llvm-project/mlir/tools/mlir-linalg-ods-gen/mlir-linalg-ods-gen.cpp

2467 lines
86 KiB
C++

//===- mlir-linalg-ods-gen.cpp - Linalg ODS generation from math form -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the implementation for the Tensor Comprehension-inspired
// parser and ODS pretty-printer for specifying Linalg "named ops" from a
// mathematical form.
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/Support/FileUtilities.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Support/LogicalResult.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/ToolOutputFile.h"
#include <map>
#include <set>
#define DEBUG_TYPE "linalg-ods-gen"
static llvm::cl::OptionCategory ODSGenCat("Linalg ODS Gen");
// Commandline options
static llvm::cl::opt<std::string>
inputFilename(llvm::cl::Positional, llvm::cl::desc("<input file>"),
llvm::cl::init("-"), llvm::cl::value_desc("filename"));
static llvm::cl::opt<std::string>
outputFilename("o", llvm::cl::desc("Output filename"),
llvm::cl::value_desc("filename"), llvm::cl::init("-"));
static llvm::cl::opt<bool>
genODSDecl("gen-ods-decl", llvm::cl::desc("Emit the ODS ops declarations."),
llvm::cl::cat(ODSGenCat));
static llvm::cl::opt<bool>
genODSImpl("gen-impl", llvm::cl::desc("Emit the ops implementations"),
llvm::cl::init(false), llvm::cl::cat(ODSGenCat));
static llvm::cl::opt<bool> testEmitIncludeTdHeader(
"test-emit-include-td-header",
llvm::cl::desc("Include LinalgStructuredOps.td for end-to-end "
"tblgen testing."),
llvm::cl::init(false), llvm::cl::cat(ODSGenCat));
using llvm::SMLoc;
using llvm::StringRef;
using llvm::Twine;
using namespace mlir;
//===----------------------------------------------------------------------===//
// Special "op aliases" substitutions.
//===----------------------------------------------------------------------===//
/// Perform substitutions of known special ops.
/// This is a poor man's way of achieving "op aliases": i.e. giving an op a
/// name.
/// This is hacky and temporary until migration to the python opdsl is complete.
static void substituteOpAliases(std::string &expressionsStr) {
for (auto kvp : SmallVector<std::pair<std::string, std::string>>{
{"b.create<CmpIOpSGT>(", "b.create<CmpIOp>(CmpIPredicate::sgt, "},
{"b.create<CmpFOpOGT>(", "b.create<CmpFOp>(CmpFPredicate::OGT, "},
{"b.create<CmpFOpOLT>(", "b.create<CmpFOp>(CmpFPredicate::OLT, "},
{"b.create<SignExtendIOp32>(",
"b.create<SignExtendIOp>(b.getI32Type(), "},
}) {
size_t pos = 0;
while ((pos = expressionsStr.find(kvp.first, pos)) != std::string::npos) {
expressionsStr.replace(pos, kvp.first.size(), kvp.second);
pos += kvp.second.size();
}
}
}
//===----------------------------------------------------------------------===//
// Lexer
//===----------------------------------------------------------------------===//
namespace {
/// This class represents a specific token in the input format.
class Token {
public:
enum class Kind {
// Markers.
eof,
error,
// Tokens with no info.
colon,
comma,
doc_str,
equal,
gt,
l_brace,
l_paren,
l_square,
lt,
minus,
plus,
question,
r_brace,
r_paren,
r_square,
semicolon,
star,
// Keywords.
kw_def,
FIRST_KEYWORD = kw_def,
kw_ods_def,
kw_implements_interface,
kw_attr_def,
kw_floordiv,
kw_ceildiv,
kw_mod,
LAST_KEYWORD = kw_mod,
// String valued tokens.
id,
integer,
};
Token(Kind kind, StringRef spelling) : kind(kind), spelling(spelling) {}
/// Return the bytes that make up this token.
StringRef getSpelling() const { return spelling; }
/// Return the kind of this token.
Kind getKind() const { return kind; }
/// Return a location for this token.
llvm::SMLoc getLoc() const {
return llvm::SMLoc::getFromPointer(spelling.data());
}
/// Return if this token is a keyword.
bool isKeyword() const {
return kind >= Kind::FIRST_KEYWORD && kind <= Kind::LAST_KEYWORD;
}
bool is(Kind k) const { return kind == k; }
bool isNot(Kind k) const { return kind != k; }
Optional<uint64_t> getUInt64IntegerValue() const {
bool isHex = spelling.size() > 1 && spelling[1] == 'x';
uint64_t result = 0;
if (spelling.getAsInteger(isHex ? 0 : 10, result))
return None;
return result;
}
private:
/// Discriminator that indicates the kind of token this is.
Kind kind;
/// A reference to the entire token contents; this is always a pointer into
/// a memory buffer owned by the source manager.
StringRef spelling;
};
/// This class implements a simple lexer.
class Lexer {
public:
Lexer(llvm::SourceMgr &mgr);
/// Lex the next token and return it.
Token lexToken();
/// Emit an error to the lexer with the given location and message.
Token emitError(llvm::SMLoc loc, const Twine &msg);
Token emitError(const char *loc, const Twine &msg);
/// Change the position of the lexer cursor. The next token we lex will start
/// at the designated point in the input.
void resetPointer(const char *newPtr) { curPtr = newPtr; }
private:
Token formToken(Token::Kind kind, const char *tokStart) {
return Token(kind, StringRef(tokStart, curPtr - tokStart));
}
/// Return the next character in the stream.
int getNextChar();
/// Lex an identifier.
Token lexIdentifier(const char *tokStart);
// Lex an integer.
Token lexInteger(const char *tokStart);
// Lex a string.
Token lexString(const char *tokStart);
// Skip a comment line, starting with a '//'.
void skipComment();
llvm::SourceMgr &srcMgr;
StringRef curBuffer;
const char *curPtr;
};
} // end anonymous namespace
Lexer::Lexer(llvm::SourceMgr &mgr) : srcMgr(mgr) {
curBuffer = srcMgr.getMemoryBuffer(mgr.getMainFileID())->getBuffer();
curPtr = curBuffer.begin();
}
Token Lexer::emitError(llvm::SMLoc loc, const Twine &msg) {
srcMgr.PrintMessage(loc, llvm::SourceMgr::DK_Error, msg);
return formToken(Token::Kind::error, loc.getPointer());
}
Token Lexer::emitError(const char *loc, const Twine &msg) {
return emitError(llvm::SMLoc::getFromPointer(loc), msg);
}
int Lexer::getNextChar() {
char curChar = *curPtr++;
switch (curChar) {
default:
return (unsigned char)curChar;
case 0: {
// A nul character in the stream is either the end of the current buffer
// or a random nul in the file. Disambiguate that here.
if (curPtr - 1 != curBuffer.end())
return 0;
// Otherwise, return end of file.
--curPtr;
return EOF;
}
case '\n':
case '\r':
// Handle the newline character by ignoring it and incrementing the line
// count. However, be careful about 'dos style' files with \n\r in them.
// Only treat a \n\r or \r\n as a single line.
if ((*curPtr == '\n' || (*curPtr == '\r')) && *curPtr != curChar)
++curPtr;
return '\n';
}
}
Token Lexer::lexToken() {
while (true) {
const char *tokStart = curPtr;
// This always consumes at least one character.
int curChar = getNextChar();
switch (curChar) {
default:
// Handle identifiers: [a-zA-Z_]
if (isalpha(curChar) || curChar == '_')
return lexIdentifier(tokStart);
// Handle integers: [0-9]
if (isdigit(curChar))
return lexInteger(tokStart);
// Unknown character, emit an error.
return emitError(tokStart, "unexpected character");
case EOF:
// Return EOF denoting the end of lexing.
return formToken(Token::Kind::eof, tokStart);
// Lex punctuation.
case ':':
return formToken(Token::Kind::colon, tokStart);
case ',':
return formToken(Token::Kind::comma, tokStart);
case '=':
return formToken(Token::Kind::equal, tokStart);
case '{':
return formToken(Token::Kind::l_brace, tokStart);
case '(':
return formToken(Token::Kind::l_paren, tokStart);
case '[':
return formToken(Token::Kind::l_square, tokStart);
case '}':
return formToken(Token::Kind::r_brace, tokStart);
case ')':
return formToken(Token::Kind::r_paren, tokStart);
case ']':
return formToken(Token::Kind::r_square, tokStart);
case '<':
return formToken(Token::Kind::lt, tokStart);
case '>':
return formToken(Token::Kind::gt, tokStart);
case '+':
return formToken(Token::Kind::plus, tokStart);
case '-':
return formToken(Token::Kind::minus, tokStart);
case ';':
return formToken(Token::Kind::semicolon, tokStart);
case '*':
return formToken(Token::Kind::star, tokStart);
case '?':
return formToken(Token::Kind::question, tokStart);
case '"':
return lexString(tokStart);
case '/':
if (*curPtr == '/') {
skipComment();
continue;
}
// Unknown character, emit an error.
return emitError(tokStart, "unexpected character: not a comment");
// Ignore whitespace characters.
case 0:
case ' ':
case '\t':
case '\n':
return lexToken();
}
}
}
Token Lexer::lexIdentifier(const char *tokStart) {
// Match the rest of the identifier regex: [0-9a-zA-Z_\-]*
while (isalnum(*curPtr) || *curPtr == '_' || *curPtr == '-')
++curPtr;
// Check to see if this identifier is a keyword.
