|
|
RV = Builder.CreateLoad(ReturnValue);
|
|
}
|
|
} else {
|
|
llvm::Value *V = ReturnValue;
|
|
// If the value is offset in memory, apply the offset now.
|
|
if (unsigned Offs = RetAI.getDirectOffset()) {
|
|
V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
|
|
V = Builder.CreateConstGEP1_32(V, Offs);
|
|
V = Builder.CreateBitCast(V,
|
|
llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
|
|
}
|
|
|
|
RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
|
|
}
|
|
|
|
// In ARC, end functions that return a retainable type with a call
|
|
// to objc_autoreleaseReturnValue.
|
|
if (AutoreleaseResult) {
|
|
assert(getLangOpts().ObjCAutoRefCount &&
|
|
!FI.isReturnsRetained() &&
|
|
RetTy->isObjCRetainableType());
|
|
RV = emitAutoreleaseOfResult(*this, RV);
|
|
}
|
|
|
|
break;
|
|
|
|
case ABIArgInfo::Ignore:
|
|
break;
|
|
|
|
case ABIArgInfo::Expand:
|
|
llvm_unreachable("Invalid ABI kind for return argument");
|
|
}
|
|
|
|
llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
|
|
if (!RetDbgLoc.isUnknown())
|
|
Ret->setDebugLoc(RetDbgLoc);
|
|
}
|
|
|
|
void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
|
|
const VarDecl *param) {
|
|
// StartFunction converted the ABI-lowered parameter(s) into a
|
|
// local alloca. We need to turn that into an r-value suitable
|
|
// for EmitCall.
|
|
llvm::Value *local = GetAddrOfLocalVar(param);
|
|
|
|
QualType type = param->getType();
|
|
|
|
// For the most part, we just need to load the alloca, except:
|
|
// 1) aggregate r-values are actually pointers to temporaries, and
|
|
// 2) references to non-scalars are pointers directly to the aggregate.
|
|
// I don't know why references to scalars are different here.
|
|
if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
|
|
if (!hasScalarEvaluationKind(ref->getPointeeType()))
|
|
return args.add(RValue::getAggregate(local), type);
|
|
|
|
// Locals which are references to scalars are represented
|
|
// with allocas holding the pointer.
|
|
return args.add(RValue::get(Builder.CreateLoad(local)), type);
|
|
}
|
|
|
|
args.add(convertTempToRValue(local, type), type);
|
|
}
|
|
|
|
static bool isProvablyNull(llvm::Value *addr) {
|
|
return isa<llvm::ConstantPointerNull>(addr);
|
|
}
|
|
|
|
static bool isProvablyNonNull(llvm::Value *addr) {
|
|
return isa<llvm::AllocaInst>(addr);
|
|
}
|
|
|
|
/// Emit the actual writing-back of a writeback.
|
|
static void emitWriteback(CodeGenFunction &CGF,
|
|
const CallArgList::Writeback &writeback) {
|
|
const LValue &srcLV = writeback.Source;
|
|
llvm::Value *srcAddr = srcLV.getAddress();
|
|
assert(!isProvablyNull(srcAddr) &&
|
|
"shouldn't have writeback for provably null argument");
|
|
|
|
llvm::BasicBlock *contBB = 0;
|
|
|
|
// If the argument wasn't provably non-null, we need to null check
|
|
// before doing the store.
|
|
bool provablyNonNull = isProvablyNonNull(srcAddr);
|
|
if (!provablyNonNull) {
|
|
llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
|
|
contBB = CGF.createBasicBlock("icr.done");
|
|
|
|
llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
|
|
CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
|
|
CGF.EmitBlock(writebackBB);
|
|
}
|
|
|
|
// Load the value to writeback.
|
|
llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
|
|
|
|
// Cast it back, in case we're writing an id to a Foo* or something.
|
|
value = CGF.Builder.CreateBitCast(value,
|
|
cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
|
|
"icr.writeback-cast");
|
|
|
|
// Perform the writeback.
|
|
|
|
// If we have a "to use" value, it's something we need to emit a use
|
|
// of. This has to be carefully threaded in: if it's done after the
|
|
// release it's potentially undefined behavior (and the optimizer
|
|
// will ignore it), and if it happens before the retain then the
|
|
// optimizer could move the release there.
