forked from OSchip/llvm-project
1231 lines
44 KiB
C++
1231 lines
44 KiB
C++
//===-- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator --*- C++ -*-==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file implements the IRTranslator class.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
|
|
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/OptimizationDiagnosticInfo.h"
|
|
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
|
|
#include "llvm/CodeGen/Analysis.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GetElementPtrTypeIterator.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Target/TargetFrameLowering.h"
|
|
#include "llvm/Target/TargetIntrinsicInfo.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
|
|
#define DEBUG_TYPE "irtranslator"
|
|
|
|
using namespace llvm;
|
|
|
|
char IRTranslator::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
|
|
false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
|
|
INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
|
|
false, false)
|
|
|
|
static void reportTranslationError(MachineFunction &MF,
|
|
const TargetPassConfig &TPC,
|
|
OptimizationRemarkEmitter &ORE,
|
|
OptimizationRemarkMissed &R) {
|
|
MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
|
|
|
|
// Print the function name explicitly if we don't have a debug location (which
|
|
// makes the diagnostic less useful) or if we're going to emit a raw error.
|
|
if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
|
|
R << (" (in function: " + MF.getName() + ")").str();
|
|
|
|
if (TPC.isGlobalISelAbortEnabled())
|
|
report_fatal_error(R.getMsg());
|
|
else
|
|
ORE.emit(R);
|
|
}
|
|
|
|
IRTranslator::IRTranslator() : MachineFunctionPass(ID), MRI(nullptr) {
|
|
initializeIRTranslatorPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<TargetPassConfig>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
|
|
unsigned IRTranslator::getOrCreateVReg(const Value &Val) {
|
|
unsigned &ValReg = ValToVReg[&Val];
|
|
|
|
if (ValReg)
|
|
return ValReg;
|
|
|
|
// Fill ValRegsSequence with the sequence of registers
|
|
// we need to concat together to produce the value.
|
|
assert(Val.getType()->isSized() &&
|
|
"Don't know how to create an empty vreg");
|
|
unsigned VReg =
|
|
MRI->createGenericVirtualRegister(getLLTForType(*Val.getType(), *DL));
|
|
ValReg = VReg;
|
|
|
|
if (auto CV = dyn_cast<Constant>(&Val)) {
|
|
bool Success = translate(*CV, VReg);
|
|
if (!Success) {
|
|
OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
|
|
MF->getFunction()->getSubprogram(),
|
|
&MF->getFunction()->getEntryBlock());
|
|
R << "unable to translate constant: " << ore::NV("Type", Val.getType());
|
|
reportTranslationError(*MF, *TPC, *ORE, R);
|
|
return VReg;
|
|
}
|
|
}
|
|
|
|
return VReg;
|
|
}
|
|
|
|
int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
|
|
if (FrameIndices.find(&AI) != FrameIndices.end())
|
|
return FrameIndices[&AI];
|
|
|
|
unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType());
|
|
unsigned Size =
|
|
ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
|
|
|
|
// Always allocate at least one byte.
|
|
Size = std::max(Size, 1u);
|
|
|
|
unsigned Alignment = AI.getAlignment();
|
|
if (!Alignment)
|
|
Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
|
|
|
|
int &FI = FrameIndices[&AI];
|
|
FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI);
|
|
return FI;
|
|
}
|
|
|
|
unsigned IRTranslator::getMemOpAlignment(const Instruction &I) {
|
|
unsigned Alignment = 0;
|
|
Type *ValTy = nullptr;
|
|
if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
|
|
Alignment = SI->getAlignment();
|
|
ValTy = SI->getValueOperand()->getType();
|
|
} else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
|
|
Alignment = LI->getAlignment();
|
|
ValTy = LI->getType();
|
|
} else {
|
|
OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
|
|
R << "unable to translate memop: " << ore::NV("Opcode", &I);
|
|
reportTranslationError(*MF, *TPC, *ORE, R);
|
|
return 1;
|
|
}
|
|
|
|
return Alignment ? Alignment : DL->getABITypeAlignment(ValTy);
|
|
}
|
|
|
|
MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
|
|
MachineBasicBlock *&MBB = BBToMBB[&BB];
|
|
assert(MBB && "BasicBlock was not encountered before");
|
|
return *MBB;
|
|
}
|
|
|
|
void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
|
|
assert(NewPred && "new predecessor must be a real MachineBasicBlock");
|
|
MachinePreds[Edge].push_back(NewPred);
|
|
}
|
|
|
|
bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
|
|
MachineIRBuilder &MIRBuilder) {
|
|
// FIXME: handle signed/unsigned wrapping flags.
|
|
|
|
// Get or create a virtual register for each value.
|
|
// Unless the value is a Constant => loadimm cst?
|
|
// or inline constant each time?
|
|
// Creation of a virtual register needs to have a size.
|
|
unsigned Op0 = getOrCreateVReg(*U.getOperand(0));
|
|
unsigned Op1 = getOrCreateVReg(*U.getOperand(1));
|
|
unsigned Res = getOrCreateVReg(U);
|
|
MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op0).addUse(Op1);
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) {
|
|
// -0.0 - X --> G_FNEG
|
|
if (isa<Constant>(U.getOperand(0)) &&
|
|
U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) {
|
|
MIRBuilder.buildInstr(TargetOpcode::G_FNEG)
|
|
.addDef(getOrCreateVReg(U))
|
|
.addUse(getOrCreateVReg(*U.getOperand(1)));
|
|
return true;
|
|
}
|
|
return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder);
|
|
}
|
|
|
|
bool IRTranslator::translateCompare(const User &U,
|
|
MachineIRBuilder &MIRBuilder) {
|
|
const CmpInst *CI = dyn_cast<CmpInst>(&U);
|
|
unsigned Op0 = getOrCreateVReg(*U.getOperand(0));
|
|
unsigned Op1 = getOrCreateVReg(*U.getOperand(1));
|
|
unsigned Res = getOrCreateVReg(U);
|
|
CmpInst::Predicate Pred =
|
|
CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
|
|
cast<ConstantExpr>(U).getPredicate());
|
|
if (CmpInst::isIntPredicate(Pred))
|
|
MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
|
|
else if (Pred == CmpInst::FCMP_FALSE)
|
|
MIRBuilder.buildCopy(
|
|
Res, getOrCreateVReg(*Constant::getNullValue(CI->getType())));
|
|
else if (Pred == CmpInst::FCMP_TRUE)
|
|
MIRBuilder.buildCopy(
|
|
Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType())));
|
|
else
|
|
MIRBuilder.buildFCmp(Pred, Res, Op0, Op1);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
|
|
const ReturnInst &RI = cast<ReturnInst>(U);
|
|
const Value *Ret = RI.getReturnValue();
|
|
// The target may mess up with the insertion point, but
|
|
// this is not important as a return is the last instruction
|
|
// of the block anyway.
