llvm-project/lld/COFF/InputFiles.h

302 lines
10 KiB
C++

//===- InputFiles.h ---------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLD_COFF_INPUT_FILES_H
#define LLD_COFF_INPUT_FILES_H
#include "Config.h"
#include "lld/Common/LLVM.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/DebugInfo/CodeView/TypeRecord.h"
#include "llvm/LTO/LTO.h"
#include "llvm/Object/Archive.h"
#include "llvm/Object/COFF.h"
#include "llvm/Support/StringSaver.h"
#include <memory>
#include <set>
#include <vector>
namespace llvm {
namespace pdb {
class DbiModuleDescriptorBuilder;
}
}
namespace lld {
namespace coff {
std::vector<MemoryBufferRef> getArchiveMembers(llvm::object::Archive *File);
using llvm::COFF::IMAGE_FILE_MACHINE_UNKNOWN;
using llvm::COFF::MachineTypes;
using llvm::object::Archive;
using llvm::object::COFFObjectFile;
using llvm::object::COFFSymbolRef;
using llvm::object::coff_import_header;
using llvm::object::coff_section;
class Chunk;
class Defined;
class DefinedImportData;
class DefinedImportThunk;
class DefinedRegular;
class Lazy;
class SectionChunk;
class Symbol;
class Undefined;
// The root class of input files.
class InputFile {
public:
enum Kind { ArchiveKind, ObjectKind, ImportKind, BitcodeKind };
Kind kind() const { return FileKind; }
virtual ~InputFile() {}
// Returns the filename.
StringRef getName() const { return MB.getBufferIdentifier(); }
// Reads a file (the constructor doesn't do that).
virtual void parse() = 0;
// Returns the CPU type this file was compiled to.
virtual MachineTypes getMachineType() { return IMAGE_FILE_MACHINE_UNKNOWN; }
MemoryBufferRef MB;
// An archive file name if this file is created from an archive.
StringRef ParentName;
// Returns .drectve section contents if exist.
StringRef getDirectives() { return StringRef(Directives).trim(); }
protected:
InputFile(Kind K, MemoryBufferRef M) : MB(M), FileKind(K) {}
std::string Directives;
private:
const Kind FileKind;
};
// .lib or .a file.
class ArchiveFile : public InputFile {
public:
explicit ArchiveFile(MemoryBufferRef M);
static bool classof(const InputFile *F) { return F->kind() == ArchiveKind; }
void parse() override;
// Enqueues an archive member load for the given symbol. If we've already
// enqueued a load for the same archive member, this function does nothing,
// which ensures that we don't load the same member more than once.
void addMember(const Archive::Symbol *Sym);
private:
std::unique_ptr<Archive> File;
std::string Filename;
llvm::DenseSet<uint64_t> Seen;
};
// .obj or .o file. This may be a member of an archive file.
class ObjFile : public InputFile {
public:
explicit ObjFile(MemoryBufferRef M) : InputFile(ObjectKind, M) {}
static bool classof(const InputFile *F) { return F->kind() == ObjectKind; }
void parse() override;
MachineTypes getMachineType() override;
ArrayRef<Chunk *> getChunks() { return Chunks; }
ArrayRef<SectionChunk *> getDebugChunks() { return DebugChunks; }
ArrayRef<SectionChunk *> getSXDataChunks() { return SXDataChunks; }
ArrayRef<SectionChunk *> getGuardFidChunks() { return GuardFidChunks; }
ArrayRef<SectionChunk *> getGuardLJmpChunks() { return GuardLJmpChunks; }
ArrayRef<Symbol *> getSymbols() { return Symbols; }
ArrayRef<uint8_t> getDebugSection(StringRef SecName);
// Returns a Symbol object for the SymbolIndex'th symbol in the
// underlying object file.
Symbol *getSymbol(uint32_t SymbolIndex) {
return Symbols[SymbolIndex];
}
// Returns the underlying COFF file.
COFFObjectFile *getCOFFObj() { return COFFObj.get(); }
// Whether the object was already merged into the final PDB or not
bool wasProcessedForPDB() const { return !!ModuleDBI; }
static std::vector<ObjFile *> Instances;
// Flags in the absolute @feat.00 symbol if it is present. These usually
// indicate if an object was compiled with certain security features enabled
// like stack guard, safeseh, /guard:cf, or other things.
uint32_t Feat00Flags = 0;
// True if this object file is compatible with SEH. COFF-specific and
// x86-only. COFF spec 5.10.1. The .sxdata section.
bool hasSafeSEH() { return Feat00Flags & 0x1; }
// True if this file was compiled with /guard:cf.
bool hasGuardCF() { return Feat00Flags & 0x800; }
// Pointer to the PDB module descriptor builder. Various debug info records
// will reference object files by "module index", which is here. Things like
// source files and section contributions are also recorded here. Will be null
// if we are not producing a PDB.
llvm::pdb::DbiModuleDescriptorBuilder *ModuleDBI = nullptr;
const coff_section *AddrsigSec = nullptr;
// When using Microsoft precompiled headers, this is the PCH's key.