StringRef str(tokStart, curPtr - tokStart);
Token::Kind kind =
StringSwitch<Token::Kind>(str)
.Case("attr", Token::Kind::kw_attr_def)
.Case("def", Token::Kind::kw_def)
.Case("ods_def", Token::Kind::kw_ods_def)
.Case("implements_interface", Token::Kind::kw_implements_interface)
.Case("floordiv", Token::Kind::kw_floordiv)
.Case("ceildiv", Token::Kind::kw_ceildiv)
.Case("mod", Token::Kind::kw_mod)
.Default(Token::Kind::id);
return Token(kind, str);
}
Token Lexer::lexInteger(const char *tokStart) {
// Match the rest of the identifier regex: [0-9a-zA-Z_\-]*
while (isdigit(*curPtr))
++curPtr;
StringRef str(tokStart, curPtr - tokStart);
return Token(Token::Kind::integer, str);
}
Token Lexer::lexString(const char *tokStart) {
assert(curPtr[-1] == '"');
if (*curPtr == '"' && *(curPtr + 1) == '"') {
curPtr += 2;
while (true) {
switch (*curPtr++) {
case '"':
if (*curPtr == '"' && *(curPtr + 1) == '"') {
Token token(Token::Kind::doc_str,
StringRef(tokStart + 3, curPtr - tokStart - 4));
curPtr += 2;
return token;
}
continue;
case 0:
// If this is a random nul character in the middle of the doc string,
// just include it. If it is the end of file, then it is an error.
if (curPtr - 1 != curBuffer.end())
continue;
return emitError(curPtr - 1, "expected '\"\"\"' to end doc string");
default:
continue;
}
}
}
return emitError(curPtr - 1, "expected '\"\"\"' to start doc string");
}
/// Skip a comment line, starting with a '//'.
void Lexer::skipComment() {
// Advance over the second '/' in a '//' comment.
assert(*curPtr == '/');
++curPtr;
while (true) {
switch (*curPtr++) {
case '\n':
case '\r':
// Newline is end of comment.
return;
case 0:
// If this is the end of the buffer, end the comment.
if (curPtr - 1 == curBuffer.end()) {
--curPtr;
return;
}
LLVM_FALLTHROUGH;
default:
// Skip over other characters.
break;
}
}
}
namespace {
class Parser {
public:
Parser(llvm::SourceMgr &mgr, MLIRContext *ctx)
: lexer(mgr), curToken(lexer.lexToken()), context(ctx) {}
//===--------------------------------------------------------------------===//
// Lexer Utilities
//===--------------------------------------------------------------------===//
LogicalResult parseInteger(uint64_t &value) {
if (!curToken.is(Token::Kind::integer))
return emitError(curToken.getLoc(), "expected integer");
value = curToken.getUInt64IntegerValue().getValue();
consumeToken();
return success();
}
/// Advance the current lexer onto the next token.
void consumeToken() {
assert(curToken.getKind() != Token::Kind::eof &&
curToken.getKind() != Token::Kind::error &&
"shouldn't advance past EOF or errors");
curToken = lexer.lexToken();
}
void consumeToken(Token::Kind kind) {
assert(curToken.getKind() == kind && "unexpected token");
curToken = lexer.lexToken();
}
LogicalResult parseToken(Token::Kind kind, const Twine &msg) {
if (curToken.getKind() != kind)
return emitError(curToken.getLoc(), msg);
consumeToken();
return success();
}
/// Parses an optional token and returns failure if failed to parse.
LogicalResult parseOptionalToken(Token::Kind kind) {
return success(consumeIf(kind));
}
LogicalResult emitError(llvm::SMLoc loc, const Twine &msg) {
lexer.emitError(loc, msg);
return failure();
}
LogicalResult emitError(const Twine &msg) {
return emitError(curToken.getLoc(), msg);
}
bool consumeIf(Token::Kind kind) {
if (curToken.isNot(kind))
return false;
consumeToken(kind);
return true;
}
LogicalResult
parseCommaSeparatedList(llvm::function_ref<ParseResult()> parseElement) {
// Non-empty case starts with an element.
if (parseElement())
return failure();
// Otherwise we have a list of comma separated elements.
while (consumeIf(Token::Kind::comma)) {
if (parseElement())
return failure();
}
return success();
}
LogicalResult
parseCommaSeparatedListUntil(Token::Kind rightToken,
llvm::function_ref<ParseResult()> parseElement,
bool allowEmptyList) {
// Handle the empty case.
if (curToken.is(rightToken)) {
if (!allowEmptyList)
return emitError("expected list element");
consumeToken(rightToken);
return success();
}
if (failed(parseCommaSeparatedList(parseElement)) ||
failed(
parseToken(rightToken, "expected ',' or right-terminating token")))
return failure();
return success();
}
Lexer lexer;
Token curToken;
MLIRContext *context;
};
} // namespace
/// Encodes an attribute use of the form:
///
/// index-list ::= integer-literal (`,` integer-literal)*
/// attr-use ::= bare-id `[` index-list `]`
struct AttrUse {
// Referenced attribute
StringRef attrName;
// Indices into the attribute
SmallVector<uint64_t, 4> indices;
/// Affine symbol for this usage.
/// This is represented as an affine symbol because at the time of parsing the
/// spec and generating the op's ODS/C++, we don't know the concrete constant
/// value. But they should be replaced with constants read from the attribute
/// and thus folded away for concrete op instances.
AffineExpr symbol;
std::string getKey() {
SmallVector<std::string, 4> indexStrs;
for (uint64_t index : indices)
indexStrs.push_back(std::to_string(index));
return llvm::formatv("{0}[{1}]", attrName, llvm::join(indexStrs, ","));
}
};
//===----------------------------------------------------------------------===//
// Affine parsing.
//===----------------------------------------------------------------------===//
namespace {
/// Lower precedence ops (all at the same precedence level). LNoOp is false in
/// the boolean sense.
enum AffineLowPrecOp {
/// Null value.
LNoOp,
Add,
Sub
};
/// Higher precedence ops - all at the same precedence level. HNoOp is false
/// in the boolean sense.
enum AffineHighPrecOp {
/// Null value.
HNoOp,
Mul,
FloorDiv,
CeilDiv,
Mod
};
using AffineDimList = SmallVector<std::pair<StringRef, AffineExpr>, 4>;
using AffineSymbolList = SmallVector<std::pair<StringRef, AffineExpr>, 4>;
/// This is a specialized parser for affine expressions.
class AffineParser {
public:
/// Creates an affine parser that parses tokens from `p`.
///
/// The affine parser introduces new dimensions and symbols eagerly as new
/// `id` are discovered. To additionally support attribute use `id`s, for a
/// parsed `id`, the resolution mechanism proceeds as follows:
/// 1. Try to parse `id` as an attribute use (using the `attrUseParsingHook`).
/// 2. If unsuccessful, try to match `id` to a known dim or symbol.
/// 3. If still unsuccessful, eagerly create a new dim or symbol and add it to
/// the known dims or symbols (using the `bareIdParsingHook`).
explicit AffineParser(
Parser &p, std::function<AffineExpr(StringRef)> bareIdParsingHook,
std::function<llvm::Optional<AffineExpr>()> attrUseParsingHook,
AffineDimList &dimList, AffineSymbolList &symbolList)
: parser(p), bareIdFallback(bareIdParsingHook),
attrUseCallback(attrUseParsingHook), dims(dimList),
symbols(symbolList) {}
/// Parse a comma-separated list of affine exprs.
SmallVector<AffineExpr, 4>
parseAffineExprs(Token::Kind lDelim = Token::Kind::l_paren,
Token::Kind rDelim = Token::Kind::r_paren);
/// Parse a single affine expr.`.
AffineExpr parseAffineExpr();
private:
// Binary affine op parsing.
AffineLowPrecOp consumeIfLowPrecOp();
AffineHighPrecOp consumeIfHighPrecOp();
// AffineExpr parsing.
AffineExpr parseParentheticalExpr();
AffineExpr parseNegateExpression(AffineExpr lhs);
AffineExpr parseIntegerExpr();
AffineExpr parseAttrUseOrBareIdExpr();
AffineExpr parseBareIdExpr();
AffineExpr getAffineBinaryOpExpr(AffineHighPrecOp op, AffineExpr lhs,
AffineExpr rhs, SMLoc opLoc);
AffineExpr getAffineBinaryOpExpr(AffineLowPrecOp op, AffineExpr lhs,
AffineExpr rhs);
AffineExpr parseAffineOperandExpr(AffineExpr lhs);
AffineExpr parseAffineLowPrecOpExpr(AffineExpr llhs, AffineLowPrecOp llhsOp);
AffineExpr parseAffineHighPrecOpExpr(AffineExpr llhs, AffineHighPrecOp llhsOp,
SMLoc llhsOpLoc);
Parser &parser;
std::function<AffineExpr(StringRef)> bareIdFallback;
std::function<llvm::Optional<AffineExpr>()> attrUseCallback;
AffineDimList &dims;
AffineSymbolList &symbols;
};
} // end anonymous namespace
/// Create an affine binary high precedence op expression (mul's, div's, mod).
/// opLoc is the location of the op token to be used to report errors
/// for non-conforming expressions.
AffineExpr AffineParser::getAffineBinaryOpExpr(AffineHighPrecOp op,
AffineExpr lhs, AffineExpr rhs,
SMLoc opLoc) {
switch (op) {
case Mul:
if (!lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant()) {
(void)parser.emitError(
opLoc, "non-affine expression: at least one of the multiply "
"operands has to be either a constant or symbolic");
return nullptr;
}
return lhs * rhs;
case FloorDiv:
if (!rhs.isSymbolicOrConstant()) {
(void)parser.emitError(opLoc,
"non-affine expression: right operand of floordiv "
"has to be either a constant or symbolic");
return nullptr;
}
return lhs.floorDiv(rhs);
case CeilDiv:
if (!rhs.isSymbolicOrConstant()) {
(void)parser.emitError(opLoc,
"non-affine expression: right operand of ceildiv "
"has to be either a constant or symbolic");
return nullptr;
}
return lhs.ceilDiv(rhs);
case Mod:
if (!rhs.isSymbolicOrConstant()) {
(void)parser.emitError(opLoc,
"non-affine expression: right operand of mod "
"has to be either a constant or symbolic");
return nullptr;
}
return lhs % rhs;
case HNoOp:
llvm_unreachable("can't create affine expression for null high prec op");
return nullptr;
}
llvm_unreachable("Unknown AffineHighPrecOp");
}
/// Create an affine binary low precedence op expression (add, sub).
AffineExpr AffineParser::getAffineBinaryOpExpr(AffineLowPrecOp op,
AffineExpr lhs, AffineExpr rhs) {
switch (op) {
case AffineLowPrecOp::Add:
return lhs + rhs;
case AffineLowPrecOp::Sub:
return lhs - rhs;
case AffineLowPrecOp::LNoOp:
llvm_unreachable("can't create affine expression for null low prec op");
return nullptr;
}
llvm_unreachable("Unknown AffineLowPrecOp");
}
/// Consume this token if it is a lower precedence affine op (there are only
/// two precedence levels).
AffineLowPrecOp AffineParser::consumeIfLowPrecOp() {
switch (parser.curToken.getKind()) {
case Token::Kind::plus:
parser.consumeToken();
return AffineLowPrecOp::Add;
case Token::Kind::minus:
parser.consumeToken();
return AffineLowPrecOp::Sub;
default:
return AffineLowPrecOp::LNoOp;
}
}
/// Consume this token if it is a higher precedence affine op (there are only
/// two precedence levels)
AffineHighPrecOp AffineParser::consumeIfHighPrecOp() {
switch (parser.curToken.getKind()) {
case Token::Kind::star:
parser.consumeToken(Token::Kind::star);
return Mul;
case Token::Kind::kw_floordiv:
parser.consumeToken(Token::Kind::kw_floordiv);
return FloorDiv;
case Token::Kind::kw_ceildiv:
parser.consumeToken(Token::Kind::kw_ceildiv);
return CeilDiv;
case Token::Kind::kw_mod:
parser.consumeToken(Token::Kind::kw_mod);
return Mod;
default:
return HNoOp;
}
}
/// Parse a high precedence op expression list: mul, div, and mod are high
/// precedence binary ops, i.e., parse a
/// expr_1 op_1 expr_2 op_2 ... expr_n
/// where op_1, op_2 are all a AffineHighPrecOp (mul, div, mod).
