llvm-project/llvm/lib/Target/AArch64/AArch64VectorByElementOpt.cpp

389 lines
14 KiB
C++

//=- AArch64VectorByElementOpt.cpp - AArch64 vector by element inst opt pass =//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that performs optimization for vector by element
// SIMD instructions.
//
// Certain SIMD instructions with vector element operand are not efficient.
// Rewrite them into SIMD instructions with vector operands. This rewrite
// is driven by the latency of the instructions.
//
// Example:
// fmla v0.4s, v1.4s, v2.s[1]
// is rewritten into
// dup v3.4s, v2.s[1]
// fmla v0.4s, v1.4s, v3.4s
//
//===----------------------------------------------------------------------===//
#include "AArch64InstrInfo.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCSchedule.h"
#include "llvm/Pass.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <map>
using namespace llvm;
#define DEBUG_TYPE "aarch64-vectorbyelement-opt"
STATISTIC(NumModifiedInstr,
"Number of vector by element instructions modified");
#define AARCH64_VECTOR_BY_ELEMENT_OPT_NAME \
"AArch64 vector by element instruction optimization pass"
namespace {
struct AArch64VectorByElementOpt : public MachineFunctionPass {
static char ID;
const TargetInstrInfo *TII;
MachineRegisterInfo *MRI;
TargetSchedModel SchedModel;
AArch64VectorByElementOpt() : MachineFunctionPass(ID) {
initializeAArch64VectorByElementOptPass(*PassRegistry::getPassRegistry());
}
/// Based only on latency of instructions, determine if it is cost efficient
/// to replace the instruction InstDesc by the two instructions InstDescRep1
/// and InstDescRep2.
/// Return true if replacement is recommended.
bool
shouldReplaceInstruction(MachineFunction *MF, const MCInstrDesc *InstDesc,
const MCInstrDesc *InstDescRep1,
const MCInstrDesc *InstDescRep2,
std::map<unsigned, bool> &VecInstElemTable) const;
/// Determine if we need to exit the vector by element instruction
/// optimization pass early. This makes sure that Targets with no need
/// for this optimization do not spent any compile time on this pass.
/// This check is done by comparing the latency of an indexed FMLA
/// instruction to the latency of the DUP + the latency of a vector
/// FMLA instruction. We do not check on other related instructions such
/// as FMLS as we assume that if the situation shows up for one
/// instruction, then it is likely to show up for the related ones.
/// Return true if early exit of the pass is recommended.
bool earlyExitVectElement(MachineFunction *MF);
/// Check whether an equivalent DUP instruction has already been
/// created or not.
/// Return true when the dup instruction already exists. In this case,
/// DestReg will point to the destination of the already created DUP.
bool reuseDUP(MachineInstr &MI, unsigned DupOpcode, unsigned SrcReg,
unsigned LaneNumber, unsigned *DestReg) const;
/// Certain SIMD instructions with vector element operand are not efficient.
/// Rewrite them into SIMD instructions with vector operands. This rewrite
/// is driven by the latency of the instructions.
/// Return true if the SIMD instruction is modified.
bool optimizeVectElement(MachineInstr &MI,
std::map<unsigned, bool> *VecInstElemTable) const;
bool runOnMachineFunction(MachineFunction &Fn) override;
StringRef getPassName() const override {
return AARCH64_VECTOR_BY_ELEMENT_OPT_NAME;
}
};
char AArch64VectorByElementOpt::ID = 0;
} // end anonymous namespace
INITIALIZE_PASS(AArch64VectorByElementOpt, "aarch64-vectorbyelement-opt",
AARCH64_VECTOR_BY_ELEMENT_OPT_NAME, false, false)
/// Based only on latency of instructions, determine if it is cost efficient
/// to replace the instruction InstDesc by the two instructions InstDescRep1
/// and InstDescRep2. Note that it is assumed in this fuction that an
/// instruction of type InstDesc is always replaced by the same two
/// instructions as results are cached here.
/// Return true if replacement is recommended.
bool AArch64VectorByElementOpt::shouldReplaceInstruction(
MachineFunction *MF, const MCInstrDesc *InstDesc,
const MCInstrDesc *InstDescRep1, const MCInstrDesc *InstDescRep2,
std::map<unsigned, bool> &VecInstElemTable) const {
// Check if replacment decision is alredy available in the cached table.
// if so, return it.
if (!VecInstElemTable.empty() &&
VecInstElemTable.find(InstDesc->getOpcode()) != VecInstElemTable.end())
return VecInstElemTable[InstDesc->getOpcode()];
unsigned SCIdx = InstDesc->getSchedClass();
unsigned SCIdxRep1 = InstDescRep1->getSchedClass();
unsigned SCIdxRep2 = InstDescRep2->getSchedClass();
const MCSchedClassDesc *SCDesc =
SchedModel.getMCSchedModel()->getSchedClassDesc(SCIdx);
const MCSchedClassDesc *SCDescRep1 =
SchedModel.getMCSchedModel()->getSchedClassDesc(SCIdxRep1);
const MCSchedClassDesc *SCDescRep2 =
SchedModel.getMCSchedModel()->getSchedClassDesc(SCIdxRep2);
// If a subtarget does not define resources for any of the instructions
// of interest, then return false for no replacement.