|
|
return CLI->lowerReturn(MIRBuilder, Ret, !Ret ? 0 : getOrCreateVReg(*Ret));
|
|
}
|
|
|
|
bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
|
|
const BranchInst &BrInst = cast<BranchInst>(U);
|
|
unsigned Succ = 0;
|
|
if (!BrInst.isUnconditional()) {
|
|
// We want a G_BRCOND to the true BB followed by an unconditional branch.
|
|
unsigned Tst = getOrCreateVReg(*BrInst.getCondition());
|
|
const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++));
|
|
MachineBasicBlock &TrueBB = getMBB(TrueTgt);
|
|
MIRBuilder.buildBrCond(Tst, TrueBB);
|
|
}
|
|
|
|
const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ));
|
|
MachineBasicBlock &TgtBB = getMBB(BrTgt);
|
|
MachineBasicBlock &CurBB = MIRBuilder.getMBB();
|
|
|
|
// If the unconditional target is the layout successor, fallthrough.
|
|
if (!CurBB.isLayoutSuccessor(&TgtBB))
|
|
MIRBuilder.buildBr(TgtBB);
|
|
|
|
// Link successors.
|
|
for (const BasicBlock *Succ : BrInst.successors())
|
|
CurBB.addSuccessor(&getMBB(*Succ));
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateSwitch(const User &U,
|
|
MachineIRBuilder &MIRBuilder) {
|
|
// For now, just translate as a chain of conditional branches.
|
|
// FIXME: could we share most of the logic/code in
|
|
// SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel?
|
|
// At first sight, it seems most of the logic in there is independent of
|
|
// SelectionDAG-specifics and a lot of work went in to optimize switch
|
|
// lowering in there.
|
|
|
|
const SwitchInst &SwInst = cast<SwitchInst>(U);
|
|
const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition());
|
|
const BasicBlock *OrigBB = SwInst.getParent();
|
|
|
|
LLT LLTi1 = getLLTForType(*Type::getInt1Ty(U.getContext()), *DL);
|
|
for (auto &CaseIt : SwInst.cases()) {
|
|
const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue());
|
|
const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1);
|
|
MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue);
|
|
MachineBasicBlock &CurMBB = MIRBuilder.getMBB();
|
|
const BasicBlock *TrueBB = CaseIt.getCaseSuccessor();
|
|
MachineBasicBlock &TrueMBB = getMBB(*TrueBB);
|
|
|
|
MIRBuilder.buildBrCond(Tst, TrueMBB);
|
|
CurMBB.addSuccessor(&TrueMBB);
|
|
addMachineCFGPred({OrigBB, TrueBB}, &CurMBB);
|
|
|
|
MachineBasicBlock *FalseMBB =
|
|
MF->CreateMachineBasicBlock(SwInst.getParent());
|
|
// Insert the comparison blocks one after the other.
|
|
MF->insert(std::next(CurMBB.getIterator()), FalseMBB);
|
|
MIRBuilder.buildBr(*FalseMBB);
|
|
CurMBB.addSuccessor(FalseMBB);
|
|
|
|
MIRBuilder.setMBB(*FalseMBB);
|
|
}
|
|
// handle default case
|
|
const BasicBlock *DefaultBB = SwInst.getDefaultDest();
|
|
MachineBasicBlock &DefaultMBB = getMBB(*DefaultBB);
|
|
MIRBuilder.buildBr(DefaultMBB);
|
|
MachineBasicBlock &CurMBB = MIRBuilder.getMBB();
|
|
CurMBB.addSuccessor(&DefaultMBB);
|
|
addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateIndirectBr(const User &U,
|
|
MachineIRBuilder &MIRBuilder) {
|
|
const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
|
|
|
|
const unsigned Tgt = getOrCreateVReg(*BrInst.getAddress());
|
|
MIRBuilder.buildBrIndirect(Tgt);
|
|
|
|
// Link successors.
|
|
MachineBasicBlock &CurBB = MIRBuilder.getMBB();
|
|
for (const BasicBlock *Succ : BrInst.successors())
|
|
CurBB.addSuccessor(&getMBB(*Succ));
|
|
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
|
|
const LoadInst &LI = cast<LoadInst>(U);
|
|
|
|
auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile
|
|
: MachineMemOperand::MONone;
|
|
Flags |= MachineMemOperand::MOLoad;
|
|
|
|
unsigned Res = getOrCreateVReg(LI);
|
|
unsigned Addr = getOrCreateVReg(*LI.getPointerOperand());
|
|
|
|
MIRBuilder.buildLoad(
|
|
Res, Addr,
|
|
*MF->getMachineMemOperand(MachinePointerInfo(LI.getPointerOperand()),
|
|
Flags, DL->getTypeStoreSize(LI.getType()),
|
|
getMemOpAlignment(LI), AAMDNodes(), nullptr,
|
|
LI.getSynchScope(), LI.getOrdering()));
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
|
|
const StoreInst &SI = cast<StoreInst>(U);
|
|
auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile
|
|
: MachineMemOperand::MONone;
|
|
Flags |= MachineMemOperand::MOStore;
|
|
|
|
unsigned Val = getOrCreateVReg(*SI.getValueOperand());
|
|
unsigned Addr = getOrCreateVReg(*SI.getPointerOperand());
|
|
|
|
MIRBuilder.buildStore(
|
|
Val, Addr,
|
|
*MF->getMachineMemOperand(
|
|
MachinePointerInfo(SI.getPointerOperand()), Flags,
|
|
DL->getTypeStoreSize(SI.getValueOperand()->getType()),
|
|
getMemOpAlignment(SI), AAMDNodes(), nullptr, SI.getSynchScope(),
|
|
SI.getOrdering()));
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateExtractValue(const User &U,
|
|
MachineIRBuilder &MIRBuilder) {
|
|
const Value *Src = U.getOperand(0);
|
|
Type *Int32Ty = Type::getInt32Ty(U.getContext());
|
|
SmallVector<Value *, 1> Indices;
|
|
|
|
// getIndexedOffsetInType is designed for GEPs, so the first index is the
|
|
// usual array element rather than looking into the actual aggregate.