/// All affine binary ops are left associative.
/// Given llhs, returns (llhs llhsOp lhs) op rhs, or (lhs op rhs) if llhs is
/// null. If no rhs can be found, returns (llhs llhsOp lhs) or lhs if llhs is
/// null. llhsOpLoc is the location of the llhsOp token that will be used to
/// report an error for non-conforming expressions.
AffineExpr AffineParser::parseAffineHighPrecOpExpr(AffineExpr llhs,
AffineHighPrecOp llhsOp,
SMLoc llhsOpLoc) {
AffineExpr lhs = parseAffineOperandExpr(llhs);
if (!lhs)
return nullptr;
// Found an LHS. Parse the remaining expression.
auto opLoc = parser.curToken.getLoc();
if (AffineHighPrecOp op = consumeIfHighPrecOp()) {
if (llhs) {
AffineExpr expr = getAffineBinaryOpExpr(llhsOp, llhs, lhs, opLoc);
if (!expr)
return nullptr;
return parseAffineHighPrecOpExpr(expr, op, opLoc);
}
// No LLHS, get RHS
return parseAffineHighPrecOpExpr(lhs, op, opLoc);
}
// This is the last operand in this expression.
if (llhs)
return getAffineBinaryOpExpr(llhsOp, llhs, lhs, llhsOpLoc);
// No llhs, 'lhs' itself is the expression.
return lhs;
}
/// Parse an affine expression inside parentheses.
///
/// affine-expr ::= `(` affine-expr `)`
AffineExpr AffineParser::parseParentheticalExpr() {
if (failed(parser.parseToken(Token::Kind::l_paren, "expected '('")))
return nullptr;
if (parser.curToken.is(Token::Kind::r_paren))
return ((void)parser.emitError("no expression inside parentheses"),
nullptr);
auto expr = parseAffineExpr();
if (!expr)
return nullptr;
if (failed(parser.parseToken(Token::Kind::r_paren, "expected ')'")))
return nullptr;
return expr;
}
/// Parse the negation expression.
///
/// affine-expr ::= `-` affine-expr
AffineExpr AffineParser::parseNegateExpression(AffineExpr lhs) {
if (failed(parser.parseToken(Token::Kind::minus, "expected '-'")))
return nullptr;
AffineExpr operand = parseAffineOperandExpr(lhs);
// Since negation has the highest precedence of all ops (including high
// precedence ops) but lower than parentheses, we are only going to use
// parseAffineOperandExpr instead of parseAffineExpr here.
if (!operand)
// Extra error message although parseAffineOperandExpr would have
// complained. Leads to a better diagnostic.
return ((void)parser.emitError("missing operand of negation"), nullptr);
return (-1) * operand;
}
AffineExpr AffineParser::parseAttrUseOrBareIdExpr() {
if (llvm::Optional<AffineExpr> attrUse = attrUseCallback())
return attrUse.getValue();
return parseBareIdExpr();
}
/// Parse a bare id that may appear in an affine expression.
///
/// affine-expr ::= bare-id
AffineExpr AffineParser::parseBareIdExpr() {
if (parser.curToken.isNot(Token::Kind::id))
return ((void)parser.emitError("expected id"), nullptr);
StringRef sRef = parser.curToken.getSpelling();
for (auto &list : {dims, symbols}) {
for (auto entry : list) {
if (entry.first == sRef) {
parser.consumeToken(Token::Kind::id);
return entry.second;
}
}
}
// Not found, check fallback path.
AffineExpr expr = bareIdFallback(sRef);
if (expr) {
parser.consumeToken(Token::Kind::id);
return expr;
}
return ((void)parser.emitError("use of undeclared id"), nullptr);
}
/// Parse a positive integral constant appearing in an affine expression.
///
/// affine-expr ::= integer-literal
AffineExpr AffineParser::parseIntegerExpr() {
auto val = parser.curToken.getUInt64IntegerValue();
if (!val.hasValue() || (int64_t)val.getValue() < 0)
return ((void)parser.emitError("constant too large for index"), nullptr);
parser.consumeToken(Token::Kind::integer);
return getAffineConstantExpr((int64_t)val.getValue(), parser.context);
}
/// Parses an expression that can be a valid operand of an affine expression.
/// lhs: if non-null, lhs is an affine expression that is the lhs of a binary
/// operator, the rhs of which is being parsed. This is used to determine
/// whether an error should be emitted for a missing right operand.
// Eg: for an expression without parentheses (like i + j + k + l), each
// of the four identifiers is an operand. For i + j*k + l, j*k is not an
// operand expression, it's an op expression and will be parsed via
// parseAffineHighPrecOpExpression(). However, for i + (j*k) + -l, (j*k) and
// -l are valid operands that will be parsed by this function.
AffineExpr AffineParser::parseAffineOperandExpr(AffineExpr lhs) {
switch (parser.curToken.getKind()) {
case Token::Kind::id:
return parseAttrUseOrBareIdExpr();
case Token::Kind::integer:
return parseIntegerExpr();
case Token::Kind::l_paren:
return parseParentheticalExpr();
case Token::Kind::minus:
return parseNegateExpression(lhs);
case Token::Kind::kw_ceildiv:
case Token::Kind::kw_floordiv:
case Token::Kind::kw_mod:
case Token::Kind::plus:
case Token::Kind::star:
if (lhs)
(void)parser.emitError("missing right operand of binary operator");
else
(void)parser.emitError("missing left operand of binary operator");
return nullptr;
default:
if (lhs)
(void)parser.emitError("missing right operand of binary operator");
else
(void)parser.emitError("expected affine expression");
return nullptr;
}
}
/// Parse affine expressions that are bare-id's, integer constants,
/// parenthetical affine expressions, and affine op expressions that are a
/// composition of those.
///
/// All binary op's associate from left to right.
///
/// {add, sub} have lower precedence than {mul, div, and mod}.
///
/// Add, sub'are themselves at the same precedence level. Mul, floordiv,
/// ceildiv, and mod are at the same higher precedence level. Negation has
/// higher precedence than any binary op.
///
/// llhs: the affine expression appearing on the left of the one being parsed.
/// This function will return ((llhs llhsOp lhs) op rhs) if llhs is non null,
/// and lhs op rhs otherwise; if there is no rhs, llhs llhsOp lhs is returned
/// if llhs is non-null; otherwise lhs is returned. This is to deal with left
/// associativity.
///
/// Eg: when the expression is e1 + e2*e3 + e4, with e1 as llhs, this function
/// will return the affine expr equivalent of (e1 + (e2*e3)) + e4, where
/// (e2*e3) will be parsed using parseAffineHighPrecOpExpr().
AffineExpr AffineParser::parseAffineLowPrecOpExpr(AffineExpr llhs,
AffineLowPrecOp llhsOp) {
AffineExpr lhs;
if (!(lhs = parseAffineOperandExpr(llhs)))
return nullptr;
// Found an LHS. Deal with the ops.
if (AffineLowPrecOp lOp = consumeIfLowPrecOp()) {
if (llhs) {
AffineExpr sum = getAffineBinaryOpExpr(llhsOp, llhs, lhs);
return parseAffineLowPrecOpExpr(sum, lOp);
}
// No LLHS, get RHS and form the expression.
return parseAffineLowPrecOpExpr(lhs, lOp);
}
auto opLoc = parser.curToken.getLoc();
if (AffineHighPrecOp hOp = consumeIfHighPrecOp()) {
// We have a higher precedence op here. Get the rhs operand for the llhs
// through parseAffineHighPrecOpExpr.
AffineExpr highRes = parseAffineHighPrecOpExpr(lhs, hOp, opLoc);
if (!highRes)
return nullptr;
// If llhs is null, the product forms the first operand of the yet to be
// found expression. If non-null, the op to associate with llhs is llhsOp.
AffineExpr expr =
llhs ? getAffineBinaryOpExpr(llhsOp, llhs, highRes) : highRes;
// Recurse for subsequent low prec op's after the affine high prec op
// expression.
if (AffineLowPrecOp nextOp = consumeIfLowPrecOp())
return parseAffineLowPrecOpExpr(expr, nextOp);
return expr;
}
// Last operand in the expression list.
if (llhs)
return getAffineBinaryOpExpr(llhsOp, llhs, lhs);
// No llhs, 'lhs' itself is the expression.
return lhs;
}
/// Parse an affine expression.
/// affine-expr ::= `(` affine-expr `)`
/// | `-` affine-expr
/// | affine-expr `+` affine-expr
/// | affine-expr `-` affine-expr
/// | affine-expr `*` affine-expr
/// | affine-expr `floordiv` affine-expr
/// | affine-expr `ceildiv` affine-expr
/// | affine-expr `mod` affine-expr
/// | bare-id
/// | integer-literal
///
/// Additional conditions are checked depending on the production. For eg.,
/// one of the operands for `*` has to be either constant/symbolic; the second
/// operand for floordiv, ceildiv, and mod has to be a positive integer.
AffineExpr AffineParser::parseAffineExpr() {
return parseAffineLowPrecOpExpr(nullptr, AffineLowPrecOp::LNoOp);
}
SmallVector<AffineExpr, 4> AffineParser::parseAffineExprs(Token::Kind lDelim,
Token::Kind rDelim) {
if (failed(parser.parseToken(lDelim,
"expected lDelim at start of affine expr list")))
return {};
SmallVector<AffineExpr, 4> exprs;
auto parseElt = [&]() -> LogicalResult {
auto elt = parseAffineExpr();
exprs.push_back(elt);
return elt ? success() : failure();
};
if (failed(parser.parseCommaSeparatedListUntil(rDelim, parseElt,
/*allowEmptyList=*/true)))
llvm_unreachable("Failed AffineExpr parsing");
return exprs;
}
//===----------------------------------------------------------------------===//
// TC parsing.