if (!SCDesc->isValid() || SCDesc->isVariant() || !SCDescRep1->isValid() ||
SCDescRep1->isVariant() || !SCDescRep2->isValid() ||
SCDescRep2->isVariant()) {
VecInstElemTable[InstDesc->getOpcode()] = false;
return false;
}
if (SchedModel.computeInstrLatency(InstDesc->getOpcode()) >
SchedModel.computeInstrLatency(InstDescRep1->getOpcode()) +
SchedModel.computeInstrLatency(InstDescRep2->getOpcode())) {
VecInstElemTable[InstDesc->getOpcode()] = true;
return true;
}
VecInstElemTable[InstDesc->getOpcode()] = false;
return false;
}
/// Determine if we need to exit the vector by element instruction
/// optimization pass early. This makes sure that Targets with no need
/// for this optimization do not spent any compile time on this pass.
/// This check is done by comparing the latency of an indexed FMLA
/// instruction to the latency of the DUP + the latency of a vector
/// FMLA instruction. We do not check on other related instructions such
/// as FMLS as we assume that if the situation shows up for one
/// instruction, then it is likely to show up for the related ones.
/// Return true if early exit of the pass is recommended.
bool AArch64VectorByElementOpt::earlyExitVectElement(MachineFunction *MF) {
std::map<unsigned, bool> VecInstElemTable;
const MCInstrDesc *IndexMulMCID = &TII->get(AArch64::FMLAv4i32_indexed);
const MCInstrDesc *DupMCID = &TII->get(AArch64::DUPv4i32lane);
const MCInstrDesc *MulMCID = &TII->get(AArch64::FMULv4f32);
if (!shouldReplaceInstruction(MF, IndexMulMCID, DupMCID, MulMCID,
VecInstElemTable))
return true;
return false;
}
/// Check whether an equivalent DUP instruction has already been
/// created or not.
/// Return true when the dup instruction already exists. In this case,
/// DestReg will point to the destination of the already created DUP.
bool AArch64VectorByElementOpt::reuseDUP(MachineInstr &MI, unsigned DupOpcode,
unsigned SrcReg, unsigned LaneNumber,
unsigned *DestReg) const {
for (MachineBasicBlock::iterator MII = MI, MIE = MI.getParent()->begin();
MII != MIE;) {
MII--;
MachineInstr *CurrentMI = &*MII;
if (CurrentMI->getOpcode() == DupOpcode &&
CurrentMI->getNumOperands() == 3 &&
CurrentMI->getOperand(1).getReg() == SrcReg &&
CurrentMI->getOperand(2).getImm() == LaneNumber) {
*DestReg = CurrentMI->getOperand(0).getReg();
return true;
}
}
return false;
}
/// Certain SIMD instructions with vector element operand are not efficient.
/// Rewrite them into SIMD instructions with vector operands. This rewrite
/// is driven by the latency of the instructions.
/// The instruction of concerns are for the time being fmla, fmls, fmul,
/// and fmulx and hence they are hardcoded.
///
/// Example:
/// fmla v0.4s, v1.4s, v2.s[1]
/// is rewritten into
/// dup v3.4s, v2.s[1] // dup not necessary if redundant
/// fmla v0.4s, v1.4s, v3.4s
/// Return true if the SIMD instruction is modified.
bool AArch64VectorByElementOpt::optimizeVectElement(
MachineInstr &MI, std::map<unsigned, bool> *VecInstElemTable) const {
const MCInstrDesc *MulMCID, *DupMCID;
const TargetRegisterClass *RC = &AArch64::FPR128RegClass;
switch (MI.getOpcode()) {
default:
return false;
// 4X32 instructions
case AArch64::FMLAv4i32_indexed:
DupMCID = &TII->get(AArch64::DUPv4i32lane);
MulMCID = &TII->get(AArch64::FMLAv4f32);
break;
case AArch64::FMLSv4i32_indexed:
DupMCID = &TII->get(AArch64::DUPv4i32lane);
MulMCID = &TII->get(AArch64::FMLSv4f32);
break;
case AArch64::FMULXv4i32_indexed:
DupMCID = &TII->get(AArch64::DUPv4i32lane);
MulMCID = &TII->get(AArch64::FMULXv4f32);
break;
case AArch64::FMULv4i32_indexed:
DupMCID = &TII->get(AArch64::DUPv4i32lane);
MulMCID = &TII->get(AArch64::FMULv4f32);
break;
// 2X64 instructions
case AArch64::FMLAv2i64_indexed:
DupMCID = &TII->get(AArch64::DUPv2i64lane);
MulMCID = &TII->get(AArch64::FMLAv2f64);
break;
case AArch64::FMLSv2i64_indexed:
DupMCID = &TII->get(AArch64::DUPv2i64lane);
MulMCID = &TII->get(AArch64::FMLSv2f64);
break;
case AArch64::FMULXv2i64_indexed:
