llvm-project/llvm/lib/Target/Lanai/LanaiTargetMachine.cpp

112 lines
3.9 KiB
C++

//===-- LanaiTargetMachine.cpp - Define TargetMachine for Lanai ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implements the info about Lanai target spec.
//
//===----------------------------------------------------------------------===//
#include "LanaiTargetMachine.h"
#include "Lanai.h"
#include "LanaiTargetObjectFile.h"
#include "LanaiTargetTransformInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;
namespace llvm {
void initializeLanaiMemAluCombinerPass(PassRegistry &);
void initializeLanaiSetflagAluCombinerPass(PassRegistry &);
} // namespace llvm
extern "C" void LLVMInitializeLanaiTarget() {
// Register the target.
RegisterTargetMachine<LanaiTargetMachine> registered_target(TheLanaiTarget);
}
static std::string computeDataLayout(const Triple &TT) {
// Data layout (keep in sync with clang/lib/Basic/Targets.cpp)
return "E" // Big endian
"-m:e" // ELF name manging
"-p:32:32" // 32-bit pointers, 32 bit aligned
"-i64:64" // 64 bit integers, 64 bit aligned
"-a:0:32" // 32 bit alignment of objects of aggregate type
"-n32" // 32 bit native integer width
"-S64"; // 64 bit natural stack alignment
}
LanaiTargetMachine::LanaiTargetMachine(const Target &TheTarget,
const Triple &TargetTriple,
StringRef Cpu, StringRef FeatureString,
const TargetOptions &Options,
Reloc::Model RelocationModel,
CodeModel::Model CodeModel,
CodeGenOpt::Level OptLevel)
: LLVMTargetMachine(TheTarget, computeDataLayout(TargetTriple),
TargetTriple, Cpu, FeatureString, Options,
RelocationModel, CodeModel, OptLevel),
Subtarget(TargetTriple, Cpu, FeatureString, *this, Options,
RelocationModel, CodeModel, OptLevel),
TLOF(new LanaiTargetObjectFile()) {
initAsmInfo();
}
TargetIRAnalysis LanaiTargetMachine::getTargetIRAnalysis() {
return TargetIRAnalysis([this](const Function &F) {
return TargetTransformInfo(LanaiTTIImpl(this, F));
});
}
namespace {
// Lanai Code Generator Pass Configuration Options.
class LanaiPassConfig : public TargetPassConfig {
public:
LanaiPassConfig(LanaiTargetMachine *TM, PassManagerBase *PassManager)
: TargetPassConfig(TM, *PassManager) {}
LanaiTargetMachine &getLanaiTargetMachine() const {
return getTM<LanaiTargetMachine>();
}
bool addInstSelector() override;
void addPreSched2() override;
void addPreEmitPass() override;
};
} // namespace
TargetPassConfig *
LanaiTargetMachine::createPassConfig(PassManagerBase &PassManager) {
return new LanaiPassConfig(this, &PassManager);
}
// Install an instruction selector pass.
bool LanaiPassConfig::addInstSelector() {
addPass(createLanaiISelDag(getLanaiTargetMachine()));
return false;
}
// Implemented by targets that want to run passes immediately before
// machine code is emitted.
void LanaiPassConfig::addPreEmitPass() {
addPass(createLanaiDelaySlotFillerPass(getLanaiTargetMachine()));
}
// Run passes after prolog-epilog insertion and before the second instruction
// scheduling pass.
void LanaiPassConfig::addPreSched2() {
addPass(createLanaiMemAluCombinerPass());
addPass(createLanaiSetflagAluCombinerPass());
}