//===----------------------------------------------------------------------===//
namespace {
/// Base class for expressions involved in TC parsing.
struct Expression {
enum class Kind {
Uninitialized = 0,
TensorExpr = 1,
TensorUse = 2,
};
explicit Expression(Kind k = Kind::Uninitialized) : kind(k) {}
virtual ~Expression() = default;
operator bool() const { return kind != Kind::Uninitialized; }
Kind kind;
};
/// Encodes a tensor use of the form:
///
/// affine-expr-list ::= affine-expr (`,` affine-expr)*
/// tensor-use ::= bare-id `(` `)`
/// | bare-id `(` affine-expr-list `)`
///
/// The affine-expr-list is stored as an AffineMap.
struct TensorUse : public Expression {
TensorUse() : TensorUse("", AffineMap()) {}
TensorUse(StringRef name, AffineMap map)
: Expression(Kind::TensorUse), tensorId(name), indexingMap(map) {}
static bool classof(const Expression *e) {
return e->kind == Kind::TensorUse;
}
bool operator==(const TensorUse &other) const {
return tensorId == other.tensorId && indexingMap == other.indexingMap;
}
/// Visitation function. Performs preorder or postorder traversal depending on
/// `PreOrder` and applies `callback` on each node.
template <typename Lambda, bool PreOrder> void visit(Lambda callback) const;
StringRef tensorId;
AffineMap indexingMap;
};
/// Encodes a tensor expression of the form:
///
/// op-spec ::= bare-id `<` reduction-dims-list `>`
/// | bare-id
/// op-arg ::= tensor-expr
/// | tensor-use
/// op-arg-list ::= op-arg (`,` op-arg)*
/// tensor-expr ::= op-spec `(` op-arg-list `)`
///
/// Underlying op-arg are stored by unique_ptr to base class.
struct TensorExpr : public Expression {
TensorExpr(StringRef name,
SmallVectorImpl<std::unique_ptr<Expression>> &&exprs,
ArrayRef<unsigned> reductionDims)
: Expression(Kind::TensorExpr), operationName(name),
expressions(std::move(exprs)),
reductionDimensions(reductionDims.begin(), reductionDims.end()) {}
static bool classof(const Expression *e) {
return e->kind == Kind::TensorExpr;
}
bool operator==(const TensorExpr &other) const {
if (operationName != other.operationName)
return false;
if (expressions.size() != other.expressions.size())
return false;
for (unsigned i = 0, e = expressions.size(); i < e; ++i)
if (*expressions[i] != *other.expressions[i])
return false;
for (unsigned i = 0, e = reductionDimensions.size(); i < e; ++i)
if (reductionDimensions[i] != other.reductionDimensions[i])
return false;
return true;
}
/// Visitation function. Performs preorder or postorder traversal depending on
/// `PreOrder` and applies `callback` on each node.
template <typename Lambda, bool PreOrder> void visit(Lambda callback) const;
StringRef operationName;
SmallVector<std::unique_ptr<Expression>, 4> expressions;
SetVector<unsigned> reductionDimensions;
};
/// This is a specialized parser for a TCDef.
/// This maintains the dims it finds in an eager fashion.
class TCParser {
enum class EagerDiscoveryMode { None = 0, Symbols, Dimensions };
public:
explicit TCParser(Parser &p);
/// Uses the AffineParser to parse the affine exprs used in a tensor
/// definition. If `discoveryMode` is set to Symbols (resp. Dimensions), new
/// symbols (resp. dimensions) are added eagerly. Otherwise, an error is
/// emitted on new identifiers.
SmallVector<AffineExpr, 4>
parseAffineExprs(EagerDiscoveryMode discoveryMode, AffineDimList &dims,
Token::Kind lDelim = Token::Kind::l_paren,
Token::Kind rDelim = Token::Kind::r_paren);
/// Parse the information for a tensor def.
/// All the affine-expr must be dimensionless (i.e. contain only expressions
/// involving symbols and constants), but can otherwise contain arbitrary
/// affine expressions.
LogicalResult parseTensorDef(bool isOutput);
/// Parses a tensor use.
struct ComprehensionParsingState {
/// The number of operands (which includes inputs and outputs) in a
/// comprehension.
size_t numArgs;
AffineDimList dims;
SmallVector<std::unique_ptr<Expression>, 4> expressions;
llvm::DenseMap<TensorUse, unsigned> orderedTensorArgs;
};
LogicalResult parseTensorUse(TensorUse &result,
ComprehensionParsingState &state);
/// Parses an attribute definition.
LogicalResult parseAttrDef();
/// Parses an optional attribute use.
LogicalResult parseAttrUse(AttrUse &result);
/// Parses a tensor expression.
LogicalResult parseExpression(TensorUse currentDefinition,
std::unique_ptr<Expression> &result,
ComprehensionParsingState &state);
/// Parse a single comprehension.
LogicalResult parseOneComprehension(StringRef cppOpName,
StringRef linalgOpName,
ComprehensionParsingState &state);
/// Parse and print the information for a TC def.
/// When `gen-ods-decl` is used, this prints the ODS declaration for the TC.
/// When `gen-impl` is used, this prints the C++ implementation for the extra
/// methods defined in ODS (`iterator_types`, `indexing_maps` and
/// `regionBuilder`).
LogicalResult parseAndEmitODSDef(llvm::raw_ostream &os);
/// Print the ODS class that defines a new `cppOpName` for a `linalgOpName`.
void printODS(llvm::raw_ostream &os, StringRef cppOpName,
StringRef linalgOpName, ArrayRef<StringRef> interfaces,
ComprehensionParsingState &state);
/// Print the C++ StructuredOpsInterface impl of `iterator_types`.
void printReferenceIterators(llvm::raw_ostream &os, StringRef cppOpName,
ComprehensionParsingState &state);
/// Print methods related to indexing map required attributes.
///
/// Specifically, this prints the definitions for the following methods:
/// bool hasDynamicIndexingMaps();
/// LogicalResult verifyIndexingMapRequiredAttributes();
void printIndexingMapRequiredAttrMethods(llvm::raw_ostream &os,
StringRef cppOpName,
ComprehensionParsingState &state);
/// Print the C++ StructuredOpsInterface impl of `indexing_maps`.
void printReferenceIndexingMaps(llvm::raw_ostream &os, StringRef cppOpName,
ComprehensionParsingState &state);
/// Print the C++ StructuredOpsInterface impl of `regionBuilder`.
void printRegionBuilder(llvm::raw_ostream &os, StringRef cppOpName,
ComprehensionParsingState &state);
/// Print the C++ impl for named ops canonicalizers and folders.
void printCanonicalizersAndFolders(llvm::raw_ostream &os,
StringRef cppOpName);
private:
//===--------------------------------------------------------------------===//
// Internal bookkeeping of tensors.
//===--------------------------------------------------------------------===//
struct RegisteredTensor {
StringRef type;
AffineMap shape;
bool isOutput;
AffineMap indexingMap;
unsigned index;
};
//===--------------------------------------------------------------------===//
// Internal bookkeeping of attributes.
//===--------------------------------------------------------------------===//
struct RegisteredAttr {
StringRef elementType;
SmallVector<uint64_t, 4> vectorDims;
bool isArray;
bool isOptional;
// Returns the function to get values at the given indices from this
// attribute.
llvm::Optional<std::string> getValueFn(ArrayRef<uint64_t> indices) const;
};
//===--------------------------------------------------------------------===//
// Per-TC def state.
//===--------------------------------------------------------------------===//
/// Symbols are per TC def.
AffineSymbolList symbols;
/// Attribute usages in all affine expressions.
SmallVector<AttrUse, 8> attrUses;
/// Tensors are per TC def.
llvm::StringMap<RegisteredTensor> registeredTensors;
unsigned nextRegisteredTensorIndex;
/// Attributes are per TC def.
std::map<std::string, RegisteredAttr> registeredAttrs;
/// A map from AttrUse to AffineExpr symbol.
llvm::StringMap<AffineExpr> registeredAttrUseToSymbol;
StringRef docString;
Parser &parser;
};
} // namespace
namespace llvm {
template <> struct DenseMapInfo<TensorUse> {
static TensorUse getEmptyKey() { return TensorUse("", AffineMap()); }
static TensorUse getTombstoneKey() {
return TensorUse(DenseMapInfo<StringRef>::getTombstoneKey(),
DenseMapInfo<AffineMap>::getTombstoneKey());
}
static unsigned getHashValue(const TensorUse &val) {
return ::llvm::hash_value(val.tensorId); // don't care about collisions.
}
static bool isEqual(const TensorUse &LHS, const TensorUse &RHS) {
return LHS == RHS;
}
};
} // namespace llvm
//===----------------------------------------------------------------------===//
// Visitation functions.
//===----------------------------------------------------------------------===//
template <typename Lambda, bool PreOrder>
void visit(const Expression &expr, Lambda callback) {
switch (expr.kind) {
default:
llvm_unreachable("Unexpected kind");
case Expression::Kind::TensorExpr:
static_cast<const TensorExpr &>(expr).visit<Lambda, PreOrder>(callback);
break;
case Expression::Kind::TensorUse:
static_cast<const TensorUse &>(expr).visit<Lambda, PreOrder>(callback);
break;
}
}
template <typename Lambda>
void visitPreorder(const Expression &expr, Lambda callback) {
visit<Lambda, false>(expr, callback);
}
template <typename Lambda>
void visitPostorder(Expression &expr, Lambda callback) {
visit<Lambda, true>(expr, callback);
}
template <typename Lambda, bool PreOrder>
void TensorExpr::visit(Lambda callback) const {
if (!PreOrder)
callback(*this);
for (auto &e : expressions)
::visit<Lambda, PreOrder>(*e, callback);
if (PreOrder)
callback(*this);
}
template <typename Lambda, bool PreOrder>
void TensorUse::visit(Lambda callback) const {
callback(*this);
}
//===----------------------------------------------------------------------===//
// TC parsing functions.
//===----------------------------------------------------------------------===//
TCParser::TCParser(Parser &p)
: symbols(), registeredTensors(), nextRegisteredTensorIndex(0), parser(p) {}
/// Uses the AffineParser to parse the affine exprs used in a tensor
/// definition. All identifiers are interpreted as symbols, new symbols are
/// added eagerly.
