forked from OSchip/llvm-project
6071 lines
239 KiB
C++
6071 lines
239 KiB
C++
//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// \brief Implements semantic analysis for C++ expressions.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "TypeLocBuilder.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/ASTLambda.h"
|
|
#include "clang/AST/CXXInheritance.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/EvaluatedExprVisitor.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/AST/RecursiveASTVisitor.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/Basic/PartialDiagnostic.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/Sema/DeclSpec.h"
|
|
#include "clang/Sema/Initialization.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/Sema/ParsedTemplate.h"
|
|
#include "clang/Sema/Scope.h"
|
|
#include "clang/Sema/ScopeInfo.h"
|
|
#include "clang/Sema/SemaLambda.h"
|
|
#include "clang/Sema/TemplateDeduction.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
using namespace clang;
|
|
using namespace sema;
|
|
|
|
/// \brief Handle the result of the special case name lookup for inheriting
|
|
/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
|
|
/// constructor names in member using declarations, even if 'X' is not the
|
|
/// name of the corresponding type.
|
|
ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
|
|
SourceLocation NameLoc,
|
|
IdentifierInfo &Name) {
|
|
NestedNameSpecifier *NNS = SS.getScopeRep();
|
|
|
|
// Convert the nested-name-specifier into a type.
|
|
QualType Type;
|
|
switch (NNS->getKind()) {
|
|
case NestedNameSpecifier::TypeSpec:
|
|
case NestedNameSpecifier::TypeSpecWithTemplate:
|
|
Type = QualType(NNS->getAsType(), 0);
|
|
break;
|
|
|
|
case NestedNameSpecifier::Identifier:
|
|
// Strip off the last layer of the nested-name-specifier and build a
|
|
// typename type for it.
|
|
assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
|
|
Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
|
|
NNS->getAsIdentifier());
|
|
break;
|
|
|
|
case NestedNameSpecifier::Global:
|
|
case NestedNameSpecifier::Namespace:
|
|
case NestedNameSpecifier::NamespaceAlias:
|
|
llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
|
|
}
|
|
|
|
// This reference to the type is located entirely at the location of the
|
|
// final identifier in the qualified-id.
|
|
return CreateParsedType(Type,
|
|
Context.getTrivialTypeSourceInfo(Type, NameLoc));
|
|
}
|
|
|
|
ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
|
|
IdentifierInfo &II,
|
|
SourceLocation NameLoc,
|
|
Scope *S, CXXScopeSpec &SS,
|
|
ParsedType ObjectTypePtr,
|
|
bool EnteringContext) {
|
|
// Determine where to perform name lookup.
|
|
|
|
// FIXME: This area of the standard is very messy, and the current
|
|
// wording is rather unclear about which scopes we search for the
|
|
// destructor name; see core issues 399 and 555. Issue 399 in
|
|
// particular shows where the current description of destructor name
|
|
// lookup is completely out of line with existing practice, e.g.,
|
|
// this appears to be ill-formed:
|
|
//
|
|
// namespace N {
|
|
// template <typename T> struct S {
|
|
// ~S();
|
|
// };
|
|
// }
|
|
//
|
|
// void f(N::S<int>* s) {
|
|
// s->N::S<int>::~S();
|
|
// }
|
|
//
|
|
// See also PR6358 and PR6359.
|
|
// For this reason, we're currently only doing the C++03 version of this
|
|
// code; the C++0x version has to wait until we get a proper spec.
|
|
QualType SearchType;
|
|
DeclContext *LookupCtx = nullptr;
|
|
bool isDependent = false;
|
|
bool LookInScope = false;
|
|
|
|
// If we have an object type, it's because we are in a
|
|
// pseudo-destructor-expression or a member access expression, and
|
|
// we know what type we're looking for.
|
|
if (ObjectTypePtr)
|
|
SearchType = GetTypeFromParser(ObjectTypePtr);
|
|
|
|
if (SS.isSet()) {
|
|
NestedNameSpecifier *NNS = SS.getScopeRep();
|
|
|
|
bool AlreadySearched = false;
|
|
bool LookAtPrefix = true;
|
|
// C++11 [basic.lookup.qual]p6:
|
|
// If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
|
|
// the type-names are looked up as types in the scope designated by the
|
|
// nested-name-specifier. Similarly, in a qualified-id of the form:
|
|
//
|
|
// nested-name-specifier[opt] class-name :: ~ class-name
|
|
//
|
|
// the second class-name is looked up in the same scope as the first.
|
|
//
|
|
// Here, we determine whether the code below is permitted to look at the
|
|
// prefix of the nested-name-specifier.
|
|
DeclContext *DC = computeDeclContext(SS, EnteringContext);
|
|
if (DC && DC->isFileContext()) {
|
|
AlreadySearched = true;
|
|
LookupCtx = DC;
|
|
isDependent = false;
|
|
} else if (DC && isa<CXXRecordDecl>(DC)) {
|
|
LookAtPrefix = false;
|
|
LookInScope = true;
|
|
}
|
|
|
|
// The second case from the C++03 rules quoted further above.
|
|
NestedNameSpecifier *Prefix = nullptr;
|
|
if (AlreadySearched) {
|
|
// Nothing left to do.
|
|
} else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
|
|
CXXScopeSpec PrefixSS;
|
|
PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
|
|
LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
|
|
isDependent = isDependentScopeSpecifier(PrefixSS);
|
|
} else if (ObjectTypePtr) {
|
|
LookupCtx = computeDeclContext(SearchType);
|
|
isDependent = SearchType->isDependentType();
|
|
} else {
|
|
LookupCtx = computeDeclContext(SS, EnteringContext);
|
|
isDependent = LookupCtx && LookupCtx->isDependentContext();
|
|
}
|
|
} else if (ObjectTypePtr) {
|
|
// C++ [basic.lookup.classref]p3:
|
|
// If the unqualified-id is ~type-name, the type-name is looked up
|
|
// in the context of the entire postfix-expression. If the type T
|
|
// of the object expression is of a class type C, the type-name is
|
|
// also looked up in the scope of class C. At least one of the
|
|
// lookups shall find a name that refers to (possibly
|
|
// cv-qualified) T.
|
|
LookupCtx = computeDeclContext(SearchType);
|
|
isDependent = SearchType->isDependentType();
|
|
assert((isDependent || !SearchType->isIncompleteType()) &&
|
|
"Caller should have completed object type");
|
|
|
|
LookInScope = true;
|
|
} else {
|
|
// Perform lookup into the current scope (only).
|
|
LookInScope = true;
|
|
}
|
|
|
|
TypeDecl *NonMatchingTypeDecl = nullptr;
|
|
LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
|
|
for (unsigned Step = 0; Step != 2; ++Step) {
|
|
// Look for the name first in the computed lookup context (if we
|
|
// have one) and, if that fails to find a match, in the scope (if
|
|
// we're allowed to look there).
|
|
Found.clear();
|
|
if (Step == 0 && LookupCtx)
|
|
LookupQualifiedName(Found, LookupCtx);
|
|
else if (Step == 1 && LookInScope && S)
|
|
LookupName(Found, S);
|
|
else
|
|
continue;
|
|
|
|
// FIXME: Should we be suppressing ambiguities here?
|
|
if (Found.isAmbiguous())
|
|
return ParsedType();
|
|
|
|
if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
|
|
QualType T = Context.getTypeDeclType(Type);
|
|
|
|
if (SearchType.isNull() || SearchType->isDependentType() ||
|
|
Context.hasSameUnqualifiedType(T, SearchType)) {
|
|
// We found our type!
|
|
|
|
return CreateParsedType(T,
|
|
Context.getTrivialTypeSourceInfo(T, NameLoc));
|
|
}
|
|
|
|
if (!SearchType.isNull())
|
|
NonMatchingTypeDecl = Type;
|
|
}
|
|
|
|
// If the name that we found is a class template name, and it is
|
|
// the same name as the template name in the last part of the
|
|
// nested-name-specifier (if present) or the object type, then
|
|
// this is the destructor for that class.
|
|
// FIXME: This is a workaround until we get real drafting for core
|
|
// issue 399, for which there isn't even an obvious direction.
|
|
if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
|
|
QualType MemberOfType;
|
|
if (SS.isSet()) {
|
|
if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
|
|
// Figure out the type of the context, if it has one.
|
|
if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
|
|
MemberOfType = Context.getTypeDeclType(Record);
|
|
}
|
|
}
|
|
if (MemberOfType.isNull())
|
|
MemberOfType = SearchType;
|
|
|
|
if (MemberOfType.isNull())
|
|
continue;
|
|
|
|
// We're referring into a class template specialization. If the
|
|
// class template we found is the same as the template being
|
|
// specialized, we found what we are looking for.
|
|
if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
|
|
if (ClassTemplateSpecializationDecl *Spec
|
|
= dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
|
|
if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
|
|
Template->getCanonicalDecl())
|
|
return CreateParsedType(
|
|
MemberOfType,
|
|
Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// We're referring to an unresolved class template
|
|
// specialization. Determine whether we class template we found
|
|
// is the same as the template being specialized or, if we don't
|
|
// know which template is being specialized, that it at least
|
|
// has the same name.
|
|
if (const TemplateSpecializationType *SpecType
|
|
= MemberOfType->getAs<TemplateSpecializationType>()) {
|
|
TemplateName SpecName = SpecType->getTemplateName();
|
|
|
|
// The class template we found is the same template being
|
|
// specialized.
|
|
if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
|
|
if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
|
|
return CreateParsedType(
|
|
MemberOfType,
|
|
Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
|
|
|
|
continue;
|
|
}
|
|
|
|
// The class template we found has the same name as the
|
|
// (dependent) template name being specialized.
|
|
if (DependentTemplateName *DepTemplate
|
|
= SpecName.getAsDependentTemplateName()) {
|
|
if (DepTemplate->isIdentifier() &&
|
|
DepTemplate->getIdentifier() == Template->getIdentifier())
|
|
return CreateParsedType(
|
|
MemberOfType,
|
|
Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
|
|
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (isDependent) {
|
|
// We didn't find our type, but that's okay: it's dependent
|
|
// anyway.
|
|
|
|
// FIXME: What if we have no nested-name-specifier?
|
|
QualType T = CheckTypenameType(ETK_None, SourceLocation(),
|
|
SS.getWithLocInContext(Context),
|
|
II, NameLoc);
|
|
return ParsedType::make(T);
|
|
}
|
|
|
|
if (NonMatchingTypeDecl) {
|
|
QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
|
|
Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
|
|
<< T << SearchType;
|
|
Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
|
|
<< T;
|
|
} else if (ObjectTypePtr)
|
|
Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
|
|
<< &II;
|
|
else {
|
|
SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
|
|
diag::err_destructor_class_name);
|
|
if (S) {
|
|
const DeclContext *Ctx = S->getEntity();
|
|
if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
|
|
DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
|
|
Class->getNameAsString());
|
|
}
|
|
}
|
|
|
|
return ParsedType();
|
|
}
|
|
|
|
ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
|
|
if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
|
|
return ParsedType();
|
|
assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
|
|
&& "only get destructor types from declspecs");
|
|
QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
|
|
QualType SearchType = GetTypeFromParser(ObjectType);
|
|
if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
|
|
return ParsedType::make(T);
|
|
}
|
|
|
|
Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
|
|
<< T << SearchType;
|
|
return ParsedType();
|
|
}
|
|
|
|
bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
|
|
const UnqualifiedId &Name) {
|
|
assert(Name.getKind() == UnqualifiedId::IK_LiteralOperatorId);
|
|
|
|
if (!SS.isValid())
|
|
return false;
|
|
|
|
switch (SS.getScopeRep()->getKind()) {
|
|
case NestedNameSpecifier::Identifier:
|
|
case NestedNameSpecifier::TypeSpec:
|
|
case NestedNameSpecifier::TypeSpecWithTemplate:
|
|
// Per C++11 [over.literal]p2, literal operators can only be declared at
|
|
// namespace scope. Therefore, this unqualified-id cannot name anything.
|
|
// Reject it early, because we have no AST representation for this in the
|
|
// case where the scope is dependent.
|
|
Diag(Name.getLocStart(), diag::err_literal_operator_id_outside_namespace)
|
|
<< SS.getScopeRep();
|
|
return true;
|
|
|
|
case NestedNameSpecifier::Global:
|
|
case NestedNameSpecifier::Namespace:
|
|
case NestedNameSpecifier::NamespaceAlias:
|
|
return false;
|
|
}
|
|
|
|
llvm_unreachable("unknown nested name specifier kind");
|
|
}
|
|
|
|
/// \brief Build a C++ typeid expression with a type operand.
|
|
ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
|
|
SourceLocation TypeidLoc,
|
|
TypeSourceInfo *Operand,
|
|
SourceLocation RParenLoc) {
|
|
// C++ [expr.typeid]p4:
|
|
// The top-level cv-qualifiers of the lvalue expression or the type-id
|
|
// that is the operand of typeid are always ignored.
|
|
// If the type of the type-id is a class type or a reference to a class
|
|
// type, the class shall be completely-defined.
|
|
Qualifiers Quals;
|
|
QualType T
|
|
= Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
|
|
Quals);
|
|
if (T->getAs<RecordType>() &&
|
|
RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
|
|
return ExprError();
|
|
|
|
return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
|
|
SourceRange(TypeidLoc, RParenLoc));
|
|
}
|
|
|
|
/// \brief Build a C++ typeid expression with an expression operand.
|
|
ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
|
|
SourceLocation TypeidLoc,
|
|
Expr *E,
|
|
SourceLocation RParenLoc) {
|
|
if (E && !E->isTypeDependent()) {
|
|
if (E->getType()->isPlaceholderType()) {
|
|
ExprResult result = CheckPlaceholderExpr(E);
|
|
if (result.isInvalid()) return ExprError();
|
|
E = result.get();
|
|
}
|
|
|
|
QualType T = E->getType();
|
|
if (const RecordType *RecordT = T->getAs<RecordType>()) {
|
|
CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
|
|
// C++ [expr.typeid]p3:
|
|
// [...] If the type of the expression is a class type, the class
|
|
// shall be completely-defined.
|
|
if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
|
|
return ExprError();
|
|
|
|
// C++ [expr.typeid]p3:
|
|
// When typeid is applied to an expression other than an glvalue of a
|
|
// polymorphic class type [...] [the] expression is an unevaluated
|
|
// operand. [...]
|
|
if (RecordD->isPolymorphic() && E->isGLValue()) {
|
|
// The subexpression is potentially evaluated; switch the context
|
|
// and recheck the subexpression.
|
|
ExprResult Result = TransformToPotentiallyEvaluated(E);
|
|
if (Result.isInvalid()) return ExprError();
|
|
E = Result.get();
|
|
|
|
// We require a vtable to query the type at run time.
|
|
MarkVTableUsed(TypeidLoc, RecordD);
|
|
}
|
|
}
|
|
|
|
// C++ [expr.typeid]p4:
|
|
// [...] If the type of the type-id is a reference to a possibly
|
|
// cv-qualified type, the result of the typeid expression refers to a
|
|
// std::type_info object representing the cv-unqualified referenced
|
|
// type.
|
|
Qualifiers Quals;
|
|
QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
|
|
if (!Context.hasSameType(T, UnqualT)) {
|
|
T = UnqualT;
|
|
E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
|
|
}
|
|
}
|
|
|
|
return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
|
|
SourceRange(TypeidLoc, RParenLoc));
|
|
}
|
|
|
|
/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
|
|
ExprResult
|
|
Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
|
|
bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
|
|
// Find the std::type_info type.
|
|
if (!getStdNamespace())
|
|
return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
|
|
|
|
if (!CXXTypeInfoDecl) {
|
|
IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
|
|
LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
|
|
LookupQualifiedName(R, getStdNamespace());
|
|
CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
|
|
// Microsoft's typeinfo doesn't have type_info in std but in the global
|
|
// namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
|
|
if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
|
|
LookupQualifiedName(R, Context.getTranslationUnitDecl());
|
|
CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
|
|
}
|
|
if (!CXXTypeInfoDecl)
|
|
return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
|
|
}
|
|
|
|
if (!getLangOpts().RTTI) {
|
|
return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
|
|
}
|
|
|
|
QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
|
|
|
|
if (isType) {
|
|
// The operand is a type; handle it as such.
|
|
TypeSourceInfo *TInfo = nullptr;
|
|
QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
|
|
&TInfo);
|
|
if (T.isNull())
|
|
return ExprError();
|
|
|
|
if (!TInfo)
|
|
TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
|
|
|
|
return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
|
|
}
|
|
|
|
// The operand is an expression.
|
|
return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
|
|
}
|
|
|
|
/// \brief Build a Microsoft __uuidof expression with a type operand.
|
|
ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
|
|
SourceLocation TypeidLoc,
|
|
TypeSourceInfo *Operand,
|
|
SourceLocation RParenLoc) {
|
|
if (!Operand->getType()->isDependentType()) {
|
|
bool HasMultipleGUIDs = false;
|
|
if (!CXXUuidofExpr::GetUuidAttrOfType(Operand->getType(),
|
|
&HasMultipleGUIDs)) {
|
|
if (HasMultipleGUIDs)
|
|
return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
|
|
else
|
|
return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
|
|
}
|
|
}
|
|
|
|
return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand,
|
|
SourceRange(TypeidLoc, RParenLoc));
|
|
}
|
|
|
|
/// \brief Build a Microsoft __uuidof expression with an expression operand.
|
|
ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
|
|
SourceLocation TypeidLoc,
|
|
Expr *E,
|
|
SourceLocation RParenLoc) {
|
|
if (!E->getType()->isDependentType()) {
|
|
bool HasMultipleGUIDs = false;
|
|
if (!CXXUuidofExpr::GetUuidAttrOfType(E->getType(), &HasMultipleGUIDs) &&
|
|
!E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
|
|
if (HasMultipleGUIDs)
|
|
return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
|
|
else
|
|
return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
|
|
}
|
|
}
|
|
|
|
return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E,
|
|
SourceRange(TypeidLoc, RParenLoc));
|
|
}
|
|
|
|
/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
|
|
ExprResult
|
|
Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
|
|
bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
|
|
// If MSVCGuidDecl has not been cached, do the lookup.
|
|
if (!MSVCGuidDecl) {
|
|
IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
|
|
LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
|
|
LookupQualifiedName(R, Context.getTranslationUnitDecl());
|
|
MSVCGuidDecl = R.getAsSingle<RecordDecl>();
|
|
if (!MSVCGuidDecl)
|
|
return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
|
|
}
|
|
|
|
QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
|
|
|
|
if (isType) {
|
|
// The operand is a type; handle it as such.
|
|
TypeSourceInfo *TInfo = nullptr;
|
|
QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
|
|
&TInfo);
|
|
if (T.isNull())
|
|
return ExprError();
|
|
|
|
if (!TInfo)
|
|
TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
|
|
|
|
return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
|
|
}
|
|
|
|
// The operand is an expression.
|
|
return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
|
|
}
|
|
|
|
/// ActOnCXXBoolLiteral - Parse {true,false} literals.
|
|
ExprResult
|
|
Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
|
|
assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
|
|
"Unknown C++ Boolean value!");
|
|
return new (Context)
|
|
CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
|
|
}
|
|
|
|
/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
|
|
ExprResult
|
|
Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
|
|
return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
|
|
}
|
|
|
|
/// ActOnCXXThrow - Parse throw expressions.
|
|
ExprResult
|
|
Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
|
|
bool IsThrownVarInScope = false;
|
|
if (Ex) {
|
|
// C++0x [class.copymove]p31:
|
|
// When certain criteria are met, an implementation is allowed to omit the
|
|
// copy/move construction of a class object [...]
|
|
//
|
|
// - in a throw-expression, when the operand is the name of a
|
|
// non-volatile automatic object (other than a function or catch-
|
|
// clause parameter) whose scope does not extend beyond the end of the
|
|
// innermost enclosing try-block (if there is one), the copy/move
|
|
// operation from the operand to the exception object (15.1) can be
|
|
// omitted by constructing the automatic object directly into the
|
|
// exception object
|
|
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
|
|
if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
|
|
if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
|
|
for( ; S; S = S->getParent()) {
|
|
if (S->isDeclScope(Var)) {
|
|
IsThrownVarInScope = true;
|
|
break;
|
|
}
|
|
|
|
if (S->getFlags() &
|
|
(Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
|
|
Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
|
|
Scope::TryScope))
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
|
|
}
|
|
|
|
ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
|
|
bool IsThrownVarInScope) {
|
|
// Don't report an error if 'throw' is used in system headers.
|
|
if (!getLangOpts().CXXExceptions &&
|
|
!getSourceManager().isInSystemHeader(OpLoc))
|
|
Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
|
|
|
|
if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
|
|
Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
|
|
|
|
if (Ex && !Ex->isTypeDependent()) {
|
|
ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
|
|
if (ExRes.isInvalid())
|
|
return ExprError();
|
|
Ex = ExRes.get();
|
|
}
|
|
|
|
return new (Context)
|
|
CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
|
|
}
|
|
|
|
/// CheckCXXThrowOperand - Validate the operand of a throw.
|
|
ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
|
|
bool IsThrownVarInScope) {
|
|
// C++ [except.throw]p3:
|
|
// A throw-expression initializes a temporary object, called the exception
|
|
// object, the type of which is determined by removing any top-level
|
|
// cv-qualifiers from the static type of the operand of throw and adjusting
|
|
// the type from "array of T" or "function returning T" to "pointer to T"
|
|
// or "pointer to function returning T", [...]
|
|
if (E->getType().hasQualifiers())
|
|
E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
|
|
E->getValueKind()).get();
|
|
|
|
ExprResult Res = DefaultFunctionArrayConversion(E);
|
|
if (Res.isInvalid())
|
|
return ExprError();
|
|
E = Res.get();
|
|
|
|
// If the type of the exception would be an incomplete type or a pointer
|
|
// to an incomplete type other than (cv) void the program is ill-formed.
|
|
QualType Ty = E->getType();
|
|
bool isPointer = false;
|
|
if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
|
|
Ty = Ptr->getPointeeType();
|
|
isPointer = true;
|
|
}
|
|
if (!isPointer || !Ty->isVoidType()) {
|
|
if (RequireCompleteType(ThrowLoc, Ty,
|
|
isPointer? diag::err_throw_incomplete_ptr
|
|
: diag::err_throw_incomplete,
|
|
E->getSourceRange()))
|
|
return ExprError();
|
|
|
|
if (RequireNonAbstractType(ThrowLoc, E->getType(),
|
|
diag::err_throw_abstract_type, E))
|
|
return ExprError();
|
|
}
|
|
|
|
// Initialize the exception result. This implicitly weeds out
|
|
// abstract types or types with inaccessible copy constructors.
|
|
|
|
// C++0x [class.copymove]p31:
|
|
// When certain criteria are met, an implementation is allowed to omit the
|
|
// copy/move construction of a class object [...]
|
|
//
|
|
// - in a throw-expression, when the operand is the name of a
|
|
// non-volatile automatic object (other than a function or catch-clause
|
|
// parameter) whose scope does not extend beyond the end of the
|
|
// innermost enclosing try-block (if there is one), the copy/move
|
|
// operation from the operand to the exception object (15.1) can be
|
|
// omitted by constructing the automatic object directly into the
|
|
// exception object
|
|
const VarDecl *NRVOVariable = nullptr;
|
|
if (IsThrownVarInScope)
|
|
NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
|
|
|
|
InitializedEntity Entity =
|
|
InitializedEntity::InitializeException(ThrowLoc, E->getType(),
|
|
/*NRVO=*/NRVOVariable != nullptr);
|
|
Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
|
|
QualType(), E,
|
|
IsThrownVarInScope);
|
|
if (Res.isInvalid())
|
|
return ExprError();
|
|
E = Res.get();
|
|
|
|
// If the exception has class type, we need additional handling.
|
|
const RecordType *RecordTy = Ty->getAs<RecordType>();
|
|
if (!RecordTy)
|
|
return E;
|
|
CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
|
|
|
|
// If we are throwing a polymorphic class type or pointer thereof,
|
|
// exception handling will make use of the vtable.
|
|
MarkVTableUsed(ThrowLoc, RD);
|
|
|
|
// If a pointer is thrown, the referenced object will not be destroyed.
|
|
if (isPointer)
|
|
return E;
|
|
|
|
// If the class has a destructor, we must be able to call it.
|
|
if (RD->hasIrrelevantDestructor())
|
|
return E;
|
|
|
|
CXXDestructorDecl *Destructor = LookupDestructor(RD);
|
|
if (!Destructor)
|
|
return E;
|
|
|
|
MarkFunctionReferenced(E->getExprLoc(), Destructor);
|
|
CheckDestructorAccess(E->getExprLoc(), Destructor,
|
|
PDiag(diag::err_access_dtor_exception) << Ty);
|
|
if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
|
|
return ExprError();
|
|
return E;
|
|
}
|
|
|
|
QualType Sema::getCurrentThisType() {
|
|
DeclContext *DC = getFunctionLevelDeclContext();
|
|
QualType ThisTy = CXXThisTypeOverride;
|
|
if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
|
|
if (method && method->isInstance())
|
|
ThisTy = method->getThisType(Context);
|
|
}
|
|
if (ThisTy.isNull()) {
|
|
if (isGenericLambdaCallOperatorSpecialization(CurContext) &&
|
|
CurContext->getParent()->getParent()->isRecord()) {
|
|
// This is a generic lambda call operator that is being instantiated
|
|
// within a default initializer - so use the enclosing class as 'this'.
|
|
// There is no enclosing member function to retrieve the 'this' pointer
|
|
// from.
|
|
QualType ClassTy = Context.getTypeDeclType(
|
|
cast<CXXRecordDecl>(CurContext->getParent()->getParent()));
|
|
// There are no cv-qualifiers for 'this' within default initializers,
|
|
// per [expr.prim.general]p4.
|
|
return Context.getPointerType(ClassTy);
|
|
}
|
|
}
|
|
return ThisTy;
|
|
}
|
|
|
|
Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
|
|
Decl *ContextDecl,
|
|
unsigned CXXThisTypeQuals,
|
|
bool Enabled)
|
|
: S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
|
|
{
|
|
if (!Enabled || !ContextDecl)
|
|
return;
|
|
|
|
CXXRecordDecl *Record = nullptr;
|
|
if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
|
|
Record = Template->getTemplatedDecl();
|
|
else
|
|
Record = cast<CXXRecordDecl>(ContextDecl);
|
|
|
|
S.CXXThisTypeOverride
|
|
= S.Context.getPointerType(
|
|
S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
|
|
|
|
this->Enabled = true;
|
|
}
|
|
|
|
|
|
Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
|
|
if (Enabled) {
|
|
S.CXXThisTypeOverride = OldCXXThisTypeOverride;
|
|
}
|
|
}
|
|
|
|
static Expr *captureThis(ASTContext &Context, RecordDecl *RD,
|
|
QualType ThisTy, SourceLocation Loc) {
|
|
FieldDecl *Field
|
|
= FieldDecl::Create(Context, RD, Loc, Loc, nullptr, ThisTy,
|
|
Context.getTrivialTypeSourceInfo(ThisTy, Loc),
|
|
nullptr, false, ICIS_NoInit);
|
|
Field->setImplicit(true);
|
|
Field->setAccess(AS_private);
|
|
RD->addDecl(Field);
|
|
return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/true);
|
|
}
|
|
|
|
bool Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit,
|
|
bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt) {
|
|
// We don't need to capture this in an unevaluated context.
|
|
if (isUnevaluatedContext() && !Explicit)
|
|
return true;
|
|
|
|
const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt ?
|
|
*FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
|
|
// Otherwise, check that we can capture 'this'.
|
|
unsigned NumClosures = 0;
|
|
for (unsigned idx = MaxFunctionScopesIndex; idx != 0; idx--) {
|
|
if (CapturingScopeInfo *CSI =
|
|
dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
|
|
if (CSI->CXXThisCaptureIndex != 0) {
|
|
// 'this' is already being captured; there isn't anything more to do.
|
|
break;
|
|
}
|
|
LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
|
|
if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
|
|
// This context can't implicitly capture 'this'; fail out.
|
|
if (BuildAndDiagnose)
|
|
Diag(Loc, diag::err_this_capture) << Explicit;
|
|
return true;
|
|
}
|
|
if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
|
|
CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
|
|
CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
|
|
CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
|
|
Explicit) {
|
|
// This closure can capture 'this'; continue looking upwards.
|
|
NumClosures++;
|
|
Explicit = false;
|
|
continue;
|
|
}
|
|
// This context can't implicitly capture 'this'; fail out.