|
|
Indices.push_back(ConstantInt::get(Int32Ty, 0));
|
|
|
|
if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
|
|
for (auto Idx : EVI->indices())
|
|
Indices.push_back(ConstantInt::get(Int32Ty, Idx));
|
|
} else {
|
|
for (unsigned i = 1; i < U.getNumOperands(); ++i)
|
|
Indices.push_back(U.getOperand(i));
|
|
}
|
|
|
|
uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices);
|
|
|
|
unsigned Res = getOrCreateVReg(U);
|
|
MIRBuilder.buildExtract(Res, getOrCreateVReg(*Src), Offset);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateInsertValue(const User &U,
|
|
MachineIRBuilder &MIRBuilder) {
|
|
const Value *Src = U.getOperand(0);
|
|
Type *Int32Ty = Type::getInt32Ty(U.getContext());
|
|
SmallVector<Value *, 1> Indices;
|
|
|
|
// getIndexedOffsetInType is designed for GEPs, so the first index is the
|
|
// usual array element rather than looking into the actual aggregate.
|
|
Indices.push_back(ConstantInt::get(Int32Ty, 0));
|
|
|
|
if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
|
|
for (auto Idx : IVI->indices())
|
|
Indices.push_back(ConstantInt::get(Int32Ty, Idx));
|
|
} else {
|
|
for (unsigned i = 2; i < U.getNumOperands(); ++i)
|
|
Indices.push_back(U.getOperand(i));
|
|
}
|
|
|
|
uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices);
|
|
|
|
unsigned Res = getOrCreateVReg(U);
|
|
const Value &Inserted = *U.getOperand(1);
|
|
MIRBuilder.buildInsert(Res, getOrCreateVReg(*Src), getOrCreateVReg(Inserted),
|
|
Offset);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateSelect(const User &U,
|
|
MachineIRBuilder &MIRBuilder) {
|
|
MIRBuilder.buildSelect(getOrCreateVReg(U), getOrCreateVReg(*U.getOperand(0)),
|
|
getOrCreateVReg(*U.getOperand(1)),
|
|
getOrCreateVReg(*U.getOperand(2)));
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateBitCast(const User &U,
|
|
MachineIRBuilder &MIRBuilder) {
|
|
// If we're bitcasting to the source type, we can reuse the source vreg.
|
|
if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
|
|
getLLTForType(*U.getType(), *DL)) {
|
|
// Get the source vreg now, to avoid invalidating ValToVReg.
|
|
unsigned SrcReg = getOrCreateVReg(*U.getOperand(0));
|
|
unsigned &Reg = ValToVReg[&U];
|
|
// If we already assigned a vreg for this bitcast, we can't change that.
|
|
// Emit a copy to satisfy the users we already emitted.
|
|
if (Reg)
|
|
MIRBuilder.buildCopy(Reg, SrcReg);
|
|
else
|
|
Reg = SrcReg;
|
|
return true;
|
|
}
|
|
return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
|
|
}
|
|
|
|
bool IRTranslator::translateCast(unsigned Opcode, const User &U,
|
|
MachineIRBuilder &MIRBuilder) {
|
|
unsigned Op = getOrCreateVReg(*U.getOperand(0));
|
|
unsigned Res = getOrCreateVReg(U);
|
|
MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op);
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateGetElementPtr(const User &U,
|
|
MachineIRBuilder &MIRBuilder) {
|
|
// FIXME: support vector GEPs.
|
|
if (U.getType()->isVectorTy())
|
|
return false;
|
|
|
|
Value &Op0 = *U.getOperand(0);
|
|
unsigned BaseReg = getOrCreateVReg(Op0);
|
|
Type *PtrIRTy = Op0.getType();
|
|
LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
|
|
Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
|
|
LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
|
|
|
|
int64_t Offset = 0;
|
|
for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
|
|
GTI != E; ++GTI) {
|
|
const Value *Idx = GTI.getOperand();
|
|
if (StructType *StTy = GTI.getStructTypeOrNull()) {
|
|
unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
|
|
Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
|
|
continue;
|
|
} else {
|
|
uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
|
|
|
|
// If this is a scalar constant or a splat vector of constants,
|
|
// handle it quickly.