DupMCID = &TII->get(AArch64::DUPv2i64lane);
MulMCID = &TII->get(AArch64::FMULXv2f64);
break;
case AArch64::FMULv2i64_indexed:
DupMCID = &TII->get(AArch64::DUPv2i64lane);
MulMCID = &TII->get(AArch64::FMULv2f64);
break;
// 2X32 instructions
case AArch64::FMLAv2i32_indexed:
RC = &AArch64::FPR64RegClass;
DupMCID = &TII->get(AArch64::DUPv2i32lane);
MulMCID = &TII->get(AArch64::FMLAv2f32);
break;
case AArch64::FMLSv2i32_indexed:
RC = &AArch64::FPR64RegClass;
DupMCID = &TII->get(AArch64::DUPv2i32lane);
MulMCID = &TII->get(AArch64::FMLSv2f32);
break;
case AArch64::FMULXv2i32_indexed:
RC = &AArch64::FPR64RegClass;
DupMCID = &TII->get(AArch64::DUPv2i32lane);
MulMCID = &TII->get(AArch64::FMULXv2f32);
break;
case AArch64::FMULv2i32_indexed:
RC = &AArch64::FPR64RegClass;
DupMCID = &TII->get(AArch64::DUPv2i32lane);
MulMCID = &TII->get(AArch64::FMULv2f32);
break;
}
if (!shouldReplaceInstruction(MI.getParent()->getParent(),
&TII->get(MI.getOpcode()), DupMCID, MulMCID,
*VecInstElemTable))
return false;
const DebugLoc &DL = MI.getDebugLoc();
MachineBasicBlock &MBB = *MI.getParent();
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
// get the operands of the current SIMD arithmetic instruction.
unsigned MulDest = MI.getOperand(0).getReg();
unsigned SrcReg0 = MI.getOperand(1).getReg();
unsigned Src0IsKill = getKillRegState(MI.getOperand(1).isKill());
unsigned SrcReg1 = MI.getOperand(2).getReg();
unsigned Src1IsKill = getKillRegState(MI.getOperand(2).isKill());
unsigned DupDest;
// Instructions of interest have either 4 or 5 operands.
if (MI.getNumOperands() == 5) {
unsigned SrcReg2 = MI.getOperand(3).getReg();
unsigned Src2IsKill = getKillRegState(MI.getOperand(3).isKill());
unsigned LaneNumber = MI.getOperand(4).getImm();
// Create a new DUP instruction. Note that if an equivalent DUP instruction
// has already been created before, then use that one instread of creating
// a new one.
if (!reuseDUP(MI, DupMCID->getOpcode(), SrcReg2, LaneNumber, &DupDest)) {
DupDest = MRI.createVirtualRegister(RC);
BuildMI(MBB, MI, DL, *DupMCID, DupDest)
.addReg(SrcReg2, Src2IsKill)
.addImm(LaneNumber);
}
BuildMI(MBB, MI, DL, *MulMCID, MulDest)
.addReg(SrcReg0, Src0IsKill)
.addReg(SrcReg1, Src1IsKill)
.addReg(DupDest, Src2IsKill);
} else if (MI.getNumOperands() == 4) {
unsigned LaneNumber = MI.getOperand(3).getImm();
if (!reuseDUP(MI, DupMCID->getOpcode(), SrcReg1, LaneNumber, &DupDest)) {
DupDest = MRI.createVirtualRegister(RC);
BuildMI(MBB, MI, DL, *DupMCID, DupDest)
.addReg(SrcReg1, Src1IsKill)
.addImm(LaneNumber);
}
BuildMI(MBB, MI, DL, *MulMCID, MulDest)
.addReg(SrcReg0, Src0IsKill)
.addReg(DupDest, Src1IsKill);
} else {
return false;
}
++NumModifiedInstr;
return true;
}
bool AArch64VectorByElementOpt::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(*MF.getFunction()))
return false;
TII = MF.getSubtarget().getInstrInfo();
MRI = &MF.getRegInfo();
const TargetSubtargetInfo &ST = MF.getSubtarget();
const AArch64InstrInfo *AAII =
static_cast<const AArch64InstrInfo *>(ST.getInstrInfo());
if (!AAII)
return false;
SchedModel.init(ST.getSchedModel(), &ST, AAII);
if (!SchedModel.hasInstrSchedModel())
return false;
// A simple check to exit this pass early for targets that do not need it.
if (earlyExitVectElement(&MF))
return false;
bool Changed = false;
std::map<unsigned, bool> VecInstElemTable;
SmallVector<MachineInstr *, 8> RemoveMIs;
for (MachineBasicBlock &MBB : MF) {
for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end();
MII != MIE;) {
MachineInstr &MI = *MII;
if (optimizeVectElement(MI, &VecInstElemTable)) {
// Add MI to the list of instructions to be removed given that it has
// been replaced.
RemoveMIs.push_back(&MI);
Changed = true;
}
++MII;
}
}
for (MachineInstr *MI : RemoveMIs)
MI->eraseFromParent();
return Changed;
}
/// createAArch64VectorByElementOptPass - returns an instance of the
/// vector by element optimization pass.
FunctionPass *llvm::createAArch64VectorByElementOptPass() {
return new AArch64VectorByElementOpt();
}