|
|
if (BuildAndDiagnose)
|
|
Diag(Loc, diag::err_this_capture) << Explicit;
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
if (!BuildAndDiagnose) return false;
|
|
// Mark that we're implicitly capturing 'this' in all the scopes we skipped.
|
|
// FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
|
|
// contexts.
|
|
for (unsigned idx = MaxFunctionScopesIndex; NumClosures;
|
|
--idx, --NumClosures) {
|
|
CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
|
|
Expr *ThisExpr = nullptr;
|
|
QualType ThisTy = getCurrentThisType();
|
|
if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI))
|
|
// For lambda expressions, build a field and an initializing expression.
|
|
ThisExpr = captureThis(Context, LSI->Lambda, ThisTy, Loc);
|
|
else if (CapturedRegionScopeInfo *RSI
|
|
= dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx]))
|
|
ThisExpr = captureThis(Context, RSI->TheRecordDecl, ThisTy, Loc);
|
|
|
|
bool isNested = NumClosures > 1;
|
|
CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
|
|
/// C++ 9.3.2: In the body of a non-static member function, the keyword this
|
|
/// is a non-lvalue expression whose value is the address of the object for
|
|
/// which the function is called.
|
|
|
|
QualType ThisTy = getCurrentThisType();
|
|
if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
|
|
|
|
CheckCXXThisCapture(Loc);
|
|
return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false);
|
|
}
|
|
|
|
bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
|
|
// If we're outside the body of a member function, then we'll have a specified
|
|
// type for 'this'.
|
|
if (CXXThisTypeOverride.isNull())
|
|
return false;
|
|
|
|
// Determine whether we're looking into a class that's currently being
|
|
// defined.
|
|
CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
|
|
return Class && Class->isBeingDefined();
|
|
}
|
|
|
|
ExprResult
|
|
Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
|
|
SourceLocation LParenLoc,
|
|
MultiExprArg exprs,
|
|
SourceLocation RParenLoc) {
|
|
if (!TypeRep)
|
|
return ExprError();
|
|
|
|
TypeSourceInfo *TInfo;
|
|
QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
|
|
if (!TInfo)
|
|
TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
|
|
|
|
return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
|
|
}
|
|
|
|
/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
|
|
/// Can be interpreted either as function-style casting ("int(x)")
|
|
/// or class type construction ("ClassType(x,y,z)")
|
|
/// or creation of a value-initialized type ("int()").
|
|
ExprResult
|
|
Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
|
|
SourceLocation LParenLoc,
|
|
MultiExprArg Exprs,
|
|
SourceLocation RParenLoc) {
|
|
QualType Ty = TInfo->getType();
|
|
SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
|
|
|
|
if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
|
|
return CXXUnresolvedConstructExpr::Create(Context, TInfo, LParenLoc, Exprs,
|
|
RParenLoc);
|
|
}
|
|
|
|
bool ListInitialization = LParenLoc.isInvalid();
|
|
assert((!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0])))
|
|
&& "List initialization must have initializer list as expression.");
|
|
SourceRange FullRange = SourceRange(TyBeginLoc,
|
|
ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
|
|
|
|
// C++ [expr.type.conv]p1:
|
|
// If the expression list is a single expression, the type conversion
|
|
// expression is equivalent (in definedness, and if defined in meaning) to the
|
|
// corresponding cast expression.
|
|
if (Exprs.size() == 1 && !ListInitialization) {
|
|
Expr *Arg = Exprs[0];
|
|
return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
|
|
}
|
|
|
|
QualType ElemTy = Ty;
|
|
if (Ty->isArrayType()) {
|
|
if (!ListInitialization)
|
|
return ExprError(Diag(TyBeginLoc,
|
|
diag::err_value_init_for_array_type) << FullRange);
|
|
ElemTy = Context.getBaseElementType(Ty);
|
|
}
|
|
|
|
if (!Ty->isVoidType() &&
|
|
RequireCompleteType(TyBeginLoc, ElemTy,
|
|
diag::err_invalid_incomplete_type_use, FullRange))
|
|
return ExprError();
|
|
|
|
if (RequireNonAbstractType(TyBeginLoc, Ty,
|
|
diag::err_allocation_of_abstract_type))
|
|
return ExprError();
|
|
|
|
InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
|
|
InitializationKind Kind =
|
|
Exprs.size() ? ListInitialization
|
|
? InitializationKind::CreateDirectList(TyBeginLoc)
|
|
: InitializationKind::CreateDirect(TyBeginLoc, LParenLoc, RParenLoc)
|
|
: InitializationKind::CreateValue(TyBeginLoc, LParenLoc, RParenLoc);
|
|
InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
|
|
ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
|
|
|
|
if (Result.isInvalid() || !ListInitialization)
|
|
return Result;
|
|
|
|
Expr *Inner = Result.get();
|
|
if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
|
|
Inner = BTE->getSubExpr();
|
|
if (isa<InitListExpr>(Inner)) {
|
|
// If the list-initialization doesn't involve a constructor call, we'll get
|
|
// the initializer-list (with corrected type) back, but that's not what we
|
|
// want, since it will be treated as an initializer list in further
|
|
// processing. Explicitly insert a cast here.
|
|
QualType ResultType = Result.get()->getType();
|
|
Result = CXXFunctionalCastExpr::Create(
|
|
Context, ResultType, Expr::getValueKindForType(TInfo->getType()), TInfo,
|
|
CK_NoOp, Result.get(), /*Path=*/nullptr, LParenLoc, RParenLoc);
|
|
}
|
|
|
|
// FIXME: Improve AST representation?
|
|
return Result;
|
|
}
|
|
|
|
/// doesUsualArrayDeleteWantSize - Answers whether the usual
|
|
/// operator delete[] for the given type has a size_t parameter.
|
|
static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
|
|
QualType allocType) {
|
|
const RecordType *record =
|
|
allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
|
|
if (!record) return false;
|
|
|
|
// Try to find an operator delete[] in class scope.
|
|
|
|
DeclarationName deleteName =
|
|
S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
|
|
LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
|
|
S.LookupQualifiedName(ops, record->getDecl());
|
|
|
|
// We're just doing this for information.
|
|
ops.suppressDiagnostics();
|
|
|
|
// Very likely: there's no operator delete[].
|
|
if (ops.empty()) return false;
|
|
|
|
// If it's ambiguous, it should be illegal to call operator delete[]
|
|
// on this thing, so it doesn't matter if we allocate extra space or not.
|
|
if (ops.isAmbiguous()) return false;
|
|
|
|
LookupResult::Filter filter = ops.makeFilter();
|
|
while (filter.hasNext()) {
|
|
NamedDecl *del = filter.next()->getUnderlyingDecl();
|
|
|
|
// C++0x [basic.stc.dynamic.deallocation]p2:
|
|
// A template instance is never a usual deallocation function,
|
|
// regardless of its signature.
|
|
if (isa<FunctionTemplateDecl>(del)) {
|
|
filter.erase();
|
|
continue;
|
|
}
|
|
|
|
// C++0x [basic.stc.dynamic.deallocation]p2:
|
|
// If class T does not declare [an operator delete[] with one
|
|
// parameter] but does declare a member deallocation function
|
|
// named operator delete[] with exactly two parameters, the
|
|
// second of which has type std::size_t, then this function
|
|
// is a usual deallocation function.
|
|
if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
|
|
filter.erase();
|
|
continue;
|
|
}
|
|
}
|
|
filter.done();
|
|
|
|
if (!ops.isSingleResult()) return false;
|
|
|
|
const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
|
|
return (del->getNumParams() == 2);
|
|
}
|
|
|
|
/// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
|
|
///
|
|
/// E.g.:
|
|
/// @code new (memory) int[size][4] @endcode
|
|
/// or
|
|
/// @code ::new Foo(23, "hello") @endcode
|
|
///
|
|
/// \param StartLoc The first location of the expression.
|
|
/// \param UseGlobal True if 'new' was prefixed with '::'.
|
|
/// \param PlacementLParen Opening paren of the placement arguments.
|
|
/// \param PlacementArgs Placement new arguments.
|
|
/// \param PlacementRParen Closing paren of the placement arguments.
|
|
/// \param TypeIdParens If the type is in parens, the source range.
|
|
/// \param D The type to be allocated, as well as array dimensions.
|
|
/// \param Initializer The initializing expression or initializer-list, or null
|
|
/// if there is none.
|
|
ExprResult
|
|
Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
|
|
SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
|
|
SourceLocation PlacementRParen, SourceRange TypeIdParens,
|
|
Declarator &D, Expr *Initializer) {
|
|
bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
|
|
|
|
Expr *ArraySize = nullptr;
|
|
// If the specified type is an array, unwrap it and save the expression.
|
|
if (D.getNumTypeObjects() > 0 &&
|
|
D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
|
|
DeclaratorChunk &Chunk = D.getTypeObject(0);
|
|
if (TypeContainsAuto)
|
|
return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
|
|
<< D.getSourceRange());
|
|
if (Chunk.Arr.hasStatic)
|
|
return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
|
|
<< D.getSourceRange());
|
|
if (!Chunk.Arr.NumElts)
|
|
return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
|
|
<< D.getSourceRange());
|
|
|
|
ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
|
|
D.DropFirstTypeObject();
|
|
}
|
|
|
|
// Every dimension shall be of constant size.
|
|
if (ArraySize) {
|
|
for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
|
|
if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
|
|
break;
|
|
|
|
DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
|
|
if (Expr *NumElts = (Expr *)Array.NumElts) {
|
|
if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
|
|
if (getLangOpts().CPlusPlus1y) {
|
|
// C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
|
|
// shall be a converted constant expression (5.19) of type std::size_t
|
|
// and shall evaluate to a strictly positive value.
|
|
unsigned IntWidth = Context.getTargetInfo().getIntWidth();
|
|
assert(IntWidth && "Builtin type of size 0?");
|
|
llvm::APSInt Value(IntWidth);
|
|
Array.NumElts
|
|
= CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
|
|
CCEK_NewExpr)
|
|
.get();
|
|
} else {
|
|
Array.NumElts
|
|
= VerifyIntegerConstantExpression(NumElts, nullptr,
|
|
diag::err_new_array_nonconst)
|
|
.get();
|
|
}
|
|
if (!Array.NumElts)
|
|
return ExprError();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
|
|
QualType AllocType = TInfo->getType();
|
|
if (D.isInvalidType())
|
|
return ExprError();
|
|
|
|
SourceRange DirectInitRange;
|
|
if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
|
|
DirectInitRange = List->getSourceRange();
|
|
|
|
return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal,
|
|
PlacementLParen,
|
|
PlacementArgs,
|
|
PlacementRParen,
|
|
TypeIdParens,
|
|
AllocType,
|
|
TInfo,
|
|
ArraySize,
|
|
DirectInitRange,
|
|
Initializer,
|
|
TypeContainsAuto);
|
|
}
|
|
|
|
static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
|
|
Expr *Init) {
|
|
if (!Init)
|
|
return true;
|
|
if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
|
|
return PLE->getNumExprs() == 0;
|
|
if (isa<ImplicitValueInitExpr>(Init))
|
|
return true;
|
|
else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
|
|
return !CCE->isListInitialization() &&
|
|
CCE->getConstructor()->isDefaultConstructor();
|
|
else if (Style == CXXNewExpr::ListInit) {
|
|
assert(isa<InitListExpr>(Init) &&
|
|
"Shouldn't create list CXXConstructExprs for arrays.");
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
ExprResult
|
|
Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
|
|
SourceLocation PlacementLParen,
|
|
MultiExprArg PlacementArgs,
|
|
SourceLocation PlacementRParen,
|
|
SourceRange TypeIdParens,
|
|
QualType AllocType,
|
|
TypeSourceInfo *AllocTypeInfo,
|
|
Expr *ArraySize,
|
|
SourceRange DirectInitRange,
|
|
Expr *Initializer,
|
|
bool TypeMayContainAuto) {
|
|
SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
|
|
SourceLocation StartLoc = Range.getBegin();
|
|
|
|
CXXNewExpr::InitializationStyle initStyle;
|
|
if (DirectInitRange.isValid()) {
|
|
assert(Initializer && "Have parens but no initializer.");
|
|
initStyle = CXXNewExpr::CallInit;
|
|
} else if (Initializer && isa<InitListExpr>(Initializer))
|
|
initStyle = CXXNewExpr::ListInit;
|
|
else {
|
|
assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
|
|
isa<CXXConstructExpr>(Initializer)) &&
|
|
"Initializer expression that cannot have been implicitly created.");
|
|
initStyle = CXXNewExpr::NoInit;
|
|
}
|
|
|
|
Expr **Inits = &Initializer;
|
|
unsigned NumInits = Initializer ? 1 : 0;
|
|
if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
|
|
assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
|
|
Inits = List->getExprs();
|
|
NumInits = List->getNumExprs();
|
|
}
|
|
|
|
// C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
|
|
if (TypeMayContainAuto && AllocType->isUndeducedType()) {
|
|
if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
|
|
return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
|
|
<< AllocType << TypeRange);
|
|
if (initStyle == CXXNewExpr::ListInit ||
|
|
(NumInits == 1 && isa<InitListExpr>(Inits[0])))
|
|
return ExprError(Diag(Inits[0]->getLocStart(),
|
|
diag::err_auto_new_list_init)
|
|
<< AllocType << TypeRange);
|
|
if (NumInits > 1) {
|
|
Expr *FirstBad = Inits[1];
|
|
return ExprError(Diag(FirstBad->getLocStart(),
|
|
diag::err_auto_new_ctor_multiple_expressions)
|
|
<< AllocType << TypeRange);
|
|
}
|
|
Expr *Deduce = Inits[0];
|
|
QualType DeducedType;
|
|
if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
|
|
return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
|
|
<< AllocType << Deduce->getType()
|
|
<< TypeRange << Deduce->getSourceRange());
|
|
if (DeducedType.isNull())
|
|
return ExprError();
|
|
AllocType = DeducedType;
|
|
}
|
|
|
|
// Per C++0x [expr.new]p5, the type being constructed may be a
|
|
// typedef of an array type.
|
|
if (!ArraySize) {
|
|
if (const ConstantArrayType *Array
|
|
= Context.getAsConstantArrayType(AllocType)) {
|
|
ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
|
|
Context.getSizeType(),
|
|
TypeRange.getEnd());
|
|
AllocType = Array->getElementType();
|
|
}
|
|
}
|
|
|
|
if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
|
|
return ExprError();
|
|
|
|
if (initStyle == CXXNewExpr::ListInit &&
|
|
isStdInitializerList(AllocType, nullptr)) {
|
|
Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
|
|
diag::warn_dangling_std_initializer_list)
|
|
<< /*at end of FE*/0 << Inits[0]->getSourceRange();
|
|
}
|
|
|
|
// In ARC, infer 'retaining' for the allocated
|
|
if (getLangOpts().ObjCAutoRefCount &&
|
|
AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
|
|
AllocType->isObjCLifetimeType()) {
|
|
AllocType = Context.getLifetimeQualifiedType(AllocType,
|
|
AllocType->getObjCARCImplicitLifetime());
|
|
}
|
|
|
|
QualType ResultType = Context.getPointerType(AllocType);
|
|
|
|
if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) {
|
|
ExprResult result = CheckPlaceholderExpr(ArraySize);
|
|
if (result.isInvalid()) return ExprError();
|
|
ArraySize = result.get();
|
|
}
|
|
// C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
|
|
// integral or enumeration type with a non-negative value."
|
|
// C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
|
|
// enumeration type, or a class type for which a single non-explicit
|
|
// conversion function to integral or unscoped enumeration type exists.
|
|
// C++1y [expr.new]p6: The expression [...] is implicitly converted to
|
|
// std::size_t.
|
|
if (ArraySize && !ArraySize->isTypeDependent()) {
|
|
ExprResult ConvertedSize;
|
|
if (getLangOpts().CPlusPlus1y) {
|
|
assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
|
|
|
|
ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(),
|
|
AA_Converting);
|
|
|
|
if (!ConvertedSize.isInvalid() &&
|
|
ArraySize->getType()->getAs<RecordType>())
|
|
// Diagnose the compatibility of this conversion.
|
|
Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
|
|
<< ArraySize->getType() << 0 << "'size_t'";
|
|
} else {
|
|
class SizeConvertDiagnoser : public ICEConvertDiagnoser {
|
|
protected:
|
|
Expr *ArraySize;
|
|
|
|
public:
|
|
SizeConvertDiagnoser(Expr *ArraySize)
|
|
: ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
|
|
ArraySize(ArraySize) {}
|
|
|
|
SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
|
|
QualType T) override {
|
|
return S.Diag(Loc, diag::err_array_size_not_integral)
|
|
<< S.getLangOpts().CPlusPlus11 << T;
|
|
}
|
|
|
|
SemaDiagnosticBuilder diagnoseIncomplete(
|
|
Sema &S, SourceLocation Loc, QualType T) override {
|
|
return S.Diag(Loc, diag::err_array_size_incomplete_type)
|
|
<< T << ArraySize->getSourceRange();
|
|
}
|
|
|
|
SemaDiagnosticBuilder diagnoseExplicitConv(
|
|
Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
|
|
return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
|
|
}
|
|
|
|
SemaDiagnosticBuilder noteExplicitConv(
|
|
Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
|
|
return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
|
|
<< ConvTy->isEnumeralType() << ConvTy;
|
|
}
|
|
|
|
SemaDiagnosticBuilder diagnoseAmbiguous(
|
|
Sema &S, SourceLocation Loc, QualType T) override {
|
|
return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
|
|
}
|
|
|
|
SemaDiagnosticBuilder noteAmbiguous(
|
|
Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
|
|
return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
|
|
<< ConvTy->isEnumeralType() << ConvTy;
|
|
}
|
|
|
|
virtual SemaDiagnosticBuilder diagnoseConversion(
|
|
Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
|
|
return S.Diag(Loc,
|
|
S.getLangOpts().CPlusPlus11
|
|
? diag::warn_cxx98_compat_array_size_conversion
|
|
: diag::ext_array_size_conversion)
|
|
<< T << ConvTy->isEnumeralType() << ConvTy;
|
|
}
|
|
} SizeDiagnoser(ArraySize);
|
|
|
|
ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize,
|
|
SizeDiagnoser);
|
|
}
|
|
if (ConvertedSize.isInvalid())
|
|
return ExprError();
|
|
|
|
ArraySize = ConvertedSize.get();
|
|
QualType SizeType = ArraySize->getType();
|
|
|
|
if (!SizeType->isIntegralOrUnscopedEnumerationType())
|
|
return ExprError();
|
|
|
|
// C++98 [expr.new]p7:
|
|
// The expression in a direct-new-declarator shall have integral type
|
|
// with a non-negative value.
|
|
//
|
|
// Let's see if this is a constant < 0. If so, we reject it out of
|
|
// hand. Otherwise, if it's not a constant, we must have an unparenthesized
|
|
// array type.
|
|
//
|
|
// Note: such a construct has well-defined semantics in C++11: it throws
|
|
// std::bad_array_new_length.
|
|
if (!ArraySize->isValueDependent()) {
|
|
llvm::APSInt Value;
|
|
// We've already performed any required implicit conversion to integer or
|
|
// unscoped enumeration type.
|
|
if (ArraySize->isIntegerConstantExpr(Value, Context)) {
|
|
if (Value < llvm::APSInt(
|
|
llvm::APInt::getNullValue(Value.getBitWidth()),
|
|
Value.isUnsigned())) {
|
|
if (getLangOpts().CPlusPlus11)
|
|
Diag(ArraySize->getLocStart(),
|
|
diag::warn_typecheck_negative_array_new_size)
|
|
<< ArraySize->getSourceRange();
|
|
else
|
|
return ExprError(Diag(ArraySize->getLocStart(),
|
|
diag::err_typecheck_negative_array_size)
|
|
<< ArraySize->getSourceRange());
|
|
} else if (!AllocType->isDependentType()) {
|
|
unsigned ActiveSizeBits =
|
|
ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
|
|
if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
|
|
if (getLangOpts().CPlusPlus11)
|
|
Diag(ArraySize->getLocStart(),
|
|
diag::warn_array_new_too_large)
|
|
<< Value.toString(10)
|
|
<< ArraySize->getSourceRange();
|
|
else
|
|
return ExprError(Diag(ArraySize->getLocStart(),
|
|
diag::err_array_too_large)
|
|
<< Value.toString(10)
|
|
<< ArraySize->getSourceRange());
|
|
}
|
|
}
|
|
} else if (TypeIdParens.isValid()) {
|
|
// Can't have dynamic array size when the type-id is in parentheses.
|
|
Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
|
|
<< ArraySize->getSourceRange()
|
|
<< FixItHint::CreateRemoval(TypeIdParens.getBegin())
|
|
<< FixItHint::CreateRemoval(TypeIdParens.getEnd());
|
|
|
|
TypeIdParens = SourceRange();
|
|
}
|
|
}
|
|
|
|
// Note that we do *not* convert the argument in any way. It can
|
|
// be signed, larger than size_t, whatever.
|
|
}
|
|
|
|
FunctionDecl *OperatorNew = nullptr;
|
|
FunctionDecl *OperatorDelete = nullptr;
|
|
|
|
if (!AllocType->isDependentType() &&
|
|
!Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
|
|
FindAllocationFunctions(StartLoc,
|
|
SourceRange(PlacementLParen, PlacementRParen),
|
|
UseGlobal, AllocType, ArraySize, PlacementArgs,
|
|
OperatorNew, OperatorDelete))
|
|
return ExprError();
|
|
|
|
// If this is an array allocation, compute whether the usual array
|
|
// deallocation function for the type has a size_t parameter.
|
|
bool UsualArrayDeleteWantsSize = false;
|
|
if (ArraySize && !AllocType->isDependentType())
|
|
UsualArrayDeleteWantsSize
|
|
= doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
|
|
|
|
SmallVector<Expr *, 8> AllPlaceArgs;
|
|
if (OperatorNew) {
|
|
const FunctionProtoType *Proto =
|
|
OperatorNew->getType()->getAs<FunctionProtoType>();
|
|
VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
|
|
: VariadicDoesNotApply;
|
|
|
|
// We've already converted the placement args, just fill in any default
|
|
// arguments. Skip the first parameter because we don't have a corresponding
|
|
// argument.
|
|
if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 1,
|
|
PlacementArgs, AllPlaceArgs, CallType))
|
|
return ExprError();
|
|
|
|
if (!AllPlaceArgs.empty())
|
|
PlacementArgs = AllPlaceArgs;
|
|
|
|
// FIXME: This is wrong: PlacementArgs misses out the first (size) argument.
|
|
DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
|
|
|
|
// FIXME: Missing call to CheckFunctionCall or equivalent
|
|
}
|
|
|
|
// Warn if the type is over-aligned and is being allocated by global operator
|
|
// new.
|
|
if (PlacementArgs.empty() && OperatorNew &&
|
|
(OperatorNew->isImplicit() ||
|
|
getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
|
|
if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
|
|
unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
|
|
if (Align > SuitableAlign)
|
|
Diag(StartLoc, diag::warn_overaligned_type)
|
|
<< AllocType
|
|
<< unsigned(Align / Context.getCharWidth())
|
|
<< unsigned(SuitableAlign / Context.getCharWidth());
|
|
}
|
|
}
|
|
|
|
QualType InitType = AllocType;
|
|
// Array 'new' can't have any initializers except empty parentheses.
|
|
// Initializer lists are also allowed, in C++11. Rely on the parser for the
|
|
// dialect distinction.
|
|
if (ResultType->isArrayType() || ArraySize) {
|
|
if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
|
|
SourceRange InitRange(Inits[0]->getLocStart(),
|
|
Inits[NumInits - 1]->getLocEnd());
|
|
Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
|
|
return ExprError();
|
|
}
|
|
if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
|
|
// We do the initialization typechecking against the array type
|
|
// corresponding to the number of initializers + 1 (to also check
|
|
// default-initialization).
|
|
unsigned NumElements = ILE->getNumInits() + 1;
|
|
InitType = Context.getConstantArrayType(AllocType,
|
|
llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
|
|
ArrayType::Normal, 0);
|
|
}
|
|
}
|
|
|
|
// If we can perform the initialization, and we've not already done so,
|
|
// do it now.
|
|
if (!AllocType->isDependentType() &&
|
|
!Expr::hasAnyTypeDependentArguments(
|
|
llvm::makeArrayRef(Inits, NumInits))) {
|
|
// C++11 [expr.new]p15:
|
|
// A new-expression that creates an object of type T initializes that
|
|
// object as follows:
|
|
InitializationKind Kind
|
|
// - If the new-initializer is omitted, the object is default-
|
|
// initialized (8.5); if no initialization is performed,
|
|
// the object has indeterminate value
|
|
= initStyle == CXXNewExpr::NoInit
|
|
? InitializationKind::CreateDefault(TypeRange.getBegin())
|
|
// - Otherwise, the new-initializer is interpreted according to the
|
|
// initialization rules of 8.5 for direct-initialization.
|
|
: initStyle == CXXNewExpr::ListInit
|
|
? InitializationKind::CreateDirectList(TypeRange.getBegin())
|
|
: InitializationKind::CreateDirect(TypeRange.getBegin(),
|
|
DirectInitRange.getBegin(),
|
|
DirectInitRange.getEnd());
|
|
|
|
InitializedEntity Entity
|
|
= InitializedEntity::InitializeNew(StartLoc, InitType);
|
|
InitializationSequence InitSeq(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
|
|
ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
|
|
MultiExprArg(Inits, NumInits));
|
|
if (FullInit.isInvalid())
|
|
return ExprError();
|
|
|
|
// FullInit is our initializer; strip off CXXBindTemporaryExprs, because
|
|
// we don't want the initialized object to be destructed.
|
|
if (CXXBindTemporaryExpr *Binder =
|
|
dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
|
|
FullInit = Binder->getSubExpr();
|
|
|
|
Initializer = FullInit.get();
|
|
}
|
|
|
|
// Mark the new and delete operators as referenced.
|
|
if (OperatorNew) {
|
|
if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
|
|
return ExprError();
|
|
MarkFunctionReferenced(StartLoc, OperatorNew);
|
|
}
|
|
if (OperatorDelete) {
|
|
if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
|
|
return ExprError();
|
|
MarkFunctionReferenced(StartLoc, OperatorDelete);
|
|
}
|
|
|
|
// C++0x [expr.new]p17:
|
|
// If the new expression creates an array of objects of class type,
|
|
// access and ambiguity control are done for the destructor.
|
|
QualType BaseAllocType = Context.getBaseElementType(AllocType);
|
|
if (ArraySize && !BaseAllocType->isDependentType()) {
|
|
if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
|
|
if (CXXDestructorDecl *dtor = LookupDestructor(
|
|
cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
|
|
MarkFunctionReferenced(StartLoc, dtor);
|
|
CheckDestructorAccess(StartLoc, dtor,
|
|
PDiag(diag::err_access_dtor)
|
|
<< BaseAllocType);
|
|
if (DiagnoseUseOfDecl(dtor, StartLoc))
|
|
return ExprError();
|
|
}
|
|
}
|
|
}
|
|
|
|
return new (Context)
|
|
CXXNewExpr(Context, UseGlobal, OperatorNew, OperatorDelete,
|
|
UsualArrayDeleteWantsSize, PlacementArgs, TypeIdParens,
|
|
ArraySize, initStyle, Initializer, ResultType, AllocTypeInfo,
|
|
Range, DirectInitRange);
|
|
}
|
|
|
|
/// \brief Checks that a type is suitable as the allocated type
|
|
/// in a new-expression.
|
|
bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
|
|
SourceRange R) {
|
|
// C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
|
|
// abstract class type or array thereof.
|
|
if (AllocType->isFunctionType())
|
|
return Diag(Loc, diag::err_bad_new_type)
|
|
<< AllocType << 0 << R;
|
|
else if (AllocType->isReferenceType())
|
|
return Diag(Loc, diag::err_bad_new_type)
|
|
<< AllocType << 1 << R;
|
|
else if (!AllocType->isDependentType() &&
|
|
RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
|
|
return true;
|
|
else if (RequireNonAbstractType(Loc, AllocType,
|
|
diag::err_allocation_of_abstract_type))
|
|
return true;
|
|
else if (AllocType->isVariablyModifiedType())
|
|
return Diag(Loc, diag::err_variably_modified_new_type)
|
|
<< AllocType;
|
|
else if (unsigned AddressSpace = AllocType.getAddressSpace())
|
|
return Diag(Loc, diag::err_address_space_qualified_new)
|
|
<< AllocType.getUnqualifiedType() << AddressSpace;
|
|
else if (getLangOpts().ObjCAutoRefCount) {
|
|
if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
|
|
QualType BaseAllocType = Context.getBaseElementType(AT);
|
|
if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
|
|
BaseAllocType->isObjCLifetimeType())
|
|
return Diag(Loc, diag::err_arc_new_array_without_ownership)
|
|
<< BaseAllocType;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Determine whether the given function is a non-placement
|
|
/// deallocation function.