|
|
if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
|
|
Offset += ElementSize * CI->getSExtValue();
|
|
continue;
|
|
}
|
|
|
|
if (Offset != 0) {
|
|
unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy);
|
|
unsigned OffsetReg =
|
|
getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset));
|
|
MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg);
|
|
|
|
BaseReg = NewBaseReg;
|
|
Offset = 0;
|
|
}
|
|
|
|
// N = N + Idx * ElementSize;
|
|
unsigned ElementSizeReg =
|
|
getOrCreateVReg(*ConstantInt::get(OffsetIRTy, ElementSize));
|
|
|
|
unsigned IdxReg = getOrCreateVReg(*Idx);
|
|
if (MRI->getType(IdxReg) != OffsetTy) {
|
|
unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy);
|
|
MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg);
|
|
IdxReg = NewIdxReg;
|
|
}
|
|
|
|
unsigned OffsetReg = MRI->createGenericVirtualRegister(OffsetTy);
|
|
MIRBuilder.buildMul(OffsetReg, ElementSizeReg, IdxReg);
|
|
|
|
unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy);
|
|
MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg);
|
|
BaseReg = NewBaseReg;
|
|
}
|
|
}
|
|
|
|
if (Offset != 0) {
|
|
unsigned OffsetReg = getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset));
|
|
MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetReg);
|
|
return true;
|
|
}
|
|
|
|
MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateMemfunc(const CallInst &CI,
|
|
MachineIRBuilder &MIRBuilder,
|
|
unsigned ID) {
|
|
LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL);
|
|
Type *DstTy = CI.getArgOperand(0)->getType();
|
|
if (cast<PointerType>(DstTy)->getAddressSpace() != 0 ||
|
|
SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0))
|
|
return false;
|
|
|
|
SmallVector<CallLowering::ArgInfo, 8> Args;
|
|
for (int i = 0; i < 3; ++i) {
|
|
const auto &Arg = CI.getArgOperand(i);
|
|
Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType());
|
|
}
|
|
|
|
const char *Callee;
|
|
switch (ID) {
|
|
case Intrinsic::memmove:
|
|
case Intrinsic::memcpy: {
|
|
Type *SrcTy = CI.getArgOperand(1)->getType();
|
|
if(cast<PointerType>(SrcTy)->getAddressSpace() != 0)
|
|
return false;
|
|
Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove";
|
|
break;
|
|
}
|
|
case Intrinsic::memset:
|
|
Callee = "memset";
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
return CLI->lowerCall(MIRBuilder, CI.getCallingConv(),
|
|
MachineOperand::CreateES(Callee),
|
|
CallLowering::ArgInfo(0, CI.getType()), Args);
|
|
}
|
|
|
|
void IRTranslator::getStackGuard(unsigned DstReg,
|
|
MachineIRBuilder &MIRBuilder) {
|
|
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
|
|
MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
|
|
auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD);
|
|
MIB.addDef(DstReg);
|
|
|
|
auto &TLI = *MF->getSubtarget().getTargetLowering();
|
|
Value *Global = TLI.getSDagStackGuard(*MF->getFunction()->getParent());
|
|
if (!Global)
|
|
return;
|
|
|
|
MachinePointerInfo MPInfo(Global);
|
|
MachineInstr::mmo_iterator MemRefs = MF->allocateMemRefsArray(1);
|
|
auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
|
|
MachineMemOperand::MODereferenceable;
|
|
*MemRefs =
|
|
MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8,
|
|
DL->getPointerABIAlignment());
|
|
MIB.setMemRefs(MemRefs, MemRefs + 1);
|
|
}
|
|
|
|
bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
|
|
MachineIRBuilder &MIRBuilder) {
|
|
LLT Ty = getLLTForType(*CI.getOperand(0)->getType(), *DL);
|
|
LLT s1 = LLT::scalar(1);
|
|
unsigned Width = Ty.getSizeInBits();
|
|
unsigned Res = MRI->createGenericVirtualRegister(Ty);
|
|
unsigned Overflow = MRI->createGenericVirtualRegister(s1);
|
|
auto MIB = MIRBuilder.buildInstr(Op)
|
|
.addDef(Res)
|
|
.addDef(Overflow)
|
|
.addUse(getOrCreateVReg(*CI.getOperand(0)))
|
|
.addUse(getOrCreateVReg(*CI.getOperand(1)));
|
|
|
|
if (Op == TargetOpcode::G_UADDE || Op == TargetOpcode::G_USUBE) {
|
|
unsigned Zero = getOrCreateVReg(
|
|
*Constant::getNullValue(Type::getInt1Ty(CI.getContext())));
|
|
MIB.addUse(Zero);
|
|
}
|
|
|
|
MIRBuilder.buildSequence(getOrCreateVReg(CI), Res, 0, Overflow, Width);
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
|
|
MachineIRBuilder &MIRBuilder) {
|
|
switch (ID) {
|
|
default:
|
|
break;
|
|
case Intrinsic::lifetime_start:
|
|
case Intrinsic::lifetime_end:
|
|
// Stack coloring is not enabled in O0 (which we care about now) so we can
|
|
// drop these. Make sure someone notices when we start compiling at higher
|
|
// opts though.
|
|
if (MF->getTarget().getOptLevel() != CodeGenOpt::None)
|
|
return false;
|
|
return true;
|
|
case Intrinsic::dbg_declare: {
|
|
const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
|
|
assert(DI.getVariable() && "Missing variable");
|
|
|
|
const Value *Address = DI.getAddress();
|
|
if (!Address || isa<UndefValue>(Address)) {
|
|
DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
|
|
return true;
|
|
}
|
|
|
|
assert(DI.getVariable()->isValidLocationForIntrinsic(
|
|
MIRBuilder.getDebugLoc()) &&
|
|
"Expected inlined-at fields to agree");
|
|
auto AI = dyn_cast<AllocaInst>(Address);
|
|
if (AI && AI->isStaticAlloca()) {
|
|
// Static allocas are tracked at the MF level, no need for DBG_VALUE
|
|
// instructions (in fact, they get ignored if they *do* exist).
|
|
MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
|
|
getOrCreateFrameIndex(*AI), DI.getDebugLoc());
|
|
} else
|
|
MIRBuilder.buildDirectDbgValue(getOrCreateVReg(*Address),
|
|
DI.getVariable(), DI.getExpression());
|
|
return true;
|
|
}
|
|
case Intrinsic::vaend:
|
|
// No target I know of cares about va_end. Certainly no in-tree target
|
|
// does. Simplest intrinsic ever!
|
|
return true;
|
|
case Intrinsic::vastart: {
|
|
auto &TLI = *MF->getSubtarget().getTargetLowering();
|
|
Value *Ptr = CI.getArgOperand(0);
|
|
unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
|
|
|
|
MIRBuilder.buildInstr(TargetOpcode::G_VASTART)
|
|
.addUse(getOrCreateVReg(*Ptr))
|
|
.addMemOperand(MF->getMachineMemOperand(
|
|
MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 0));
|
|
return true;
|
|
}
|
|
case Intrinsic::dbg_value: {
|
|
// This form of DBG_VALUE is target-independent.
|
|
const DbgValueInst &DI = cast<DbgValueInst>(CI);
|
|
const Value *V = DI.getValue();
|
|
assert(DI.getVariable()->isValidLocationForIntrinsic(
|
|
MIRBuilder.getDebugLoc()) &&
|
|
"Expected inlined-at fields to agree");
|
|
if (!V) {
|
|
// Currently the optimizer can produce this; insert an undef to
|
|
// help debugging. Probably the optimizer should not do this.