SmallVector<AffineExpr, 4>
TCParser::parseAffineExprs(EagerDiscoveryMode discoveryMode,
AffineDimList &dims, Token::Kind lDelim,
Token::Kind rDelim) {
auto createAffineBareId = [&](StringRef sRef) {
AffineExpr expr;
if (discoveryMode == EagerDiscoveryMode::Symbols) {
expr = getAffineSymbolExpr(symbols.size(), parser.context);
symbols.emplace_back(sRef, expr);
} else if (discoveryMode == EagerDiscoveryMode::Dimensions) {
expr = getAffineDimExpr(dims.size(), parser.context);
dims.emplace_back(sRef, expr);
}
return expr;
};
auto tryToParseAttrUse = [&]() -> llvm::Optional<AffineExpr> {
if (!parser.curToken.is(Token::Kind::id))
return llvm::None;
StringRef attrName = parser.curToken.getSpelling();
auto it = registeredAttrs.find(attrName.str());
if (it == registeredAttrs.end())
return llvm::None;
AttrUse result;
if (failed(parseAttrUse(result)))
return llvm::None;
auto symbolIt = registeredAttrUseToSymbol.find(result.getKey());
if (symbolIt == registeredAttrUseToSymbol.end()) {
result.symbol = getAffineSymbolExpr(symbols.size(), parser.context);
symbols.emplace_back("<attr-use>", result.symbol);
registeredAttrUseToSymbol[result.getKey()] = result.symbol;
attrUses.push_back(result);
} else {
result.symbol = symbolIt->second;
}
return result.symbol;
};
AffineParser affineParser(parser, createAffineBareId, tryToParseAttrUse, dims,
symbols);
return affineParser.parseAffineExprs(lDelim, rDelim);
}
/// Parse the information for a tensor def of the form:
///
/// affine-expr-list ::= affine-expr (`,` affine-expr )*
/// tensor-typedef ::= type `(` `)`
/// | type `(` affine-expr-list `)`
/// tensor-def ::= bare-id `:` tensor-typedef
LogicalResult TCParser::parseTensorDef(bool isOutput) {
StringRef tensorId = parser.curToken.getSpelling();
if (failed(parser.parseToken(Token::Kind::id, "expected an id")) ||
failed(parser.parseToken(Token::Kind::colon, "expected colon")))
return failure();
StringRef tensorType = parser.curToken.getSpelling();
if (failed(parser.parseToken(Token::Kind::id, "expected an id")))
return failure();
AffineDimList emptyDims;
auto exprs = parseAffineExprs(EagerDiscoveryMode::Symbols, emptyDims);
assert(emptyDims.empty() && "Unexpected dimension in tensor def");
AffineMap map =
AffineMap::get(/*dimCount=*/0, symbols.size(), exprs, parser.context);
auto iterBoolPair = registeredTensors.try_emplace(
tensorId, RegisteredTensor{tensorType, map, isOutput, AffineMap(),
nextRegisteredTensorIndex++});
(void)iterBoolPair;
assert(iterBoolPair.second && "Could not emplace tensor registration");
LLVM_DEBUG(llvm::dbgs() << "Recorded: " << tensorId << " "
<< "with typeString: " << tensorType << " "
<< "and shape: " << map << "\n");
return success();
}
/// Parses a tensor use of the form:
///
/// affine-expr-list ::= affine-expr (`,` affine-expr)*
/// tensor-use ::= bare-id `(` `)`
/// | bare-id `(` affine-expr-list `)`
LogicalResult TCParser::parseTensorUse(TensorUse &result,
ComprehensionParsingState &state) {
StringRef tensorId = parser.curToken.getSpelling();
if (failed(parser.parseToken(Token::Kind::id, "expected an id")))
return failure();
auto exprs = parseAffineExprs(EagerDiscoveryMode::Dimensions, state.dims);
AffineMap map =
AffineMap::get(state.dims.size(), symbols.size(), exprs, parser.context);
LLVM_DEBUG(llvm::dbgs() << "Use of tensor: " << tensorId << " map: " << map
<< "\n");
result = TensorUse(tensorId, map);
return success();
}
/// Parse the information for an attribute def of the form:
///
/// affine-expr-list ::= affine-expr (`,` affine-expr )*
/// attr-id ::= bare-id (`?`)?
/// dim-list ::= (integer-literal 'x')+
/// attr-typedef ::= dim-list? type (`[` `]`)?
/// attr-def ::= attr-id `:` attr-typedef
LogicalResult TCParser::parseAttrDef() {
auto attrLoc = parser.curToken.getLoc();
StringRef attrName = parser.curToken.getSpelling();
if (failed(parser.parseToken(Token::Kind::id, "expected an id")))
return failure();
bool isOptional = succeeded(parser.parseOptionalToken(Token::Kind::question));
if (failed(parser.parseToken(Token::Kind::colon, "expected colon")))
return failure();
// Parse the attribute's type. We don't expect the type to be arbitrary
// complex, so just use this ad-hoc handling here.
// Parse potential dimension list
SmallVector<uint64_t, 4> vectorDims;
while (parser.curToken.is(Token::Kind::integer)) {
uint64_t value;
if (failed(parser.parseInteger(value)))
return failure();
vectorDims.push_back(value);
StringRef spelling = parser.curToken.getSpelling();
if (spelling[0] != 'x')
return parser.emitError(parser.curToken.getLoc(),
"expected 'x' in dimension list");
// If we had a prefix of 'x', lex the next token immediately after the 'x'.
if (spelling.size() != 1)
parser.lexer.resetPointer(spelling.data() + 1);
parser.consumeToken();
}
StringRef elementType = parser.curToken.getSpelling();
if (failed(parser.parseToken(Token::Kind::id, "expected an id")))
return failure();
bool isArray = false;
auto arrayLoc = parser.curToken.getLoc();
if (succeeded(parser.parseOptionalToken(Token::Kind::l_square))) {
isArray = true;
if (failed(parser.parseToken(Token::Kind::r_square, "expected ']'")))
return failure();
}
if (!vectorDims.empty() && isArray)
return parser.emitError(arrayLoc, "unsupported vector array attribute");
auto iterBoolPair = registeredAttrs.emplace(
attrName.str(),
RegisteredAttr{elementType, vectorDims, isArray, isOptional});
if (!iterBoolPair.second)
return parser.emitError(attrLoc,
"Failed to register attribute '" + attrName + "'");
LLVM_DEBUG(llvm::dbgs() << "Recorded: " << (isOptional ? "[optional]" : "")
<< " " << attrName << " "
<< "with type: " << elementType
<< (isArray ? "[]" : "") << "\n");
return success();
}
LogicalResult TCParser::parseAttrUse(AttrUse &result) {
result.attrName = parser.curToken.getSpelling();
if (failed(parser.parseToken(Token::Kind::id, "expected an id")))
return failure();
auto it = registeredAttrs.find(result.attrName.str());
assert(it != registeredAttrs.end());
const RegisteredAttr &attr = it->second;
if (!attr.vectorDims.empty() || attr.isArray) {
// This is a vector/array attribute. Parse indices for it.
auto indexLoc = parser.curToken.getLoc();
if (failed(parser.parseToken(Token::Kind::l_square, "expected '['")))
return failure();
auto parseIndex = [&]() {
uint64_t value;
if (failed(parser.parseInteger(value)))
return failure();
result.indices.push_back(value);
return success();
};
if (failed(parser.parseCommaSeparatedListUntil(
Token::Kind::r_square, parseIndex, /*allowEmptyList=*/false)))
return failure();
size_t rank = attr.isArray ? 1 : attr.vectorDims.size();
if (result.indices.size() != rank)
return parser.emitError(indexLoc,
"number of indices mismatch: expected " +
std::to_string(rank) + ", but found " +
std::to_string(result.indices.size()));
}
return success();
}
/// Parses a tensor expression of the form:
///
/// op-spec ::= bare-id `<` reduction-dims-list `>`
/// | bare-id
/// op-arg ::= tensor-expr
/// | tensor-use
/// op-arg-list ::= op-arg (`,` op-arg)*
/// tensor-expr ::= op-spec `(` op-arg-list `)`
LogicalResult TCParser::parseExpression(TensorUse currentDefinition,
std::unique_ptr<Expression> &result,
ComprehensionParsingState &state) {
StringRef opOrTensor = parser.curToken.getSpelling();
if (registeredTensors.count(opOrTensor) > 0) {
TensorUse use;
auto res = parseTensorUse(use, state);
if (failed(res))
return res;
result = std::make_unique<TensorUse>(use);
return success();
}
if (failed(parser.parseToken(Token::Kind::id, "expected an operation")))
return failure();
// This is an op.
SmallVector<unsigned, 4> reductionDims;
SmallVector<std::unique_ptr<Expression>, 4> expressions;
// Check if it has a reduction set, discover dimensions eagerly.
if (parser.curToken.is(Token::Kind::lt)) {
auto iters = parseAffineExprs(EagerDiscoveryMode::Dimensions, state.dims,
Token::Kind::lt, Token::Kind::gt);
for (auto iter : iters)
reductionDims.push_back(iter.cast<AffineDimExpr>().getPosition());
}
auto parseExpr = [&]() -> LogicalResult {
std::unique_ptr<Expression> e;
if (failed(parseExpression(currentDefinition, e, state)))
return failure();
expressions.push_back(std::move(e));
return success();
};
if (failed(parser.parseToken(Token::Kind::l_paren, "expected '('")) ||
failed(parser.parseCommaSeparatedListUntil(
Token::Kind::r_paren, parseExpr, /*allowEmptyList=*/true)))
return failure();
result = std::make_unique<TensorExpr>(opOrTensor, std::move(expressions),
reductionDims);
return success();
}
//===----------------------------------------------------------------------===//
// Parse and Emit functions.
//===----------------------------------------------------------------------===//
/// Parse the information for a single comprehension.
///
/// tensor-def-list ::= tensor-def (`,` tensor-def)*
/// tensor-expr-list ::= tensor-expr (`,` tensor-expr)*
/// comprehension ::= tensor-def-list `=` tensor-expr-list `;`
LogicalResult
TCParser::parseOneComprehension(StringRef cppOpName, StringRef linalgOpName,
ComprehensionParsingState &state) {
// 1. Parse LHS of `=`, these become the definitions that appear as the output
// tensors or read/write buffers.
SmallVector<TensorUse, 4> definitions;
auto parseUse = [&]() -> LogicalResult {
TensorUse use;
if (failed(parseTensorUse(use, state)))
return failure();
definitions.push_back(use);
return success();
};
if (failed(parser.parseCommaSeparatedListUntil(Token::Kind::equal, parseUse,
/*allowEmptyList=*/true)))
return failure();
// 2. Parse RHS of `=`, this becomes the expressions from which we emit
// computations.
unsigned idx = 0;
auto parseExpr = [&]() -> LogicalResult {
std::unique_ptr<Expression> expr;
if (idx >= definitions.size())
return parser.emitError("Fewer LHS definitions than RHS expressions");
if (failed(parseExpression(definitions[idx++], expr, state)))
return failure();
state.expressions.push_back(std::move(expr));
return success();
};
if (failed(parser.parseCommaSeparatedListUntil(
Token::Kind::semicolon, parseExpr, /*allowEmptyList=*/true)))
return failure();
if (idx != definitions.size())
return parser.emitError("Fewer RHS expressions than LHS definitions");
// 3. Postprocess.