|
|
if (writeback.ToUse) {
|
|
assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
|
|
|
|
// Retain the new value. No need to block-copy here: the block's
|
|
// being passed up the stack.
|
|
value = CGF.EmitARCRetainNonBlock(value);
|
|
|
|
// Emit the intrinsic use here.
|
|
CGF.EmitARCIntrinsicUse(writeback.ToUse);
|
|
|
|
// Load the old value (primitively).
|
|
llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV);
|
|
|
|
// Put the new value in place (primitively).
|
|
CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
|
|
|
|
// Release the old value.
|
|
CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
|
|
|
|
// Otherwise, we can just do a normal lvalue store.
|
|
} else {
|
|
CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
|
|
}
|
|
|
|
// Jump to the continuation block.
|
|
if (!provablyNonNull)
|
|
CGF.EmitBlock(contBB);
|
|
}
|
|
|
|
static void emitWritebacks(CodeGenFunction &CGF,
|
|
const CallArgList &args) {
|
|
for (CallArgList::writeback_iterator
|
|
i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i)
|
|
emitWriteback(CGF, *i);
|
|
}
|
|
|
|
static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
|
|
const CallArgList &CallArgs) {
|
|
assert(CGF.getTarget().getCXXABI().isArgumentDestroyedByCallee());
|
|
ArrayRef<CallArgList::CallArgCleanup> Cleanups =
|
|
CallArgs.getCleanupsToDeactivate();
|
|
// Iterate in reverse to increase the likelihood of popping the cleanup.
|
|
for (ArrayRef<CallArgList::CallArgCleanup>::reverse_iterator
|
|
I = Cleanups.rbegin(), E = Cleanups.rend(); I != E; ++I) {
|
|
CGF.DeactivateCleanupBlock(I->Cleanup, I->IsActiveIP);
|
|
I->IsActiveIP->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
|
|
if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
|
|
if (uop->getOpcode() == UO_AddrOf)
|
|
return uop->getSubExpr();
|
|
return 0;
|
|
}
|
|
|
|
/// Emit an argument that's being passed call-by-writeback. That is,
|
|
/// we are passing the address of
|
|
static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
|
|
const ObjCIndirectCopyRestoreExpr *CRE) {
|
|
LValue srcLV;
|
|
|
|
// Make an optimistic effort to emit the address as an l-value.
|
|
// This can fail if the the argument expression is more complicated.
|
|
if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
|
|
srcLV = CGF.EmitLValue(lvExpr);
|
|
|
|
// Otherwise, just emit it as a scalar.
|
|
} else {
|
|
llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
|
|
|
|
QualType srcAddrType =
|
|
CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
|
|
srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType);
|
|
}
|
|
llvm::Value *srcAddr = srcLV.getAddress();
|
|
|
|
// The dest and src types don't necessarily match in LLVM terms
|
|
// because of the crazy ObjC compatibility rules.
|
|
|
|
llvm::PointerType *destType =
|
|
cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
|
|
|
|
// If the address is a constant null, just pass the appropriate null.
|
|
if (isProvablyNull(srcAddr)) {
|
|
args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
|
|
CRE->getType());
|
|
return;
|
|
}
|
|
|
|
// Create the temporary.
|
|
llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
|
|
"icr.temp");
|
|
// Loading an l-value can introduce a cleanup if the l-value is __weak,
|
|
// and that cleanup will be conditional if we can't prove that the l-value
|
|
// isn't null, so we need to register a dominating point so that the cleanups
|
|
// system will make valid IR.
|
|
CodeGenFunction::ConditionalEvaluation condEval(CGF);
|
|
|
|
// Zero-initialize it if we're not doing a copy-initialization.
|
|
bool shouldCopy = CRE->shouldCopy();
|
|
if (!shouldCopy) {
|
|
llvm::Value *null =
|
|
llvm::ConstantPointerNull::get(
|
|
cast<llvm::PointerType>(destType->getElementType()));
|
|
CGF.Builder.CreateStore(null, temp);
|
|
}
|
|
|
|
llvm::BasicBlock *contBB = 0;
|
|
llvm::BasicBlock *originBB = 0;
|
|
|
|
// If the address is *not* known to be non-null, we need to switch.