|
|
static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
|
|
if (FD->isInvalidDecl())
|
|
return false;
|
|
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
|
|
return Method->isUsualDeallocationFunction();
|
|
|
|
if (FD->getOverloadedOperator() != OO_Delete &&
|
|
FD->getOverloadedOperator() != OO_Array_Delete)
|
|
return false;
|
|
|
|
if (FD->getNumParams() == 1)
|
|
return true;
|
|
|
|
return S.getLangOpts().SizedDeallocation && FD->getNumParams() == 2 &&
|
|
S.Context.hasSameUnqualifiedType(FD->getParamDecl(1)->getType(),
|
|
S.Context.getSizeType());
|
|
}
|
|
|
|
/// FindAllocationFunctions - Finds the overloads of operator new and delete
|
|
/// that are appropriate for the allocation.
|
|
bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
|
|
bool UseGlobal, QualType AllocType,
|
|
bool IsArray, MultiExprArg PlaceArgs,
|
|
FunctionDecl *&OperatorNew,
|
|
FunctionDecl *&OperatorDelete) {
|
|
// --- Choosing an allocation function ---
|
|
// C++ 5.3.4p8 - 14 & 18
|
|
// 1) If UseGlobal is true, only look in the global scope. Else, also look
|
|
// in the scope of the allocated class.
|
|
// 2) If an array size is given, look for operator new[], else look for
|
|
// operator new.
|
|
// 3) The first argument is always size_t. Append the arguments from the
|
|
// placement form.
|
|
|
|
SmallVector<Expr*, 8> AllocArgs(1 + PlaceArgs.size());
|
|
// We don't care about the actual value of this argument.
|
|
// FIXME: Should the Sema create the expression and embed it in the syntax
|
|
// tree? Or should the consumer just recalculate the value?
|
|
IntegerLiteral Size(Context, llvm::APInt::getNullValue(
|
|
Context.getTargetInfo().getPointerWidth(0)),
|
|
Context.getSizeType(),
|
|
SourceLocation());
|
|
AllocArgs[0] = &Size;
|
|
std::copy(PlaceArgs.begin(), PlaceArgs.end(), AllocArgs.begin() + 1);
|
|
|
|
// C++ [expr.new]p8:
|
|
// If the allocated type is a non-array type, the allocation
|
|
// function's name is operator new and the deallocation function's
|
|
// name is operator delete. If the allocated type is an array
|
|
// type, the allocation function's name is operator new[] and the
|
|
// deallocation function's name is operator delete[].
|
|
DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
|
|
IsArray ? OO_Array_New : OO_New);
|
|
DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
|
|
IsArray ? OO_Array_Delete : OO_Delete);
|
|
|
|
QualType AllocElemType = Context.getBaseElementType(AllocType);
|
|
|
|
if (AllocElemType->isRecordType() && !UseGlobal) {
|
|
CXXRecordDecl *Record
|
|
= cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
|
|
if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, Record,
|
|
/*AllowMissing=*/true, OperatorNew))
|
|
return true;
|
|
}
|
|
|
|
if (!OperatorNew) {
|
|
// Didn't find a member overload. Look for a global one.
|
|
DeclareGlobalNewDelete();
|
|
DeclContext *TUDecl = Context.getTranslationUnitDecl();
|
|
bool FallbackEnabled = IsArray && Context.getLangOpts().MSVCCompat;
|
|
if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
|
|
/*AllowMissing=*/FallbackEnabled, OperatorNew,
|
|
/*Diagnose=*/!FallbackEnabled)) {
|
|
if (!FallbackEnabled)
|
|
return true;
|
|
|
|
// MSVC will fall back on trying to find a matching global operator new
|
|
// if operator new[] cannot be found. Also, MSVC will leak by not
|
|
// generating a call to operator delete or operator delete[], but we
|
|
// will not replicate that bug.
|
|
NewName = Context.DeclarationNames.getCXXOperatorName(OO_New);
|
|
DeleteName = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
|
|
if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
|
|
/*AllowMissing=*/false, OperatorNew))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// We don't need an operator delete if we're running under
|
|
// -fno-exceptions.
|
|
if (!getLangOpts().Exceptions) {
|
|
OperatorDelete = nullptr;
|
|
return false;
|
|
}
|
|
|
|
// C++ [expr.new]p19:
|
|
//
|
|
// If the new-expression begins with a unary :: operator, the
|
|
// deallocation function's name is looked up in the global
|
|
// scope. Otherwise, if the allocated type is a class type T or an
|
|
// array thereof, the deallocation function's name is looked up in
|
|
// the scope of T. If this lookup fails to find the name, or if
|
|
// the allocated type is not a class type or array thereof, the
|
|
// deallocation function's name is looked up in the global scope.
|
|
LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
|
|
if (AllocElemType->isRecordType() && !UseGlobal) {
|
|
CXXRecordDecl *RD
|
|
= cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
|
|
LookupQualifiedName(FoundDelete, RD);
|
|
}
|
|
if (FoundDelete.isAmbiguous())
|
|
return true; // FIXME: clean up expressions?
|
|
|
|
if (FoundDelete.empty()) {
|
|
DeclareGlobalNewDelete();
|
|
LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
|
|
}
|
|
|
|
FoundDelete.suppressDiagnostics();
|
|
|
|
SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
|
|
|
|
// Whether we're looking for a placement operator delete is dictated
|
|
// by whether we selected a placement operator new, not by whether
|
|
// we had explicit placement arguments. This matters for things like
|
|
// struct A { void *operator new(size_t, int = 0); ... };
|
|
// A *a = new A()
|
|
bool isPlacementNew = (!PlaceArgs.empty() || OperatorNew->param_size() != 1);
|
|
|
|
if (isPlacementNew) {
|
|
// C++ [expr.new]p20:
|
|
// A declaration of a placement deallocation function matches the
|
|
// declaration of a placement allocation function if it has the
|
|
// same number of parameters and, after parameter transformations
|
|
// (8.3.5), all parameter types except the first are
|
|
// identical. [...]
|
|
//
|
|
// To perform this comparison, we compute the function type that
|
|
// the deallocation function should have, and use that type both
|
|
// for template argument deduction and for comparison purposes.
|
|
//
|
|
// FIXME: this comparison should ignore CC and the like.
|
|
QualType ExpectedFunctionType;
|
|
{
|
|
const FunctionProtoType *Proto
|
|
= OperatorNew->getType()->getAs<FunctionProtoType>();
|
|
|
|
SmallVector<QualType, 4> ArgTypes;
|
|
ArgTypes.push_back(Context.VoidPtrTy);
|
|
for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
|
|
ArgTypes.push_back(Proto->getParamType(I));
|
|
|
|
FunctionProtoType::ExtProtoInfo EPI;
|
|
EPI.Variadic = Proto->isVariadic();
|
|
|
|
ExpectedFunctionType
|
|
= Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
|
|
}
|
|
|
|
for (LookupResult::iterator D = FoundDelete.begin(),
|
|
DEnd = FoundDelete.end();
|
|
D != DEnd; ++D) {
|
|
FunctionDecl *Fn = nullptr;
|
|
if (FunctionTemplateDecl *FnTmpl
|
|
= dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
|
|
// Perform template argument deduction to try to match the
|
|
// expected function type.
|
|
TemplateDeductionInfo Info(StartLoc);
|
|
if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
|
|
Info))
|
|
continue;
|
|
} else
|
|
Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
|
|
|
|
if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
|
|
Matches.push_back(std::make_pair(D.getPair(), Fn));
|
|
}
|
|
} else {
|
|
// C++ [expr.new]p20:
|
|
// [...] Any non-placement deallocation function matches a
|
|
// non-placement allocation function. [...]
|
|
for (LookupResult::iterator D = FoundDelete.begin(),
|
|
DEnd = FoundDelete.end();
|
|
D != DEnd; ++D) {
|
|
if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
|
|
if (isNonPlacementDeallocationFunction(*this, Fn))
|
|
Matches.push_back(std::make_pair(D.getPair(), Fn));
|
|
}
|
|
|
|
// C++1y [expr.new]p22:
|
|
// For a non-placement allocation function, the normal deallocation
|
|
// function lookup is used
|
|
// C++1y [expr.delete]p?:
|
|
// If [...] deallocation function lookup finds both a usual deallocation
|
|
// function with only a pointer parameter and a usual deallocation
|
|
// function with both a pointer parameter and a size parameter, then the
|
|
// selected deallocation function shall be the one with two parameters.
|
|
// Otherwise, the selected deallocation function shall be the function
|
|
// with one parameter.
|
|
if (getLangOpts().SizedDeallocation && Matches.size() == 2) {
|
|
if (Matches[0].second->getNumParams() == 1)
|
|
Matches.erase(Matches.begin());
|
|
else
|
|
Matches.erase(Matches.begin() + 1);
|
|
assert(Matches[0].second->getNumParams() == 2 &&
|
|
"found an unexpected usual deallocation function");
|
|
}
|
|
}
|
|
|
|
// C++ [expr.new]p20:
|
|
// [...] If the lookup finds a single matching deallocation
|
|
// function, that function will be called; otherwise, no
|
|
// deallocation function will be called.
|
|
if (Matches.size() == 1) {
|
|
OperatorDelete = Matches[0].second;
|
|
|
|
// C++0x [expr.new]p20:
|
|
// If the lookup finds the two-parameter form of a usual
|
|
// deallocation function (3.7.4.2) and that function, considered
|
|
// as a placement deallocation function, would have been
|
|
// selected as a match for the allocation function, the program
|
|
// is ill-formed.
|
|
if (!PlaceArgs.empty() && getLangOpts().CPlusPlus11 &&
|
|
isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
|
|
Diag(StartLoc, diag::err_placement_new_non_placement_delete)
|
|
<< SourceRange(PlaceArgs.front()->getLocStart(),
|
|
PlaceArgs.back()->getLocEnd());
|
|
if (!OperatorDelete->isImplicit())
|
|
Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
|
|
<< DeleteName;
|
|
} else {
|
|
CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
|
|
Matches[0].first);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Find an fitting overload for the allocation function
|
|
/// in the specified scope.
|
|
///
|
|
/// \param StartLoc The location of the 'new' token.
|
|
/// \param Range The range of the placement arguments.
|
|
/// \param Name The name of the function ('operator new' or 'operator new[]').
|
|
/// \param Args The placement arguments specified.
|
|
/// \param Ctx The scope in which we should search; either a class scope or the
|
|
/// translation unit.
|
|
/// \param AllowMissing If \c true, report an error if we can't find any
|
|
/// allocation functions. Otherwise, succeed but don't fill in \p
|
|
/// Operator.
|
|
/// \param Operator Filled in with the found allocation function. Unchanged if
|
|
/// no allocation function was found.
|
|
/// \param Diagnose If \c true, issue errors if the allocation function is not
|
|
/// usable.
|
|
bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
|
|
DeclarationName Name, MultiExprArg Args,
|
|
DeclContext *Ctx,
|
|
bool AllowMissing, FunctionDecl *&Operator,
|
|
bool Diagnose) {
|
|
LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
|
|
LookupQualifiedName(R, Ctx);
|
|
if (R.empty()) {
|
|
if (AllowMissing || !Diagnose)
|
|
return false;
|
|
return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
|
|
<< Name << Range;
|
|
}
|
|
|
|
if (R.isAmbiguous())
|
|
return true;
|
|
|
|
R.suppressDiagnostics();
|
|
|
|
OverloadCandidateSet Candidates(StartLoc, OverloadCandidateSet::CSK_Normal);
|
|
for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
|
|
Alloc != AllocEnd; ++Alloc) {
|
|
// Even member operator new/delete are implicitly treated as
|
|
// static, so don't use AddMemberCandidate.
|
|
NamedDecl *D = (*Alloc)->getUnderlyingDecl();
|
|
|
|
if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
|
|
AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
|
|
/*ExplicitTemplateArgs=*/nullptr,
|
|
Args, Candidates,
|
|
/*SuppressUserConversions=*/false);
|
|
continue;
|
|
}
|
|
|
|
FunctionDecl *Fn = cast<FunctionDecl>(D);
|
|
AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
|
|
/*SuppressUserConversions=*/false);
|
|
}
|
|
|
|
// Do the resolution.
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
|
|
case OR_Success: {
|
|
// Got one!
|
|
FunctionDecl *FnDecl = Best->Function;
|
|
if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
|
|
Best->FoundDecl, Diagnose) == AR_inaccessible)
|
|
return true;
|
|
|
|
Operator = FnDecl;
|
|
return false;
|
|
}
|
|
|
|
case OR_No_Viable_Function:
|
|
if (Diagnose) {
|
|
Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
|
|
<< Name << Range;
|
|
Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
|
|
}
|
|
return true;
|
|
|
|
case OR_Ambiguous:
|
|
if (Diagnose) {
|
|
Diag(StartLoc, diag::err_ovl_ambiguous_call)
|
|
<< Name << Range;
|
|
Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args);
|
|
}
|
|
return true;
|
|
|
|
case OR_Deleted: {
|
|
if (Diagnose) {
|
|
Diag(StartLoc, diag::err_ovl_deleted_call)
|
|
<< Best->Function->isDeleted()
|
|
<< Name
|
|
<< getDeletedOrUnavailableSuffix(Best->Function)
|
|
<< Range;
|
|
Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
llvm_unreachable("Unreachable, bad result from BestViableFunction");
|
|
}
|
|
|
|
|
|
/// DeclareGlobalNewDelete - Declare the global forms of operator new and
|
|
/// delete. These are:
|
|
/// @code
|
|
/// // C++03:
|
|
/// void* operator new(std::size_t) throw(std::bad_alloc);
|
|
/// void* operator new[](std::size_t) throw(std::bad_alloc);
|
|
/// void operator delete(void *) throw();
|
|
/// void operator delete[](void *) throw();
|
|
/// // C++11:
|
|
/// void* operator new(std::size_t);
|
|
/// void* operator new[](std::size_t);
|
|
/// void operator delete(void *) noexcept;
|
|
/// void operator delete[](void *) noexcept;
|
|
/// // C++1y:
|
|
/// void* operator new(std::size_t);
|
|
/// void* operator new[](std::size_t);
|
|
/// void operator delete(void *) noexcept;
|
|
/// void operator delete[](void *) noexcept;
|
|
/// void operator delete(void *, std::size_t) noexcept;
|
|
/// void operator delete[](void *, std::size_t) noexcept;
|
|
/// @endcode
|
|
/// Note that the placement and nothrow forms of new are *not* implicitly
|
|
/// declared. Their use requires including \<new\>.
|
|
void Sema::DeclareGlobalNewDelete() {
|
|
if (GlobalNewDeleteDeclared)
|
|
return;
|
|
|
|
// C++ [basic.std.dynamic]p2:
|
|
// [...] The following allocation and deallocation functions (18.4) are
|
|
// implicitly declared in global scope in each translation unit of a
|
|
// program
|
|
//
|
|
// C++03:
|
|
// void* operator new(std::size_t) throw(std::bad_alloc);
|
|
// void* operator new[](std::size_t) throw(std::bad_alloc);
|
|
// void operator delete(void*) throw();
|
|
// void operator delete[](void*) throw();
|
|
// C++11:
|
|
// void* operator new(std::size_t);
|
|
// void* operator new[](std::size_t);
|
|
// void operator delete(void*) noexcept;
|
|
// void operator delete[](void*) noexcept;
|
|
// C++1y:
|
|
// void* operator new(std::size_t);
|
|
// void* operator new[](std::size_t);
|
|
// void operator delete(void*) noexcept;
|
|
// void operator delete[](void*) noexcept;
|
|
// void operator delete(void*, std::size_t) noexcept;
|
|
// void operator delete[](void*, std::size_t) noexcept;
|
|
//
|
|
// These implicit declarations introduce only the function names operator
|
|
// new, operator new[], operator delete, operator delete[].
|
|
//
|
|
// Here, we need to refer to std::bad_alloc, so we will implicitly declare
|
|
// "std" or "bad_alloc" as necessary to form the exception specification.
|
|
// However, we do not make these implicit declarations visible to name
|
|
// lookup.
|
|
if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
|
|
// The "std::bad_alloc" class has not yet been declared, so build it
|
|
// implicitly.
|
|
StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
|
|
getOrCreateStdNamespace(),
|
|
SourceLocation(), SourceLocation(),
|
|
&PP.getIdentifierTable().get("bad_alloc"),
|
|
nullptr);
|
|
getStdBadAlloc()->setImplicit(true);
|
|
}
|
|
|
|
GlobalNewDeleteDeclared = true;
|
|
|
|
QualType VoidPtr = Context.getPointerType(Context.VoidTy);
|
|
QualType SizeT = Context.getSizeType();
|
|
bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
|
|
|
|
DeclareGlobalAllocationFunction(
|
|
Context.DeclarationNames.getCXXOperatorName(OO_New),
|
|
VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew);
|
|
DeclareGlobalAllocationFunction(
|
|
Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
|
|
VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew);
|
|
DeclareGlobalAllocationFunction(
|
|
Context.DeclarationNames.getCXXOperatorName(OO_Delete),
|
|
Context.VoidTy, VoidPtr);
|
|
DeclareGlobalAllocationFunction(
|
|
Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
|
|
Context.VoidTy, VoidPtr);
|
|
if (getLangOpts().SizedDeallocation) {
|
|
DeclareGlobalAllocationFunction(
|
|
Context.DeclarationNames.getCXXOperatorName(OO_Delete),
|
|
Context.VoidTy, VoidPtr, Context.getSizeType());
|
|
DeclareGlobalAllocationFunction(
|
|
Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
|
|
Context.VoidTy, VoidPtr, Context.getSizeType());
|
|
}
|
|
}
|
|
|
|
/// DeclareGlobalAllocationFunction - Declares a single implicit global
|
|
/// allocation function if it doesn't already exist.
|
|
void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
|
|
QualType Return,
|
|
QualType Param1, QualType Param2,
|
|
bool AddMallocAttr) {
|
|
DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
|
|
unsigned NumParams = Param2.isNull() ? 1 : 2;
|
|
|
|
// Check if this function is already declared.
|
|
DeclContext::lookup_result R = GlobalCtx->lookup(Name);
|
|
for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
|
|
Alloc != AllocEnd; ++Alloc) {
|
|
// Only look at non-template functions, as it is the predefined,
|
|
// non-templated allocation function we are trying to declare here.
|
|
if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
|
|
if (Func->getNumParams() == NumParams) {
|
|
QualType InitialParam1Type =
|
|
Context.getCanonicalType(Func->getParamDecl(0)
|
|
->getType().getUnqualifiedType());
|
|
QualType InitialParam2Type =
|
|
NumParams == 2
|
|
? Context.getCanonicalType(Func->getParamDecl(1)
|
|
->getType().getUnqualifiedType())
|
|
: QualType();
|
|
// FIXME: Do we need to check for default arguments here?
|
|
if (InitialParam1Type == Param1 &&
|
|
(NumParams == 1 || InitialParam2Type == Param2)) {
|
|
if (AddMallocAttr && !Func->hasAttr<MallocAttr>())
|
|
Func->addAttr(MallocAttr::CreateImplicit(Context));
|
|
// Make the function visible to name lookup, even if we found it in
|
|
// an unimported module. It either is an implicitly-declared global
|
|
// allocation function, or is suppressing that function.
|
|
Func->setHidden(false);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
FunctionProtoType::ExtProtoInfo EPI;
|
|
|
|
QualType BadAllocType;
|
|
bool HasBadAllocExceptionSpec
|
|
= (Name.getCXXOverloadedOperator() == OO_New ||
|
|
Name.getCXXOverloadedOperator() == OO_Array_New);
|
|
if (HasBadAllocExceptionSpec) {
|
|
if (!getLangOpts().CPlusPlus11) {
|
|
BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
|
|
assert(StdBadAlloc && "Must have std::bad_alloc declared");
|
|
EPI.ExceptionSpec.Type = EST_Dynamic;
|
|
EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
|
|
}
|
|
} else {
|
|
EPI.ExceptionSpec =
|
|
getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
|
|
}
|
|
|
|
QualType Params[] = { Param1, Param2 };
|
|
|
|
QualType FnType = Context.getFunctionType(
|
|
Return, ArrayRef<QualType>(Params, NumParams), EPI);
|
|
FunctionDecl *Alloc =
|
|
FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
|
|
SourceLocation(), Name,
|
|
FnType, /*TInfo=*/nullptr, SC_None, false, true);
|
|
Alloc->setImplicit();
|
|
|
|
if (AddMallocAttr)
|
|
Alloc->addAttr(MallocAttr::CreateImplicit(Context));
|
|
|
|
ParmVarDecl *ParamDecls[2];
|
|
for (unsigned I = 0; I != NumParams; ++I) {
|
|
ParamDecls[I] = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
|
|
SourceLocation(), nullptr,
|
|
Params[I], /*TInfo=*/nullptr,
|
|
SC_None, nullptr);
|
|
ParamDecls[I]->setImplicit();
|
|
}
|
|
Alloc->setParams(ArrayRef<ParmVarDecl*>(ParamDecls, NumParams));
|
|
|
|
Context.getTranslationUnitDecl()->addDecl(Alloc);
|
|
IdResolver.tryAddTopLevelDecl(Alloc, Name);
|
|
}
|
|
|
|
FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
|
|
bool CanProvideSize,
|
|
DeclarationName Name) {
|
|
DeclareGlobalNewDelete();
|
|
|
|
LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
|
|
LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
|
|
|
|
// C++ [expr.new]p20:
|
|
// [...] Any non-placement deallocation function matches a
|
|
// non-placement allocation function. [...]
|
|
llvm::SmallVector<FunctionDecl*, 2> Matches;
|
|
for (LookupResult::iterator D = FoundDelete.begin(),
|
|
DEnd = FoundDelete.end();
|
|
D != DEnd; ++D) {
|
|
if (FunctionDecl *Fn = dyn_cast<FunctionDecl>(*D))
|
|
if (isNonPlacementDeallocationFunction(*this, Fn))
|
|
Matches.push_back(Fn);
|
|
}
|
|
|
|
// C++1y [expr.delete]p?:
|
|
// If the type is complete and deallocation function lookup finds both a
|
|
// usual deallocation function with only a pointer parameter and a usual
|
|
// deallocation function with both a pointer parameter and a size
|
|
// parameter, then the selected deallocation function shall be the one
|
|
// with two parameters. Otherwise, the selected deallocation function
|
|
// shall be the function with one parameter.
|
|
if (getLangOpts().SizedDeallocation && Matches.size() == 2) {
|
|
unsigned NumArgs = CanProvideSize ? 2 : 1;
|
|
if (Matches[0]->getNumParams() != NumArgs)
|
|
Matches.erase(Matches.begin());
|
|
else
|
|
Matches.erase(Matches.begin() + 1);
|
|
assert(Matches[0]->getNumParams() == NumArgs &&
|
|
"found an unexpected usual deallocation function");
|
|
}
|
|
|
|
assert(Matches.size() == 1 &&
|
|
"unexpectedly have multiple usual deallocation functions");
|
|
return Matches.front();
|
|
}
|
|
|
|
bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
|
|
DeclarationName Name,
|
|
FunctionDecl* &Operator, bool Diagnose) {
|
|
LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
|
|
// Try to find operator delete/operator delete[] in class scope.
|
|
LookupQualifiedName(Found, RD);
|
|
|
|
if (Found.isAmbiguous())
|
|
return true;
|
|
|
|
Found.suppressDiagnostics();
|
|
|
|
SmallVector<DeclAccessPair,4> Matches;
|
|
for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
|
|
F != FEnd; ++F) {
|
|
NamedDecl *ND = (*F)->getUnderlyingDecl();
|
|
|
|
// Ignore template operator delete members from the check for a usual
|
|
// deallocation function.
|
|
if (isa<FunctionTemplateDecl>(ND))
|
|
continue;
|
|
|
|
if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
|
|
Matches.push_back(F.getPair());
|
|
}
|
|
|
|
// There's exactly one suitable operator; pick it.
|
|
if (Matches.size() == 1) {
|
|
Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
|
|
|
|
if (Operator->isDeleted()) {
|
|
if (Diagnose) {
|
|
Diag(StartLoc, diag::err_deleted_function_use);
|
|
NoteDeletedFunction(Operator);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
|
|
Matches[0], Diagnose) == AR_inaccessible)
|
|
return true;
|
|
|
|
return false;
|
|
|
|
// We found multiple suitable operators; complain about the ambiguity.
|
|
} else if (!Matches.empty()) {
|
|
if (Diagnose) {
|
|
Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
|
|
<< Name << RD;
|
|
|
|
for (SmallVectorImpl<DeclAccessPair>::iterator
|
|
F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
|
|
Diag((*F)->getUnderlyingDecl()->getLocation(),
|
|
diag::note_member_declared_here) << Name;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// We did find operator delete/operator delete[] declarations, but
|
|
// none of them were suitable.
|
|
if (!Found.empty()) {
|
|
if (Diagnose) {
|
|
Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
|
|
<< Name << RD;
|
|
|
|
for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
|
|
F != FEnd; ++F)
|
|
Diag((*F)->getUnderlyingDecl()->getLocation(),
|
|
diag::note_member_declared_here) << Name;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Operator = nullptr;
|
|
return false;
|
|
}
|
|
|
|
/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
|
|
/// @code ::delete ptr; @endcode
|
|
/// or
|
|
/// @code delete [] ptr; @endcode
|
|
ExprResult
|
|
Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
|
|
bool ArrayForm, Expr *ExE) {
|
|
// C++ [expr.delete]p1:
|
|
// The operand shall have a pointer type, or a class type having a single
|
|
// non-explicit conversion function to a pointer type. The result has type
|
|
// void.
|
|
//
|
|
// DR599 amends "pointer type" to "pointer to object type" in both cases.
|
|
|
|
ExprResult Ex = ExE;
|
|
FunctionDecl *OperatorDelete = nullptr;
|
|
bool ArrayFormAsWritten = ArrayForm;
|
|
bool UsualArrayDeleteWantsSize = false;
|
|
|
|
if (!Ex.get()->isTypeDependent()) {
|
|
// Perform lvalue-to-rvalue cast, if needed.
|
|
Ex = DefaultLvalueConversion(Ex.get());
|
|
if (Ex.isInvalid())
|
|
return ExprError();
|
|
|
|
QualType Type = Ex.get()->getType();
|
|
|
|
class DeleteConverter : public ContextualImplicitConverter {
|
|
public:
|
|
DeleteConverter() : ContextualImplicitConverter(false, true) {}
|
|
|
|
bool match(QualType ConvType) override {
|
|
// FIXME: If we have an operator T* and an operator void*, we must pick
|
|
// the operator T*.
|
|
if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
|
|
if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
|
|
QualType T) override {
|
|
return S.Diag(Loc, diag::err_delete_operand) << T;
|
|
}
|
|
|
|
SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
|
|
QualType T) override {
|
|
return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
|
|
}
|
|
|
|
SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
|
|
QualType T,
|
|
QualType ConvTy) override {
|
|
return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
|
|
}
|
|
|
|
SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
|
|
QualType ConvTy) override {
|
|
return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
|
|
<< ConvTy;
|
|
}
|
|
|
|
SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
|
|
QualType T) override {
|
|
return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
|
|
}
|
|
|
|
SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
|
|
QualType ConvTy) override {
|
|
return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
|
|
<< ConvTy;
|
|
}
|
|
|
|
SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
|
|
QualType T,
|
|
QualType ConvTy) override {
|
|
llvm_unreachable("conversion functions are permitted");
|
|
}
|
|
} Converter;
|
|
|
|
Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
|
|
if (Ex.isInvalid())
|
|
return ExprError();
|
|
Type = Ex.get()->getType();
|
|
if (!Converter.match(Type))
|
|
// FIXME: PerformContextualImplicitConversion should return ExprError
|
|
// itself in this case.