// The same key is used by both the precompiled object, and objects using the
// precompiled object. Any difference indicates out-of-date objects.
llvm::Optional<uint32_t> PCHSignature;
// Tells whether this file was compiled with /hotpatch
bool HotPatchable = false;
private:
const coff_section* getSection(uint32_t I);
const coff_section *getSection(COFFSymbolRef Sym) {
return getSection(Sym.getSectionNumber());
}
void initializeChunks();
void initializeSymbols();
void initializeFlags();
SectionChunk *
readSection(uint32_t SectionNumber,
const llvm::object::coff_aux_section_definition *Def,
StringRef LeaderName);
void readAssociativeDefinition(
COFFSymbolRef COFFSym,
const llvm::object::coff_aux_section_definition *Def);
void readAssociativeDefinition(
COFFSymbolRef COFFSym,
const llvm::object::coff_aux_section_definition *Def,
uint32_t ParentSection);
void recordPrevailingSymbolForMingw(
COFFSymbolRef COFFSym,
llvm::DenseMap<StringRef, uint32_t> &PrevailingSectionMap);
void maybeAssociateSEHForMingw(
COFFSymbolRef Sym, const llvm::object::coff_aux_section_definition *Def,
const llvm::DenseMap<StringRef, uint32_t> &PrevailingSectionMap);
// Given a new symbol Sym with comdat selection Selection, if the new
// symbol is not (yet) Prevailing and the existing comdat leader set to
// Leader, emits a diagnostic if the new symbol and its selection doesn't
// match the existing symbol and its selection. If either old or new
// symbol have selection IMAGE_COMDAT_SELECT_LARGEST, Sym might replace
// the existing leader. In that case, Prevailing is set to true.
void handleComdatSelection(COFFSymbolRef Sym,
llvm::COFF::COMDATType &Selection,
bool &Prevailing, DefinedRegular *Leader);
llvm::Optional<Symbol *>
createDefined(COFFSymbolRef Sym,
std::vector<const llvm::object::coff_aux_section_definition *>
&ComdatDefs,
bool &PrevailingComdat);
Symbol *createRegular(COFFSymbolRef Sym);
Symbol *createUndefined(COFFSymbolRef Sym);
std::unique_ptr<COFFObjectFile> COFFObj;
// List of all chunks defined by this file. This includes both section
// chunks and non-section chunks for common symbols.
std::vector<Chunk *> Chunks;
// CodeView debug info sections.
std::vector<SectionChunk *> DebugChunks;
// Chunks containing symbol table indices of exception handlers. Only used for
// 32-bit x86.
std::vector<SectionChunk *> SXDataChunks;
// Chunks containing symbol table indices of address taken symbols and longjmp
// targets. These are not linked into the final binary when /guard:cf is set.
std::vector<SectionChunk *> GuardFidChunks;
std::vector<SectionChunk *> GuardLJmpChunks;
// This vector contains the same chunks as Chunks, but they are
// indexed such that you can get a SectionChunk by section index.
// Nonexistent section indices are filled with null pointers.
// (Because section number is 1-based, the first slot is always a
// null pointer.)
std::vector<SectionChunk *> SparseChunks;
// This vector contains a list of all symbols defined or referenced by this
// file. They are indexed such that you can get a Symbol by symbol
// index. Nonexistent indices (which are occupied by auxiliary
// symbols in the real symbol table) are filled with null pointers.
std::vector<Symbol *> Symbols;
};
// This type represents import library members that contain DLL names
// and symbols exported from the DLLs. See Microsoft PE/COFF spec. 7
// for details about the format.
class ImportFile : public InputFile {
public:
explicit ImportFile(MemoryBufferRef M) : InputFile(ImportKind, M) {}
static bool classof(const InputFile *F) { return F->kind() == ImportKind; }
static std::vector<ImportFile *> Instances;
Symbol *ImpSym = nullptr;
Symbol *ThunkSym = nullptr;
std::string DLLName;
private:
void parse() override;
public:
StringRef ExternalName;
const coff_import_header *Hdr;
Chunk *Location = nullptr;
// We want to eliminate dllimported symbols if no one actually refers them.
// These "Live" bits are used to keep track of which import library members
// are actually in use.
//
// If the Live bit is turned off by MarkLive, Writer will ignore dllimported
// symbols provided by this import library member. We also track whether the
// imported symbol is used separately from whether the thunk is used in order
// to avoid creating unnecessary thunks.
bool Live = !Config->DoGC;
bool ThunkLive = !Config->DoGC;
};
// Used for LTO.
class BitcodeFile : public InputFile {
public:
explicit BitcodeFile(MemoryBufferRef M) : InputFile(BitcodeKind, M) {}
static bool classof(const InputFile *F) { return F->kind() == BitcodeKind; }
ArrayRef<Symbol *> getSymbols() { return Symbols; }
MachineTypes getMachineType() override;
static std::vector<BitcodeFile *> Instances;
std::unique_ptr<llvm::lto::InputFile> Obj;
private:
void parse() override;
std::vector<Symbol *> Symbols;
};
} // namespace coff
std::string toString(const coff::InputFile *File);
} // namespace lld
#endif