|
|
llvm::Value *finalArgument;
|
|
|
|
bool provablyNonNull = isProvablyNonNull(srcAddr);
|
|
if (provablyNonNull) {
|
|
finalArgument = temp;
|
|
} else {
|
|
llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
|
|
|
|
finalArgument = CGF.Builder.CreateSelect(isNull,
|
|
llvm::ConstantPointerNull::get(destType),
|
|
temp, "icr.argument");
|
|
|
|
// If we need to copy, then the load has to be conditional, which
|
|
// means we need control flow.
|
|
if (shouldCopy) {
|
|
originBB = CGF.Builder.GetInsertBlock();
|
|
contBB = CGF.createBasicBlock("icr.cont");
|
|
llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
|
|
CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
|
|
CGF.EmitBlock(copyBB);
|
|
condEval.begin(CGF);
|
|
}
|
|
}
|
|
|
|
llvm::Value *valueToUse = 0;
|
|
|
|
// Perform a copy if necessary.
|
|
if (shouldCopy) {
|
|
RValue srcRV = CGF.EmitLoadOfLValue(srcLV);
|
|
assert(srcRV.isScalar());
|
|
|
|
llvm::Value *src = srcRV.getScalarVal();
|
|
src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
|
|
"icr.cast");
|
|
|
|
// Use an ordinary store, not a store-to-lvalue.
|
|
CGF.Builder.CreateStore(src, temp);
|
|
|
|
// If optimization is enabled, and the value was held in a
|
|
// __strong variable, we need to tell the optimizer that this
|
|
// value has to stay alive until we're doing the store back.
|
|
// This is because the temporary is effectively unretained,
|
|
// and so otherwise we can violate the high-level semantics.
|
|
if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
|
|
srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
|
|
valueToUse = src;
|
|
}
|
|
}
|
|
|
|
// Finish the control flow if we needed it.
|
|
if (shouldCopy && !provablyNonNull) {
|
|
llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
|
|
CGF.EmitBlock(contBB);
|
|
|
|
// Make a phi for the value to intrinsically use.
|
|
if (valueToUse) {
|
|
llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
|
|
"icr.to-use");
|
|
phiToUse->addIncoming(valueToUse, copyBB);
|
|
phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
|
|
originBB);
|
|
valueToUse = phiToUse;
|
|
}
|
|
|
|
condEval.end(CGF);
|
|
}
|
|
|
|
args.addWriteback(srcLV, temp, valueToUse);
|
|
args.add(RValue::get(finalArgument), CRE->getType());
|
|
}
|
|
|
|
void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
|
|
QualType type) {
|
|
if (const ObjCIndirectCopyRestoreExpr *CRE
|
|
= dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
|
|
assert(getLangOpts().ObjCAutoRefCount);
|
|
assert(getContext().hasSameType(E->getType(), type));
|
|
return emitWritebackArg(*this, args, CRE);
|
|
}
|
|
|
|
assert(type->isReferenceType() == E->isGLValue() &&
|
|
"reference binding to unmaterialized r-value!");
|
|
|
|
if (E->isGLValue()) {
|
|
assert(E->getObjectKind() == OK_Ordinary);
|
|
return args.add(EmitReferenceBindingToExpr(E), type);
|
|
}
|
|
|
|
bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
|
|
|
|
// In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
|
|
// However, we still have to push an EH-only cleanup in case we unwind before
|
|
// we make it to the call.
|
|
if (HasAggregateEvalKind &&
|
|
CGM.getTarget().getCXXABI().isArgumentDestroyedByCallee()) {
|
|
const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
|
|
if (RD && RD->hasNonTrivialDestructor()) {
|
|
AggValueSlot Slot = CreateAggTemp(type, "agg.arg.tmp");
|
|
Slot.setExternallyDestructed();
|
|
EmitAggExpr(E, Slot);
|
|
RValue RV = Slot.asRValue();
|
|
args.add(RV, type);
|
|
|
|
pushDestroy(EHCleanup, RV.getAggregateAddr(), type, destroyCXXObject,
|
|
/*useEHCleanupForArray*/ true);
|
|
// This unreachable is a temporary marker which will be removed later.
|
|
llvm::Instruction *IsActive = Builder.CreateUnreachable();
|
|
args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
|
|
cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
|
|
LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
|
|
assert(L.isSimple());
|
|
if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
|
|
args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
|
|
} else {
|
|
// We can't represent a misaligned lvalue in the CallArgList, so copy
|
|
// to an aligned temporary now.