// 3.a. Normalize all maps to the proper state.dims and symbols counts.
SmallVector<TensorUse, 4> allUses;
allUses.reserve(registeredTensors.size());
for (auto &def : definitions)
allUses.push_back(def);
for (auto &pExpr : state.expressions)
visitPostorder(*pExpr, [&](const Expression &e) {
if (auto *use = dyn_cast<TensorUse>(&e))
allUses.push_back(*use);
});
for (auto &use : allUses)
use.indexingMap =
AffineMap::get(state.dims.size(), symbols.size(),
use.indexingMap.getResults(), parser.context);
// 3.b. Traverse definitions
llvm::DenseSet<StringRef> seenDefs;
for (auto &def : definitions) {
if (seenDefs.count(def.tensorId) > 0)
return parser.emitError("Unexpected multi-write to a single tensor");
seenDefs.insert(def.tensorId);
auto tensorIter = registeredTensors.find(def.tensorId);
assert(tensorIter != registeredTensors.end() && "unregistered tensor");
auto &tensor = tensorIter->getValue();
tensor.indexingMap = def.indexingMap;
state.orderedTensorArgs[def] = tensor.index;
}
bool failed = false;
for (auto &pExpr : state.expressions)
visitPostorder(*pExpr, [&](const Expression &e) {
auto *pUse = dyn_cast<TensorUse>(&e);
if (failed || !pUse)
return;
auto &use = *pUse;
LLVM_DEBUG(llvm::dbgs()
<< "\nuse: " << use.tensorId << " map: " << use.indexingMap);
auto tensorIter = registeredTensors.find(use.tensorId);
assert(tensorIter != registeredTensors.end() && "unregistered tensor");
auto &tensor = tensorIter->getValue();
if (tensor.indexingMap && state.orderedTensorArgs.count(use) == 0 &&
tensor.indexingMap.getResults() != use.indexingMap.getResults()) {
LLVM_DEBUG(llvm::dbgs() << "\nexisting: " << tensor.indexingMap);
(void)parser.emitError(
"Unexpected multi-read of a tensor with different accesses");
failed = true;
return;
}
seenDefs.insert(use.tensorId);
tensor.indexingMap = use.indexingMap;
state.orderedTensorArgs[use] = tensor.index;
});
// If more than one definitions are less. They are shaped-only operand, which
// are used to define reduction loops. For now, only accept exactly one
// shaped-only operand.
if (state.numArgs > seenDefs.size() + 1) {
failed = true;
} else if (state.numArgs == seenDefs.size() + 1) {
for (auto &tensorIter : registeredTensors) {
auto &tensor = tensorIter.getValue();
if (tensor.indexingMap)
continue;
if (auto *pTensorExpr =
dyn_cast<TensorExpr>(state.expressions[0].get())) {
SmallVector<AffineExpr, 4> exprs;
for (auto dim : pTensorExpr->reductionDimensions)
exprs.push_back(getAffineDimExpr(dim, parser.context));
tensor.indexingMap = AffineMap::get(state.dims.size(), symbols.size(),
exprs, parser.context);
}
}
}
if (failed)
return failure();
return success();
}
/// Parse and print the information for a ODS def.
///
/// tensor-def-list ::= tensor-def (`,` tensor-def )*
/// attr-def-list ::= attr-def (`,` attr-def )*
///
/// comprehension-list ::= comprehension comprehension*
///
/// tc-attr-def ::= `attr` `(` attr-def-list `)`
/// tc-def ::= `def` bare-id `(`tensor-def-list`)` `->` `(` tensor-def-list`)`
/// (tc-attr-def)?
/// `{` comprehension-list `}`
///
/// implements-interface ::=
/// `implements_interface` `<` bare-id (`,` bare-id)* `>` `:` tc-def
///
/// ods-def ::= `ods_def` `<` bare-id `>`
/// (implements-interface)? `:`
/// tc-def
///
/// All the affine-expr in a `tensor-typedef` must be dimensionless (i.e.
/// contain only expressions involving symbols and constants), but can
/// otherwise contain arbitrary affine expressions.
LogicalResult TCParser::parseAndEmitODSDef(llvm::raw_ostream &os) {
// Parse ods-def header (including C++ op name)
if (failed(parser.parseToken(Token::Kind::kw_ods_def,
"expected 'ods_def' to define a TC ODS")) ||
failed(parser.parseToken(Token::Kind::lt, "expected '<'")))
return failure();
StringRef cppOpName = parser.curToken.getSpelling();
LLVM_DEBUG(llvm::dbgs() << "\n\nStart parsing ODS: " << cppOpName << "\n");
if (failed(parser.parseToken(Token::Kind::id, "expected id")) ||
failed(parser.parseToken(Token::Kind::gt, "expected '>'")))
return failure();
// Parse optional implements-interface header (including C++ op names)
SmallVector<StringRef> interfaces;
bool implementsInterface = succeeded(
parser.parseOptionalToken(Token::Kind::kw_implements_interface));
if (implementsInterface) {
auto parseInterfaceString = [&]() -> LogicalResult {
StringRef interfaceName = parser.curToken.getSpelling();
if (failed(parser.parseToken(Token::Kind::id, "expected id")))
return failure();
interfaces.push_back(interfaceName);
return success();
};
if (failed(parser.parseToken(Token::Kind::lt, "expected '<'")) ||
failed(parser.parseCommaSeparatedListUntil(
Token::Kind::gt, parseInterfaceString, /*allowEmptyList=*/false)))
return failure();
}
// Parse column.
if (failed(parser.parseToken(Token::Kind::colon, "expected ':'")))
return failure();
// Parse TC op name.
if (failed(parser.parseToken(Token::Kind::kw_def,
"expected 'def' to define a TC")))
return failure();
StringRef tcName = parser.curToken.getSpelling();
LLVM_DEBUG(llvm::dbgs() << "\n\nStart parsing TC: " << tcName << "\n");
// Parse input/output tensor definitions
if (failed(parser.parseToken(Token::Kind::id, "expected id")) ||
failed(parser.parseToken(Token::Kind::l_paren, "expected '('")))
return failure();
auto parseInputDef = [&]() -> LogicalResult {
return parseTensorDef(/*isOutput=*/false);
};
if (failed(parser.parseCommaSeparatedListUntil(
Token::Kind::r_paren, parseInputDef, /*allowEmptyList=*/false)))
return failure();
if (failed(parser.parseToken(Token::Kind::minus, "expected '-'")) ||
failed(parser.parseToken(Token::Kind::gt, "expected '>'")) ||
failed(parser.parseToken(Token::Kind::l_paren, "expected '('")))
return failure();
auto parseOutputDef = [&]() -> LogicalResult {
return parseTensorDef(/*isOutput=*/true);
};
if (failed(parser.parseCommaSeparatedListUntil(
Token::Kind::r_paren, parseOutputDef, /*allowEmptyList=*/false)))
return failure();
// Parse optional attribute definitions
if (succeeded(parser.parseOptionalToken(Token::Kind::kw_attr_def))) {
if (failed(parser.parseToken(Token::Kind::l_paren, "expected '('")))
return failure();
if (failed(parser.parseCommaSeparatedListUntil(
Token::Kind::r_paren, std::bind(&TCParser::parseAttrDef, this),
/*allowEmptyList=*/false)))
return failure();
}
// Parse optional doc string
if (parser.curToken.is(Token::Kind::doc_str)) {
docString = parser.curToken.getSpelling();
parser.consumeToken();
LLVM_DEBUG(llvm::dbgs()
<< "parsed doc string: '''" << docString << "'''\n");
}
// Since we don't declare symbols separately, we discover them eagerly: each
// newly encountered id in a tensor shape expression is treated as a new
// symbolic. At this point, all tensors have been parsed and all the symbols
// that could be discovered eagerly are now known. Resize all AffineMaps to
// normalize the number of eagerly discovered symbols.
for (auto &tensor : registeredTensors) {
auto &map = tensor.getValue().shape;
map = AffineMap::get(/*dimCount=*/0, symbols.size(), map.getResults(),
parser.context);
}
if (failed(parser.parseToken(Token::Kind::l_brace, "expected '{'")))
return failure();
SmallVector<ComprehensionParsingState, 4> perComprehensionStates;
while (parser.curToken.isNot(Token::Kind::r_brace)) {
perComprehensionStates.push_back(ComprehensionParsingState());
perComprehensionStates.back().numArgs = registeredTensors.size();
if (failed(parseOneComprehension(cppOpName, tcName,
perComprehensionStates.back())))
return failure();
};
if (failed(parser.parseToken(Token::Kind::r_brace, "expected '}'")))
return failure();
// Print.
auto nComprehensions = perComprehensionStates.size();
if (nComprehensions != 1)
return parser.emitError("only 1 comprehension supported for now, got: " +
llvm::Twine(nComprehensions));
if (genODSDecl) {
auto &state = perComprehensionStates.back();
printODS(os, cppOpName, tcName, interfaces, state);
os << "\n";
}
if (genODSImpl) {
auto &state = perComprehensionStates.back();
std::string extraMethods;
llvm::raw_string_ostream ss(extraMethods);
printReferenceIterators(ss, cppOpName, state);
printIndexingMapRequiredAttrMethods(ss, cppOpName, state);
printReferenceIndexingMaps(ss, cppOpName, state);
printRegionBuilder(ss, cppOpName, state);
printCanonicalizersAndFolders(ss, cppOpName);
ss.flush();
os << extraMethods << "\n";
}
return success();
}
//===----------------------------------------------------------------------===//
// Printing functions
//===----------------------------------------------------------------------===//
/// Print the ODS class that defines a new `cppOpName` for a `linalgOpName`.