|
|
MIRBuilder.buildIndirectDbgValue(0, DI.getOffset(), DI.getVariable(),
|
|
DI.getExpression());
|
|
} else if (const auto *CI = dyn_cast<Constant>(V)) {
|
|
MIRBuilder.buildConstDbgValue(*CI, DI.getOffset(), DI.getVariable(),
|
|
DI.getExpression());
|
|
} else {
|
|
unsigned Reg = getOrCreateVReg(*V);
|
|
// FIXME: This does not handle register-indirect values at offset 0. The
|
|
// direct/indirect thing shouldn't really be handled by something as
|
|
// implicit as reg+noreg vs reg+imm in the first palce, but it seems
|
|
// pretty baked in right now.
|
|
if (DI.getOffset() != 0)
|
|
MIRBuilder.buildIndirectDbgValue(Reg, DI.getOffset(), DI.getVariable(),
|
|
DI.getExpression());
|
|
else
|
|
MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(),
|
|
DI.getExpression());
|
|
}
|
|
return true;
|
|
}
|
|
case Intrinsic::uadd_with_overflow:
|
|
return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDE, MIRBuilder);
|
|
case Intrinsic::sadd_with_overflow:
|
|
return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
|
|
case Intrinsic::usub_with_overflow:
|
|
return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBE, MIRBuilder);
|
|
case Intrinsic::ssub_with_overflow:
|
|
return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
|
|
case Intrinsic::umul_with_overflow:
|
|
return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
|
|
case Intrinsic::smul_with_overflow:
|
|
return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
|
|
case Intrinsic::pow:
|
|
MIRBuilder.buildInstr(TargetOpcode::G_FPOW)
|
|
.addDef(getOrCreateVReg(CI))
|
|
.addUse(getOrCreateVReg(*CI.getArgOperand(0)))
|
|
.addUse(getOrCreateVReg(*CI.getArgOperand(1)));
|
|
return true;
|
|
case Intrinsic::memcpy:
|
|
case Intrinsic::memmove:
|
|
case Intrinsic::memset:
|
|
return translateMemfunc(CI, MIRBuilder, ID);
|
|
case Intrinsic::eh_typeid_for: {
|
|
GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
|
|
unsigned Reg = getOrCreateVReg(CI);
|
|
unsigned TypeID = MF->getTypeIDFor(GV);
|
|
MIRBuilder.buildConstant(Reg, TypeID);
|
|
return true;
|
|
}
|
|
case Intrinsic::objectsize: {
|
|
// If we don't know by now, we're never going to know.
|
|
const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1));
|
|
|
|
MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0);
|
|
return true;
|
|
}
|
|
case Intrinsic::stackguard:
|
|
getStackGuard(getOrCreateVReg(CI), MIRBuilder);
|
|
return true;
|
|
case Intrinsic::stackprotector: {
|
|
LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
|
|
unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy);
|
|
getStackGuard(GuardVal, MIRBuilder);
|
|
|
|
AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
|
|
MIRBuilder.buildStore(
|
|
GuardVal, getOrCreateVReg(*Slot),
|
|
*MF->getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(*MF,
|
|
getOrCreateFrameIndex(*Slot)),
|
|
MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
|
|
PtrTy.getSizeInBits() / 8, 8));
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool IRTranslator::translateInlineAsm(const CallInst &CI,
|
|
MachineIRBuilder &MIRBuilder) {
|
|
const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue());
|
|
if (!IA.getConstraintString().empty())
|
|
return false;
|
|
|
|
unsigned ExtraInfo = 0;
|
|
if (IA.hasSideEffects())
|
|
ExtraInfo |= InlineAsm::Extra_HasSideEffects;
|
|
if (IA.getDialect() == InlineAsm::AD_Intel)
|
|
ExtraInfo |= InlineAsm::Extra_AsmDialect;
|
|
|
|
MIRBuilder.buildInstr(TargetOpcode::INLINEASM)
|
|
.addExternalSymbol(IA.getAsmString().c_str())
|
|
.addImm(ExtraInfo);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
|
|
const CallInst &CI = cast<CallInst>(U);
|
|
auto TII = MF->getTarget().getIntrinsicInfo();
|
|
const Function *F = CI.getCalledFunction();
|
|
|
|
if (CI.isInlineAsm())
|
|
return translateInlineAsm(CI, MIRBuilder);
|
|
|
|
if (!F || !F->isIntrinsic()) {
|
|
unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI);
|
|
SmallVector<unsigned, 8> Args;
|
|
for (auto &Arg: CI.arg_operands())
|
|
Args.push_back(getOrCreateVReg(*Arg));
|
|
|
|
MF->getFrameInfo().setHasCalls(true);
|
|
return CLI->lowerCall(MIRBuilder, &CI, Res, Args, [&]() {
|
|
return getOrCreateVReg(*CI.getCalledValue());
|
|
});
|
|
}
|
|
|
|
Intrinsic::ID ID = F->getIntrinsicID();
|
|
if (TII && ID == Intrinsic::not_intrinsic)
|
|
ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
|
|
|
|
assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
|
|
|
|
if (translateKnownIntrinsic(CI, ID, MIRBuilder))
|
|
return true;
|
|
|
|
unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI);
|
|
MachineInstrBuilder MIB =
|
|
MIRBuilder.buildIntrinsic(ID, Res, !CI.doesNotAccessMemory());
|
|
|
|
for (auto &Arg : CI.arg_operands()) {
|
|
// Some intrinsics take metadata parameters. Reject them.
|
|
if (isa<MetadataAsValue>(Arg))
|
|
return false;
|
|
MIB.addUse(getOrCreateVReg(*Arg));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateInvoke(const User &U,
|
|
MachineIRBuilder &MIRBuilder) {
|
|
const InvokeInst &I = cast<InvokeInst>(U);
|
|
MCContext &Context = MF->getContext();
|
|
|
|
const BasicBlock *ReturnBB = I.getSuccessor(0);
|
|
const BasicBlock *EHPadBB = I.getSuccessor(1);
|
|
|
|
const Value *Callee = I.getCalledValue();
|
|
const Function *Fn = dyn_cast<Function>(Callee);
|
|
if (isa<InlineAsm>(Callee))
|
|
return false;
|
|
|
|
// FIXME: support invoking patchpoint and statepoint intrinsics.