|
|
llvm::Value *tmp = CreateMemTemp(type);
|
|
EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(),
|
|
L.getAlignment());
|
|
args.add(RValue::getAggregate(tmp), type);
|
|
}
|
|
return;
|
|
}
|
|
|
|
args.add(EmitAnyExprToTemp(E), type);
|
|
}
|
|
|
|
// In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
|
|
// optimizer it can aggressively ignore unwind edges.
|
|
void
|
|
CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
|
|
if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
|
|
!CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
|
|
Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
|
|
CGM.getNoObjCARCExceptionsMetadata());
|
|
}
|
|
|
|
/// Emits a call to the given no-arguments nounwind runtime function.
|
|
llvm::CallInst *
|
|
CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
|
|
const llvm::Twine &name) {
|
|
return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
|
|
}
|
|
|
|
/// Emits a call to the given nounwind runtime function.
|
|
llvm::CallInst *
|
|
CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
|
|
ArrayRef<llvm::Value*> args,
|
|
const llvm::Twine &name) {
|
|
llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
|
|
call->setDoesNotThrow();
|
|
return call;
|
|
}
|
|
|
|
/// Emits a simple call (never an invoke) to the given no-arguments
|
|
/// runtime function.
|
|
llvm::CallInst *
|
|
CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
|
|
const llvm::Twine &name) {
|
|
return EmitRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
|
|
}
|
|
|
|
/// Emits a simple call (never an invoke) to the given runtime
|
|
/// function.
|
|
llvm::CallInst *
|
|
CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
|
|
ArrayRef<llvm::Value*> args,
|
|
const llvm::Twine &name) {
|
|
llvm::CallInst *call = Builder.CreateCall(callee, args, name);
|
|
call->setCallingConv(getRuntimeCC());
|
|
return call;
|
|
}
|
|
|
|
/// Emits a call or invoke to the given noreturn runtime function.
|
|
void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
|
|
ArrayRef<llvm::Value*> args) {
|
|
if (getInvokeDest()) {
|
|
llvm::InvokeInst *invoke =
|
|
Builder.CreateInvoke(callee,
|
|
getUnreachableBlock(),
|
|
getInvokeDest(),
|
|
args);
|
|
invoke->setDoesNotReturn();
|
|
invoke->setCallingConv(getRuntimeCC());
|
|
} else {
|
|
llvm::CallInst *call = Builder.CreateCall(callee, args);
|
|
call->setDoesNotReturn();
|
|
call->setCallingConv(getRuntimeCC());
|
|
Builder.CreateUnreachable();
|
|
}
|
|
}
|
|
|
|
/// Emits a call or invoke instruction to the given nullary runtime
|
|
/// function.
|
|
llvm::CallSite
|
|
CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
|
|
const Twine &name) {
|
|
return EmitRuntimeCallOrInvoke(callee, ArrayRef<llvm::Value*>(), name);
|
|
}
|
|
|
|
/// Emits a call or invoke instruction to the given runtime function.
|
|
llvm::CallSite
|
|
CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
|
|
ArrayRef<llvm::Value*> args,
|
|
const Twine &name) {
|
|
llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
|
|
callSite.setCallingConv(getRuntimeCC());
|
|
return callSite;
|
|
}
|
|
|
|
llvm::CallSite
|
|
CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
|
|
const Twine &Name) {
|
|
return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
|
|
}
|
|
|
|
/// Emits a call or invoke instruction to the given function, depending
|
|
/// on the current state of the EH stack.
|
|
llvm::CallSite
|
|
CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
|
|
ArrayRef<llvm::Value *> Args,
|
|
const Twine &Name) {
|
|
llvm::BasicBlock *InvokeDest = getInvokeDest();
|
|
|
|
llvm::Instruction *Inst;
|
|
if (!InvokeDest)
|
|
Inst = Builder.CreateCall(Callee, Args, Name);
|
|
else {
|
|
llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
|
|
Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
|
|
EmitBlock(ContBB);
|
|
}
|
|
|
|
// In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
|
|
// optimizer it can aggressively ignore unwind edges.