|
|
return ExprError();
|
|
|
|
QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
|
|
QualType PointeeElem = Context.getBaseElementType(Pointee);
|
|
|
|
if (unsigned AddressSpace = Pointee.getAddressSpace())
|
|
return Diag(Ex.get()->getLocStart(),
|
|
diag::err_address_space_qualified_delete)
|
|
<< Pointee.getUnqualifiedType() << AddressSpace;
|
|
|
|
CXXRecordDecl *PointeeRD = nullptr;
|
|
if (Pointee->isVoidType() && !isSFINAEContext()) {
|
|
// The C++ standard bans deleting a pointer to a non-object type, which
|
|
// effectively bans deletion of "void*". However, most compilers support
|
|
// this, so we treat it as a warning unless we're in a SFINAE context.
|
|
Diag(StartLoc, diag::ext_delete_void_ptr_operand)
|
|
<< Type << Ex.get()->getSourceRange();
|
|
} else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
|
|
return ExprError(Diag(StartLoc, diag::err_delete_operand)
|
|
<< Type << Ex.get()->getSourceRange());
|
|
} else if (!Pointee->isDependentType()) {
|
|
if (!RequireCompleteType(StartLoc, Pointee,
|
|
diag::warn_delete_incomplete, Ex.get())) {
|
|
if (const RecordType *RT = PointeeElem->getAs<RecordType>())
|
|
PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
|
|
}
|
|
}
|
|
|
|
// C++ [expr.delete]p2:
|
|
// [Note: a pointer to a const type can be the operand of a
|
|
// delete-expression; it is not necessary to cast away the constness
|
|
// (5.2.11) of the pointer expression before it is used as the operand
|
|
// of the delete-expression. ]
|
|
|
|
if (Pointee->isArrayType() && !ArrayForm) {
|
|
Diag(StartLoc, diag::warn_delete_array_type)
|
|
<< Type << Ex.get()->getSourceRange()
|
|
<< FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
|
|
ArrayForm = true;
|
|
}
|
|
|
|
DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
|
|
ArrayForm ? OO_Array_Delete : OO_Delete);
|
|
|
|
if (PointeeRD) {
|
|
if (!UseGlobal &&
|
|
FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
|
|
OperatorDelete))
|
|
return ExprError();
|
|
|
|
// If we're allocating an array of records, check whether the
|
|
// usual operator delete[] has a size_t parameter.
|
|
if (ArrayForm) {
|
|
// If the user specifically asked to use the global allocator,
|
|
// we'll need to do the lookup into the class.
|
|
if (UseGlobal)
|
|
UsualArrayDeleteWantsSize =
|
|
doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
|
|
|
|
// Otherwise, the usual operator delete[] should be the
|
|
// function we just found.
|
|
else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
|
|
UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
|
|
}
|
|
|
|
if (!PointeeRD->hasIrrelevantDestructor())
|
|
if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
|
|
MarkFunctionReferenced(StartLoc,
|
|
const_cast<CXXDestructorDecl*>(Dtor));
|
|
if (DiagnoseUseOfDecl(Dtor, StartLoc))
|
|
return ExprError();
|
|
}
|
|
|
|
// C++ [expr.delete]p3:
|
|
// In the first alternative (delete object), if the static type of the
|
|
// object to be deleted is different from its dynamic type, the static
|
|
// type shall be a base class of the dynamic type of the object to be
|
|
// deleted and the static type shall have a virtual destructor or the
|
|
// behavior is undefined.
|
|
//
|
|
// Note: a final class cannot be derived from, no issue there
|
|
if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
|
|
CXXDestructorDecl *dtor = PointeeRD->getDestructor();
|
|
if (dtor && !dtor->isVirtual()) {
|
|
if (PointeeRD->isAbstract()) {
|
|
// If the class is abstract, we warn by default, because we're
|
|
// sure the code has undefined behavior.
|
|
Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
|
|
<< PointeeElem;
|
|
} else if (!ArrayForm) {
|
|
// Otherwise, if this is not an array delete, it's a bit suspect,
|
|
// but not necessarily wrong.
|
|
Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
if (!OperatorDelete)
|
|
// Look for a global declaration.
|
|
OperatorDelete = FindUsualDeallocationFunction(
|
|
StartLoc, !RequireCompleteType(StartLoc, Pointee, 0) &&
|
|
(!ArrayForm || UsualArrayDeleteWantsSize ||
|
|
Pointee.isDestructedType()),
|
|
DeleteName);
|
|
|
|
MarkFunctionReferenced(StartLoc, OperatorDelete);
|
|
|
|
// Check access and ambiguity of operator delete and destructor.
|
|
if (PointeeRD) {
|
|
if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
|
|
CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
|
|
PDiag(diag::err_access_dtor) << PointeeElem);
|
|
}
|
|
}
|
|
}
|
|
|
|
return new (Context) CXXDeleteExpr(
|
|
Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
|
|
UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
|
|
}
|
|
|
|
/// \brief Check the use of the given variable as a C++ condition in an if,
|
|
/// while, do-while, or switch statement.
|
|
ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
|
|
SourceLocation StmtLoc,
|
|
bool ConvertToBoolean) {
|
|
if (ConditionVar->isInvalidDecl())
|
|
return ExprError();
|
|
|
|
QualType T = ConditionVar->getType();
|
|
|
|
// C++ [stmt.select]p2:
|
|
// The declarator shall not specify a function or an array.
|
|
if (T->isFunctionType())
|
|
return ExprError(Diag(ConditionVar->getLocation(),
|
|
diag::err_invalid_use_of_function_type)
|
|
<< ConditionVar->getSourceRange());
|
|
else if (T->isArrayType())
|
|
return ExprError(Diag(ConditionVar->getLocation(),
|
|
diag::err_invalid_use_of_array_type)
|
|
<< ConditionVar->getSourceRange());
|
|
|
|
ExprResult Condition = DeclRefExpr::Create(
|
|
Context, NestedNameSpecifierLoc(), SourceLocation(), ConditionVar,
|
|
/*enclosing*/ false, ConditionVar->getLocation(),
|
|
ConditionVar->getType().getNonReferenceType(), VK_LValue);
|
|
|
|
MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
|
|
|
|
if (ConvertToBoolean) {
|
|
Condition = CheckBooleanCondition(Condition.get(), StmtLoc);
|
|
if (Condition.isInvalid())
|
|
return ExprError();
|
|
}
|
|
|
|
return Condition;
|
|
}
|
|
|
|
/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
|
|
ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
|
|
// C++ 6.4p4:
|
|
// The value of a condition that is an initialized declaration in a statement
|
|
// other than a switch statement is the value of the declared variable
|
|
// implicitly converted to type bool. If that conversion is ill-formed, the
|
|
// program is ill-formed.
|
|
// The value of a condition that is an expression is the value of the
|
|
// expression, implicitly converted to bool.
|
|
//
|
|
return PerformContextuallyConvertToBool(CondExpr);
|
|
}
|
|
|
|
/// Helper function to determine whether this is the (deprecated) C++
|
|
/// conversion from a string literal to a pointer to non-const char or
|
|
/// non-const wchar_t (for narrow and wide string literals,
|
|
/// respectively).
|
|
bool
|
|
Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
|
|
// Look inside the implicit cast, if it exists.
|
|
if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
|
|
From = Cast->getSubExpr();
|
|
|
|
// A string literal (2.13.4) that is not a wide string literal can
|
|
// be converted to an rvalue of type "pointer to char"; a wide
|
|
// string literal can be converted to an rvalue of type "pointer
|
|
// to wchar_t" (C++ 4.2p2).
|
|
if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
|
|
if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
|
|
if (const BuiltinType *ToPointeeType
|
|
= ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
|
|
// This conversion is considered only when there is an
|
|
// explicit appropriate pointer target type (C++ 4.2p2).
|
|
if (!ToPtrType->getPointeeType().hasQualifiers()) {
|
|
switch (StrLit->getKind()) {
|
|
case StringLiteral::UTF8:
|
|
case StringLiteral::UTF16:
|
|
case StringLiteral::UTF32:
|
|
// We don't allow UTF literals to be implicitly converted
|
|
break;
|
|
case StringLiteral::Ascii:
|
|
return (ToPointeeType->getKind() == BuiltinType::Char_U ||
|
|
ToPointeeType->getKind() == BuiltinType::Char_S);
|
|
case StringLiteral::Wide:
|
|
return ToPointeeType->isWideCharType();
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static ExprResult BuildCXXCastArgument(Sema &S,
|
|
SourceLocation CastLoc,
|
|
QualType Ty,
|
|
CastKind Kind,
|
|
CXXMethodDecl *Method,
|
|
DeclAccessPair FoundDecl,
|
|
bool HadMultipleCandidates,
|
|
Expr *From) {
|
|
switch (Kind) {
|
|
default: llvm_unreachable("Unhandled cast kind!");
|
|
case CK_ConstructorConversion: {
|
|
CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
|
|
SmallVector<Expr*, 8> ConstructorArgs;
|
|
|
|
if (S.RequireNonAbstractType(CastLoc, Ty,
|
|
diag::err_allocation_of_abstract_type))
|
|
return ExprError();
|
|
|
|
if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
|
|
return ExprError();
|
|
|
|
S.CheckConstructorAccess(CastLoc, Constructor,
|
|
InitializedEntity::InitializeTemporary(Ty),
|
|
Constructor->getAccess());
|
|
|
|
ExprResult Result = S.BuildCXXConstructExpr(
|
|
CastLoc, Ty, cast<CXXConstructorDecl>(Method),
|
|
ConstructorArgs, HadMultipleCandidates,
|
|
/*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
|
|
CXXConstructExpr::CK_Complete, SourceRange());
|
|
if (Result.isInvalid())
|
|
return ExprError();
|
|
|
|
return S.MaybeBindToTemporary(Result.getAs<Expr>());
|
|
}
|
|
|
|
case CK_UserDefinedConversion: {
|
|
assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
|
|
|
|
// Create an implicit call expr that calls it.
|
|
CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
|
|
ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
|
|
HadMultipleCandidates);
|
|
if (Result.isInvalid())
|
|
return ExprError();
|
|
// Record usage of conversion in an implicit cast.
|
|
Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
|
|
CK_UserDefinedConversion, Result.get(),
|
|
nullptr, Result.get()->getValueKind());
|
|
|
|
S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
|
|
|
|
return S.MaybeBindToTemporary(Result.get());
|
|
}
|
|
}
|
|
}
|
|
|
|
/// PerformImplicitConversion - Perform an implicit conversion of the
|
|
/// expression From to the type ToType using the pre-computed implicit
|
|
/// conversion sequence ICS. Returns the converted
|
|
/// expression. Action is the kind of conversion we're performing,
|
|
/// used in the error message.
|
|
ExprResult
|
|
Sema::PerformImplicitConversion(Expr *From, QualType ToType,
|
|
const ImplicitConversionSequence &ICS,
|
|
AssignmentAction Action,
|
|
CheckedConversionKind CCK) {
|
|
switch (ICS.getKind()) {
|
|
case ImplicitConversionSequence::StandardConversion: {
|
|
ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
|
|
Action, CCK);
|
|
if (Res.isInvalid())
|
|
return ExprError();
|
|
From = Res.get();
|
|
break;
|
|
}
|
|
|
|
case ImplicitConversionSequence::UserDefinedConversion: {
|
|
|
|
FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
|
|
CastKind CastKind;
|
|
QualType BeforeToType;
|
|
assert(FD && "FIXME: aggregate initialization from init list");
|
|
if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
|
|
CastKind = CK_UserDefinedConversion;
|
|
|
|
// If the user-defined conversion is specified by a conversion function,
|
|
// the initial standard conversion sequence converts the source type to
|
|
// the implicit object parameter of the conversion function.
|
|
BeforeToType = Context.getTagDeclType(Conv->getParent());
|
|
} else {
|
|
const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
|
|
CastKind = CK_ConstructorConversion;
|
|
// Do no conversion if dealing with ... for the first conversion.
|
|
if (!ICS.UserDefined.EllipsisConversion) {
|
|
// If the user-defined conversion is specified by a constructor, the
|
|
// initial standard conversion sequence converts the source type to the
|
|
// type required by the argument of the constructor
|
|
BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
|
|
}
|
|
}
|
|
// Watch out for ellipsis conversion.
|
|
if (!ICS.UserDefined.EllipsisConversion) {
|
|
ExprResult Res =
|
|
PerformImplicitConversion(From, BeforeToType,
|
|
ICS.UserDefined.Before, AA_Converting,
|
|
CCK);
|
|
if (Res.isInvalid())
|
|
return ExprError();
|
|
From = Res.get();
|
|
}
|
|
|
|
ExprResult CastArg
|
|
= BuildCXXCastArgument(*this,
|
|
From->getLocStart(),
|
|
ToType.getNonReferenceType(),
|
|
CastKind, cast<CXXMethodDecl>(FD),
|
|
ICS.UserDefined.FoundConversionFunction,
|
|
ICS.UserDefined.HadMultipleCandidates,
|
|
From);
|
|
|
|
if (CastArg.isInvalid())
|
|
return ExprError();
|
|
|
|
From = CastArg.get();
|
|
|
|
return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
|
|
AA_Converting, CCK);
|
|
}
|
|
|
|
case ImplicitConversionSequence::AmbiguousConversion:
|
|
ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
|
|
PDiag(diag::err_typecheck_ambiguous_condition)
|
|
<< From->getSourceRange());
|
|
return ExprError();
|
|
|
|
case ImplicitConversionSequence::EllipsisConversion:
|
|
llvm_unreachable("Cannot perform an ellipsis conversion");
|
|
|
|
case ImplicitConversionSequence::BadConversion:
|
|
return ExprError();
|
|
}
|
|
|
|
// Everything went well.
|
|
return From;
|
|
}
|
|
|
|
/// PerformImplicitConversion - Perform an implicit conversion of the
|
|
/// expression From to the type ToType by following the standard
|
|
/// conversion sequence SCS. Returns the converted
|
|
/// expression. Flavor is the context in which we're performing this
|
|
/// conversion, for use in error messages.
|
|
ExprResult
|
|
Sema::PerformImplicitConversion(Expr *From, QualType ToType,
|
|
const StandardConversionSequence& SCS,
|
|
AssignmentAction Action,
|
|
CheckedConversionKind CCK) {
|
|
bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
|
|
|
|
// Overall FIXME: we are recomputing too many types here and doing far too
|
|
// much extra work. What this means is that we need to keep track of more
|
|
// information that is computed when we try the implicit conversion initially,
|
|
// so that we don't need to recompute anything here.
|
|
QualType FromType = From->getType();
|
|
|
|
if (SCS.CopyConstructor) {
|
|
// FIXME: When can ToType be a reference type?
|
|
assert(!ToType->isReferenceType());
|
|
if (SCS.Second == ICK_Derived_To_Base) {
|
|
SmallVector<Expr*, 8> ConstructorArgs;
|
|
if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
|
|
From, /*FIXME:ConstructLoc*/SourceLocation(),
|
|
ConstructorArgs))
|
|
return ExprError();
|
|
return BuildCXXConstructExpr(
|
|
/*FIXME:ConstructLoc*/ SourceLocation(), ToType, SCS.CopyConstructor,
|
|
ConstructorArgs, /*HadMultipleCandidates*/ false,
|
|
/*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
|
|
CXXConstructExpr::CK_Complete, SourceRange());
|
|
}
|
|
return BuildCXXConstructExpr(
|
|
/*FIXME:ConstructLoc*/ SourceLocation(), ToType, SCS.CopyConstructor,
|
|
From, /*HadMultipleCandidates*/ false,
|
|
/*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
|
|
CXXConstructExpr::CK_Complete, SourceRange());
|
|
}
|
|
|
|
// Resolve overloaded function references.
|
|
if (Context.hasSameType(FromType, Context.OverloadTy)) {
|
|
DeclAccessPair Found;
|
|
FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
|
|
true, Found);
|
|
if (!Fn)
|
|
return ExprError();
|
|
|
|
if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
|
|
return ExprError();
|
|
|
|
From = FixOverloadedFunctionReference(From, Found, Fn);
|
|
FromType = From->getType();
|
|
}
|
|
|
|
// If we're converting to an atomic type, first convert to the corresponding
|
|
// non-atomic type.
|
|
QualType ToAtomicType;
|
|
if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
|
|
ToAtomicType = ToType;
|
|
ToType = ToAtomic->getValueType();
|
|
}
|
|
|
|
// Perform the first implicit conversion.
|
|
switch (SCS.First) {
|
|
case ICK_Identity:
|
|
// Nothing to do.
|
|
break;
|
|
|
|
case ICK_Lvalue_To_Rvalue: {
|
|
assert(From->getObjectKind() != OK_ObjCProperty);
|
|
FromType = FromType.getUnqualifiedType();
|
|
ExprResult FromRes = DefaultLvalueConversion(From);
|
|
assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
|
|
From = FromRes.get();
|
|
break;
|
|
}
|
|
|
|
case ICK_Array_To_Pointer:
|
|
FromType = Context.getArrayDecayedType(FromType);
|
|
From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
|
|
VK_RValue, /*BasePath=*/nullptr, CCK).get();
|
|
break;
|
|
|
|
case ICK_Function_To_Pointer:
|
|
FromType = Context.getPointerType(FromType);
|
|
From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
|
|
VK_RValue, /*BasePath=*/nullptr, CCK).get();
|
|
break;
|
|
|
|
default:
|
|
llvm_unreachable("Improper first standard conversion");
|
|
}
|
|
|
|
// Perform the second implicit conversion
|
|
switch (SCS.Second) {
|
|
case ICK_Identity:
|
|
// If both sides are functions (or pointers/references to them), there could
|
|
// be incompatible exception declarations.
|
|
if (CheckExceptionSpecCompatibility(From, ToType))
|
|
return ExprError();
|
|
// Nothing else to do.
|
|
break;
|
|
|
|
case ICK_NoReturn_Adjustment:
|
|
// If both sides are functions (or pointers/references to them), there could
|
|
// be incompatible exception declarations.
|
|
if (CheckExceptionSpecCompatibility(From, ToType))
|
|
return ExprError();
|
|
|
|
From = ImpCastExprToType(From, ToType, CK_NoOp,
|
|
VK_RValue, /*BasePath=*/nullptr, CCK).get();
|
|
break;
|
|
|
|
case ICK_Integral_Promotion:
|
|
case ICK_Integral_Conversion:
|
|
if (ToType->isBooleanType()) {
|
|
assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
|
|
SCS.Second == ICK_Integral_Promotion &&
|
|
"only enums with fixed underlying type can promote to bool");
|
|
From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
|
|
VK_RValue, /*BasePath=*/nullptr, CCK).get();
|
|
} else {
|
|
From = ImpCastExprToType(From, ToType, CK_IntegralCast,
|
|
VK_RValue, /*BasePath=*/nullptr, CCK).get();
|
|
}
|
|
break;
|
|
|
|
case ICK_Floating_Promotion:
|
|
case ICK_Floating_Conversion:
|
|
From = ImpCastExprToType(From, ToType, CK_FloatingCast,
|
|
VK_RValue, /*BasePath=*/nullptr, CCK).get();
|
|
break;
|
|
|
|
case ICK_Complex_Promotion:
|
|
case ICK_Complex_Conversion: {
|
|
QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
|
|
QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
|
|
CastKind CK;
|
|
if (FromEl->isRealFloatingType()) {
|
|
if (ToEl->isRealFloatingType())
|
|
CK = CK_FloatingComplexCast;
|
|
else
|
|
CK = CK_FloatingComplexToIntegralComplex;
|
|
} else if (ToEl->isRealFloatingType()) {
|
|
CK = CK_IntegralComplexToFloatingComplex;
|
|
} else {
|
|
CK = CK_IntegralComplexCast;
|
|
}
|
|
From = ImpCastExprToType(From, ToType, CK,
|
|
VK_RValue, /*BasePath=*/nullptr, CCK).get();
|
|
break;
|
|
}
|
|
|
|
case ICK_Floating_Integral:
|
|
if (ToType->isRealFloatingType())
|
|
From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
|
|
VK_RValue, /*BasePath=*/nullptr, CCK).get();
|
|
else
|
|
From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
|
|
VK_RValue, /*BasePath=*/nullptr, CCK).get();
|
|
break;
|
|
|
|
case ICK_Compatible_Conversion:
|
|
From = ImpCastExprToType(From, ToType, CK_NoOp,
|
|
VK_RValue, /*BasePath=*/nullptr, CCK).get();
|
|
break;
|
|
|
|
case ICK_Writeback_Conversion:
|
|
case ICK_Pointer_Conversion: {
|
|
if (SCS.IncompatibleObjC && Action != AA_Casting) {
|
|
// Diagnose incompatible Objective-C conversions
|
|
if (Action == AA_Initializing || Action == AA_Assigning)
|
|
Diag(From->getLocStart(),
|
|
diag::ext_typecheck_convert_incompatible_pointer)
|
|
<< ToType << From->getType() << Action
|
|
<< From->getSourceRange() << 0;
|
|
else
|
|
Diag(From->getLocStart(),
|
|
diag::ext_typecheck_convert_incompatible_pointer)
|
|
<< From->getType() << ToType << Action
|
|
<< From->getSourceRange() << 0;
|
|
|
|
if (From->getType()->isObjCObjectPointerType() &&
|
|
ToType->isObjCObjectPointerType())
|
|
EmitRelatedResultTypeNote(From);
|
|
}
|
|
else if (getLangOpts().ObjCAutoRefCount &&
|
|
!CheckObjCARCUnavailableWeakConversion(ToType,
|
|
From->getType())) {
|
|
if (Action == AA_Initializing)
|
|
Diag(From->getLocStart(),
|
|
diag::err_arc_weak_unavailable_assign);
|
|
else
|
|
Diag(From->getLocStart(),
|
|
diag::err_arc_convesion_of_weak_unavailable)
|
|
<< (Action == AA_Casting) << From->getType() << ToType
|
|
<< From->getSourceRange();
|
|
}
|
|
|
|
CastKind Kind = CK_Invalid;
|
|
CXXCastPath BasePath;
|
|
if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
|
|
return ExprError();
|
|
|
|
// Make sure we extend blocks if necessary.
|
|
// FIXME: doing this here is really ugly.
|
|
if (Kind == CK_BlockPointerToObjCPointerCast) {
|
|
ExprResult E = From;
|
|
(void) PrepareCastToObjCObjectPointer(E);
|
|
From = E.get();
|
|
}
|
|
if (getLangOpts().ObjCAutoRefCount)
|
|
CheckObjCARCConversion(SourceRange(), ToType, From, CCK);
|
|
From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
|
|
.get();
|
|
break;
|
|
}
|
|
|
|
case ICK_Pointer_Member: {
|
|
CastKind Kind = CK_Invalid;
|
|
CXXCastPath BasePath;
|
|
if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
|
|
return ExprError();
|
|
if (CheckExceptionSpecCompatibility(From, ToType))
|
|
return ExprError();
|
|
From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
|
|
.get();
|
|
break;
|
|
}
|
|
|
|
case ICK_Boolean_Conversion:
|
|
// Perform half-to-boolean conversion via float.
|
|
if (From->getType()->isHalfType()) {
|
|
From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
|
|
FromType = Context.FloatTy;
|
|
}
|
|
|
|
From = ImpCastExprToType(From, Context.BoolTy,
|
|
ScalarTypeToBooleanCastKind(FromType),
|
|
VK_RValue, /*BasePath=*/nullptr, CCK).get();
|
|
break;
|
|
|
|
case ICK_Derived_To_Base: {
|
|
CXXCastPath BasePath;
|
|
if (CheckDerivedToBaseConversion(From->getType(),
|
|
ToType.getNonReferenceType(),
|
|
From->getLocStart(),
|
|
From->getSourceRange(),
|
|
&BasePath,
|
|
CStyle))
|
|
return ExprError();
|
|
|
|
From = ImpCastExprToType(From, ToType.getNonReferenceType(),
|
|
CK_DerivedToBase, From->getValueKind(),
|
|
&BasePath, CCK).get();
|
|
break;
|
|
}
|
|
|
|
case ICK_Vector_Conversion:
|
|
From = ImpCastExprToType(From, ToType, CK_BitCast,
|
|
VK_RValue, /*BasePath=*/nullptr, CCK).get();
|
|
break;
|
|
|
|
case ICK_Vector_Splat:
|
|
From = ImpCastExprToType(From, ToType, CK_VectorSplat,
|
|
VK_RValue, /*BasePath=*/nullptr, CCK).get();
|
|
break;
|
|
|
|
case ICK_Complex_Real:
|
|
// Case 1. x -> _Complex y
|
|
if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
|
|
QualType ElType = ToComplex->getElementType();
|
|
bool isFloatingComplex = ElType->isRealFloatingType();
|
|
|
|
// x -> y
|
|
if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
|
|
// do nothing
|
|
} else if (From->getType()->isRealFloatingType()) {
|
|
From = ImpCastExprToType(From, ElType,
|
|
isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
|
|
} else {
|
|
assert(From->getType()->isIntegerType());
|
|
From = ImpCastExprToType(From, ElType,
|
|
isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
|
|
}
|
|
// y -> _Complex y
|
|
From = ImpCastExprToType(From, ToType,
|
|
isFloatingComplex ? CK_FloatingRealToComplex
|
|
: CK_IntegralRealToComplex).get();
|
|
|
|
// Case 2. _Complex x -> y
|
|
} else {
|
|
const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
|
|
assert(FromComplex);
|
|
|
|
QualType ElType = FromComplex->getElementType();
|
|
bool isFloatingComplex = ElType->isRealFloatingType();
|
|
|
|
// _Complex x -> x
|
|
From = ImpCastExprToType(From, ElType,
|
|
isFloatingComplex ? CK_FloatingComplexToReal
|
|
: CK_IntegralComplexToReal,
|
|
VK_RValue, /*BasePath=*/nullptr, CCK).get();
|
|
|
|
// x -> y
|
|
if (Context.hasSameUnqualifiedType(ElType, ToType)) {
|
|
// do nothing
|
|
} else if (ToType->isRealFloatingType()) {
|
|
From = ImpCastExprToType(From, ToType,
|
|
isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
|
|
VK_RValue, /*BasePath=*/nullptr, CCK).get();
|
|
} else {
|
|
assert(ToType->isIntegerType());
|
|
From = ImpCastExprToType(From, ToType,
|
|
isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
|
|
VK_RValue, /*BasePath=*/nullptr, CCK).get();
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ICK_Block_Pointer_Conversion: {
|
|
From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
|
|
VK_RValue, /*BasePath=*/nullptr, CCK).get();
|
|
break;
|
|
}
|
|
|
|
case ICK_TransparentUnionConversion: {
|
|
ExprResult FromRes = From;
|
|
Sema::AssignConvertType ConvTy =
|
|
CheckTransparentUnionArgumentConstraints(ToType, FromRes);
|
|
if (FromRes.isInvalid())
|
|
return ExprError();
|
|
From = FromRes.get();
|
|
assert ((ConvTy == Sema::Compatible) &&
|
|
"Improper transparent union conversion");
|
|
(void)ConvTy;
|
|
break;
|
|
}
|
|
|
|
case ICK_Zero_Event_Conversion:
|
|
From = ImpCastExprToType(From, ToType,
|
|
CK_ZeroToOCLEvent,
|
|
From->getValueKind()).get();
|
|
break;
|
|
|
|
case ICK_Lvalue_To_Rvalue:
|
|
case ICK_Array_To_Pointer:
|
|
case ICK_Function_To_Pointer:
|
|
case ICK_Qualification:
|
|
case ICK_Num_Conversion_Kinds:
|
|
llvm_unreachable("Improper second standard conversion");
|
|
}
|
|
|
|
switch (SCS.Third) {
|
|
case ICK_Identity:
|
|
// Nothing to do.
|
|
break;
|
|
|
|
case ICK_Qualification: {
|
|
// The qualification keeps the category of the inner expression, unless the
|
|
// target type isn't a reference.
|
|
ExprValueKind VK = ToType->isReferenceType() ?
|
|
From->getValueKind() : VK_RValue;
|
|
From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
|
|
CK_NoOp, VK, /*BasePath=*/nullptr, CCK).get();
|
|
|
|
if (SCS.DeprecatedStringLiteralToCharPtr &&
|
|
!getLangOpts().WritableStrings) {
|
|
Diag(From->getLocStart(), getLangOpts().CPlusPlus11
|
|
? diag::ext_deprecated_string_literal_conversion
|
|
: diag::warn_deprecated_string_literal_conversion)
|
|
<< ToType.getNonReferenceType();
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
llvm_unreachable("Improper third standard conversion");
|
|
}
|
|
|
|
// If this conversion sequence involved a scalar -> atomic conversion, perform
|
|
// that conversion now.