|
|
if (Fn && Fn->isIntrinsic())
|
|
return false;
|
|
|
|
// FIXME: support whatever these are.
|
|
if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
|
|
return false;
|
|
|
|
// FIXME: support Windows exception handling.
|
|
if (!isa<LandingPadInst>(EHPadBB->front()))
|
|
return false;
|
|
|
|
|
|
// Emit the actual call, bracketed by EH_LABELs so that the MF knows about
|
|
// the region covered by the try.
|
|
MCSymbol *BeginSymbol = Context.createTempSymbol();
|
|
MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
|
|
|
|
unsigned Res = I.getType()->isVoidTy() ? 0 : getOrCreateVReg(I);
|
|
SmallVector<unsigned, 8> Args;
|
|
for (auto &Arg: I.arg_operands())
|
|
Args.push_back(getOrCreateVReg(*Arg));
|
|
|
|
if (!CLI->lowerCall(MIRBuilder, &I, Res, Args,
|
|
[&]() { return getOrCreateVReg(*I.getCalledValue()); }))
|
|
return false;
|
|
|
|
MCSymbol *EndSymbol = Context.createTempSymbol();
|
|
MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
|
|
|
|
// FIXME: track probabilities.
|
|
MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
|
|
&ReturnMBB = getMBB(*ReturnBB);
|
|
MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
|
|
MIRBuilder.getMBB().addSuccessor(&ReturnMBB);
|
|
MIRBuilder.getMBB().addSuccessor(&EHPadMBB);
|
|
MIRBuilder.buildBr(ReturnMBB);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateLandingPad(const User &U,
|
|
MachineIRBuilder &MIRBuilder) {
|
|
const LandingPadInst &LP = cast<LandingPadInst>(U);
|
|
|
|
MachineBasicBlock &MBB = MIRBuilder.getMBB();
|
|
addLandingPadInfo(LP, MBB);
|
|
|
|
MBB.setIsEHPad();
|
|
|
|
// If there aren't registers to copy the values into (e.g., during SjLj
|
|
// exceptions), then don't bother.
|
|
auto &TLI = *MF->getSubtarget().getTargetLowering();
|
|
const Constant *PersonalityFn = MF->getFunction()->getPersonalityFn();
|
|
if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
|
|
TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
|
|
return true;
|
|
|
|
// If landingpad's return type is token type, we don't create DAG nodes
|
|
// for its exception pointer and selector value. The extraction of exception
|
|
// pointer or selector value from token type landingpads is not currently
|
|
// supported.
|
|
if (LP.getType()->isTokenTy())
|
|
return true;
|
|
|
|
// Add a label to mark the beginning of the landing pad. Deletion of the
|
|
// landing pad can thus be detected via the MachineModuleInfo.
|
|
MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
|
|
.addSym(MF->addLandingPad(&MBB));
|
|
|
|
LLT Ty = getLLTForType(*LP.getType(), *DL);
|
|
unsigned Undef = MRI->createGenericVirtualRegister(Ty);
|
|
MIRBuilder.buildUndef(Undef);
|
|
|
|
SmallVector<LLT, 2> Tys;
|
|
for (Type *Ty : cast<StructType>(LP.getType())->elements())
|
|
Tys.push_back(getLLTForType(*Ty, *DL));
|
|
assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
|
|
|
|
// Mark exception register as live in.
|
|
unsigned ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
|
|
if (!ExceptionReg)
|
|
return false;
|
|
|
|
MBB.addLiveIn(ExceptionReg);
|
|
unsigned VReg = MRI->createGenericVirtualRegister(Tys[0]),
|
|
Tmp = MRI->createGenericVirtualRegister(Ty);
|
|
MIRBuilder.buildCopy(VReg, ExceptionReg);
|
|
MIRBuilder.buildInsert(Tmp, Undef, VReg, 0);
|
|
|
|
unsigned SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
|
|
if (!SelectorReg)
|
|
return false;
|
|
|
|
MBB.addLiveIn(SelectorReg);
|
|
|
|
// N.b. the exception selector register always has pointer type and may not
|
|
// match the actual IR-level type in the landingpad so an extra cast is
|
|
// needed.
|
|
unsigned PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
|
|
MIRBuilder.buildCopy(PtrVReg, SelectorReg);
|
|
|
|
VReg = MRI->createGenericVirtualRegister(Tys[1]);
|
|
MIRBuilder.buildInstr(TargetOpcode::G_PTRTOINT).addDef(VReg).addUse(PtrVReg);
|
|
MIRBuilder.buildInsert(getOrCreateVReg(LP), Tmp, VReg,
|
|
Tys[0].getSizeInBits());
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateAlloca(const User &U,
|
|
MachineIRBuilder &MIRBuilder) {
|
|
auto &AI = cast<AllocaInst>(U);
|
|
|
|
if (AI.isStaticAlloca()) {
|
|
unsigned Res = getOrCreateVReg(AI);
|
|
int FI = getOrCreateFrameIndex(AI);
|
|
MIRBuilder.buildFrameIndex(Res, FI);
|
|
return true;
|
|
}
|
|
|
|
// Now we're in the harder dynamic case.
|
|
Type *Ty = AI.getAllocatedType();
|
|
unsigned Align =
|
|
std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment());
|
|
|
|
unsigned NumElts = getOrCreateVReg(*AI.getArraySize());
|
|
|
|
Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
|
|
LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
|
|
if (MRI->getType(NumElts) != IntPtrTy) {
|
|
unsigned ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
|
|
MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
|
|
NumElts = ExtElts;
|
|
}
|
|
|
|
unsigned AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
|
|
unsigned TySize =
|
|
getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, -DL->getTypeAllocSize(Ty)));
|
|
MIRBuilder.buildMul(AllocSize, NumElts, TySize);
|
|
|
|
LLT PtrTy = getLLTForType(*AI.getType(), *DL);
|
|
auto &TLI = *MF->getSubtarget().getTargetLowering();
|
|
unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
|
|
|
|
unsigned SPTmp = MRI->createGenericVirtualRegister(PtrTy);
|
|
MIRBuilder.buildCopy(SPTmp, SPReg);
|
|
|
|
unsigned AllocTmp = MRI->createGenericVirtualRegister(PtrTy);
|
|
MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize);
|
|
|
|
// Handle alignment. We have to realign if the allocation granule was smaller
|
|
// than stack alignment, or the specific alloca requires more than stack
|
|
// alignment.