|
|
if (CGM.getLangOpts().ObjCAutoRefCount)
|
|
AddObjCARCExceptionMetadata(Inst);
|
|
|
|
return Inst;
|
|
}
|
|
|
|
static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
|
|
llvm::FunctionType *FTy) {
|
|
if (ArgNo < FTy->getNumParams())
|
|
assert(Elt->getType() == FTy->getParamType(ArgNo));
|
|
else
|
|
assert(FTy->isVarArg());
|
|
++ArgNo;
|
|
}
|
|
|
|
void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
|
|
SmallVectorImpl<llvm::Value *> &Args,
|
|
llvm::FunctionType *IRFuncTy) {
|
|
if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
|
|
unsigned NumElts = AT->getSize().getZExtValue();
|
|
QualType EltTy = AT->getElementType();
|
|
llvm::Value *Addr = RV.getAggregateAddr();
|
|
for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
|
|
llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
|
|
RValue EltRV = convertTempToRValue(EltAddr, EltTy);
|
|
ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
|
|
}
|
|
} else if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
|
RecordDecl *RD = RT->getDecl();
|
|
assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
|
|
LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty);
|
|
|
|
if (RD->isUnion()) {
|
|
const FieldDecl *LargestFD = 0;
|
|
CharUnits UnionSize = CharUnits::Zero();
|
|
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
i != e; ++i) {
|
|
const FieldDecl *FD = *i;
|
|
assert(!FD->isBitField() &&
|
|
"Cannot expand structure with bit-field members.");
|
|
CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
|
|
if (UnionSize < FieldSize) {
|
|
UnionSize = FieldSize;
|
|
LargestFD = FD;
|
|
}
|
|
}
|
|
if (LargestFD) {
|
|
RValue FldRV = EmitRValueForField(LV, LargestFD);
|
|
ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy);
|
|
}
|
|
} else {
|
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
|
i != e; ++i) {
|
|
FieldDecl *FD = *i;
|
|
|
|
RValue FldRV = EmitRValueForField(LV, FD);
|
|
ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy);
|
|
}
|
|
}
|
|
} else if (Ty->isAnyComplexType()) {
|
|
ComplexPairTy CV = RV.getComplexVal();
|
|
Args.push_back(CV.first);
|
|
Args.push_back(CV.second);
|
|
} else {
|
|
assert(RV.isScalar() &&
|
|
"Unexpected non-scalar rvalue during struct expansion.");
|
|
|
|
// Insert a bitcast as needed.
|
|
llvm::Value *V = RV.getScalarVal();
|
|
if (Args.size() < IRFuncTy->getNumParams() &&
|
|
V->getType() != IRFuncTy->getParamType(Args.size()))
|
|
V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
|
|
|
|
Args.push_back(V);
|
|
}
|
|
}
|
|
|
|
|
|
RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
|
|
llvm::Value *Callee,
|
|
ReturnValueSlot ReturnValue,
|
|
const CallArgList &CallArgs,
|
|
const Decl *TargetDecl,
|
|
llvm::Instruction **callOrInvoke) {
|
|
// FIXME: We no longer need the types from CallArgs; lift up and simplify.
|
|
SmallVector<llvm::Value*, 16> Args;
|
|
|
|
// Handle struct-return functions by passing a pointer to the
|
|
// location that we would like to return into.
|
|
QualType RetTy = CallInfo.getReturnType();
|
|
const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
|
|
|
|
// IRArgNo - Keep track of the argument number in the callee we're looking at.
|
|
unsigned IRArgNo = 0;
|
|
llvm::FunctionType *IRFuncTy =
|
|
cast<llvm::FunctionType>(
|
|
cast<llvm::PointerType>(Callee->getType())->getElementType());
|
|
|
|
// If the call returns a temporary with struct return, create a temporary
|
|
// alloca to hold the result, unless one is given to us.
|
|
if (CGM.ReturnTypeUsesSRet(CallInfo)) {
|
|
llvm::Value *Value = ReturnValue.getValue();
|
|
if (!Value)
|
|
Value = CreateMemTemp(RetTy);
|
|
Args.push_back(Value);
|
|
checkArgMatches(Value, IRArgNo, IRFuncTy);
|
|
}
|
|
|
|
assert(CallInfo.arg_size() == CallArgs.size() &&
|
|
"Mismatch between function signature & arguments.");
|
|
CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
|
|
for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
|
|
I != E; ++I, ++info_it) {
|
|
const ABIArgInfo &ArgInfo = info_it->info;
|
|
RValue RV = I->RV;
|
|
|
|
CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty);
|
|
|
|
// Insert a padding argument to ensure proper alignment.