|
|
if (!ToAtomicType.isNull()) {
|
|
assert(Context.hasSameType(
|
|
ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
|
|
From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
|
|
VK_RValue, nullptr, CCK).get();
|
|
}
|
|
|
|
return From;
|
|
}
|
|
|
|
/// \brief Check the completeness of a type in a unary type trait.
|
|
///
|
|
/// If the particular type trait requires a complete type, tries to complete
|
|
/// it. If completing the type fails, a diagnostic is emitted and false
|
|
/// returned. If completing the type succeeds or no completion was required,
|
|
/// returns true.
|
|
static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
|
|
SourceLocation Loc,
|
|
QualType ArgTy) {
|
|
// C++0x [meta.unary.prop]p3:
|
|
// For all of the class templates X declared in this Clause, instantiating
|
|
// that template with a template argument that is a class template
|
|
// specialization may result in the implicit instantiation of the template
|
|
// argument if and only if the semantics of X require that the argument
|
|
// must be a complete type.
|
|
// We apply this rule to all the type trait expressions used to implement
|
|
// these class templates. We also try to follow any GCC documented behavior
|
|
// in these expressions to ensure portability of standard libraries.
|
|
switch (UTT) {
|
|
default: llvm_unreachable("not a UTT");
|
|
// is_complete_type somewhat obviously cannot require a complete type.
|
|
case UTT_IsCompleteType:
|
|
// Fall-through
|
|
|
|
// These traits are modeled on the type predicates in C++0x
|
|
// [meta.unary.cat] and [meta.unary.comp]. They are not specified as
|
|
// requiring a complete type, as whether or not they return true cannot be
|
|
// impacted by the completeness of the type.
|
|
case UTT_IsVoid:
|
|
case UTT_IsIntegral:
|
|
case UTT_IsFloatingPoint:
|
|
case UTT_IsArray:
|
|
case UTT_IsPointer:
|
|
case UTT_IsLvalueReference:
|
|
case UTT_IsRvalueReference:
|
|
case UTT_IsMemberFunctionPointer:
|
|
case UTT_IsMemberObjectPointer:
|
|
case UTT_IsEnum:
|
|
case UTT_IsUnion:
|
|
case UTT_IsClass:
|
|
case UTT_IsFunction:
|
|
case UTT_IsReference:
|
|
case UTT_IsArithmetic:
|
|
case UTT_IsFundamental:
|
|
case UTT_IsObject:
|
|
case UTT_IsScalar:
|
|
case UTT_IsCompound:
|
|
case UTT_IsMemberPointer:
|
|
// Fall-through
|
|
|
|
// These traits are modeled on type predicates in C++0x [meta.unary.prop]
|
|
// which requires some of its traits to have the complete type. However,
|
|
// the completeness of the type cannot impact these traits' semantics, and
|
|
// so they don't require it. This matches the comments on these traits in
|
|
// Table 49.
|
|
case UTT_IsConst:
|
|
case UTT_IsVolatile:
|
|
case UTT_IsSigned:
|
|
case UTT_IsUnsigned:
|
|
return true;
|
|
|
|
// C++0x [meta.unary.prop] Table 49 requires the following traits to be
|
|
// applied to a complete type.
|
|
case UTT_IsTrivial:
|
|
case UTT_IsTriviallyCopyable:
|
|
case UTT_IsStandardLayout:
|
|
case UTT_IsPOD:
|
|
case UTT_IsLiteral:
|
|
case UTT_IsEmpty:
|
|
case UTT_IsPolymorphic:
|
|
case UTT_IsAbstract:
|
|
case UTT_IsInterfaceClass:
|
|
case UTT_IsDestructible:
|
|
case UTT_IsNothrowDestructible:
|
|
// Fall-through
|
|
|
|
// These traits require a complete type.
|
|
case UTT_IsFinal:
|
|
case UTT_IsSealed:
|
|
|
|
// These trait expressions are designed to help implement predicates in
|
|
// [meta.unary.prop] despite not being named the same. They are specified
|
|
// by both GCC and the Embarcadero C++ compiler, and require the complete
|
|
// type due to the overarching C++0x type predicates being implemented
|
|
// requiring the complete type.
|
|
case UTT_HasNothrowAssign:
|
|
case UTT_HasNothrowMoveAssign:
|
|
case UTT_HasNothrowConstructor:
|
|
case UTT_HasNothrowCopy:
|
|
case UTT_HasTrivialAssign:
|
|
case UTT_HasTrivialMoveAssign:
|
|
case UTT_HasTrivialDefaultConstructor:
|
|
case UTT_HasTrivialMoveConstructor:
|
|
case UTT_HasTrivialCopy:
|
|
case UTT_HasTrivialDestructor:
|
|
case UTT_HasVirtualDestructor:
|
|
// Arrays of unknown bound are expressly allowed.
|
|
QualType ElTy = ArgTy;
|
|
if (ArgTy->isIncompleteArrayType())
|
|
ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
|
|
|
|
// The void type is expressly allowed.
|
|
if (ElTy->isVoidType())
|
|
return true;
|
|
|
|
return !S.RequireCompleteType(
|
|
Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
|
|
}
|
|
}
|
|
|
|
static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
|
|
Sema &Self, SourceLocation KeyLoc, ASTContext &C,
|
|
bool (CXXRecordDecl::*HasTrivial)() const,
|
|
bool (CXXRecordDecl::*HasNonTrivial)() const,
|
|
bool (CXXMethodDecl::*IsDesiredOp)() const)
|
|
{
|
|
CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
|
|
if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
|
|
return true;
|
|
|
|
DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
|
|
DeclarationNameInfo NameInfo(Name, KeyLoc);
|
|
LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
|
|
if (Self.LookupQualifiedName(Res, RD)) {
|
|
bool FoundOperator = false;
|
|
Res.suppressDiagnostics();
|
|
for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
|
|
Op != OpEnd; ++Op) {
|
|
if (isa<FunctionTemplateDecl>(*Op))
|
|
continue;
|
|
|
|
CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
|
|
if((Operator->*IsDesiredOp)()) {
|
|
FoundOperator = true;
|
|
const FunctionProtoType *CPT =
|
|
Operator->getType()->getAs<FunctionProtoType>();
|
|
CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
|
|
if (!CPT || !CPT->isNothrow(C))
|
|
return false;
|
|
}
|
|
}
|
|
return FoundOperator;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
|
|
SourceLocation KeyLoc, QualType T) {
|
|
assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
|
|
|
|
ASTContext &C = Self.Context;
|
|
switch(UTT) {
|
|
default: llvm_unreachable("not a UTT");
|
|
// Type trait expressions corresponding to the primary type category
|
|
// predicates in C++0x [meta.unary.cat].
|
|
case UTT_IsVoid:
|
|
return T->isVoidType();
|
|
case UTT_IsIntegral:
|
|
return T->isIntegralType(C);
|
|
case UTT_IsFloatingPoint:
|
|
return T->isFloatingType();
|
|
case UTT_IsArray:
|
|
return T->isArrayType();
|
|
case UTT_IsPointer:
|
|
return T->isPointerType();
|
|
case UTT_IsLvalueReference:
|
|
return T->isLValueReferenceType();
|
|
case UTT_IsRvalueReference:
|
|
return T->isRValueReferenceType();
|
|
case UTT_IsMemberFunctionPointer:
|
|
return T->isMemberFunctionPointerType();
|
|
case UTT_IsMemberObjectPointer:
|
|
return T->isMemberDataPointerType();
|
|
case UTT_IsEnum:
|
|
return T->isEnumeralType();
|
|
case UTT_IsUnion:
|
|
return T->isUnionType();
|
|
case UTT_IsClass:
|
|
return T->isClassType() || T->isStructureType() || T->isInterfaceType();
|
|
case UTT_IsFunction:
|
|
return T->isFunctionType();
|
|
|
|
// Type trait expressions which correspond to the convenient composition
|
|
// predicates in C++0x [meta.unary.comp].
|
|
case UTT_IsReference:
|
|
return T->isReferenceType();
|
|
case UTT_IsArithmetic:
|
|
return T->isArithmeticType() && !T->isEnumeralType();
|
|
case UTT_IsFundamental:
|
|
return T->isFundamentalType();
|
|
case UTT_IsObject:
|
|
return T->isObjectType();
|
|
case UTT_IsScalar:
|
|
// Note: semantic analysis depends on Objective-C lifetime types to be
|
|
// considered scalar types. However, such types do not actually behave
|
|
// like scalar types at run time (since they may require retain/release
|
|
// operations), so we report them as non-scalar.
|
|
if (T->isObjCLifetimeType()) {
|
|
switch (T.getObjCLifetime()) {
|
|
case Qualifiers::OCL_None:
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
return true;
|
|
|
|
case Qualifiers::OCL_Strong:
|
|
case Qualifiers::OCL_Weak:
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return T->isScalarType();
|
|
case UTT_IsCompound:
|
|
return T->isCompoundType();
|
|
case UTT_IsMemberPointer:
|
|
return T->isMemberPointerType();
|
|
|
|
// Type trait expressions which correspond to the type property predicates
|
|
// in C++0x [meta.unary.prop].
|
|
case UTT_IsConst:
|
|
return T.isConstQualified();
|
|
case UTT_IsVolatile:
|
|
return T.isVolatileQualified();
|
|
case UTT_IsTrivial:
|
|
return T.isTrivialType(Self.Context);
|
|
case UTT_IsTriviallyCopyable:
|
|
return T.isTriviallyCopyableType(Self.Context);
|
|
case UTT_IsStandardLayout:
|
|
return T->isStandardLayoutType();
|
|
case UTT_IsPOD:
|
|
return T.isPODType(Self.Context);
|
|
case UTT_IsLiteral:
|
|
return T->isLiteralType(Self.Context);
|
|
case UTT_IsEmpty:
|
|
if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
|
|
return !RD->isUnion() && RD->isEmpty();
|
|
return false;
|
|
case UTT_IsPolymorphic:
|
|
if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
|
|
return RD->isPolymorphic();
|
|
return false;
|
|
case UTT_IsAbstract:
|
|
if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
|
|
return RD->isAbstract();
|
|
return false;
|
|
case UTT_IsInterfaceClass:
|
|
if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
|
|
return RD->isInterface();
|
|
return false;
|
|
case UTT_IsFinal:
|
|
if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
|
|
return RD->hasAttr<FinalAttr>();
|
|
return false;
|
|
case UTT_IsSealed:
|
|
if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
|
|
if (FinalAttr *FA = RD->getAttr<FinalAttr>())
|
|
return FA->isSpelledAsSealed();
|
|
return false;
|
|
case UTT_IsSigned:
|
|
return T->isSignedIntegerType();
|
|
case UTT_IsUnsigned:
|
|
return T->isUnsignedIntegerType();
|
|
|
|
// Type trait expressions which query classes regarding their construction,
|
|
// destruction, and copying. Rather than being based directly on the
|
|
// related type predicates in the standard, they are specified by both
|
|
// GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
|
|
// specifications.
|
|
//
|
|
// 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
|
|
// 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
|
|
//
|
|
// Note that these builtins do not behave as documented in g++: if a class
|
|
// has both a trivial and a non-trivial special member of a particular kind,
|
|
// they return false! For now, we emulate this behavior.
|
|
// FIXME: This appears to be a g++ bug: more complex cases reveal that it
|
|
// does not correctly compute triviality in the presence of multiple special
|
|
// members of the same kind. Revisit this once the g++ bug is fixed.
|
|
case UTT_HasTrivialDefaultConstructor:
|
|
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
|
|
// If __is_pod (type) is true then the trait is true, else if type is
|
|
// a cv class or union type (or array thereof) with a trivial default
|
|
// constructor ([class.ctor]) then the trait is true, else it is false.
|
|
if (T.isPODType(Self.Context))
|
|
return true;
|
|
if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
|
|
return RD->hasTrivialDefaultConstructor() &&
|
|
!RD->hasNonTrivialDefaultConstructor();
|
|
return false;
|
|
case UTT_HasTrivialMoveConstructor:
|
|
// This trait is implemented by MSVC 2012 and needed to parse the
|
|
// standard library headers. Specifically this is used as the logic
|
|
// behind std::is_trivially_move_constructible (20.9.4.3).
|
|
if (T.isPODType(Self.Context))
|
|
return true;
|
|
if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
|
|
return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
|
|
return false;
|
|
case UTT_HasTrivialCopy:
|
|
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
|
|
// If __is_pod (type) is true or type is a reference type then
|
|
// the trait is true, else if type is a cv class or union type
|
|
// with a trivial copy constructor ([class.copy]) then the trait
|
|
// is true, else it is false.
|
|
if (T.isPODType(Self.Context) || T->isReferenceType())
|
|
return true;
|
|
if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
|
|
return RD->hasTrivialCopyConstructor() &&
|
|
!RD->hasNonTrivialCopyConstructor();
|
|
return false;
|
|
case UTT_HasTrivialMoveAssign:
|
|
// This trait is implemented by MSVC 2012 and needed to parse the
|
|
// standard library headers. Specifically it is used as the logic
|
|
// behind std::is_trivially_move_assignable (20.9.4.3)
|
|
if (T.isPODType(Self.Context))
|
|
return true;
|
|
if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
|
|
return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
|
|
return false;
|
|
case UTT_HasTrivialAssign:
|
|
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
|
|
// If type is const qualified or is a reference type then the
|
|
// trait is false. Otherwise if __is_pod (type) is true then the
|
|
// trait is true, else if type is a cv class or union type with
|
|
// a trivial copy assignment ([class.copy]) then the trait is
|
|
// true, else it is false.
|
|
// Note: the const and reference restrictions are interesting,
|
|
// given that const and reference members don't prevent a class
|
|
// from having a trivial copy assignment operator (but do cause
|
|
// errors if the copy assignment operator is actually used, q.v.
|
|
// [class.copy]p12).
|
|
|
|
if (T.isConstQualified())
|
|
return false;
|
|
if (T.isPODType(Self.Context))
|
|
return true;
|
|
if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
|
|
return RD->hasTrivialCopyAssignment() &&
|
|
!RD->hasNonTrivialCopyAssignment();
|
|
return false;
|
|
case UTT_IsDestructible:
|
|
case UTT_IsNothrowDestructible:
|
|
// FIXME: Implement UTT_IsDestructible and UTT_IsNothrowDestructible.
|
|
// For now, let's fall through.
|
|
case UTT_HasTrivialDestructor:
|
|
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
|
|
// If __is_pod (type) is true or type is a reference type
|
|
// then the trait is true, else if type is a cv class or union
|
|
// type (or array thereof) with a trivial destructor
|
|
// ([class.dtor]) then the trait is true, else it is
|
|
// false.
|
|
if (T.isPODType(Self.Context) || T->isReferenceType())
|
|
return true;
|
|
|
|
// Objective-C++ ARC: autorelease types don't require destruction.
|
|
if (T->isObjCLifetimeType() &&
|
|
T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
|
|
return true;
|
|
|
|
if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
|
|
return RD->hasTrivialDestructor();
|
|
return false;
|
|
// TODO: Propagate nothrowness for implicitly declared special members.
|
|
case UTT_HasNothrowAssign:
|
|
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
|
|
// If type is const qualified or is a reference type then the
|
|
// trait is false. Otherwise if __has_trivial_assign (type)
|
|
// is true then the trait is true, else if type is a cv class
|
|
// or union type with copy assignment operators that are known
|
|
// not to throw an exception then the trait is true, else it is
|
|
// false.
|
|
if (C.getBaseElementType(T).isConstQualified())
|
|
return false;
|
|
if (T->isReferenceType())
|
|
return false;
|
|
if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
|
|
return true;
|
|
|
|
if (const RecordType *RT = T->getAs<RecordType>())
|
|
return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
|
|
&CXXRecordDecl::hasTrivialCopyAssignment,
|
|
&CXXRecordDecl::hasNonTrivialCopyAssignment,
|
|
&CXXMethodDecl::isCopyAssignmentOperator);
|
|
return false;
|
|
case UTT_HasNothrowMoveAssign:
|
|
// This trait is implemented by MSVC 2012 and needed to parse the
|
|
// standard library headers. Specifically this is used as the logic
|
|
// behind std::is_nothrow_move_assignable (20.9.4.3).
|
|
if (T.isPODType(Self.Context))
|
|
return true;
|
|
|
|
if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
|
|
return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
|
|
&CXXRecordDecl::hasTrivialMoveAssignment,
|
|
&CXXRecordDecl::hasNonTrivialMoveAssignment,
|
|
&CXXMethodDecl::isMoveAssignmentOperator);
|
|
return false;
|
|
case UTT_HasNothrowCopy:
|
|
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
|
|
// If __has_trivial_copy (type) is true then the trait is true, else
|
|
// if type is a cv class or union type with copy constructors that are
|
|
// known not to throw an exception then the trait is true, else it is
|
|
// false.
|
|
if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
|
|
return true;
|
|
if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
|
|
if (RD->hasTrivialCopyConstructor() &&
|
|
!RD->hasNonTrivialCopyConstructor())
|
|
return true;
|
|
|
|
bool FoundConstructor = false;
|
|
unsigned FoundTQs;
|
|
DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
|
|
for (DeclContext::lookup_const_iterator Con = R.begin(),
|
|
ConEnd = R.end(); Con != ConEnd; ++Con) {
|
|
// A template constructor is never a copy constructor.
|
|
// FIXME: However, it may actually be selected at the actual overload
|
|
// resolution point.
|
|
if (isa<FunctionTemplateDecl>(*Con))
|
|
continue;
|
|
CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
|
|
if (Constructor->isCopyConstructor(FoundTQs)) {
|
|
FoundConstructor = true;
|
|
const FunctionProtoType *CPT
|
|
= Constructor->getType()->getAs<FunctionProtoType>();
|
|
CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
|
|
if (!CPT)
|
|
return false;
|
|
// TODO: check whether evaluating default arguments can throw.
|
|
// For now, we'll be conservative and assume that they can throw.
|
|
if (!CPT->isNothrow(Self.Context) || CPT->getNumParams() > 1)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return FoundConstructor;
|
|
}
|
|
return false;
|
|
case UTT_HasNothrowConstructor:
|
|
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
|
|
// If __has_trivial_constructor (type) is true then the trait is
|
|
// true, else if type is a cv class or union type (or array
|
|
// thereof) with a default constructor that is known not to
|
|
// throw an exception then the trait is true, else it is false.
|
|
if (T.isPODType(C) || T->isObjCLifetimeType())
|
|
return true;
|
|
if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
|
|
if (RD->hasTrivialDefaultConstructor() &&
|
|
!RD->hasNonTrivialDefaultConstructor())
|
|
return true;
|
|
|
|
bool FoundConstructor = false;
|
|
DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
|
|
for (DeclContext::lookup_const_iterator Con = R.begin(),
|
|
ConEnd = R.end(); Con != ConEnd; ++Con) {
|
|
// FIXME: In C++0x, a constructor template can be a default constructor.
|
|
if (isa<FunctionTemplateDecl>(*Con))
|
|
continue;
|
|
CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
|
|
if (Constructor->isDefaultConstructor()) {
|
|
FoundConstructor = true;
|
|
const FunctionProtoType *CPT
|
|
= Constructor->getType()->getAs<FunctionProtoType>();
|
|
CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
|
|
if (!CPT)
|
|
return false;
|
|
// FIXME: check whether evaluating default arguments can throw.
|
|
// For now, we'll be conservative and assume that they can throw.
|
|
if (!CPT->isNothrow(Self.Context) || CPT->getNumParams() > 0)
|
|
return false;
|
|
}
|
|
}
|
|
return FoundConstructor;
|
|
}
|
|
return false;
|
|
case UTT_HasVirtualDestructor:
|
|
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
|
|
// If type is a class type with a virtual destructor ([class.dtor])
|
|
// then the trait is true, else it is false.
|
|
if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
|
|
if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
|
|
return Destructor->isVirtual();
|
|
return false;
|
|
|
|
// These type trait expressions are modeled on the specifications for the
|
|
// Embarcadero C++0x type trait functions:
|
|
// http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
|
|
case UTT_IsCompleteType:
|
|
// http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
|
|
// Returns True if and only if T is a complete type at the point of the
|
|
// function call.
|
|
return !T->isIncompleteType();
|
|
}
|
|
}
|
|
|
|
/// \brief Determine whether T has a non-trivial Objective-C lifetime in
|
|
/// ARC mode.
|
|
static bool hasNontrivialObjCLifetime(QualType T) {
|
|
switch (T.getObjCLifetime()) {
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
return false;
|
|
|
|
case Qualifiers::OCL_Strong:
|
|
case Qualifiers::OCL_Weak:
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
return true;
|
|
|
|
case Qualifiers::OCL_None:
|
|
return T->isObjCLifetimeType();
|
|
}
|
|
|
|
llvm_unreachable("Unknown ObjC lifetime qualifier");
|
|
}
|
|
|
|
static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
|
|
QualType RhsT, SourceLocation KeyLoc);
|
|
|
|
static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
|
|
ArrayRef<TypeSourceInfo *> Args,
|
|
SourceLocation RParenLoc) {
|
|
if (Kind <= UTT_Last)
|
|
return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
|
|
|
|
if (Kind <= BTT_Last)
|
|
return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
|
|
Args[1]->getType(), RParenLoc);
|
|
|
|
switch (Kind) {
|
|
case clang::TT_IsConstructible:
|
|
case clang::TT_IsNothrowConstructible:
|
|
case clang::TT_IsTriviallyConstructible: {
|
|
// C++11 [meta.unary.prop]:
|
|
// is_trivially_constructible is defined as:
|
|
//
|
|
// is_constructible<T, Args...>::value is true and the variable
|
|
// definition for is_constructible, as defined below, is known to call
|
|
// no operation that is not trivial.
|
|
//
|
|
// The predicate condition for a template specialization
|
|
// is_constructible<T, Args...> shall be satisfied if and only if the
|
|
// following variable definition would be well-formed for some invented
|
|
// variable t:
|
|
//
|
|
// T t(create<Args>()...);
|
|
assert(!Args.empty());
|
|
|
|
// Precondition: T and all types in the parameter pack Args shall be
|
|
// complete types, (possibly cv-qualified) void, or arrays of
|
|
// unknown bound.
|
|
for (unsigned I = 0, N = Args.size(); I != N; ++I) {
|
|
QualType ArgTy = Args[I]->getType();
|
|
if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
|
|
continue;
|
|
|
|
if (S.RequireCompleteType(KWLoc, ArgTy,
|
|
diag::err_incomplete_type_used_in_type_trait_expr))
|
|
return false;
|
|
}
|
|
|
|
// Make sure the first argument is a complete type.
|
|
if (Args[0]->getType()->isIncompleteType())
|
|
return false;
|
|
|
|
// Make sure the first argument is not an abstract type.
|
|
CXXRecordDecl *RD = Args[0]->getType()->getAsCXXRecordDecl();
|
|
if (RD && RD->isAbstract())
|
|
return false;
|
|
|
|
SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
|
|
SmallVector<Expr *, 2> ArgExprs;
|
|
ArgExprs.reserve(Args.size() - 1);
|
|
for (unsigned I = 1, N = Args.size(); I != N; ++I) {
|
|
QualType T = Args[I]->getType();
|
|
if (T->isObjectType() || T->isFunctionType())
|
|
T = S.Context.getRValueReferenceType(T);
|
|
OpaqueArgExprs.push_back(
|
|
OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
|
|
T.getNonLValueExprType(S.Context),
|
|
Expr::getValueKindForType(T)));
|
|
}
|
|
for (Expr &E : OpaqueArgExprs)
|
|
ArgExprs.push_back(&E);
|
|
|
|
// Perform the initialization in an unevaluated context within a SFINAE
|
|
// trap at translation unit scope.
|
|
EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
|
|
Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
|
|
Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
|
|
InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
|
|
InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
|
|
RParenLoc));
|
|
InitializationSequence Init(S, To, InitKind, ArgExprs);
|
|
if (Init.Failed())
|
|
return false;
|
|
|
|
ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
|
|
if (Result.isInvalid() || SFINAE.hasErrorOccurred())
|
|
return false;
|
|
|
|
if (Kind == clang::TT_IsConstructible)
|
|
return true;
|
|
|
|
if (Kind == clang::TT_IsNothrowConstructible)
|
|
return S.canThrow(Result.get()) == CT_Cannot;
|
|
|
|
if (Kind == clang::TT_IsTriviallyConstructible) {
|
|
// Under Objective-C ARC, if the destination has non-trivial Objective-C
|
|
// lifetime, this is a non-trivial construction.
|
|
if (S.getLangOpts().ObjCAutoRefCount &&
|
|
hasNontrivialObjCLifetime(Args[0]->getType().getNonReferenceType()))
|
|
return false;
|
|
|
|
// The initialization succeeded; now make sure there are no non-trivial
|
|
// calls.
|
|
return !Result.get()->hasNonTrivialCall(S.Context);
|
|
}
|
|
|
|
llvm_unreachable("unhandled type trait");
|
|
return false;
|
|
}
|
|
default: llvm_unreachable("not a TT");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
|
|
ArrayRef<TypeSourceInfo *> Args,
|
|
SourceLocation RParenLoc) {
|
|
QualType ResultType = Context.getLogicalOperationType();
|
|
|
|
if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
|
|
*this, Kind, KWLoc, Args[0]->getType()))
|
|
return ExprError();
|
|
|
|
bool Dependent = false;
|
|
for (unsigned I = 0, N = Args.size(); I != N; ++I) {
|
|
if (Args[I]->getType()->isDependentType()) {
|
|
Dependent = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool Result = false;
|
|
if (!Dependent)
|
|
Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
|
|
|
|
return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
|
|
RParenLoc, Result);
|
|
}
|
|
|
|
ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
|
|
ArrayRef<ParsedType> Args,
|
|
SourceLocation RParenLoc) {
|
|
SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
|
|
ConvertedArgs.reserve(Args.size());
|
|
|
|
for (unsigned I = 0, N = Args.size(); I != N; ++I) {
|
|
TypeSourceInfo *TInfo;
|
|
QualType T = GetTypeFromParser(Args[I], &TInfo);
|
|
if (!TInfo)
|
|
TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
|
|
|
|
ConvertedArgs.push_back(TInfo);
|
|
}
|
|
|
|
return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
|
|
}
|
|
|
|
static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
|
|
QualType RhsT, SourceLocation KeyLoc) {
|
|
assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
|
|
"Cannot evaluate traits of dependent types");
|
|
|
|
switch(BTT) {
|
|
case BTT_IsBaseOf: {
|
|
// C++0x [meta.rel]p2
|
|
// Base is a base class of Derived without regard to cv-qualifiers or
|
|
// Base and Derived are not unions and name the same class type without
|
|
// regard to cv-qualifiers.
|
|
|
|
const RecordType *lhsRecord = LhsT->getAs<RecordType>();
|
|
if (!lhsRecord) return false;
|
|
|
|
const RecordType *rhsRecord = RhsT->getAs<RecordType>();
|
|
if (!rhsRecord) return false;
|
|
|
|
assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
|
|
== (lhsRecord == rhsRecord));
|
|
|
|
if (lhsRecord == rhsRecord)
|
|
return !lhsRecord->getDecl()->isUnion();
|
|
|
|
// C++0x [meta.rel]p2:
|
|
// If Base and Derived are class types and are different types
|
|
// (ignoring possible cv-qualifiers) then Derived shall be a
|
|
// complete type.
|
|
if (Self.RequireCompleteType(KeyLoc, RhsT,
|
|
diag::err_incomplete_type_used_in_type_trait_expr))
|
|
return false;
|
|
|
|
return cast<CXXRecordDecl>(rhsRecord->getDecl())
|
|
->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
|
|
}
|
|
case BTT_IsSame:
|
|
return Self.Context.hasSameType(LhsT, RhsT);
|
|
case BTT_TypeCompatible:
|
|
return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
|
|
RhsT.getUnqualifiedType());
|
|
case BTT_IsConvertible:
|
|
case BTT_IsConvertibleTo: {
|
|
// C++0x [meta.rel]p4:
|
|
// Given the following function prototype:
|
|
//
|
|
// template <class T>
|
|
// typename add_rvalue_reference<T>::type create();
|
|
//
|
|
// the predicate condition for a template specialization
|
|
// is_convertible<From, To> shall be satisfied if and only if
|
|
// the return expression in the following code would be
|
|
// well-formed, including any implicit conversions to the return
|
|
// type of the function:
|
|
//
|
|
// To test() {
|
|
// return create<From>();
|
|
// }
|
|
//
|
|
// Access checking is performed as if in a context unrelated to To and
|
|
// From. Only the validity of the immediate context of the expression
|
|
// of the return-statement (including conversions to the return type)
|
|
// is considered.