|
|
unsigned StackAlign =
|
|
MF->getSubtarget().getFrameLowering()->getStackAlignment();
|
|
Align = std::max(Align, StackAlign);
|
|
if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) {
|
|
// Round the size of the allocation up to the stack alignment size
|
|
// by add SA-1 to the size. This doesn't overflow because we're computing
|
|
// an address inside an alloca.
|
|
unsigned AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy);
|
|
MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align));
|
|
AllocTmp = AlignedAlloc;
|
|
}
|
|
|
|
MIRBuilder.buildCopy(SPReg, AllocTmp);
|
|
MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp);
|
|
|
|
MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI);
|
|
assert(MF->getFrameInfo().hasVarSizedObjects());
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
|
|
// FIXME: We may need more info about the type. Because of how LLT works,
|
|
// we're completely discarding the i64/double distinction here (amongst
|
|
// others). Fortunately the ABIs I know of where that matters don't use va_arg
|
|
// anyway but that's not guaranteed.
|
|
MIRBuilder.buildInstr(TargetOpcode::G_VAARG)
|
|
.addDef(getOrCreateVReg(U))
|
|
.addUse(getOrCreateVReg(*U.getOperand(0)))
|
|
.addImm(DL->getABITypeAlignment(U.getType()));
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateInsertElement(const User &U,
|
|
MachineIRBuilder &MIRBuilder) {
|
|
// If it is a <1 x Ty> vector, use the scalar as it is
|
|
// not a legal vector type in LLT.
|
|
if (U.getType()->getVectorNumElements() == 1) {
|
|
unsigned Elt = getOrCreateVReg(*U.getOperand(1));
|
|
ValToVReg[&U] = Elt;
|
|
return true;
|
|
}
|
|
MIRBuilder.buildInsertVectorElement(
|
|
getOrCreateVReg(U), getOrCreateVReg(*U.getOperand(0)),
|
|
getOrCreateVReg(*U.getOperand(1)), getOrCreateVReg(*U.getOperand(2)));
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateExtractElement(const User &U,
|
|
MachineIRBuilder &MIRBuilder) {
|
|
// If it is a <1 x Ty> vector, use the scalar as it is
|
|
// not a legal vector type in LLT.
|
|
if (U.getOperand(0)->getType()->getVectorNumElements() == 1) {
|
|
unsigned Elt = getOrCreateVReg(*U.getOperand(0));
|
|
ValToVReg[&U] = Elt;
|
|
return true;
|
|
}
|
|
MIRBuilder.buildExtractVectorElement(getOrCreateVReg(U),
|
|
getOrCreateVReg(*U.getOperand(0)),
|
|
getOrCreateVReg(*U.getOperand(1)));
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateShuffleVector(const User &U,
|
|
MachineIRBuilder &MIRBuilder) {
|
|
MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR)
|
|
.addDef(getOrCreateVReg(U))
|
|
.addUse(getOrCreateVReg(*U.getOperand(0)))
|
|
.addUse(getOrCreateVReg(*U.getOperand(1)))
|
|
.addUse(getOrCreateVReg(*U.getOperand(2)));
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
|
|
const PHINode &PI = cast<PHINode>(U);
|
|
auto MIB = MIRBuilder.buildInstr(TargetOpcode::PHI);
|
|
MIB.addDef(getOrCreateVReg(PI));
|
|
|
|
PendingPHIs.emplace_back(&PI, MIB.getInstr());
|
|
return true;
|
|
}
|
|
|
|
void IRTranslator::finishPendingPhis() {
|
|
for (std::pair<const PHINode *, MachineInstr *> &Phi : PendingPHIs) {
|
|
const PHINode *PI = Phi.first;
|
|
MachineInstrBuilder MIB(*MF, Phi.second);
|
|
|
|
// All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator
|
|
// won't create extra control flow here, otherwise we need to find the
|
|
// dominating predecessor here (or perhaps force the weirder IRTranslators
|
|
// to provide a simple boundary).
|
|
SmallSet<const BasicBlock *, 4> HandledPreds;
|
|
|
|
for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
|
|
auto IRPred = PI->getIncomingBlock(i);
|
|
if (HandledPreds.count(IRPred))
|
|
continue;
|
|
|
|
HandledPreds.insert(IRPred);
|
|
unsigned ValReg = getOrCreateVReg(*PI->getIncomingValue(i));
|
|
for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
|
|
assert(Pred->isSuccessor(MIB->getParent()) &&
|
|
"incorrect CFG at MachineBasicBlock level");
|
|
MIB.addUse(ValReg);
|
|
MIB.addMBB(Pred);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool IRTranslator::translate(const Instruction &Inst) {
|
|
CurBuilder.setDebugLoc(Inst.getDebugLoc());
|
|
switch(Inst.getOpcode()) {
|
|
#define HANDLE_INST(NUM, OPCODE, CLASS) \
|
|
case Instruction::OPCODE: return translate##OPCODE(Inst, CurBuilder);
|
|
#include "llvm/IR/Instruction.def"
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool IRTranslator::translate(const Constant &C, unsigned Reg) {
|
|
if (auto CI = dyn_cast<ConstantInt>(&C))
|
|
EntryBuilder.buildConstant(Reg, *CI);
|
|
else if (auto CF = dyn_cast<ConstantFP>(&C))
|
|
EntryBuilder.buildFConstant(Reg, *CF);
|
|
else if (isa<UndefValue>(C))
|
|
EntryBuilder.buildUndef(Reg);
|
|
else if (isa<ConstantPointerNull>(C))
|
|
EntryBuilder.buildConstant(Reg, 0);
|
|
else if (auto GV = dyn_cast<GlobalValue>(&C))
|
|
EntryBuilder.buildGlobalValue(Reg, GV);
|
|
else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
|
|
if (!CAZ->getType()->isVectorTy())
|
|
return false;
|
|
// Return the scalar if it is a <1 x Ty> vector.