|
|
if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
|
|
Args.push_back(llvm::UndefValue::get(PaddingType));
|
|
++IRArgNo;
|
|
}
|
|
|
|
switch (ArgInfo.getKind()) {
|
|
case ABIArgInfo::Indirect: {
|
|
if (RV.isScalar() || RV.isComplex()) {
|
|
// Make a temporary alloca to pass the argument.
|
|
llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
|
|
if (ArgInfo.getIndirectAlign() > AI->getAlignment())
|
|
AI->setAlignment(ArgInfo.getIndirectAlign());
|
|
Args.push_back(AI);
|
|
|
|
LValue argLV =
|
|
MakeAddrLValue(Args.back(), I->Ty, TypeAlign);
|
|
|
|
if (RV.isScalar())
|
|
EmitStoreOfScalar(RV.getScalarVal(), argLV, /*init*/ true);
|
|
else
|
|
EmitStoreOfComplex(RV.getComplexVal(), argLV, /*init*/ true);
|
|
|
|
// Validate argument match.
|
|
checkArgMatches(AI, IRArgNo, IRFuncTy);
|
|
} else {
|
|
// We want to avoid creating an unnecessary temporary+copy here;
|
|
// however, we need one in three cases:
|
|
// 1. If the argument is not byval, and we are required to copy the
|
|
// source. (This case doesn't occur on any common architecture.)
|
|
// 2. If the argument is byval, RV is not sufficiently aligned, and
|
|
// we cannot force it to be sufficiently aligned.
|
|
// 3. If the argument is byval, but RV is located in an address space
|
|
// different than that of the argument (0).
|
|
llvm::Value *Addr = RV.getAggregateAddr();
|
|
unsigned Align = ArgInfo.getIndirectAlign();
|
|
const llvm::DataLayout *TD = &CGM.getDataLayout();
|
|
const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace();
|
|
const unsigned ArgAddrSpace = (IRArgNo < IRFuncTy->getNumParams() ?
|
|
IRFuncTy->getParamType(IRArgNo)->getPointerAddressSpace() : 0);
|
|
if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
|
|
(ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align &&
|
|
llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align) ||
|
|
(ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
|
|
// Create an aligned temporary, and copy to it.
|
|
llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
|
|
if (Align > AI->getAlignment())
|
|
AI->setAlignment(Align);
|
|
Args.push_back(AI);
|
|
EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
|
|
|
|
// Validate argument match.
|
|
checkArgMatches(AI, IRArgNo, IRFuncTy);
|
|
} else {
|
|
// Skip the extra memcpy call.
|
|
Args.push_back(Addr);
|
|
|
|
// Validate argument match.
|
|
checkArgMatches(Addr, IRArgNo, IRFuncTy);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ABIArgInfo::Ignore:
|
|
break;
|
|
|
|
case ABIArgInfo::Extend:
|
|
case ABIArgInfo::Direct: {
|
|
if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
|
|
ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
|
|
ArgInfo.getDirectOffset() == 0) {
|
|
llvm::Value *V;
|
|
if (RV.isScalar())
|
|
V = RV.getScalarVal();
|
|
else
|
|
V = Builder.CreateLoad(RV.getAggregateAddr());
|
|
|
|
// If the argument doesn't match, perform a bitcast to coerce it. This
|
|
// can happen due to trivial type mismatches.
|
|
if (IRArgNo < IRFuncTy->getNumParams() &&
|
|
V->getType() != IRFuncTy->getParamType(IRArgNo))
|
|
V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
|
|
Args.push_back(V);
|
|
|
|
checkArgMatches(V, IRArgNo, IRFuncTy);
|
|
break;
|
|
}
|
|
|
|
// FIXME: Avoid the conversion through memory if possible.
