llvm-project/pstl/test/test_rotate_copy.cpp

146 lines
4.3 KiB
C++

// -*- C++ -*-
//===-- test_rotate_copy.cpp ----------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "pstl_test_config.h"
#include <iterator>
#include "pstl/execution"
#include "pstl/algorithm"
#include "utils.h"
using namespace TestUtils;
template <typename T>
struct wrapper;
template <typename T>
bool
compare(const wrapper<T>& a, const wrapper<T>& b)
{
return a.t == b.t;
}
template <typename T>
bool
compare(const T& a, const T& b)
{
return a == b;
}
template <typename T>
struct wrapper
{
explicit wrapper(T t_) : t(t_) {}
wrapper&
operator=(const T& t_)
{
t = t_;
return *this;
}
friend bool
compare<T>(const wrapper<T>& a, const wrapper<T>& b);
private:
T t;
};
template <typename T, typename It1, typename It2>
struct comparator
{
using T1 = typename std::iterator_traits<It1>::value_type;
using T2 = typename std::iterator_traits<It2>::value_type;
bool
operator()(T1 a, T2 b)
{
T temp = a;
return compare(temp, b);
}
};
struct test_one_policy
{
#if __PSTL_ICC_17_VC141_TEST_SIMD_LAMBDA_DEBUG_32_BROKEN || \
__PSTL_ICC_16_VC14_TEST_SIMD_LAMBDA_DEBUG_32_BROKEN // dummy specialization by policy type, in case of broken configuration
template <typename Iterator1, typename Iterator2>
typename std::enable_if<is_same_iterator_category<Iterator1, std::random_access_iterator_tag>::value, void>::type
operator()(pstl::execution::unsequenced_policy, Iterator1 data_b, Iterator1 data_e, Iterator2 actual_b,
Iterator2 actual_e, std::size_t shift)
{
}
template <typename Iterator1, typename Iterator2>
typename std::enable_if<is_same_iterator_category<Iterator1, std::random_access_iterator_tag>::value, void>::type
operator()(pstl::execution::parallel_unsequenced_policy, Iterator1 data_b, Iterator1 data_e, Iterator2 actual_b,
Iterator2 actual_e, std::size_t shift)
{
}
#endif
template <typename ExecutionPolicy, typename Iterator1, typename Iterator2>
void
operator()(ExecutionPolicy&& exec, Iterator1 data_b, Iterator1 data_e, Iterator2 actual_b, Iterator2 actual_e,
std::size_t shift)
{
using namespace std;
using T = typename iterator_traits<Iterator2>::value_type;
Iterator1 data_m = std::next(data_b, shift);
fill(actual_b, actual_e, T(-123));
Iterator2 actual_return = rotate_copy(exec, data_b, data_m, data_e, actual_b);
EXPECT_TRUE(actual_return == actual_e, "wrong result of rotate_copy");
auto comparer = comparator<T, Iterator1, Iterator2>();
bool check = std::equal(data_m, data_e, actual_b, comparer);
check = check && std::equal(data_b, data_m, std::next(actual_b, std::distance(data_m, data_e)), comparer);
EXPECT_TRUE(check, "wrong effect of rotate_copy");
}
};
template <typename T1, typename T2>
void
test()
{
const std::size_t max_len = 100000;
Sequence<T2> actual(max_len, [](std::size_t i) { return T1(i); });
Sequence<T1> data(max_len, [](std::size_t i) { return T1(i); });
for (std::size_t len = 0; len < max_len; len = len <= 16 ? len + 1 : std::size_t(3.1415 * len))
{
std::size_t shifts[] = {0, 1, 2, len / 3, (2 * len) / 3, len - 1};
for (std::size_t shift : shifts)
{
if (shift > 0 && shift < len)
{
invoke_on_all_policies(test_one_policy(), data.begin(), data.begin() + len, actual.begin(),
actual.begin() + len, shift);
invoke_on_all_policies(test_one_policy(), data.cbegin(), data.cbegin() + len, actual.begin(),
actual.begin() + len, shift);
}
}
}
}
int32_t
main()
{
test<int32_t, int8_t>();
test<uint16_t, float32_t>();
test<float64_t, int64_t>();
test<wrapper<float64_t>, wrapper<float64_t>>();
std::cout << done() << std::endl;
return 0;
}