void TCParser::printODS(llvm::raw_ostream &os, StringRef cppOpName,
StringRef linalgOpName, ArrayRef<StringRef> interfaces,
ComprehensionParsingState &state) {
SmallVector<std::string, 4> attributes;
for (const auto &attr : registeredAttrs) {
llvm::StringRef name = attr.first;
llvm::StringRef elementType = attr.second.elementType;
std::string odsType = llvm::StringSwitch<std::string>(elementType)
.Case("f32", "F32")
.Case("i32", "I32")
.Case("i64", "I64")
.Default("");
if (odsType.empty()) {
(void)parser.emitError(
"unimplemented support for attribute element type: " + elementType);
return;
}
const auto &dims = attr.second.vectorDims;
if (!dims.empty()) {
// Vector case
SmallVector<std::string, 4> dimStrs;
for (uint64_t dim : dims)
dimStrs.push_back(std::to_string(dim));
odsType = llvm::formatv("Ranked{0}ElementsAttr<[{1}]>", odsType,
llvm::join(dimStrs, ", "));
} else if (attr.second.isArray) {
// Array case
odsType = llvm::formatv("{0}ArrayAttr", odsType);
} else {
// Scalar case
odsType = llvm::formatv("{0}Attr", odsType);
}
if (attr.second.isOptional)
odsType = llvm::formatv("OptionalAttr<{0}>", odsType);
attributes.push_back(llvm::formatv("{0}:${1}", odsType, name));
}
std::string attrList = llvm::join(attributes, ",\n");
if (!attrList.empty())
attrList = ",\n" + attrList;
// Template for Linalg named ops' ODS definitions. Parameters:
// {0}: ODS/C++ op name
// {1}: assembly op mnemonic
// {2}: op interface list
// {3}: documentation (summary + description)
// {4}: op attribute list
// {5}: the number of arguments for the op region
// {6}: builder methods taking standalone attribute parameters
// {7}: additional methods for attributes used by indexing maps
const char *header = R"FMT( def {0} : LinalgStructuredBase_Op<"{1}", [
AttrSizedOperandSegments,
DeclareOpInterfaceMethods<MemoryEffectsOpInterface>,
SingleBlockImplicitTerminator<"YieldOp">
/*extraInterfaces=*/{2}]> {
{3}
let arguments = (ins
Variadic<AnyShaped>:$inputs,
Variadic<AnyShaped>:$outputs{4}
);
let results = (outs Variadic<AnyRankedTensor>:$result_tensors);
let regions = (region AnyRegion:$region);
let skipDefaultBuilders = 1;
let builders = [
OpBuilder<
(ins "ValueRange":$inputs, "ValueRange":$outputs),
[{{
$_state.addOperands(inputs);
$_state.addOperands(outputs);
$_state.addAttribute(
"operand_segment_sizes",
$_builder.getI32VectorAttr({{
static_cast<int32_t>(inputs.size()),
static_cast<int32_t>(outputs.size())}));
createAndFillStructuredOpRegion<{0}>(
$_builder,
$_state,
TypeRange(inputs),
TypeRange(outputs));
}]>,
OpBuilder<
(ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,
"ValueRange":$outputs),
[{{
$_state.addOperands(inputs);
$_state.addOperands(outputs);
$_state.addTypes(resultTensorTypes);
$_state.addAttribute(
"operand_segment_sizes",
$_builder.getI32VectorAttr({{
static_cast<int32_t>(inputs.size()),
static_cast<int32_t>(outputs.size())}));
createAndFillStructuredOpRegion<{0}>(
$_builder,
$_state,
TypeRange(inputs),
TypeRange(outputs));
}]>,
OpBuilder<
(ins "TypeRange":$resultTensorTypes, "ValueRange":$operands,
CArg<"ArrayRef<NamedAttribute>", "{{}">:$attributes),
[{{
$_state.addOperands(operands);
$_state.addAttributes(attributes);
$_state.addTypes(resultTensorTypes);
(void)$_state.addRegion();
}]>
{6}
];
let printer = [{{ return ::printNamedStructuredOp(p, *this); }];
let parser = [{{
return ::parseNamedStructuredOp<{0}>(parser, result);
}];
let hasFolder = 1;
let extraClassDeclaration = structuredOpsBaseDecls # [{{
// Auto-generated.
ArrayAttr iterator_types();
ArrayAttr indexing_maps();
static void regionBuilder(ImplicitLocOpBuilder &b, Block &block);
static std::function<void(ImplicitLocOpBuilder &b, Block &)>
getRegionBuilder() {{
return regionBuilder;
}
// Generic methods.
static unsigned getNumRegionArgs() {{ return {5}; }
std::string getLibraryCallName() {{
return generateLibraryCallName(getOperation());
}
{7}
}];
})FMT";
// Generate the list of extra implemented interfaces.
std::string interfaceNameList;
if (!interfaces.empty()) {
llvm::raw_string_ostream ss(interfaceNameList);
ss << ", "; // Leading comma to concat to existing list of interfaces.
llvm::interleaveComma(interfaces, ss);
ss.flush();
}
// Generate documentation.
std::string doc;
if (!docString.empty()) {
const char *docFmt = R"FMT(
let summary = [{ {0} }];
let description = [{
{1}
}];
)FMT";
StringRef summary, description;
std::tie(summary, description) = docString.trim().split('\n');
doc = llvm::formatv(docFmt, summary.trim(), description.trim());
}
// Generate an additional builder that has parameters for attributes.
std::string attrBuilder;
if (!registeredAttrs.empty()) {
SmallVector<std::string, 4> attrParams, attrStmts;
for (const auto &attr : registeredAttrs) {
llvm::StringRef name = attr.first;
attrParams.push_back(llvm::formatv("\"Attribute\":${0}", name));
attrStmts.push_back(
llvm::formatv("$_state.addAttribute(\"{0}\", {0});", name));
}
std::string attrParamsList = llvm::join(attrParams, ", ");
std::string attrStmtsList = llvm::join(attrStmts, "\n");
const char *builderFmt = R"FMT(
, OpBuilder<
(ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,
"ValueRange":$outputs, {1}),
[{{
$_state.addOperands(inputs);
$_state.addOperands(outputs);
$_state.addTypes(resultTensorTypes);
$_state.addAttribute(
"operand_segment_sizes",
$_builder.getI32VectorAttr({{
static_cast<int32_t>(inputs.size()),
static_cast<int32_t>(outputs.size())}));
createAndFillStructuredOpRegion<{0}>(
$_builder,
$_state,
TypeRange(inputs),
TypeRange(outputs));
{2}
}]>
)FMT";
attrBuilder =
llvm::formatv(builderFmt, cppOpName, attrParamsList, attrStmtsList);
}
std::string attrMethods;
if (!registeredAttrs.empty()) {
attrMethods = R"(
bool hasDynamicIndexingMaps();
LogicalResult verifyIndexingMapRequiredAttributes();
)";
}
// Finally put everything together.
os << llvm::formatv(header, cppOpName, linalgOpName, interfaceNameList, doc,
attrList, state.numArgs, attrBuilder, attrMethods);
}
/// Print the C++ StructuredOpsInterface impl of `iterator_types`.
void TCParser::printReferenceIterators(llvm::raw_ostream &os,
StringRef cppOpName,
ComprehensionParsingState &state) {
const char *referenceReferenceIteratorsFmt =
R"FMT(
ArrayAttr {0}::iterator_types() {
return Builder(getContext()).getStrArrayAttr(SmallVector<StringRef, 8>{{ {1} });
})FMT";
std::string iteratorsStr;
llvm::raw_string_ostream ss(iteratorsStr);
unsigned pos = 0;
llvm::interleaveComma(
state.dims, ss, [&](std::pair<StringRef, AffineExpr> p) {
bool reduction = false;
for (auto &expr : state.expressions) {
visitPostorder(*expr, [&](const Expression &e) {
if (auto *pTensorExpr = dyn_cast<TensorExpr>(&e)) {
if (pTensorExpr->reductionDimensions.count(pos) > 0)
reduction = true;
}
});
if (reduction)
break;
}
ss << (reduction ? "getReductionIteratorTypeName()"
: "getParallelIteratorTypeName()");
pos++;
});
ss.flush();
os << llvm::formatv(referenceReferenceIteratorsFmt, cppOpName, iteratorsStr);
}
void TCParser::printCanonicalizersAndFolders(llvm::raw_ostream &os,
StringRef cppOpName) {
const char *foldersFmt = R"FMT(
LogicalResult {0}::fold(ArrayRef<Attribute>,
SmallVectorImpl<OpFoldResult> &) {{
return foldMemRefCast(*this);
}
void {0}::getEffects(SmallVectorImpl<
SideEffects::EffectInstance<MemoryEffects::Effect> >&effects) {{
SmallVector<Value> inputBuffers = getInputBufferOperands();
SmallVector<Value> outputBuffers = getOutputBufferOperands();
getGenericEffectsImpl(effects,
getOperation()->getResults(), inputBuffers, outputBuffers);
})FMT";
os << llvm::formatv(foldersFmt, cppOpName);
}
// Prints methods for querying whether the current named op has attributes that
// are used by its indexing maps and for verifying those attributes have the
// expected type.
void TCParser::printIndexingMapRequiredAttrMethods(
llvm::raw_ostream &os, StringRef cppOpName,
ComprehensionParsingState &state) {
// If there are no attribute used by the whole definition, then we are done.
if (registeredAttrs.empty())
return;
// Otherwise, go through each attribute and generate code to verify it's
// valid per the spec.
SmallVector<std::string, 4> attributes;
for (const auto &attr : registeredAttrs) {
if (attr.second.isOptional)
continue;
llvm::StringRef name = attr.first;
llvm::StringRef elementType = attr.second.elementType;
const auto &dims = attr.second.vectorDims;
// Get the method call to check the element type is of the expected kind.
std::string elemTypeCheck = llvm::StringSwitch<std::string>(elementType)
.Case("f32", "isF32()")
.Case("i32", "isInteger(32)")
.Case("i64", "isInteger(64)")
.Default("");
if (elemTypeCheck.empty()) {
(void)parser.emitError(
"unimplemented support for attribute element type: " + elementType);
return;
}
// Scalar case.
if (dims.empty() && !attr.second.isArray) {
const char *attrFmt = R"FMT(
if (auto attr = op->getAttr("{0}")) {{
if (!attr.getType().{1}) return op->emitError(
"incorrect type for indexing map required attribute '{0}'");
} else {{
return op->emitError(
"missing indexing map required attribute '{0}'");
}
)FMT";
attributes.push_back(llvm::formatv(attrFmt, name, elemTypeCheck));
continue;
}
// Vector case.
if (!dims.empty()) {
SmallVector<std::string, 4> dimStrs;
for (uint64_t dim : dims)
dimStrs.push_back(std::to_string(dim));
const char *attrFmt = R"FMT(
if (auto attr = op->getAttrOfType<DenseElementsAttr>("{0}")) {{
if (!attr.getType().getElementType().{1}) return op->emitError(
"incorrect element type for indexing map required attribute '{0}'");
if (attr.getType().getShape() != ArrayRef<int64_t>{{ {2} })
return op->emitError(
"incorrect shape for indexing map required attribute '{0}'");
} else {
return op->emitError(
"missing indexing map required attribute '{0}'");
}
)FMT";
attributes.push_back(llvm::formatv(attrFmt, name, elemTypeCheck,
llvm::join(dimStrs, ", ")));
continue;
}
// Array case.