|
|
//
|
|
// We model the initialization as a copy-initialization of a temporary
|
|
// of the appropriate type, which for this expression is identical to the
|
|
// return statement (since NRVO doesn't apply).
|
|
|
|
// Functions aren't allowed to return function or array types.
|
|
if (RhsT->isFunctionType() || RhsT->isArrayType())
|
|
return false;
|
|
|
|
// A return statement in a void function must have void type.
|
|
if (RhsT->isVoidType())
|
|
return LhsT->isVoidType();
|
|
|
|
// A function definition requires a complete, non-abstract return type.
|
|
if (Self.RequireCompleteType(KeyLoc, RhsT, 0) ||
|
|
Self.RequireNonAbstractType(KeyLoc, RhsT, 0))
|
|
return false;
|
|
|
|
// Compute the result of add_rvalue_reference.
|
|
if (LhsT->isObjectType() || LhsT->isFunctionType())
|
|
LhsT = Self.Context.getRValueReferenceType(LhsT);
|
|
|
|
// Build a fake source and destination for initialization.
|
|
InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
|
|
OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
|
|
Expr::getValueKindForType(LhsT));
|
|
Expr *FromPtr = &From;
|
|
InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
|
|
SourceLocation()));
|
|
|
|
// Perform the initialization in an unevaluated context within a SFINAE
|
|
// trap at translation unit scope.
|
|
EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
|
|
Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
|
|
Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
|
|
InitializationSequence Init(Self, To, Kind, FromPtr);
|
|
if (Init.Failed())
|
|
return false;
|
|
|
|
ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
|
|
return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
|
|
}
|
|
|
|
case BTT_IsNothrowAssignable:
|
|
case BTT_IsTriviallyAssignable: {
|
|
// C++11 [meta.unary.prop]p3:
|
|
// is_trivially_assignable is defined as:
|
|
// is_assignable<T, U>::value is true and the assignment, as defined by
|
|
// is_assignable, is known to call no operation that is not trivial
|
|
//
|
|
// is_assignable is defined as:
|
|
// The expression declval<T>() = declval<U>() is well-formed when
|
|
// treated as an unevaluated operand (Clause 5).
|
|
//
|
|
// For both, T and U shall be complete types, (possibly cv-qualified)
|
|
// void, or arrays of unknown bound.
|
|
if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
|
|
Self.RequireCompleteType(KeyLoc, LhsT,
|
|
diag::err_incomplete_type_used_in_type_trait_expr))
|
|
return false;
|
|
if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
|
|
Self.RequireCompleteType(KeyLoc, RhsT,
|
|
diag::err_incomplete_type_used_in_type_trait_expr))
|
|
return false;
|
|
|
|
// cv void is never assignable.
|
|
if (LhsT->isVoidType() || RhsT->isVoidType())
|
|
return false;
|
|
|
|
// Build expressions that emulate the effect of declval<T>() and
|
|
// declval<U>().
|
|
if (LhsT->isObjectType() || LhsT->isFunctionType())
|
|
LhsT = Self.Context.getRValueReferenceType(LhsT);
|
|
if (RhsT->isObjectType() || RhsT->isFunctionType())
|
|
RhsT = Self.Context.getRValueReferenceType(RhsT);
|
|
OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
|
|
Expr::getValueKindForType(LhsT));
|
|
OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
|
|
Expr::getValueKindForType(RhsT));
|
|
|
|
// Attempt the assignment in an unevaluated context within a SFINAE
|
|
// trap at translation unit scope.
|
|
EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
|
|
Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
|
|
Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
|
|
ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
|
|
&Rhs);
|
|
if (Result.isInvalid() || SFINAE.hasErrorOccurred())
|
|
return false;
|
|
|
|
if (BTT == BTT_IsNothrowAssignable)
|
|
return Self.canThrow(Result.get()) == CT_Cannot;
|
|
|
|
if (BTT == BTT_IsTriviallyAssignable) {
|
|
// Under Objective-C ARC, if the destination has non-trivial Objective-C
|
|
// lifetime, this is a non-trivial assignment.
|
|
if (Self.getLangOpts().ObjCAutoRefCount &&
|
|
hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
|
|
return false;
|
|
|
|
return !Result.get()->hasNonTrivialCall(Self.Context);
|
|
}
|
|
|
|
llvm_unreachable("unhandled type trait");
|
|
return false;
|
|
}
|
|
default: llvm_unreachable("not a BTT");
|
|
}
|
|
llvm_unreachable("Unknown type trait or not implemented");
|
|
}
|
|
|
|
ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
|
|
SourceLocation KWLoc,
|
|
ParsedType Ty,
|
|
Expr* DimExpr,
|
|
SourceLocation RParen) {
|
|
TypeSourceInfo *TSInfo;
|
|
QualType T = GetTypeFromParser(Ty, &TSInfo);
|
|
if (!TSInfo)
|
|
TSInfo = Context.getTrivialTypeSourceInfo(T);
|
|
|
|
return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
|
|
}
|
|
|
|
static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
|
|
QualType T, Expr *DimExpr,
|
|
SourceLocation KeyLoc) {
|
|
assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
|
|
|
|
switch(ATT) {
|
|
case ATT_ArrayRank:
|
|
if (T->isArrayType()) {
|
|
unsigned Dim = 0;
|
|
while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
|
|
++Dim;
|
|
T = AT->getElementType();
|
|
}
|
|
return Dim;
|
|
}
|
|
return 0;
|
|
|
|
case ATT_ArrayExtent: {
|
|
llvm::APSInt Value;
|
|
uint64_t Dim;
|
|
if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
|
|
diag::err_dimension_expr_not_constant_integer,
|
|
false).isInvalid())
|
|
return 0;
|
|
if (Value.isSigned() && Value.isNegative()) {
|
|
Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
|
|
<< DimExpr->getSourceRange();
|
|
return 0;
|
|
}
|
|
Dim = Value.getLimitedValue();
|
|
|
|
if (T->isArrayType()) {
|
|
unsigned D = 0;
|
|
bool Matched = false;
|
|
while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
|
|
if (Dim == D) {
|
|
Matched = true;
|
|
break;
|
|
}
|
|
++D;
|
|
T = AT->getElementType();
|
|
}
|
|
|
|
if (Matched && T->isArrayType()) {
|
|
if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
|
|
return CAT->getSize().getLimitedValue();
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
llvm_unreachable("Unknown type trait or not implemented");
|
|
}
|
|
|
|
ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
|
|
SourceLocation KWLoc,
|
|
TypeSourceInfo *TSInfo,
|
|
Expr* DimExpr,
|
|
SourceLocation RParen) {
|
|
QualType T = TSInfo->getType();
|
|
|
|
// FIXME: This should likely be tracked as an APInt to remove any host
|
|
// assumptions about the width of size_t on the target.
|
|
uint64_t Value = 0;
|
|
if (!T->isDependentType())
|
|
Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
|
|
|
|
// While the specification for these traits from the Embarcadero C++
|
|
// compiler's documentation says the return type is 'unsigned int', Clang
|
|
// returns 'size_t'. On Windows, the primary platform for the Embarcadero
|
|
// compiler, there is no difference. On several other platforms this is an
|
|
// important distinction.
|
|
return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
|
|
RParen, Context.getSizeType());
|
|
}
|
|
|
|
ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
|
|
SourceLocation KWLoc,
|
|
Expr *Queried,
|
|
SourceLocation RParen) {
|
|
// If error parsing the expression, ignore.
|
|
if (!Queried)
|
|
return ExprError();
|
|
|
|
ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
|
|
|
|
return Result;
|
|
}
|
|
|
|
static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
|
|
switch (ET) {
|
|
case ET_IsLValueExpr: return E->isLValue();
|
|
case ET_IsRValueExpr: return E->isRValue();
|
|
}
|
|
llvm_unreachable("Expression trait not covered by switch");
|
|
}
|
|
|
|
ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
|
|
SourceLocation KWLoc,
|
|
Expr *Queried,
|
|
SourceLocation RParen) {
|
|
if (Queried->isTypeDependent()) {
|
|
// Delay type-checking for type-dependent expressions.
|
|
} else if (Queried->getType()->isPlaceholderType()) {
|
|
ExprResult PE = CheckPlaceholderExpr(Queried);
|
|
if (PE.isInvalid()) return ExprError();
|
|
return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
|
|
}
|
|
|
|
bool Value = EvaluateExpressionTrait(ET, Queried);
|
|
|
|
return new (Context)
|
|
ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
|
|
}
|
|
|
|
QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
|
|
ExprValueKind &VK,
|
|
SourceLocation Loc,
|
|
bool isIndirect) {
|
|
assert(!LHS.get()->getType()->isPlaceholderType() &&
|
|
!RHS.get()->getType()->isPlaceholderType() &&
|
|
"placeholders should have been weeded out by now");
|
|
|
|
// The LHS undergoes lvalue conversions if this is ->*.
|
|
if (isIndirect) {
|
|
LHS = DefaultLvalueConversion(LHS.get());
|
|
if (LHS.isInvalid()) return QualType();
|
|
}
|
|
|
|
// The RHS always undergoes lvalue conversions.
|
|
RHS = DefaultLvalueConversion(RHS.get());
|
|
if (RHS.isInvalid()) return QualType();
|
|
|
|
const char *OpSpelling = isIndirect ? "->*" : ".*";
|
|
// C++ 5.5p2
|
|
// The binary operator .* [p3: ->*] binds its second operand, which shall
|
|
// be of type "pointer to member of T" (where T is a completely-defined
|
|
// class type) [...]
|
|
QualType RHSType = RHS.get()->getType();
|
|
const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
|
|
if (!MemPtr) {
|
|
Diag(Loc, diag::err_bad_memptr_rhs)
|
|
<< OpSpelling << RHSType << RHS.get()->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
QualType Class(MemPtr->getClass(), 0);
|
|
|
|
// Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
|
|
// member pointer points must be completely-defined. However, there is no
|
|
// reason for this semantic distinction, and the rule is not enforced by
|
|
// other compilers. Therefore, we do not check this property, as it is
|
|
// likely to be considered a defect.
|
|
|
|
// C++ 5.5p2
|
|
// [...] to its first operand, which shall be of class T or of a class of
|
|
// which T is an unambiguous and accessible base class. [p3: a pointer to
|
|
// such a class]
|
|
QualType LHSType = LHS.get()->getType();
|
|
if (isIndirect) {
|
|
if (const PointerType *Ptr = LHSType->getAs<PointerType>())
|
|
LHSType = Ptr->getPointeeType();
|
|
else {
|
|
Diag(Loc, diag::err_bad_memptr_lhs)
|
|
<< OpSpelling << 1 << LHSType
|
|
<< FixItHint::CreateReplacement(SourceRange(Loc), ".*");
|
|
return QualType();
|
|
}
|
|
}
|
|
|
|
if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
|
|
// If we want to check the hierarchy, we need a complete type.
|
|
if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
|
|
OpSpelling, (int)isIndirect)) {
|
|
return QualType();
|
|
}
|
|
|
|
if (!IsDerivedFrom(LHSType, Class)) {
|
|
Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
|
|
<< (int)isIndirect << LHS.get()->getType();
|
|
return QualType();
|
|
}
|
|
|
|
CXXCastPath BasePath;
|
|
if (CheckDerivedToBaseConversion(LHSType, Class, Loc,
|
|
SourceRange(LHS.get()->getLocStart(),
|
|
RHS.get()->getLocEnd()),
|
|
&BasePath))
|
|
return QualType();
|
|
|
|
// Cast LHS to type of use.
|
|
QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
|
|
ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
|
|
LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
|
|
&BasePath);
|
|
}
|
|
|
|
if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
|
|
// Diagnose use of pointer-to-member type which when used as
|
|
// the functional cast in a pointer-to-member expression.
|
|
Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
|
|
return QualType();
|
|
}
|
|
|
|
// C++ 5.5p2
|
|
// The result is an object or a function of the type specified by the
|
|
// second operand.
|
|
// The cv qualifiers are the union of those in the pointer and the left side,
|
|
// in accordance with 5.5p5 and 5.2.5.
|
|
QualType Result = MemPtr->getPointeeType();
|
|
Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
|
|
|
|
// C++0x [expr.mptr.oper]p6:
|
|
// In a .* expression whose object expression is an rvalue, the program is
|
|
// ill-formed if the second operand is a pointer to member function with
|
|
// ref-qualifier &. In a ->* expression or in a .* expression whose object
|
|
// expression is an lvalue, the program is ill-formed if the second operand
|
|
// is a pointer to member function with ref-qualifier &&.
|
|
if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
|
|
switch (Proto->getRefQualifier()) {
|
|
case RQ_None:
|
|
// Do nothing
|
|
break;
|
|
|
|
case RQ_LValue:
|
|
if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
|
|
Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
|
|
<< RHSType << 1 << LHS.get()->getSourceRange();
|
|
break;
|
|
|
|
case RQ_RValue:
|
|
if (isIndirect || !LHS.get()->Classify(Context).isRValue())
|
|
Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
|
|
<< RHSType << 0 << LHS.get()->getSourceRange();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// C++ [expr.mptr.oper]p6:
|
|
// The result of a .* expression whose second operand is a pointer
|
|
// to a data member is of the same value category as its
|
|
// first operand. The result of a .* expression whose second
|
|
// operand is a pointer to a member function is a prvalue. The
|
|
// result of an ->* expression is an lvalue if its second operand
|
|
// is a pointer to data member and a prvalue otherwise.
|
|
if (Result->isFunctionType()) {
|
|
VK = VK_RValue;
|
|
return Context.BoundMemberTy;
|
|
} else if (isIndirect) {
|
|
VK = VK_LValue;
|
|
} else {
|
|
VK = LHS.get()->getValueKind();
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// \brief Try to convert a type to another according to C++0x 5.16p3.
|
|
///
|
|
/// This is part of the parameter validation for the ? operator. If either
|
|
/// value operand is a class type, the two operands are attempted to be
|
|
/// converted to each other. This function does the conversion in one direction.
|
|
/// It returns true if the program is ill-formed and has already been diagnosed
|
|
/// as such.
|
|
static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
|
|
SourceLocation QuestionLoc,
|
|
bool &HaveConversion,
|
|
QualType &ToType) {
|
|
HaveConversion = false;
|
|
ToType = To->getType();
|
|
|
|
InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
|
|
SourceLocation());
|
|
// C++0x 5.16p3
|
|
// The process for determining whether an operand expression E1 of type T1
|
|
// can be converted to match an operand expression E2 of type T2 is defined
|
|
// as follows:
|
|
// -- If E2 is an lvalue:
|
|
bool ToIsLvalue = To->isLValue();
|
|
if (ToIsLvalue) {
|
|
// E1 can be converted to match E2 if E1 can be implicitly converted to
|
|
// type "lvalue reference to T2", subject to the constraint that in the
|
|
// conversion the reference must bind directly to E1.
|
|
QualType T = Self.Context.getLValueReferenceType(ToType);
|
|
InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
|
|
|
|
InitializationSequence InitSeq(Self, Entity, Kind, From);
|
|
if (InitSeq.isDirectReferenceBinding()) {
|
|
ToType = T;
|
|
HaveConversion = true;
|
|
return false;
|
|
}
|
|
|
|
if (InitSeq.isAmbiguous())
|
|
return InitSeq.Diagnose(Self, Entity, Kind, From);
|
|
}
|
|
|
|
// -- If E2 is an rvalue, or if the conversion above cannot be done:
|
|
// -- if E1 and E2 have class type, and the underlying class types are
|
|
// the same or one is a base class of the other:
|
|
QualType FTy = From->getType();
|
|
QualType TTy = To->getType();
|
|
const RecordType *FRec = FTy->getAs<RecordType>();
|
|
const RecordType *TRec = TTy->getAs<RecordType>();
|
|
bool FDerivedFromT = FRec && TRec && FRec != TRec &&
|
|
Self.IsDerivedFrom(FTy, TTy);
|
|
if (FRec && TRec &&
|
|
(FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
|
|
// E1 can be converted to match E2 if the class of T2 is the
|
|
// same type as, or a base class of, the class of T1, and
|
|
// [cv2 > cv1].
|
|
if (FRec == TRec || FDerivedFromT) {
|
|
if (TTy.isAtLeastAsQualifiedAs(FTy)) {
|
|
InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
|
|
InitializationSequence InitSeq(Self, Entity, Kind, From);
|
|
if (InitSeq) {
|
|
HaveConversion = true;
|
|
return false;
|
|
}
|
|
|
|
if (InitSeq.isAmbiguous())
|
|
return InitSeq.Diagnose(Self, Entity, Kind, From);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// -- Otherwise: E1 can be converted to match E2 if E1 can be
|
|
// implicitly converted to the type that expression E2 would have
|
|
// if E2 were converted to an rvalue (or the type it has, if E2 is
|
|
// an rvalue).
|
|
//
|
|
// This actually refers very narrowly to the lvalue-to-rvalue conversion, not
|
|
// to the array-to-pointer or function-to-pointer conversions.
|
|
if (!TTy->getAs<TagType>())
|
|
TTy = TTy.getUnqualifiedType();
|
|
|
|
InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
|
|
InitializationSequence InitSeq(Self, Entity, Kind, From);
|
|
HaveConversion = !InitSeq.Failed();
|
|
ToType = TTy;
|
|
if (InitSeq.isAmbiguous())
|
|
return InitSeq.Diagnose(Self, Entity, Kind, From);
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Try to find a common type for two according to C++0x 5.16p5.
|
|
///
|
|
/// This is part of the parameter validation for the ? operator. If either
|
|
/// value operand is a class type, overload resolution is used to find a
|
|
/// conversion to a common type.
|
|
static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation QuestionLoc) {
|
|
Expr *Args[2] = { LHS.get(), RHS.get() };
|
|
OverloadCandidateSet CandidateSet(QuestionLoc,
|
|
OverloadCandidateSet::CSK_Operator);
|
|
Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
|
|
CandidateSet);
|
|
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
|
|
case OR_Success: {
|
|
// We found a match. Perform the conversions on the arguments and move on.
|
|
ExprResult LHSRes =
|
|
Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
|
|
Best->Conversions[0], Sema::AA_Converting);
|
|
if (LHSRes.isInvalid())
|
|
break;
|
|
LHS = LHSRes;
|
|
|
|
ExprResult RHSRes =
|
|
Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
|
|
Best->Conversions[1], Sema::AA_Converting);
|
|
if (RHSRes.isInvalid())
|
|
break;
|
|
RHS = RHSRes;
|
|
if (Best->Function)
|
|
Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
|
|
return false;
|
|
}
|
|
|
|
case OR_No_Viable_Function:
|
|
|
|
// Emit a better diagnostic if one of the expressions is a null pointer
|
|
// constant and the other is a pointer type. In this case, the user most
|
|
// likely forgot to take the address of the other expression.
|
|
if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
|
|
return true;
|
|
|
|
Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
|
|
<< LHS.get()->getType() << RHS.get()->getType()
|
|
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
|
return true;
|
|
|
|
case OR_Ambiguous:
|
|
Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
|
|
<< LHS.get()->getType() << RHS.get()->getType()
|
|
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
|
// FIXME: Print the possible common types by printing the return types of
|
|
// the viable candidates.
|
|
break;
|
|
|
|
case OR_Deleted:
|
|
llvm_unreachable("Conditional operator has only built-in overloads");
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// \brief Perform an "extended" implicit conversion as returned by
|
|
/// TryClassUnification.
|
|
static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
|
|
InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
|
|
InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
|
|
SourceLocation());
|
|
Expr *Arg = E.get();
|
|
InitializationSequence InitSeq(Self, Entity, Kind, Arg);
|
|
ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
|
|
if (Result.isInvalid())
|
|
return true;
|
|
|
|
E = Result;
|
|
return false;
|
|
}
|
|
|
|
/// \brief Check the operands of ?: under C++ semantics.
|
|
///
|
|
/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
|
|
/// extension. In this case, LHS == Cond. (But they're not aliases.)
|
|
QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
|
|
ExprResult &RHS, ExprValueKind &VK,
|
|
ExprObjectKind &OK,
|
|
SourceLocation QuestionLoc) {
|
|
// FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
|
|
// interface pointers.
|
|
|
|
// C++11 [expr.cond]p1
|
|
// The first expression is contextually converted to bool.
|
|
if (!Cond.get()->isTypeDependent()) {
|
|
ExprResult CondRes = CheckCXXBooleanCondition(Cond.get());
|
|
if (CondRes.isInvalid())
|
|
return QualType();
|
|
Cond = CondRes;
|
|
}
|
|
|
|
// Assume r-value.
|
|
VK = VK_RValue;
|
|
OK = OK_Ordinary;
|
|
|
|
// Either of the arguments dependent?
|
|
if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
|
|
return Context.DependentTy;
|
|
|
|
// C++11 [expr.cond]p2
|
|
// If either the second or the third operand has type (cv) void, ...
|
|
QualType LTy = LHS.get()->getType();
|
|
QualType RTy = RHS.get()->getType();
|
|
bool LVoid = LTy->isVoidType();
|
|
bool RVoid = RTy->isVoidType();
|
|
if (LVoid || RVoid) {
|
|
// ... one of the following shall hold:
|
|
// -- The second or the third operand (but not both) is a (possibly
|
|
// parenthesized) throw-expression; the result is of the type
|
|
// and value category of the other.
|
|
bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
|
|
bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
|
|
if (LThrow != RThrow) {
|
|
Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
|
|
VK = NonThrow->getValueKind();
|
|
// DR (no number yet): the result is a bit-field if the
|
|
// non-throw-expression operand is a bit-field.
|
|
OK = NonThrow->getObjectKind();
|
|
return NonThrow->getType();
|
|
}
|
|
|
|
// -- Both the second and third operands have type void; the result is of
|
|
// type void and is a prvalue.
|
|
if (LVoid && RVoid)
|
|
return Context.VoidTy;
|
|
|
|
// Neither holds, error.
|
|
Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
|
|
<< (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
|
|
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// Neither is void.
|
|
|
|
// C++11 [expr.cond]p3
|
|
// Otherwise, if the second and third operand have different types, and
|
|
// either has (cv) class type [...] an attempt is made to convert each of
|
|
// those operands to the type of the other.
|
|
if (!Context.hasSameType(LTy, RTy) &&
|
|
(LTy->isRecordType() || RTy->isRecordType())) {
|
|
// These return true if a single direction is already ambiguous.
|
|
QualType L2RType, R2LType;
|
|
bool HaveL2R, HaveR2L;
|
|
if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
|
|
return QualType();
|
|
if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
|
|
return QualType();
|
|
|
|
// If both can be converted, [...] the program is ill-formed.
|
|
if (HaveL2R && HaveR2L) {
|
|
Diag(QuestionLoc, diag::err_conditional_ambiguous)
|
|
<< LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
// If exactly one conversion is possible, that conversion is applied to
|
|
// the chosen operand and the converted operands are used in place of the
|
|
// original operands for the remainder of this section.
|
|
if (HaveL2R) {
|
|
if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
|
|
return QualType();
|
|
LTy = LHS.get()->getType();
|
|
} else if (HaveR2L) {
|
|
if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
|
|
return QualType();
|
|
RTy = RHS.get()->getType();
|
|
}
|
|
}
|
|
|
|
// C++11 [expr.cond]p3
|
|
// if both are glvalues of the same value category and the same type except
|
|
// for cv-qualification, an attempt is made to convert each of those
|
|
// operands to the type of the other.
|
|
ExprValueKind LVK = LHS.get()->getValueKind();
|
|
ExprValueKind RVK = RHS.get()->getValueKind();
|
|
if (!Context.hasSameType(LTy, RTy) &&
|
|
Context.hasSameUnqualifiedType(LTy, RTy) &&
|
|
LVK == RVK && LVK != VK_RValue) {
|
|
// Since the unqualified types are reference-related and we require the
|
|
// result to be as if a reference bound directly, the only conversion
|
|
// we can perform is to add cv-qualifiers.
|
|
Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers());
|
|
Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers());
|
|
if (RCVR.isStrictSupersetOf(LCVR)) {
|
|
LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
|
|
LTy = LHS.get()->getType();
|
|
}
|
|
else if (LCVR.isStrictSupersetOf(RCVR)) {
|
|
RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
|
|
RTy = RHS.get()->getType();
|
|
}
|
|
}
|
|
|
|
// C++11 [expr.cond]p4
|
|
// If the second and third operands are glvalues of the same value
|
|
// category and have the same type, the result is of that type and
|
|
// value category and it is a bit-field if the second or the third
|
|
// operand is a bit-field, or if both are bit-fields.
|
|
// We only extend this to bitfields, not to the crazy other kinds of
|
|
// l-values.
|
|
bool Same = Context.hasSameType(LTy, RTy);
|
|
if (Same && LVK == RVK && LVK != VK_RValue &&
|
|
LHS.get()->isOrdinaryOrBitFieldObject() &&
|
|
RHS.get()->isOrdinaryOrBitFieldObject()) {
|
|
VK = LHS.get()->getValueKind();
|
|
if (LHS.get()->getObjectKind() == OK_BitField ||
|
|
RHS.get()->getObjectKind() == OK_BitField)
|
|
OK = OK_BitField;
|
|
return LTy;
|
|
}
|
|
|
|
// C++11 [expr.cond]p5
|
|
// Otherwise, the result is a prvalue. If the second and third operands
|
|
// do not have the same type, and either has (cv) class type, ...
|
|
if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
|
|
// ... overload resolution is used to determine the conversions (if any)
|
|
// to be applied to the operands. If the overload resolution fails, the
|
|
// program is ill-formed.
|
|
if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
|
|
return QualType();
|
|
}
|
|
|
|
// C++11 [expr.cond]p6
|
|
// Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
|
|
// conversions are performed on the second and third operands.
|
|
LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
|
|
RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
|
|
if (LHS.isInvalid() || RHS.isInvalid())
|
|
return QualType();
|
|
LTy = LHS.get()->getType();
|
|
RTy = RHS.get()->getType();
|
|
|
|
// After those conversions, one of the following shall hold:
|
|
// -- The second and third operands have the same type; the result
|
|
// is of that type. If the operands have class type, the result
|
|
// is a prvalue temporary of the result type, which is
|
|
// copy-initialized from either the second operand or the third
|
|
// operand depending on the value of the first operand.
|
|
if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
|
|
if (LTy->isRecordType()) {
|
|
// The operands have class type. Make a temporary copy.
|
|
if (RequireNonAbstractType(QuestionLoc, LTy,
|
|
diag::err_allocation_of_abstract_type))
|
|
return QualType();
|
|
InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
|
|
|
|
ExprResult LHSCopy = PerformCopyInitialization(Entity,
|
|
SourceLocation(),
|
|
LHS);
|
|
if (LHSCopy.isInvalid())
|
|
return QualType();
|
|
|
|
ExprResult RHSCopy = PerformCopyInitialization(Entity,
|
|
SourceLocation(),
|
|
RHS);
|
|
if (RHSCopy.isInvalid())
|
|
return QualType();
|
|
|
|
LHS = LHSCopy;
|
|
RHS = RHSCopy;
|
|
}
|
|
|
|
return LTy;
|
|
}
|
|
|
|
// Extension: conditional operator involving vector types.
|
|
if (LTy->isVectorType() || RTy->isVectorType())
|
|
return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
|
|
|
|
// -- The second and third operands have arithmetic or enumeration type;
|
|
// the usual arithmetic conversions are performed to bring them to a
|
|
// common type, and the result is of that type.
|
|
if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
|
|
UsualArithmeticConversions(LHS, RHS);
|
|
if (LHS.isInvalid() || RHS.isInvalid())
|
|
return QualType();
|
|
return LHS.get()->getType();
|
|
}
|
|
|
|
// -- The second and third operands have pointer type, or one has pointer
|
|
// type and the other is a null pointer constant, or both are null
|
|
// pointer constants, at least one of which is non-integral; pointer
|
|
// conversions and qualification conversions are performed to bring them
|
|
// to their composite pointer type. The result is of the composite
|
|
// pointer type.