|
|
llvm::Value *SrcPtr;
|
|
if (RV.isScalar() || RV.isComplex()) {
|
|
SrcPtr = CreateMemTemp(I->Ty, "coerce");
|
|
LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign);
|
|
if (RV.isScalar()) {
|
|
EmitStoreOfScalar(RV.getScalarVal(), SrcLV, /*init*/ true);
|
|
} else {
|
|
EmitStoreOfComplex(RV.getComplexVal(), SrcLV, /*init*/ true);
|
|
}
|
|
} else
|
|
SrcPtr = RV.getAggregateAddr();
|
|
|
|
// If the value is offset in memory, apply the offset now.
|
|
if (unsigned Offs = ArgInfo.getDirectOffset()) {
|
|
SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
|
|
SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
|
|
SrcPtr = Builder.CreateBitCast(SrcPtr,
|
|
llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
|
|
|
|
}
|
|
|
|
// If the coerce-to type is a first class aggregate, we flatten it and
|
|
// pass the elements. Either way is semantically identical, but fast-isel
|
|
// and the optimizer generally likes scalar values better than FCAs.
|
|
if (llvm::StructType *STy =
|
|
dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
|
|
llvm::Type *SrcTy =
|
|
cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
|
|
uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
|
|
uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
|
|
|
|
// If the source type is smaller than the destination type of the
|
|
// coerce-to logic, copy the source value into a temp alloca the size
|
|
// of the destination type to allow loading all of it. The bits past
|
|
// the source value are left undef.
|
|
if (SrcSize < DstSize) {
|
|
llvm::AllocaInst *TempAlloca
|
|
= CreateTempAlloca(STy, SrcPtr->getName() + ".coerce");
|
|
Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0);
|
|
SrcPtr = TempAlloca;
|
|
} else {
|
|
SrcPtr = Builder.CreateBitCast(SrcPtr,
|
|
llvm::PointerType::getUnqual(STy));
|
|
}
|
|
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
|
|
llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
|
|
llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
|
|
// We don't know what we're loading from.
|
|
LI->setAlignment(1);
|
|
Args.push_back(LI);
|
|
|
|
// Validate argument match.
|
|
checkArgMatches(LI, IRArgNo, IRFuncTy);
|
|
}
|
|
} else {
|
|
// In the simple case, just pass the coerced loaded value.
|
|
Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
|
|
*this));
|
|
|
|
// Validate argument match.
|
|
checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case ABIArgInfo::Expand:
|
|
ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
|
|
IRArgNo = Args.size();
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!CallArgs.getCleanupsToDeactivate().empty())
|
|
deactivateArgCleanupsBeforeCall(*this, CallArgs);
|
|
|
|
// If the callee is a bitcast of a function to a varargs pointer to function
|
|
// type, check to see if we can remove the bitcast. This handles some cases
|
|
// with unprototyped functions.
|
|
if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
|
|
if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
|
|
llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
|
|
llvm::FunctionType *CurFT =
|
|
cast<llvm::FunctionType>(CurPT->getElementType());
|
|
llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
|
|
|
|
if (CE->getOpcode() == llvm::Instruction::BitCast &&
|
|
ActualFT->getReturnType() == CurFT->getReturnType() &&
|
|
ActualFT->getNumParams() == CurFT->getNumParams() &&
|
|
ActualFT->getNumParams() == Args.size() &&
|
|
(CurFT->isVarArg() || !ActualFT->isVarArg())) {
|
|
bool ArgsMatch = true;
|
|
for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
|
|
if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
|
|
ArgsMatch = false;
|
|
break;
|
|
}
|
|
|
|
// Strip the cast if we can get away with it. This is a nice cleanup,
|
|
// but also allows us to inline the function at -O0 if it is marked
|
|
// always_inline.
|
|
if (ArgsMatch)
|
|
Callee = CalleeF;
|
|
}
|
|
}
|
|
|
|
unsigned CallingConv;
|
|
CodeGen::AttributeListType AttributeList;
|
|
CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList,
|
|
CallingConv, true);
|
|
llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
|
|
AttributeList);
|
|
|
|
llvm::BasicBlock *InvokeDest = 0;
|
|
if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
|
|
llvm::Attribute::NoUnwind))
|
|
InvokeDest = getInvokeDest();
|
|
|
|
llvm::CallSite CS;
|
|
if (!InvokeDest) {
|
|
CS = Builder.CreateCall(Callee, Args);
|
|
} else {
|
|
llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
|
|
CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
|
|
EmitBlock(Cont);
|
|
}
|
|
if (callOrInvoke)
|
|
*callOrInvoke = CS.getInstruction();
|
|
|
|
CS.setAttributes(Attrs);
|
|
CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
|
|
|
|
// In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
|
|
// optimizer it can aggressively ignore unwind edges.