|
|
if (CAZ->getNumElements() == 1)
|
|
return translate(*CAZ->getElementValue(0u), Reg);
|
|
std::vector<unsigned> Ops;
|
|
for (unsigned i = 0; i < CAZ->getNumElements(); ++i) {
|
|
Constant &Elt = *CAZ->getElementValue(i);
|
|
Ops.push_back(getOrCreateVReg(Elt));
|
|
}
|
|
EntryBuilder.buildMerge(Reg, Ops);
|
|
} else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
|
|
// Return the scalar if it is a <1 x Ty> vector.
|
|
if (CV->getNumElements() == 1)
|
|
return translate(*CV->getElementAsConstant(0), Reg);
|
|
std::vector<unsigned> Ops;
|
|
for (unsigned i = 0; i < CV->getNumElements(); ++i) {
|
|
Constant &Elt = *CV->getElementAsConstant(i);
|
|
Ops.push_back(getOrCreateVReg(Elt));
|
|
}
|
|
EntryBuilder.buildMerge(Reg, Ops);
|
|
} else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
|
|
switch(CE->getOpcode()) {
|
|
#define HANDLE_INST(NUM, OPCODE, CLASS) \
|
|
case Instruction::OPCODE: return translate##OPCODE(*CE, EntryBuilder);
|
|
#include "llvm/IR/Instruction.def"
|
|
default:
|
|
return false;
|
|
}
|
|
} else
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void IRTranslator::finalizeFunction() {
|
|
// Release the memory used by the different maps we
|
|
// needed during the translation.
|
|
PendingPHIs.clear();
|
|
ValToVReg.clear();
|
|
FrameIndices.clear();
|
|
MachinePreds.clear();
|
|
}
|
|
|
|
bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
|
|
MF = &CurMF;
|
|
const Function &F = *MF->getFunction();
|
|
if (F.empty())
|
|
return false;
|
|
CLI = MF->getSubtarget().getCallLowering();
|
|
CurBuilder.setMF(*MF);
|
|
EntryBuilder.setMF(*MF);
|
|
MRI = &MF->getRegInfo();
|
|
DL = &F.getParent()->getDataLayout();
|
|
TPC = &getAnalysis<TargetPassConfig>();
|
|
ORE = make_unique<OptimizationRemarkEmitter>(&F);
|
|
|
|
assert(PendingPHIs.empty() && "stale PHIs");
|
|
|
|
// Release the per-function state when we return, whether we succeeded or not.
|
|
auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
|
|
|
|
// Setup a separate basic-block for the arguments and constants
|
|
MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
|
|
MF->push_back(EntryBB);
|
|
EntryBuilder.setMBB(*EntryBB);
|
|
|
|
// Create all blocks, in IR order, to preserve the layout.
|
|
for (const BasicBlock &BB: F) {
|
|
auto *&MBB = BBToMBB[&BB];
|
|
|
|
MBB = MF->CreateMachineBasicBlock(&BB);
|
|
MF->push_back(MBB);
|
|
|
|
if (BB.hasAddressTaken())
|
|
MBB->setHasAddressTaken();
|
|
}
|
|
|
|
// Make our arguments/constants entry block fallthrough to the IR entry block.
|
|
EntryBB->addSuccessor(&getMBB(F.front()));
|
|
|
|
// Lower the actual args into this basic block.
|
|
SmallVector<unsigned, 8> VRegArgs;
|
|
for (const Argument &Arg: F.args())
|
|
VRegArgs.push_back(getOrCreateVReg(Arg));
|
|
if (!CLI->lowerFormalArguments(EntryBuilder, F, VRegArgs)) {
|
|
OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
|
|
MF->getFunction()->getSubprogram(),
|
|
&MF->getFunction()->getEntryBlock());
|
|
R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
|
|
reportTranslationError(*MF, *TPC, *ORE, R);
|
|
return false;
|
|
}
|
|
|
|
// And translate the function!
|
|
for (const BasicBlock &BB: F) {
|
|
MachineBasicBlock &MBB = getMBB(BB);
|
|
// Set the insertion point of all the following translations to
|
|
// the end of this basic block.
|
|
CurBuilder.setMBB(MBB);
|
|
|
|
for (const Instruction &Inst: BB) {
|
|
if (translate(Inst))
|
|
continue;
|
|
|
|
std::string InstStrStorage;
|
|
raw_string_ostream InstStr(InstStrStorage);
|
|
InstStr << Inst;
|
|
|
|
OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
|
|
Inst.getDebugLoc(), &BB);
|
|
R << "unable to translate instruction: " << ore::NV("Opcode", &Inst)
|
|
<< ": '" << InstStr.str() << "'";
|
|
reportTranslationError(*MF, *TPC, *ORE, R);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
finishPendingPhis();
|
|
|
|
// Now that the MachineFrameInfo has been configured, no further changes to
|
|
// the reserved registers are possible.
|
|
MRI->freezeReservedRegs(*MF);
|
|
|
|
// Merge the argument lowering and constants block with its single
|
|
// successor, the LLVM-IR entry block. We want the basic block to
|
|
// be maximal.
|
|
assert(EntryBB->succ_size() == 1 &&
|
|
"Custom BB used for lowering should have only one successor");
|
|
// Get the successor of the current entry block.
|
|
MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
|
|
assert(NewEntryBB.pred_size() == 1 &&
|
|
"LLVM-IR entry block has a predecessor!?");
|
|
// Move all the instruction from the current entry block to the
|
|
// new entry block.
|
|
NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
|
|
EntryBB->end());
|
|
|
|
// Update the live-in information for the new entry block.
|
|
for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
|
|
NewEntryBB.addLiveIn(LiveIn);
|
|
NewEntryBB.sortUniqueLiveIns();
|
|
|
|
// Get rid of the now empty basic block.
|
|
EntryBB->removeSuccessor(&NewEntryBB);
|
|
MF->remove(EntryBB);
|
|
MF->DeleteMachineBasicBlock(EntryBB);
|
|
|
|
assert(&MF->front() == &NewEntryBB &&
|
|
"New entry wasn't next in the list of basic block!");
|
|
|
|
return false;
|
|
}
|