|
|
// -- The second and third operands have pointer to member type, or one has
|
|
// pointer to member type and the other is a null pointer constant;
|
|
// pointer to member conversions and qualification conversions are
|
|
// performed to bring them to a common type, whose cv-qualification
|
|
// shall match the cv-qualification of either the second or the third
|
|
// operand. The result is of the common type.
|
|
bool NonStandardCompositeType = false;
|
|
QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
|
|
isSFINAEContext() ? nullptr
|
|
: &NonStandardCompositeType);
|
|
if (!Composite.isNull()) {
|
|
if (NonStandardCompositeType)
|
|
Diag(QuestionLoc,
|
|
diag::ext_typecheck_cond_incompatible_operands_nonstandard)
|
|
<< LTy << RTy << Composite
|
|
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
|
|
|
return Composite;
|
|
}
|
|
|
|
// Similarly, attempt to find composite type of two objective-c pointers.
|
|
Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
|
|
if (!Composite.isNull())
|
|
return Composite;
|
|
|
|
// Check if we are using a null with a non-pointer type.
|
|
if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
|
|
return QualType();
|
|
|
|
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
|
|
<< LHS.get()->getType() << RHS.get()->getType()
|
|
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
/// \brief Find a merged pointer type and convert the two expressions to it.
|
|
///
|
|
/// This finds the composite pointer type (or member pointer type) for @p E1
|
|
/// and @p E2 according to C++11 5.9p2. It converts both expressions to this
|
|
/// type and returns it.
|
|
/// It does not emit diagnostics.
|
|
///
|
|
/// \param Loc The location of the operator requiring these two expressions to
|
|
/// be converted to the composite pointer type.
|
|
///
|
|
/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
|
|
/// a non-standard (but still sane) composite type to which both expressions
|
|
/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
|
|
/// will be set true.
|
|
QualType Sema::FindCompositePointerType(SourceLocation Loc,
|
|
Expr *&E1, Expr *&E2,
|
|
bool *NonStandardCompositeType) {
|
|
if (NonStandardCompositeType)
|
|
*NonStandardCompositeType = false;
|
|
|
|
assert(getLangOpts().CPlusPlus && "This function assumes C++");
|
|
QualType T1 = E1->getType(), T2 = E2->getType();
|
|
|
|
// C++11 5.9p2
|
|
// Pointer conversions and qualification conversions are performed on
|
|
// pointer operands to bring them to their composite pointer type. If
|
|
// one operand is a null pointer constant, the composite pointer type is
|
|
// std::nullptr_t if the other operand is also a null pointer constant or,
|
|
// if the other operand is a pointer, the type of the other operand.
|
|
if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
|
|
!T2->isAnyPointerType() && !T2->isMemberPointerType()) {
|
|
if (T1->isNullPtrType() &&
|
|
E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
|
|
E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get();
|
|
return T1;
|
|
}
|
|
if (T2->isNullPtrType() &&
|
|
E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
|
|
E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get();
|
|
return T2;
|
|
}
|
|
return QualType();
|
|
}
|
|
|
|
if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
|
|
if (T2->isMemberPointerType())
|
|
E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).get();
|
|
else
|
|
E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get();
|
|
return T2;
|
|
}
|
|
if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
|
|
if (T1->isMemberPointerType())
|
|
E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).get();
|
|
else
|
|
E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get();
|
|
return T1;
|
|
}
|
|
|
|
// Now both have to be pointers or member pointers.
|
|
if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
|
|
(!T2->isPointerType() && !T2->isMemberPointerType()))
|
|
return QualType();
|
|
|
|
// Otherwise, of one of the operands has type "pointer to cv1 void," then
|
|
// the other has type "pointer to cv2 T" and the composite pointer type is
|
|
// "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
|
|
// Otherwise, the composite pointer type is a pointer type similar to the
|
|
// type of one of the operands, with a cv-qualification signature that is
|
|
// the union of the cv-qualification signatures of the operand types.
|
|
// In practice, the first part here is redundant; it's subsumed by the second.
|
|
// What we do here is, we build the two possible composite types, and try the
|
|
// conversions in both directions. If only one works, or if the two composite
|
|
// types are the same, we have succeeded.
|
|
// FIXME: extended qualifiers?
|
|
typedef SmallVector<unsigned, 4> QualifierVector;
|
|
QualifierVector QualifierUnion;
|
|
typedef SmallVector<std::pair<const Type *, const Type *>, 4>
|
|
ContainingClassVector;
|
|
ContainingClassVector MemberOfClass;
|
|
QualType Composite1 = Context.getCanonicalType(T1),
|
|
Composite2 = Context.getCanonicalType(T2);
|
|
unsigned NeedConstBefore = 0;
|
|
do {
|
|
const PointerType *Ptr1, *Ptr2;
|
|
if ((Ptr1 = Composite1->getAs<PointerType>()) &&
|
|
(Ptr2 = Composite2->getAs<PointerType>())) {
|
|
Composite1 = Ptr1->getPointeeType();
|
|
Composite2 = Ptr2->getPointeeType();
|
|
|
|
// If we're allowed to create a non-standard composite type, keep track
|
|
// of where we need to fill in additional 'const' qualifiers.
|
|
if (NonStandardCompositeType &&
|
|
Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
|
|
NeedConstBefore = QualifierUnion.size();
|
|
|
|
QualifierUnion.push_back(
|
|
Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
|
|
MemberOfClass.push_back(std::make_pair(nullptr, nullptr));
|
|
continue;
|
|
}
|
|
|
|
const MemberPointerType *MemPtr1, *MemPtr2;
|
|
if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
|
|
(MemPtr2 = Composite2->getAs<MemberPointerType>())) {
|
|
Composite1 = MemPtr1->getPointeeType();
|
|
Composite2 = MemPtr2->getPointeeType();
|
|
|
|
// If we're allowed to create a non-standard composite type, keep track
|
|
// of where we need to fill in additional 'const' qualifiers.
|
|
if (NonStandardCompositeType &&
|
|
Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
|
|
NeedConstBefore = QualifierUnion.size();
|
|
|
|
QualifierUnion.push_back(
|
|
Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
|
|
MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
|
|
MemPtr2->getClass()));
|
|
continue;
|
|
}
|
|
|
|
// FIXME: block pointer types?
|
|
|
|
// Cannot unwrap any more types.
|
|
break;
|
|
} while (true);
|
|
|
|
if (NeedConstBefore && NonStandardCompositeType) {
|
|
// Extension: Add 'const' to qualifiers that come before the first qualifier
|
|
// mismatch, so that our (non-standard!) composite type meets the
|
|
// requirements of C++ [conv.qual]p4 bullet 3.
|
|
for (unsigned I = 0; I != NeedConstBefore; ++I) {
|
|
if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
|
|
QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
|
|
*NonStandardCompositeType = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Rewrap the composites as pointers or member pointers with the union CVRs.
|
|
ContainingClassVector::reverse_iterator MOC
|
|
= MemberOfClass.rbegin();
|
|
for (QualifierVector::reverse_iterator
|
|
I = QualifierUnion.rbegin(),
|
|
E = QualifierUnion.rend();
|
|
I != E; (void)++I, ++MOC) {
|
|
Qualifiers Quals = Qualifiers::fromCVRMask(*I);
|
|
if (MOC->first && MOC->second) {
|
|
// Rebuild member pointer type
|
|
Composite1 = Context.getMemberPointerType(
|
|
Context.getQualifiedType(Composite1, Quals),
|
|
MOC->first);
|
|
Composite2 = Context.getMemberPointerType(
|
|
Context.getQualifiedType(Composite2, Quals),
|
|
MOC->second);
|
|
} else {
|
|
// Rebuild pointer type
|
|
Composite1
|
|
= Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
|
|
Composite2
|
|
= Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
|
|
}
|
|
}
|
|
|
|
// Try to convert to the first composite pointer type.
|
|
InitializedEntity Entity1
|
|
= InitializedEntity::InitializeTemporary(Composite1);
|
|
InitializationKind Kind
|
|
= InitializationKind::CreateCopy(Loc, SourceLocation());
|
|
InitializationSequence E1ToC1(*this, Entity1, Kind, E1);
|
|
InitializationSequence E2ToC1(*this, Entity1, Kind, E2);
|
|
|
|
if (E1ToC1 && E2ToC1) {
|
|
// Conversion to Composite1 is viable.
|
|
if (!Context.hasSameType(Composite1, Composite2)) {
|
|
// Composite2 is a different type from Composite1. Check whether
|
|
// Composite2 is also viable.
|
|
InitializedEntity Entity2
|
|
= InitializedEntity::InitializeTemporary(Composite2);
|
|
InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
|
|
InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
|
|
if (E1ToC2 && E2ToC2) {
|
|
// Both Composite1 and Composite2 are viable and are different;
|
|
// this is an ambiguity.
|
|
return QualType();
|
|
}
|
|
}
|
|
|
|
// Convert E1 to Composite1
|
|
ExprResult E1Result
|
|
= E1ToC1.Perform(*this, Entity1, Kind, E1);
|
|
if (E1Result.isInvalid())
|
|
return QualType();
|
|
E1 = E1Result.getAs<Expr>();
|
|
|
|
// Convert E2 to Composite1
|
|
ExprResult E2Result
|
|
= E2ToC1.Perform(*this, Entity1, Kind, E2);
|
|
if (E2Result.isInvalid())
|
|
return QualType();
|
|
E2 = E2Result.getAs<Expr>();
|
|
|
|
return Composite1;
|
|
}
|
|
|
|
// Check whether Composite2 is viable.
|
|
InitializedEntity Entity2
|
|
= InitializedEntity::InitializeTemporary(Composite2);
|
|
InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
|
|
InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
|
|
if (!E1ToC2 || !E2ToC2)
|
|
return QualType();
|
|
|
|
// Convert E1 to Composite2
|
|
ExprResult E1Result
|
|
= E1ToC2.Perform(*this, Entity2, Kind, E1);
|
|
if (E1Result.isInvalid())
|
|
return QualType();
|
|
E1 = E1Result.getAs<Expr>();
|
|
|
|
// Convert E2 to Composite2
|
|
ExprResult E2Result
|
|
= E2ToC2.Perform(*this, Entity2, Kind, E2);
|
|
if (E2Result.isInvalid())
|
|
return QualType();
|
|
E2 = E2Result.getAs<Expr>();
|
|
|
|
return Composite2;
|
|
}
|
|
|
|
ExprResult Sema::MaybeBindToTemporary(Expr *E) {
|
|
if (!E)
|
|
return ExprError();
|
|
|
|
assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
|
|
|
|
// If the result is a glvalue, we shouldn't bind it.
|
|
if (!E->isRValue())
|
|
return E;
|
|
|
|
// In ARC, calls that return a retainable type can return retained,
|
|
// in which case we have to insert a consuming cast.
|
|
if (getLangOpts().ObjCAutoRefCount &&
|
|
E->getType()->isObjCRetainableType()) {
|
|
|
|
bool ReturnsRetained;
|
|
|
|
// For actual calls, we compute this by examining the type of the
|
|
// called value.
|
|
if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
|
|
Expr *Callee = Call->getCallee()->IgnoreParens();
|
|
QualType T = Callee->getType();
|
|
|
|
if (T == Context.BoundMemberTy) {
|
|
// Handle pointer-to-members.
|
|
if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
|
|
T = BinOp->getRHS()->getType();
|
|
else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
|
|
T = Mem->getMemberDecl()->getType();
|
|
}
|
|
|
|
if (const PointerType *Ptr = T->getAs<PointerType>())
|
|
T = Ptr->getPointeeType();
|
|
else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
|
|
T = Ptr->getPointeeType();
|
|
else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
|
|
T = MemPtr->getPointeeType();
|
|
|
|
const FunctionType *FTy = T->getAs<FunctionType>();
|
|
assert(FTy && "call to value not of function type?");
|
|
ReturnsRetained = FTy->getExtInfo().getProducesResult();
|
|
|
|
// ActOnStmtExpr arranges things so that StmtExprs of retainable
|
|
// type always produce a +1 object.
|
|
} else if (isa<StmtExpr>(E)) {
|
|
ReturnsRetained = true;
|
|
|
|
// We hit this case with the lambda conversion-to-block optimization;
|
|
// we don't want any extra casts here.
|
|
} else if (isa<CastExpr>(E) &&
|
|
isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
|
|
return E;
|
|
|
|
// For message sends and property references, we try to find an
|
|
// actual method. FIXME: we should infer retention by selector in
|
|
// cases where we don't have an actual method.
|
|
} else {
|
|
ObjCMethodDecl *D = nullptr;
|
|
if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
|
|
D = Send->getMethodDecl();
|
|
} else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
|
|
D = BoxedExpr->getBoxingMethod();
|
|
} else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
|
|
D = ArrayLit->getArrayWithObjectsMethod();
|
|
} else if (ObjCDictionaryLiteral *DictLit
|
|
= dyn_cast<ObjCDictionaryLiteral>(E)) {
|
|
D = DictLit->getDictWithObjectsMethod();
|
|
}
|
|
|
|
ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
|
|
|
|
// Don't do reclaims on performSelector calls; despite their
|
|
// return type, the invoked method doesn't necessarily actually
|
|
// return an object.
|
|
if (!ReturnsRetained &&
|
|
D && D->getMethodFamily() == OMF_performSelector)
|
|
return E;
|
|
}
|
|
|
|
// Don't reclaim an object of Class type.
|
|
if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
|
|
return E;
|
|
|
|
ExprNeedsCleanups = true;
|
|
|
|
CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
|
|
: CK_ARCReclaimReturnedObject);
|
|
return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
|
|
VK_RValue);
|
|
}
|
|
|
|
if (!getLangOpts().CPlusPlus)
|
|
return E;
|
|
|
|
// Search for the base element type (cf. ASTContext::getBaseElementType) with
|
|
// a fast path for the common case that the type is directly a RecordType.
|
|
const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
|
|
const RecordType *RT = nullptr;
|
|
while (!RT) {
|
|
switch (T->getTypeClass()) {
|
|
case Type::Record:
|
|
RT = cast<RecordType>(T);
|
|
break;
|
|
case Type::ConstantArray:
|
|
case Type::IncompleteArray:
|
|
case Type::VariableArray:
|
|
case Type::DependentSizedArray:
|
|
T = cast<ArrayType>(T)->getElementType().getTypePtr();
|
|
break;
|
|
default:
|
|
return E;
|
|
}
|
|
}
|
|
|
|
// That should be enough to guarantee that this type is complete, if we're
|
|
// not processing a decltype expression.
|
|
CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
|
|
if (RD->isInvalidDecl() || RD->isDependentContext())
|
|
return E;
|
|
|
|
bool IsDecltype = ExprEvalContexts.back().IsDecltype;
|
|
CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
|
|
|
|
if (Destructor) {
|
|
MarkFunctionReferenced(E->getExprLoc(), Destructor);
|
|
CheckDestructorAccess(E->getExprLoc(), Destructor,
|
|
PDiag(diag::err_access_dtor_temp)
|
|
<< E->getType());
|
|
if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
|
|
return ExprError();
|
|
|
|
// If destructor is trivial, we can avoid the extra copy.
|
|
if (Destructor->isTrivial())
|
|
return E;
|
|
|
|
// We need a cleanup, but we don't need to remember the temporary.
|
|
ExprNeedsCleanups = true;
|
|
}
|
|
|
|
CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
|
|
CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
|
|
|
|
if (IsDecltype)
|
|
ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
|
|
|
|
return Bind;
|
|
}
|
|
|
|
ExprResult
|
|
Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
|
|
if (SubExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
return MaybeCreateExprWithCleanups(SubExpr.get());
|
|
}
|
|
|
|
Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
|
|
assert(SubExpr && "subexpression can't be null!");
|
|
|
|
CleanupVarDeclMarking();
|
|
|
|
unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
|
|
assert(ExprCleanupObjects.size() >= FirstCleanup);
|
|
assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
|
|
if (!ExprNeedsCleanups)
|
|
return SubExpr;
|
|
|
|
ArrayRef<ExprWithCleanups::CleanupObject> Cleanups
|
|
= llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
|
|
ExprCleanupObjects.size() - FirstCleanup);
|
|
|
|
Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
|
|
DiscardCleanupsInEvaluationContext();
|
|
|
|
return E;
|
|
}
|
|
|
|
Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
|
|
assert(SubStmt && "sub-statement can't be null!");
|
|
|
|
CleanupVarDeclMarking();
|
|
|
|
if (!ExprNeedsCleanups)
|
|
return SubStmt;
|
|
|
|
// FIXME: In order to attach the temporaries, wrap the statement into
|
|
// a StmtExpr; currently this is only used for asm statements.
|
|
// This is hacky, either create a new CXXStmtWithTemporaries statement or
|
|
// a new AsmStmtWithTemporaries.
|
|
CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt,
|
|
SourceLocation(),
|
|
SourceLocation());
|
|
Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
|
|
SourceLocation());
|
|
return MaybeCreateExprWithCleanups(E);
|
|
}
|
|
|
|
/// Process the expression contained within a decltype. For such expressions,
|
|
/// certain semantic checks on temporaries are delayed until this point, and
|
|
/// are omitted for the 'topmost' call in the decltype expression. If the
|
|
/// topmost call bound a temporary, strip that temporary off the expression.
|
|
ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
|
|
assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression");
|
|
|
|
// C++11 [expr.call]p11:
|
|
// If a function call is a prvalue of object type,
|
|
// -- if the function call is either
|
|
// -- the operand of a decltype-specifier, or
|
|
// -- the right operand of a comma operator that is the operand of a
|
|
// decltype-specifier,
|
|
// a temporary object is not introduced for the prvalue.
|
|
|
|
// Recursively rebuild ParenExprs and comma expressions to strip out the
|
|
// outermost CXXBindTemporaryExpr, if any.
|
|
if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
|
|
ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
|
|
if (SubExpr.isInvalid())
|
|
return ExprError();
|
|
if (SubExpr.get() == PE->getSubExpr())
|
|
return E;
|
|
return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
|
|
}
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
|
|
if (BO->getOpcode() == BO_Comma) {
|
|
ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
|
|
if (RHS.isInvalid())
|
|
return ExprError();
|
|
if (RHS.get() == BO->getRHS())
|
|
return E;
|
|
return new (Context) BinaryOperator(
|
|
BO->getLHS(), RHS.get(), BO_Comma, BO->getType(), BO->getValueKind(),
|
|
BO->getObjectKind(), BO->getOperatorLoc(), BO->isFPContractable());
|
|
}
|
|
}
|
|
|
|
CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
|
|
CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
|
|
: nullptr;
|
|
if (TopCall)
|
|
E = TopCall;
|
|
else
|
|
TopBind = nullptr;
|
|
|
|
// Disable the special decltype handling now.
|
|
ExprEvalContexts.back().IsDecltype = false;
|
|
|
|
// In MS mode, don't perform any extra checking of call return types within a
|
|
// decltype expression.
|
|
if (getLangOpts().MSVCCompat)
|
|
return E;
|
|
|
|
// Perform the semantic checks we delayed until this point.
|
|
for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
|
|
I != N; ++I) {
|
|
CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
|
|
if (Call == TopCall)
|
|
continue;
|
|
|
|
if (CheckCallReturnType(Call->getCallReturnType(),
|
|
Call->getLocStart(),
|
|
Call, Call->getDirectCallee()))
|
|
return ExprError();
|
|
}
|
|
|
|
// Now all relevant types are complete, check the destructors are accessible
|
|
// and non-deleted, and annotate them on the temporaries.
|
|
for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
|
|
I != N; ++I) {
|
|
CXXBindTemporaryExpr *Bind =
|
|
ExprEvalContexts.back().DelayedDecltypeBinds[I];
|
|
if (Bind == TopBind)
|
|
continue;
|
|
|
|
CXXTemporary *Temp = Bind->getTemporary();
|
|
|
|
CXXRecordDecl *RD =
|
|
Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
|
|
CXXDestructorDecl *Destructor = LookupDestructor(RD);
|
|
Temp->setDestructor(Destructor);
|
|
|
|
MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
|
|
CheckDestructorAccess(Bind->getExprLoc(), Destructor,
|
|
PDiag(diag::err_access_dtor_temp)
|
|
<< Bind->getType());
|
|
if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
|
|
return ExprError();
|
|
|
|
// We need a cleanup, but we don't need to remember the temporary.
|
|
ExprNeedsCleanups = true;
|
|
}
|
|
|
|
// Possibly strip off the top CXXBindTemporaryExpr.
|
|
return E;
|
|
}
|
|
|
|
/// Note a set of 'operator->' functions that were used for a member access.
|
|
static void noteOperatorArrows(Sema &S,
|
|
ArrayRef<FunctionDecl *> OperatorArrows) {
|
|
unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
|
|
// FIXME: Make this configurable?
|
|
unsigned Limit = 9;
|
|
if (OperatorArrows.size() > Limit) {
|
|
// Produce Limit-1 normal notes and one 'skipping' note.
|
|
SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
|
|
SkipCount = OperatorArrows.size() - (Limit - 1);
|
|
}
|
|
|
|
for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
|
|
if (I == SkipStart) {
|
|
S.Diag(OperatorArrows[I]->getLocation(),
|
|
diag::note_operator_arrows_suppressed)
|
|
<< SkipCount;
|
|
I += SkipCount;
|
|
} else {
|
|
S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
|
|
<< OperatorArrows[I]->getCallResultType();
|
|
++I;
|
|
}
|
|
}
|
|
}
|
|
|
|
ExprResult
|
|
Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
|
|
tok::TokenKind OpKind, ParsedType &ObjectType,
|
|
bool &MayBePseudoDestructor) {
|
|
// Since this might be a postfix expression, get rid of ParenListExprs.
|
|
ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
|
|
if (Result.isInvalid()) return ExprError();
|
|
Base = Result.get();
|
|
|
|
Result = CheckPlaceholderExpr(Base);
|
|
if (Result.isInvalid()) return ExprError();
|
|
Base = Result.get();
|
|
|
|
QualType BaseType = Base->getType();
|
|
MayBePseudoDestructor = false;
|
|
if (BaseType->isDependentType()) {
|
|
// If we have a pointer to a dependent type and are using the -> operator,
|
|
// the object type is the type that the pointer points to. We might still
|
|
// have enough information about that type to do something useful.
|
|
if (OpKind == tok::arrow)
|
|
if (const PointerType *Ptr = BaseType->getAs<PointerType>())
|
|
BaseType = Ptr->getPointeeType();
|
|
|
|
ObjectType = ParsedType::make(BaseType);
|
|
MayBePseudoDestructor = true;
|
|
return Base;
|
|
}
|
|
|
|
// C++ [over.match.oper]p8:
|
|
// [...] When operator->returns, the operator-> is applied to the value
|
|
// returned, with the original second operand.
|
|
if (OpKind == tok::arrow) {
|
|
QualType StartingType = BaseType;
|
|
bool NoArrowOperatorFound = false;
|
|
bool FirstIteration = true;
|
|
FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
|
|
// The set of types we've considered so far.
|
|
llvm::SmallPtrSet<CanQualType,8> CTypes;
|
|
SmallVector<FunctionDecl*, 8> OperatorArrows;
|
|
CTypes.insert(Context.getCanonicalType(BaseType));
|
|
|
|
while (BaseType->isRecordType()) {
|
|
if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
|
|
Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
|
|
<< StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
|
|
noteOperatorArrows(*this, OperatorArrows);
|
|
Diag(OpLoc, diag::note_operator_arrow_depth)
|
|
<< getLangOpts().ArrowDepth;
|
|
return ExprError();
|
|
}
|
|
|
|
Result = BuildOverloadedArrowExpr(
|
|
S, Base, OpLoc,
|
|
// When in a template specialization and on the first loop iteration,
|
|
// potentially give the default diagnostic (with the fixit in a
|
|
// separate note) instead of having the error reported back to here
|
|
// and giving a diagnostic with a fixit attached to the error itself.
|
|
(FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
|
|
? nullptr
|
|
: &NoArrowOperatorFound);
|
|
if (Result.isInvalid()) {
|
|
if (NoArrowOperatorFound) {
|
|
if (FirstIteration) {
|
|
Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
|
|
<< BaseType << 1 << Base->getSourceRange()
|
|
<< FixItHint::CreateReplacement(OpLoc, ".");
|
|
OpKind = tok::period;
|
|
break;
|
|
}
|
|
Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
|
|
<< BaseType << Base->getSourceRange();
|
|
CallExpr *CE = dyn_cast<CallExpr>(Base);
|
|
if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
|
|
Diag(CD->getLocStart(),
|
|
diag::note_member_reference_arrow_from_operator_arrow);
|
|
}
|
|
}
|
|
return ExprError();
|
|
}
|
|
Base = Result.get();
|
|
if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
|
|
OperatorArrows.push_back(OpCall->getDirectCallee());
|
|
BaseType = Base->getType();
|
|
CanQualType CBaseType = Context.getCanonicalType(BaseType);
|
|
if (!CTypes.insert(CBaseType)) {
|
|
Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
|
|
noteOperatorArrows(*this, OperatorArrows);
|
|
return ExprError();
|
|
}
|
|
FirstIteration = false;
|
|
}
|
|
|
|
if (OpKind == tok::arrow &&
|
|
(BaseType->isPointerType() || BaseType->isObjCObjectPointerType()))
|
|
BaseType = BaseType->getPointeeType();
|
|
}
|
|
|
|
// Objective-C properties allow "." access on Objective-C pointer types,
|
|
// so adjust the base type to the object type itself.
|
|
if (BaseType->isObjCObjectPointerType())
|
|
BaseType = BaseType->getPointeeType();
|
|
|
|
// C++ [basic.lookup.classref]p2:
|
|
// [...] If the type of the object expression is of pointer to scalar
|
|
// type, the unqualified-id is looked up in the context of the complete
|
|
// postfix-expression.
|
|
//
|
|
// This also indicates that we could be parsing a pseudo-destructor-name.
|
|
// Note that Objective-C class and object types can be pseudo-destructor
|
|
// expressions or normal member (ivar or property) access expressions.
|
|
if (BaseType->isObjCObjectOrInterfaceType()) {
|
|
MayBePseudoDestructor = true;
|
|
} else if (!BaseType->isRecordType()) {
|
|
ObjectType = ParsedType();
|
|
MayBePseudoDestructor = true;
|
|
return Base;
|
|
}
|
|
|
|
// The object type must be complete (or dependent), or
|
|
// C++11 [expr.prim.general]p3:
|
|
// Unlike the object expression in other contexts, *this is not required to
|
|
// be of complete type for purposes of class member access (5.2.5) outside
|
|
// the member function body.
|
|
if (!BaseType->isDependentType() &&
|
|
!isThisOutsideMemberFunctionBody(BaseType) &&
|
|
RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
|
|
return ExprError();
|
|
|
|
// C++ [basic.lookup.classref]p2:
|
|
// If the id-expression in a class member access (5.2.5) is an
|
|
// unqualified-id, and the type of the object expression is of a class
|
|
// type C (or of pointer to a class type C), the unqualified-id is looked
|
|
// up in the scope of class C. [...]
|
|
ObjectType = ParsedType::make(BaseType);
|
|
return Base;
|
|
}
|
|
|
|
ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
|
|
Expr *MemExpr) {
|
|
SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
|
|
Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
|
|
<< isa<CXXPseudoDestructorExpr>(MemExpr)
|
|
<< FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
|
|
|
|
return ActOnCallExpr(/*Scope*/ nullptr,
|
|
MemExpr,
|
|
/*LPLoc*/ ExpectedLParenLoc,
|
|
None,
|
|
/*RPLoc*/ ExpectedLParenLoc);
|
|
}
|
|
|
|
static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
|
|
tok::TokenKind& OpKind, SourceLocation OpLoc) {
|
|
if (Base->hasPlaceholderType()) {
|
|
ExprResult result = S.CheckPlaceholderExpr(Base);
|
|
if (result.isInvalid()) return true;
|
|
Base = result.get();
|
|
}
|
|
ObjectType = Base->getType();
|
|
|
|
// C++ [expr.pseudo]p2:
|
|
// The left-hand side of the dot operator shall be of scalar type. The
|
|
// left-hand side of the arrow operator shall be of pointer to scalar type.
|
|
// This scalar type is the object type.
|
|
// Note that this is rather different from the normal handling for the
|
|
// arrow operator.
|
|
if (OpKind == tok::arrow) {
|
|
if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
|
|
ObjectType = Ptr->getPointeeType();
|
|
} else if (!Base->isTypeDependent()) {
|
|
// The user wrote "p->" when she probably meant "p."; fix it.