{
const char *attrFmt = R"FMT(
if (auto attr = op->getAttrOfType<ArrayAttr>("{0}")) {{
for (Attribute element : attr) {{
if (!element.getType().{1}) return emitError(
"incorrect element type for indexing map required attribute '{0}'");
}
} else {{
return op->emitError(
"missing indexing map required attribute '{0}'");
}
)FMT";
attributes.push_back(llvm::formatv(attrFmt, name, elemTypeCheck));
}
}
const char *methodFmt = R"FMT(
bool {0}::hasDynamicIndexingMaps() {{ return true; }
LogicalResult {0}::verifyIndexingMapRequiredAttributes() {{
Operation *op = getOperation();
{1}
return success();
}
)FMT";
// Print everything out.
os << llvm::formatv(methodFmt, cppOpName, llvm::join(attributes, "\n"));
}
/// Print the C++ StructuredOpsInterface impl of `referenceIndexingMaps`.
void TCParser::printReferenceIndexingMaps(llvm::raw_ostream &os,
StringRef cppOpName,
ComprehensionParsingState &state) {
// 1. Generic string template for specifying reference indexing maps.
const char *referenceIndexingMapsFmt =
R"FMT(
// This is temporary until we transition out of manually specified ops that
// should be auto-generated with linalg-ods-gen.
ArrayAttr {0}::indexing_maps() {
MLIRContext *context = getContext();
AffineExpr {1};
bindDims(context, {1});
{2}
return Builder(context).getAffineMapArrayAttr({ {3} });
})FMT";
// 2. Print a comma-separated list of identifiers for the AffineExpr in
// `state.dims`. These will replace the `{1}` placeholder in both
// `AffineExpr {1}` and `bindDims(context, {1})` ensuring the AffineExpr
// identifiers are bound in the right order to the proper AffineDimExpr.
std::string dimsStr;
llvm::raw_string_ostream ss(dimsStr);
llvm::interleaveComma(
state.dims, ss,
[&](std::pair<StringRef, AffineExpr> p) { ss << p.second; });
ss.flush();
// 3. Get the list of affine maps for each input/output. The AffineExpr use
// the common arithmetic operators on AffineExpr. These affine maps will
// replace the `{2}` placeholder.
std::string mapsStr;
llvm::raw_string_ostream mapsStringStream(mapsStr);
// Create a list of all symbols.
SmallVector<std::string, 4> symbolReplacements;
symbolReplacements.reserve(symbols.size());
for (unsigned i = 0; i < symbols.size(); ++i) {
const char *symFmt =
"\n\tauto s{0} = getAffineSymbolExpr({0}, context); (void)s{0};";
mapsStringStream << llvm::formatv(symFmt, i);
symbolReplacements.push_back(llvm::formatv("s{0}", i));
}
// Create the affine constant expressions to replace symbols for attributes.
for (auto attrUse : llvm::enumerate(attrUses)) {
StringRef attrName = attrUse.value().attrName;
auto it = registeredAttrs.find(attrName.str());
assert(it != registeredAttrs.end() && "uses should point to valid attr!");
llvm::Optional<std::string> getValueFn =
it->second.getValueFn(attrUse.value().indices);
if (!getValueFn) {
(void)parser.emitError("unimplemented getValueFn for attribute: " +
attrName);
return;
}
std::string cstVal = llvm::formatv("{0}(){1}", attrName, *getValueFn);
const char *cstFmt =
"\n\tauto cst{0} = getAffineConstantExpr({1}, context);";
mapsStringStream << llvm::formatv(cstFmt, attrUse.index(), cstVal);
unsigned position =
attrUse.value().symbol.cast<AffineSymbolExpr>().getPosition();
symbolReplacements[position] = llvm::formatv("cst{0}", attrUse.index());
}
// For each registered tensor, construct the affine map, replace symbols by
// the corresponding attribute values, and simplify the affine map.
for (auto &tensorIter : registeredTensors) {
auto &tensor = tensorIter.getValue();
auto indexingMap = tensor.indexingMap;
const char *mapFmt =
"\n\tauto map{0} = AffineMap::get({1}, {2}, {3}, context);";
std::string exprsStr;
llvm::raw_string_ostream exprsStringStream(exprsStr);
exprsStringStream << "{";
llvm::interleaveComma(indexingMap.getResults(), exprsStringStream);
exprsStringStream << "}";
exprsStringStream.flush();
mapsStringStream << llvm::formatv(mapFmt, tensor.index, state.dims.size(),
indexingMap.getNumSymbols(), exprsStr);
std::string replaceSymbolList =
llvm::formatv("{ {0} }", llvm::join(symbolReplacements, ", "));
// Note that we use `0` as the result affine map's number of symbols. All
// symbols representing attribute usages should be folded away. But there
// may exist additional symbols for tensor dimension upper bounds. Linalg
// does not handle such cases right now. This needs to be fixed once we
// need that.
const char *replaceFmt =
"\n\tmap{0} = map{0}.replaceDimsAndSymbols({{}, {1}, {2}, 0);";
mapsStringStream << llvm::formatv(replaceFmt, tensor.index,
replaceSymbolList, state.dims.size());
const char *simplifyFmt = "\n\tmap{0} = simplifyAffineMap(map{0});";
mapsStringStream << llvm::formatv(simplifyFmt, tensor.index);
}
mapsStringStream.flush();
SmallVector<std::string, 4> mapList;
mapList.reserve(state.numArgs);
for (auto i : llvm::seq<unsigned>(0, state.numArgs))
mapList.push_back(llvm::formatv("map{0}", i));
// 4. Apply format to 1. using 2. and 3.
os << llvm::formatv(referenceIndexingMapsFmt, cppOpName, dimsStr, mapsStr,
llvm::join(mapList, ", "));
}
/// Print the C++ StructuredOpsInterface impl of `regionBuilder`.
void TCParser::printRegionBuilder(llvm::raw_ostream &os, StringRef cppOpName,
ComprehensionParsingState &state) {
unsigned count = state.numArgs;
llvm::DenseMap<const TensorExpr *, unsigned> subExprsMap;
std::function<void(llvm::raw_ostream & os, const Expression &)> printExpr;
printExpr = [&](llvm::raw_ostream &os, const Expression &e) -> void {
if (auto *pUse = dyn_cast<TensorUse>(&e)) {
os << "_" << state.orderedTensorArgs.find(*pUse)->second;
return;
}
auto *pTensorExpr = cast<TensorExpr>(&e);
if (subExprsMap.count(pTensorExpr) > 0) {
os << "_" << subExprsMap[pTensorExpr];
} else {
std::string subExprs;
llvm::raw_string_ostream subExprsStringStream(subExprs);
llvm::interleaveComma(pTensorExpr->expressions, subExprsStringStream,
[&](const std::unique_ptr<Expression> &e) {
printExpr(subExprsStringStream, *e);
});
subExprsStringStream.flush();
const char *tensorExprFmt = "\n Value _{0} = b.create<{1}>({2});";
os << llvm::formatv(tensorExprFmt, ++count, pTensorExpr->operationName,
subExprs);
subExprsMap[pTensorExpr] = count;
}
};
const char *regionBuilderFmt = R"FMT(
void {0}::regionBuilder(ImplicitLocOpBuilder &b, Block &block) {
auto args = block.getArguments();
Value {1};
{2}
b.create<linalg::YieldOp>(ValueRange{ {3} });
})FMT";
std::string valueHandleStr;
llvm::raw_string_ostream valueHandleStringStream(valueHandleStr);
std::set<unsigned> usedTensorId;
for (const auto &iter : state.orderedTensorArgs)
usedTensorId.insert(iter.second);
llvm::interleaveComma(usedTensorId, valueHandleStringStream, [&](auto idx) {
valueHandleStringStream << "_" << idx << "(args[" << idx << "])";
});
std::string expressionsStr;
llvm::raw_string_ostream expressionStringStream(expressionsStr);
for (auto &expr : state.expressions)
visitPostorder(*expr, [&](const Expression &e) {
if (e.kind == Expression::Kind::TensorExpr)
printExpr(expressionStringStream, e);
});
expressionStringStream.flush();
substituteOpAliases(expressionsStr);
std::string yieldStr;
llvm::raw_string_ostream yieldStringStream(yieldStr);
llvm::interleaveComma(state.expressions, yieldStringStream,
[&](const std::unique_ptr<Expression> &e) {
printExpr(yieldStringStream, *e);
});
valueHandleStringStream.flush();
yieldStringStream.flush();
os << llvm::formatv(regionBuilderFmt, cppOpName, valueHandleStr,
expressionsStr, yieldStr);
}
llvm::Optional<std::string>
TCParser::RegisteredAttr::getValueFn(ArrayRef<uint64_t> indices) const {
if (isArray)
return llvm::None;
if (!vectorDims.empty()) {
SmallVector<std::string, 4> indexStrs;
for (uint64_t index : indices)
indexStrs.push_back(std::to_string(index));
std::string indexList = llvm::join(indexStrs, ", ");
if (elementType == "f32")
return llvm::formatv(".getValue<float>({ {0} })", indexList).str();
if (elementType == "i32")
return llvm::formatv(".getValue<int>({ {0} })", indexList).str();
if (elementType == "i64")
return llvm::formatv(".getValue<int64_t>({ {0} })", indexList).str();
return llvm::None;
}
if (elementType == "f32")
return std::string(".convertToFloat()");
if (elementType == "i32" || elementType == "i64")
return std::string("");
return llvm::None;
}
/// Iterate over each Tensor Comprehension def.
LogicalResult parseAndEmitAllTensorComprehensions(llvm::raw_ostream &os,
Parser &parser) {
while (parser.curToken.getKind() != Token::Kind::eof) {
TCParser tcParser(parser);
if (failed(tcParser.parseAndEmitODSDef(os)))
return failure();
}
return success();
}
int main(int argc, char **argv) {
llvm::cl::ParseCommandLineOptions(argc, argv, "Linalg ODS Gen");
// Set up the input file.
std::string errorMessage;
std::unique_ptr<llvm::MemoryBuffer> file =
mlir::openInputFile(inputFilename, &errorMessage);
if (!file) {
llvm::errs() << errorMessage << "\n";
return 1;
}
std::unique_ptr<llvm::ToolOutputFile> output =
openOutputFile(outputFilename, &errorMessage);
if (!output) {
llvm::errs() << errorMessage << "\n";
exit(1);
}
// Include the proper Linalg header for end-to-end tblgen testing without
// resorting to non-portable shell manipulations.
if (testEmitIncludeTdHeader)
output->os() << "include \"mlir/Dialect/Linalg/IR/LinalgStructuredOps.td\"";
MLIRContext context;
llvm::SourceMgr mgr;
mgr.AddNewSourceBuffer(std::move(file), llvm::SMLoc());
Parser parser(mgr, &context);
(void)parseAndEmitAllTensorComprehensions(output->os(), parser);
output->keep();
return 0;
}