|
|
if (CGM.getLangOpts().ObjCAutoRefCount)
|
|
AddObjCARCExceptionMetadata(CS.getInstruction());
|
|
|
|
// If the call doesn't return, finish the basic block and clear the
|
|
// insertion point; this allows the rest of IRgen to discard
|
|
// unreachable code.
|
|
if (CS.doesNotReturn()) {
|
|
Builder.CreateUnreachable();
|
|
Builder.ClearInsertionPoint();
|
|
|
|
// FIXME: For now, emit a dummy basic block because expr emitters in
|
|
// generally are not ready to handle emitting expressions at unreachable
|
|
// points.
|
|
EnsureInsertPoint();
|
|
|
|
// Return a reasonable RValue.
|
|
return GetUndefRValue(RetTy);
|
|
}
|
|
|
|
llvm::Instruction *CI = CS.getInstruction();
|
|
if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
|
|
CI->setName("call");
|
|
|
|
// Emit any writebacks immediately. Arguably this should happen
|
|
// after any return-value munging.
|
|
if (CallArgs.hasWritebacks())
|
|
emitWritebacks(*this, CallArgs);
|
|
|
|
switch (RetAI.getKind()) {
|
|
case ABIArgInfo::Indirect:
|
|
return convertTempToRValue(Args[0], RetTy);
|
|
|
|
case ABIArgInfo::Ignore:
|
|
// If we are ignoring an argument that had a result, make sure to
|
|
// construct the appropriate return value for our caller.
|
|
return GetUndefRValue(RetTy);
|
|
|
|
case ABIArgInfo::Extend:
|
|
case ABIArgInfo::Direct: {
|
|
llvm::Type *RetIRTy = ConvertType(RetTy);
|
|
if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
|
|
switch (getEvaluationKind(RetTy)) {
|
|
case TEK_Complex: {
|
|
llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
|
|
llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
|
|
return RValue::getComplex(std::make_pair(Real, Imag));
|
|
}
|
|
case TEK_Aggregate: {
|
|
llvm::Value *DestPtr = ReturnValue.getValue();
|
|
bool DestIsVolatile = ReturnValue.isVolatile();
|
|
|
|
if (!DestPtr) {
|
|
DestPtr = CreateMemTemp(RetTy, "agg.tmp");
|
|
DestIsVolatile = false;
|
|
}
|
|
BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
|
|
return RValue::getAggregate(DestPtr);
|
|
}
|
|
case TEK_Scalar: {
|
|
// If the argument doesn't match, perform a bitcast to coerce it. This
|
|
// can happen due to trivial type mismatches.
|
|
llvm::Value *V = CI;
|
|
if (V->getType() != RetIRTy)
|
|
V = Builder.CreateBitCast(V, RetIRTy);
|
|
return RValue::get(V);
|
|
}
|
|
}
|
|
llvm_unreachable("bad evaluation kind");
|
|
}
|
|
|
|
llvm::Value *DestPtr = ReturnValue.getValue();
|
|
bool DestIsVolatile = ReturnValue.isVolatile();
|
|
|
|
if (!DestPtr) {
|
|
DestPtr = CreateMemTemp(RetTy, "coerce");
|
|
DestIsVolatile = false;
|
|
}
|
|
|
|
// If the value is offset in memory, apply the offset now.
|
|
llvm::Value *StorePtr = DestPtr;
|
|
if (unsigned Offs = RetAI.getDirectOffset()) {
|
|
StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
|
|
StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
|
|
StorePtr = Builder.CreateBitCast(StorePtr,
|
|
llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
|
|
}
|
|
CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
|
|
|
|
return convertTempToRValue(DestPtr, RetTy);
|
|
}
|
|
|
|
case ABIArgInfo::Expand:
|
|
llvm_unreachable("Invalid ABI kind for return argument");
|
|
}
|
|
|
|
llvm_unreachable("Unhandled ABIArgInfo::Kind");
|
|
}
|
|
|
|
/* VarArg handling */
|
|
|
|
llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
|
|
return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
|
|
}
|