|
|
S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
|
|
<< ObjectType << true
|
|
<< FixItHint::CreateReplacement(OpLoc, ".");
|
|
if (S.isSFINAEContext())
|
|
return true;
|
|
|
|
OpKind = tok::period;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
|
|
SourceLocation OpLoc,
|
|
tok::TokenKind OpKind,
|
|
const CXXScopeSpec &SS,
|
|
TypeSourceInfo *ScopeTypeInfo,
|
|
SourceLocation CCLoc,
|
|
SourceLocation TildeLoc,
|
|
PseudoDestructorTypeStorage Destructed,
|
|
bool HasTrailingLParen) {
|
|
TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
|
|
|
|
QualType ObjectType;
|
|
if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
|
|
return ExprError();
|
|
|
|
if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
|
|
!ObjectType->isVectorType()) {
|
|
if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
|
|
Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
|
|
else {
|
|
Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
|
|
<< ObjectType << Base->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
}
|
|
|
|
// C++ [expr.pseudo]p2:
|
|
// [...] The cv-unqualified versions of the object type and of the type
|
|
// designated by the pseudo-destructor-name shall be the same type.
|
|
if (DestructedTypeInfo) {
|
|
QualType DestructedType = DestructedTypeInfo->getType();
|
|
SourceLocation DestructedTypeStart
|
|
= DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
|
|
if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
|
|
if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
|
|
Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
|
|
<< ObjectType << DestructedType << Base->getSourceRange()
|
|
<< DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
|
|
|
|
// Recover by setting the destructed type to the object type.
|
|
DestructedType = ObjectType;
|
|
DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
|
|
DestructedTypeStart);
|
|
Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
|
|
} else if (DestructedType.getObjCLifetime() !=
|
|
ObjectType.getObjCLifetime()) {
|
|
|
|
if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
|
|
// Okay: just pretend that the user provided the correctly-qualified
|
|
// type.
|
|
} else {
|
|
Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
|
|
<< ObjectType << DestructedType << Base->getSourceRange()
|
|
<< DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
|
|
}
|
|
|
|
// Recover by setting the destructed type to the object type.
|
|
DestructedType = ObjectType;
|
|
DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
|
|
DestructedTypeStart);
|
|
Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
|
|
}
|
|
}
|
|
}
|
|
|
|
// C++ [expr.pseudo]p2:
|
|
// [...] Furthermore, the two type-names in a pseudo-destructor-name of the
|
|
// form
|
|
//
|
|
// ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
|
|
//
|
|
// shall designate the same scalar type.
|
|
if (ScopeTypeInfo) {
|
|
QualType ScopeType = ScopeTypeInfo->getType();
|
|
if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
|
|
!Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
|
|
|
|
Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
|
|
diag::err_pseudo_dtor_type_mismatch)
|
|
<< ObjectType << ScopeType << Base->getSourceRange()
|
|
<< ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
|
|
|
|
ScopeType = QualType();
|
|
ScopeTypeInfo = nullptr;
|
|
}
|
|
}
|
|
|
|
Expr *Result
|
|
= new (Context) CXXPseudoDestructorExpr(Context, Base,
|
|
OpKind == tok::arrow, OpLoc,
|
|
SS.getWithLocInContext(Context),
|
|
ScopeTypeInfo,
|
|
CCLoc,
|
|
TildeLoc,
|
|
Destructed);
|
|
|
|
if (HasTrailingLParen)
|
|
return Result;
|
|
|
|
return DiagnoseDtorReference(Destructed.getLocation(), Result);
|
|
}
|
|
|
|
ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
|
|
SourceLocation OpLoc,
|
|
tok::TokenKind OpKind,
|
|
CXXScopeSpec &SS,
|
|
UnqualifiedId &FirstTypeName,
|
|
SourceLocation CCLoc,
|
|
SourceLocation TildeLoc,
|
|
UnqualifiedId &SecondTypeName,
|
|
bool HasTrailingLParen) {
|
|
assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
|
|
FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
|
|
"Invalid first type name in pseudo-destructor");
|
|
assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
|
|
SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
|
|
"Invalid second type name in pseudo-destructor");
|
|
|
|
QualType ObjectType;
|
|
if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
|
|
return ExprError();
|
|
|
|
// Compute the object type that we should use for name lookup purposes. Only
|
|
// record types and dependent types matter.
|
|
ParsedType ObjectTypePtrForLookup;
|
|
if (!SS.isSet()) {
|
|
if (ObjectType->isRecordType())
|
|
ObjectTypePtrForLookup = ParsedType::make(ObjectType);
|
|
else if (ObjectType->isDependentType())
|
|
ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
|
|
}
|
|
|
|
// Convert the name of the type being destructed (following the ~) into a
|
|
// type (with source-location information).
|
|
QualType DestructedType;
|
|
TypeSourceInfo *DestructedTypeInfo = nullptr;
|
|
PseudoDestructorTypeStorage Destructed;
|
|
if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
|
|
ParsedType T = getTypeName(*SecondTypeName.Identifier,
|
|
SecondTypeName.StartLocation,
|
|
S, &SS, true, false, ObjectTypePtrForLookup);
|
|
if (!T &&
|
|
((SS.isSet() && !computeDeclContext(SS, false)) ||
|
|
(!SS.isSet() && ObjectType->isDependentType()))) {
|
|
// The name of the type being destroyed is a dependent name, and we
|
|
// couldn't find anything useful in scope. Just store the identifier and
|
|
// it's location, and we'll perform (qualified) name lookup again at
|
|
// template instantiation time.
|
|
Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
|
|
SecondTypeName.StartLocation);
|
|
} else if (!T) {
|
|
Diag(SecondTypeName.StartLocation,
|
|
diag::err_pseudo_dtor_destructor_non_type)
|
|
<< SecondTypeName.Identifier << ObjectType;
|
|
if (isSFINAEContext())
|
|
return ExprError();
|
|
|
|
// Recover by assuming we had the right type all along.
|
|
DestructedType = ObjectType;
|
|
} else
|
|
DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
|
|
} else {
|
|
// Resolve the template-id to a type.
|
|
TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
|
|
ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
|
|
TemplateId->NumArgs);
|
|
TypeResult T = ActOnTemplateIdType(TemplateId->SS,
|
|
TemplateId->TemplateKWLoc,
|
|
TemplateId->Template,
|
|
TemplateId->TemplateNameLoc,
|
|
TemplateId->LAngleLoc,
|
|
TemplateArgsPtr,
|
|
TemplateId->RAngleLoc);
|
|
if (T.isInvalid() || !T.get()) {
|
|
// Recover by assuming we had the right type all along.
|
|
DestructedType = ObjectType;
|
|
} else
|
|
DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
|
|
}
|
|
|
|
// If we've performed some kind of recovery, (re-)build the type source
|
|
// information.
|
|
if (!DestructedType.isNull()) {
|
|
if (!DestructedTypeInfo)
|
|
DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
|
|
SecondTypeName.StartLocation);
|
|
Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
|
|
}
|
|
|
|
// Convert the name of the scope type (the type prior to '::') into a type.
|
|
TypeSourceInfo *ScopeTypeInfo = nullptr;
|
|
QualType ScopeType;
|
|
if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
|
|
FirstTypeName.Identifier) {
|
|
if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
|
|
ParsedType T = getTypeName(*FirstTypeName.Identifier,
|
|
FirstTypeName.StartLocation,
|
|
S, &SS, true, false, ObjectTypePtrForLookup);
|
|
if (!T) {
|
|
Diag(FirstTypeName.StartLocation,
|
|
diag::err_pseudo_dtor_destructor_non_type)
|
|
<< FirstTypeName.Identifier << ObjectType;
|
|
|
|
if (isSFINAEContext())
|
|
return ExprError();
|
|
|
|
// Just drop this type. It's unnecessary anyway.
|
|
ScopeType = QualType();
|
|
} else
|
|
ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
|
|
} else {
|
|
// Resolve the template-id to a type.
|
|
TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
|
|
ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
|
|
TemplateId->NumArgs);
|
|
TypeResult T = ActOnTemplateIdType(TemplateId->SS,
|
|
TemplateId->TemplateKWLoc,
|
|
TemplateId->Template,
|
|
TemplateId->TemplateNameLoc,
|
|
TemplateId->LAngleLoc,
|
|
TemplateArgsPtr,
|
|
TemplateId->RAngleLoc);
|
|
if (T.isInvalid() || !T.get()) {
|
|
// Recover by dropping this type.
|
|
ScopeType = QualType();
|
|
} else
|
|
ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
|
|
}
|
|
}
|
|
|
|
if (!ScopeType.isNull() && !ScopeTypeInfo)
|
|
ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
|
|
FirstTypeName.StartLocation);
|
|
|
|
|
|
return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
|
|
ScopeTypeInfo, CCLoc, TildeLoc,
|
|
Destructed, HasTrailingLParen);
|
|
}
|
|
|
|
ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
|
|
SourceLocation OpLoc,
|
|
tok::TokenKind OpKind,
|
|
SourceLocation TildeLoc,
|
|
const DeclSpec& DS,
|
|
bool HasTrailingLParen) {
|
|
QualType ObjectType;
|
|
if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
|
|
return ExprError();
|
|
|
|
QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
|
|
|
|
TypeLocBuilder TLB;
|
|
DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
|
|
DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
|
|
TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
|
|
PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
|
|
|
|
return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
|
|
nullptr, SourceLocation(), TildeLoc,
|
|
Destructed, HasTrailingLParen);
|
|
}
|
|
|
|
ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
|
|
CXXConversionDecl *Method,
|
|
bool HadMultipleCandidates) {
|
|
if (Method->getParent()->isLambda() &&
|
|
Method->getConversionType()->isBlockPointerType()) {
|
|
// This is a lambda coversion to block pointer; check if the argument
|
|
// is a LambdaExpr.
|
|
Expr *SubE = E;
|
|
CastExpr *CE = dyn_cast<CastExpr>(SubE);
|
|
if (CE && CE->getCastKind() == CK_NoOp)
|
|
SubE = CE->getSubExpr();
|
|
SubE = SubE->IgnoreParens();
|
|
if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
|
|
SubE = BE->getSubExpr();
|
|
if (isa<LambdaExpr>(SubE)) {
|
|
// For the conversion to block pointer on a lambda expression, we
|
|
// construct a special BlockLiteral instead; this doesn't really make
|
|
// a difference in ARC, but outside of ARC the resulting block literal
|
|
// follows the normal lifetime rules for block literals instead of being
|
|
// autoreleased.
|
|
DiagnosticErrorTrap Trap(Diags);
|
|
ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
|
|
E->getExprLoc(),
|
|
Method, E);
|
|
if (Exp.isInvalid())
|
|
Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
|
|
return Exp;
|
|
}
|
|
}
|
|
|
|
ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
|
|
FoundDecl, Method);
|
|
if (Exp.isInvalid())
|
|
return true;
|
|
|
|
MemberExpr *ME =
|
|
new (Context) MemberExpr(Exp.get(), /*IsArrow=*/false, Method,
|
|
SourceLocation(), Context.BoundMemberTy,
|
|
VK_RValue, OK_Ordinary);
|
|
if (HadMultipleCandidates)
|
|
ME->setHadMultipleCandidates(true);
|
|
MarkMemberReferenced(ME);
|
|
|
|
QualType ResultType = Method->getReturnType();
|
|
ExprValueKind VK = Expr::getValueKindForType(ResultType);
|
|
ResultType = ResultType.getNonLValueExprType(Context);
|
|
|
|
CXXMemberCallExpr *CE =
|
|
new (Context) CXXMemberCallExpr(Context, ME, None, ResultType, VK,
|
|
Exp.get()->getLocEnd());
|
|
return CE;
|
|
}
|
|
|
|
ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
|
|
SourceLocation RParen) {
|
|
CanThrowResult CanThrow = canThrow(Operand);
|
|
return new (Context)
|
|
CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
|
|
}
|
|
|
|
ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
|
|
Expr *Operand, SourceLocation RParen) {
|
|
return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
|
|
}
|
|
|
|
static bool IsSpecialDiscardedValue(Expr *E) {
|
|
// In C++11, discarded-value expressions of a certain form are special,
|
|
// according to [expr]p10:
|
|
// The lvalue-to-rvalue conversion (4.1) is applied only if the
|
|
// expression is an lvalue of volatile-qualified type and it has
|
|
// one of the following forms:
|
|
E = E->IgnoreParens();
|
|
|
|
// - id-expression (5.1.1),
|
|
if (isa<DeclRefExpr>(E))
|
|
return true;
|
|
|
|
// - subscripting (5.2.1),
|
|
if (isa<ArraySubscriptExpr>(E))
|
|
return true;
|
|
|
|
// - class member access (5.2.5),
|
|
if (isa<MemberExpr>(E))
|
|
return true;
|
|
|
|
// - indirection (5.3.1),
|
|
if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
|
|
if (UO->getOpcode() == UO_Deref)
|
|
return true;
|
|
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
|
|
// - pointer-to-member operation (5.5),
|
|
if (BO->isPtrMemOp())
|
|
return true;
|
|
|
|
// - comma expression (5.18) where the right operand is one of the above.
|
|
if (BO->getOpcode() == BO_Comma)
|
|
return IsSpecialDiscardedValue(BO->getRHS());
|
|
}
|
|
|
|
// - conditional expression (5.16) where both the second and the third
|
|
// operands are one of the above, or
|
|
if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
|
|
return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
|
|
IsSpecialDiscardedValue(CO->getFalseExpr());
|
|
// The related edge case of "*x ?: *x".
|
|
if (BinaryConditionalOperator *BCO =
|
|
dyn_cast<BinaryConditionalOperator>(E)) {
|
|
if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
|
|
return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
|
|
IsSpecialDiscardedValue(BCO->getFalseExpr());
|
|
}
|
|
|
|
// Objective-C++ extensions to the rule.
|
|
if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Perform the conversions required for an expression used in a
|
|
/// context that ignores the result.
|
|
ExprResult Sema::IgnoredValueConversions(Expr *E) {
|
|
if (E->hasPlaceholderType()) {
|
|
ExprResult result = CheckPlaceholderExpr(E);
|
|
if (result.isInvalid()) return E;
|
|
E = result.get();
|
|
}
|
|
|
|
// C99 6.3.2.1:
|
|
// [Except in specific positions,] an lvalue that does not have
|
|
// array type is converted to the value stored in the
|
|
// designated object (and is no longer an lvalue).
|
|
if (E->isRValue()) {
|
|
// In C, function designators (i.e. expressions of function type)
|
|
// are r-values, but we still want to do function-to-pointer decay
|
|
// on them. This is both technically correct and convenient for
|
|
// some clients.
|
|
if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
|
|
return DefaultFunctionArrayConversion(E);
|
|
|
|
return E;
|
|
}
|
|
|
|
if (getLangOpts().CPlusPlus) {
|
|
// The C++11 standard defines the notion of a discarded-value expression;
|
|
// normally, we don't need to do anything to handle it, but if it is a
|
|
// volatile lvalue with a special form, we perform an lvalue-to-rvalue
|
|
// conversion.
|
|
if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
|
|
E->getType().isVolatileQualified() &&
|
|
IsSpecialDiscardedValue(E)) {
|
|
ExprResult Res = DefaultLvalueConversion(E);
|
|
if (Res.isInvalid())
|
|
return E;
|
|
E = Res.get();
|
|
}
|
|
return E;
|
|
}
|
|
|
|
// GCC seems to also exclude expressions of incomplete enum type.
|
|
if (const EnumType *T = E->getType()->getAs<EnumType>()) {
|
|
if (!T->getDecl()->isComplete()) {
|
|
// FIXME: stupid workaround for a codegen bug!
|
|
E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
|
|
return E;
|
|
}
|
|
}
|
|
|
|
ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
|
|
if (Res.isInvalid())
|
|
return E;
|
|
E = Res.get();
|
|
|
|
if (!E->getType()->isVoidType())
|
|
RequireCompleteType(E->getExprLoc(), E->getType(),
|
|
diag::err_incomplete_type);
|
|
return E;
|
|
}
|
|
|
|
// If we can unambiguously determine whether Var can never be used
|
|
// in a constant expression, return true.
|
|
// - if the variable and its initializer are non-dependent, then
|
|
// we can unambiguously check if the variable is a constant expression.
|
|
// - if the initializer is not value dependent - we can determine whether
|
|
// it can be used to initialize a constant expression. If Init can not
|
|
// be used to initialize a constant expression we conclude that Var can
|
|
// never be a constant expression.
|
|
// - FXIME: if the initializer is dependent, we can still do some analysis and
|
|
// identify certain cases unambiguously as non-const by using a Visitor:
|
|
// - such as those that involve odr-use of a ParmVarDecl, involve a new
|
|
// delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
|
|
static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
|
|
ASTContext &Context) {
|
|
if (isa<ParmVarDecl>(Var)) return true;
|
|
const VarDecl *DefVD = nullptr;
|
|
|
|
// If there is no initializer - this can not be a constant expression.
|
|
if (!Var->getAnyInitializer(DefVD)) return true;
|
|
assert(DefVD);
|
|
if (DefVD->isWeak()) return false;
|
|
EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
|
|
|
|
Expr *Init = cast<Expr>(Eval->Value);
|
|
|
|
if (Var->getType()->isDependentType() || Init->isValueDependent()) {
|
|
// FIXME: Teach the constant evaluator to deal with the non-dependent parts
|
|
// of value-dependent expressions, and use it here to determine whether the
|
|
// initializer is a potential constant expression.
|
|
return false;
|
|
}
|
|
|
|
return !IsVariableAConstantExpression(Var, Context);
|
|
}
|
|
|
|
/// \brief Check if the current lambda has any potential captures
|
|
/// that must be captured by any of its enclosing lambdas that are ready to
|
|
/// capture. If there is a lambda that can capture a nested
|
|
/// potential-capture, go ahead and do so. Also, check to see if any
|
|
/// variables are uncaptureable or do not involve an odr-use so do not
|
|
/// need to be captured.
|
|
|
|
static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
|
|
Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
|
|
|
|
assert(!S.isUnevaluatedContext());
|
|
assert(S.CurContext->isDependentContext());
|
|
assert(CurrentLSI->CallOperator == S.CurContext &&
|
|
"The current call operator must be synchronized with Sema's CurContext");
|
|
|
|
const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
|
|
|
|
ArrayRef<const FunctionScopeInfo *> FunctionScopesArrayRef(
|
|
S.FunctionScopes.data(), S.FunctionScopes.size());
|
|
|
|
// All the potentially captureable variables in the current nested
|
|
// lambda (within a generic outer lambda), must be captured by an
|
|
// outer lambda that is enclosed within a non-dependent context.
|
|
const unsigned NumPotentialCaptures =
|
|
CurrentLSI->getNumPotentialVariableCaptures();
|
|
for (unsigned I = 0; I != NumPotentialCaptures; ++I) {
|
|
Expr *VarExpr = nullptr;
|
|
VarDecl *Var = nullptr;
|
|
CurrentLSI->getPotentialVariableCapture(I, Var, VarExpr);
|
|
// If the variable is clearly identified as non-odr-used and the full
|
|
// expression is not instantiation dependent, only then do we not
|
|
// need to check enclosing lambda's for speculative captures.
|
|
// For e.g.:
|
|
// Even though 'x' is not odr-used, it should be captured.
|
|
// int test() {
|
|
// const int x = 10;
|
|
// auto L = [=](auto a) {
|
|
// (void) +x + a;
|
|
// };
|
|
// }
|
|
if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
|
|
!IsFullExprInstantiationDependent)
|
|
continue;
|
|
|
|
// If we have a capture-capable lambda for the variable, go ahead and
|
|
// capture the variable in that lambda (and all its enclosing lambdas).
|
|
if (const Optional<unsigned> Index =
|
|
getStackIndexOfNearestEnclosingCaptureCapableLambda(
|
|
FunctionScopesArrayRef, Var, S)) {
|
|
const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
|
|
MarkVarDeclODRUsed(Var, VarExpr->getExprLoc(), S,
|
|
&FunctionScopeIndexOfCapturableLambda);
|
|
}
|
|
const bool IsVarNeverAConstantExpression =
|
|
VariableCanNeverBeAConstantExpression(Var, S.Context);
|
|
if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
|
|
// This full expression is not instantiation dependent or the variable
|
|
// can not be used in a constant expression - which means
|
|
// this variable must be odr-used here, so diagnose a
|
|
// capture violation early, if the variable is un-captureable.
|
|
// This is purely for diagnosing errors early. Otherwise, this
|
|
// error would get diagnosed when the lambda becomes capture ready.
|
|
QualType CaptureType, DeclRefType;
|
|
SourceLocation ExprLoc = VarExpr->getExprLoc();
|
|
if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
|
|
/*EllipsisLoc*/ SourceLocation(),
|
|
/*BuildAndDiagnose*/false, CaptureType,
|
|
DeclRefType, nullptr)) {
|
|
// We will never be able to capture this variable, and we need
|
|
// to be able to in any and all instantiations, so diagnose it.
|
|
S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
|
|
/*EllipsisLoc*/ SourceLocation(),
|
|
/*BuildAndDiagnose*/true, CaptureType,
|
|
DeclRefType, nullptr);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check if 'this' needs to be captured.
|
|
if (CurrentLSI->hasPotentialThisCapture()) {
|
|
// If we have a capture-capable lambda for 'this', go ahead and capture
|
|
// 'this' in that lambda (and all its enclosing lambdas).
|
|
if (const Optional<unsigned> Index =
|
|
getStackIndexOfNearestEnclosingCaptureCapableLambda(
|
|
FunctionScopesArrayRef, /*0 is 'this'*/ nullptr, S)) {
|
|
const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
|
|
S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
|
|
/*Explicit*/ false, /*BuildAndDiagnose*/ true,
|
|
&FunctionScopeIndexOfCapturableLambda);
|
|
}
|
|
}
|
|
|
|
// Reset all the potential captures at the end of each full-expression.
|
|
CurrentLSI->clearPotentialCaptures();
|
|
}
|
|
|
|
|
|
ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
|
|
bool DiscardedValue,
|
|
bool IsConstexpr,
|
|
bool IsLambdaInitCaptureInitializer) {
|
|
ExprResult FullExpr = FE;
|
|
|
|
if (!FullExpr.get())
|
|
return ExprError();
|
|
|
|
// If we are an init-expression in a lambdas init-capture, we should not
|
|
// diagnose an unexpanded pack now (will be diagnosed once lambda-expr
|
|
// containing full-expression is done).
|
|
// template<class ... Ts> void test(Ts ... t) {
|
|
// test([&a(t)]() { <-- (t) is an init-expr that shouldn't be diagnosed now.
|
|
// return a;
|
|
// }() ...);
|
|
// }
|
|
// FIXME: This is a hack. It would be better if we pushed the lambda scope
|
|
// when we parse the lambda introducer, and teach capturing (but not
|
|
// unexpanded pack detection) to walk over LambdaScopeInfos which don't have a
|
|
// corresponding class yet (that is, have LambdaScopeInfo either represent a
|
|
// lambda where we've entered the introducer but not the body, or represent a
|
|
// lambda where we've entered the body, depending on where the
|
|
// parser/instantiation has got to).
|
|
if (!IsLambdaInitCaptureInitializer &&
|
|
DiagnoseUnexpandedParameterPack(FullExpr.get()))
|
|
return ExprError();
|
|
|
|
// Top-level expressions default to 'id' when we're in a debugger.
|
|
if (DiscardedValue && getLangOpts().DebuggerCastResultToId &&
|
|
FullExpr.get()->getType() == Context.UnknownAnyTy) {
|
|
FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
|
|
if (FullExpr.isInvalid())
|
|
return ExprError();
|
|
}
|
|
|
|
if (DiscardedValue) {
|
|
FullExpr = CheckPlaceholderExpr(FullExpr.get());
|
|
if (FullExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
FullExpr = IgnoredValueConversions(FullExpr.get());
|
|
if (FullExpr.isInvalid())
|
|
return ExprError();
|
|
}
|
|
|
|
CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
|
|
|
|
// At the end of this full expression (which could be a deeply nested
|
|
// lambda), if there is a potential capture within the nested lambda,
|
|
// have the outer capture-able lambda try and capture it.
|
|
// Consider the following code:
|
|
// void f(int, int);
|
|
// void f(const int&, double);
|
|
// void foo() {
|
|
// const int x = 10, y = 20;
|
|
// auto L = [=](auto a) {
|
|
// auto M = [=](auto b) {
|
|
// f(x, b); <-- requires x to be captured by L and M
|
|
// f(y, a); <-- requires y to be captured by L, but not all Ms
|
|
// };
|
|
// };
|
|
// }
|
|
|
|
// FIXME: Also consider what happens for something like this that involves
|
|
// the gnu-extension statement-expressions or even lambda-init-captures:
|
|
// void f() {
|
|
// const int n = 0;
|
|
// auto L = [&](auto a) {
|
|
// +n + ({ 0; a; });
|
|
// };
|
|
// }
|
|
//
|
|
// Here, we see +n, and then the full-expression 0; ends, so we don't
|
|
// capture n (and instead remove it from our list of potential captures),
|
|
// and then the full-expression +n + ({ 0; }); ends, but it's too late
|
|
// for us to see that we need to capture n after all.
|
|
|
|
LambdaScopeInfo *const CurrentLSI = getCurLambda();
|
|
// FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
|
|
// even if CurContext is not a lambda call operator. Refer to that Bug Report
|
|
// for an example of the code that might cause this asynchrony.
|
|
// By ensuring we are in the context of a lambda's call operator
|
|
// we can fix the bug (we only need to check whether we need to capture
|
|
// if we are within a lambda's body); but per the comments in that
|
|
// PR, a proper fix would entail :
|
|
// "Alternative suggestion:
|
|
// - Add to Sema an integer holding the smallest (outermost) scope
|
|
// index that we are *lexically* within, and save/restore/set to
|
|
// FunctionScopes.size() in InstantiatingTemplate's
|
|
// constructor/destructor.
|
|
// - Teach the handful of places that iterate over FunctionScopes to
|
|
// stop at the outermost enclosing lexical scope."
|
|
const bool IsInLambdaDeclContext = isLambdaCallOperator(CurContext);
|
|
if (IsInLambdaDeclContext && CurrentLSI &&
|
|
CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
|
|
CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
|
|
*this);
|
|
return MaybeCreateExprWithCleanups(FullExpr);
|
|
}
|
|
|
|
StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
|
|
if (!FullStmt) return StmtError();
|
|
|
|
return MaybeCreateStmtWithCleanups(FullStmt);
|
|
}
|
|
|
|
Sema::IfExistsResult
|
|
Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
|
|
CXXScopeSpec &SS,
|
|
const DeclarationNameInfo &TargetNameInfo) {
|
|
DeclarationName TargetName = TargetNameInfo.getName();
|
|
if (!TargetName)
|
|
return IER_DoesNotExist;
|
|
|
|
// If the name itself is dependent, then the result is dependent.
|
|
if (TargetName.isDependentName())
|
|
return IER_Dependent;
|
|
|
|
// Do the redeclaration lookup in the current scope.
|
|
LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
|
|
Sema::NotForRedeclaration);
|
|
LookupParsedName(R, S, &SS);
|
|
R.suppressDiagnostics();
|
|
|
|
switch (R.getResultKind()) {
|
|
case LookupResult::Found:
|
|
case LookupResult::FoundOverloaded:
|
|
case LookupResult::FoundUnresolvedValue:
|
|
case LookupResult::Ambiguous:
|
|
return IER_Exists;
|
|
|
|
case LookupResult::NotFound:
|
|
return IER_DoesNotExist;
|
|
|
|
case LookupResult::NotFoundInCurrentInstantiation:
|
|
return IER_Dependent;
|
|
}
|
|
|
|
llvm_unreachable("Invalid LookupResult Kind!");
|
|
}
|
|
|
|
Sema::IfExistsResult
|
|
Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
|
|
bool IsIfExists, CXXScopeSpec &SS,
|
|
UnqualifiedId &Name) {
|
|
DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
|
|
|
|
// Check for unexpanded parameter packs.
|
|
SmallVector<UnexpandedParameterPack, 4> Unexpanded;
|
|
collectUnexpandedParameterPacks(SS, Unexpanded);
|
|
collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
|
|
if (!Unexpanded.empty()) {
|
|
DiagnoseUnexpandedParameterPacks(KeywordLoc,
|
|
IsIfExists? UPPC_IfExists
|
|
: UPPC_IfNotExists,
|
|
Unexpanded);
|
|
return IER_Error;
|
|
}
|
|
|
|
return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
|
|
}
|