forked from OSchip/llvm-project
1093 lines
44 KiB
HTML
1093 lines
44 KiB
HTML
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
|
|
"http://www.w3.org/TR/html4/strict.dtd">
|
|
<!-- Material used from: HTML 4.01 specs: http://www.w3.org/TR/html401/ -->
|
|
<html>
|
|
<head>
|
|
<META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
|
|
<title>Clang LanguageExtensions</title>
|
|
<link type="text/css" rel="stylesheet" href="../menu.css">
|
|
<link type="text/css" rel="stylesheet" href="../content.css">
|
|
<style type="text/css">
|
|
td {
|
|
vertical-align: top;
|
|
}
|
|
</style>
|
|
</head>
|
|
<body>
|
|
|
|
<!--#include virtual="../menu.html.incl"-->
|
|
|
|
<div id="content">
|
|
|
|
<h1>Clang Language Extensions</h1>
|
|
|
|
<ul>
|
|
<li><a href="#intro">Introduction</a></li>
|
|
<li><a href="#feature_check">Feature Checking Macros</a></li>
|
|
<li><a href="#has_include">Include File Checking Macros</a></li>
|
|
<li><a href="#builtinmacros">Builtin Macros</a></li>
|
|
<li><a href="#vectors">Vectors and Extended Vectors</a></li>
|
|
<li><a href="#deprecated">Messages on <tt>deprecated</tt> and <tt>unavailable</tt> attributes</a></li>
|
|
<li><a href="#attributes-on-enumerators">Attributes on enumerators</a></li>
|
|
<li><a href="#checking_language_features">Checks for Standard Language Features</a>
|
|
<ul>
|
|
<li><a href="#cxx_exceptions">C++ exceptions</a></li>
|
|
<li><a href="#cxx_rtti">C++ RTTI</a></li>
|
|
</ul></li>
|
|
<li><a href="#checking_upcoming_features">Checks for Upcoming Standard Language Features</a>
|
|
<ul>
|
|
<li><a href="#cxx0x">C++0x</a>
|
|
<ul>
|
|
<li><a href="#cxx_decltype">C++0x <tt>decltype()</tt></a></li>
|
|
<li><a href="#cxx_access_control_sfinae">C++0x SFINAE includes access control</a></li>
|
|
<li><a href="#cxx_alias_templates">C++0x alias templates</a></li>
|
|
<li><a href="#cxx_attributes">C++0x attributes</a></li>
|
|
<li><a href="#cxx_default_function_template_args">C++0x default template arguments in function templates</a></li>
|
|
<li><a href="#cxx_delegating_constructor">C++0x delegating constructors</a></li>
|
|
<li><a href="#cxx_deleted_functions">C++0x deleted functions</a></li>
|
|
<li><a href="#cxx_lambdas">C++0x lambdas</a></li>
|
|
<li><a href="#cxx_nullptr">C++0x nullptr</a></li>
|
|
<li><a href="#cxx_override_control">C++0x override control</a></li>
|
|
<li><a href="#cxx_range_for">C++0x range-based for loop</a></li>
|
|
<li><a href="#cxx_rvalue_references">C++0x rvalue references</a></li>
|
|
<li><a href="#cxx_reference_qualified_functions">C++0x reference-qualified functions</a></li>
|
|
<li><a href="#cxx_static_assert">C++0x <tt>static_assert()</tt></a></li>
|
|
<li><a href="#cxx_auto_type">C++0x type inference</a></li>
|
|
<li><a href="#cxx_variadic_templates">C++0x variadic templates</a></li>
|
|
<li><a href="#cxx_inline_namespaces">C++0x inline namespaces</a></li>
|
|
<li><a href="#cxx_strong_enums">C++0x strongly-typed enumerations</a></li>
|
|
<li><a href="#cxx_trailing_return">C++0x trailing return type</a></li>
|
|
<li><a href="#cxx_noexcept">C++0x noexcept specification</a></li>
|
|
</ul></li>
|
|
<li><a href="#c1x">C1X</a>
|
|
<ul>
|
|
<li><a href="#c_generic_selections">C1X generic selections</a></li>
|
|
<li><a href="#c_static_assert">C1X <tt>_Static_assert()</tt></a></li>
|
|
</ul></li>
|
|
</ul> </li>
|
|
<li><a href="#checking_type_traits">Checks for Type Traits</a></li>
|
|
<li><a href="#blocks">Blocks</a></li>
|
|
<li><a href="#objc_features">Objective-C Features</a>
|
|
<ul>
|
|
<li><a href="#objc_instancetype">Related result types</a></li>
|
|
<li><a href="#objc_arc">Automatic reference counting</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#overloading-in-c">Function Overloading in C</a></li>
|
|
<li><a href="#builtins">Builtin Functions</a>
|
|
<ul>
|
|
<li><a href="#__builtin_shufflevector">__builtin_shufflevector</a></li>
|
|
<li><a href="#__builtin_unreachable">__builtin_unreachable</a></li>
|
|
<li><a href="#__sync_swap">__sync_swap</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#targetspecific">Target-Specific Extensions</a>
|
|
<ul>
|
|
<li><a href="#x86-specific">X86/X86-64 Language Extensions</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#analyzerspecific">Static Analysis-Specific Extensions</a></li>
|
|
</ul>
|
|
|
|
<!-- ======================================================================= -->
|
|
<h2 id="intro">Introduction</h2>
|
|
<!-- ======================================================================= -->
|
|
|
|
<p>This document describes the language extensions provided by Clang. In
|
|
addition to the language extensions listed here, Clang aims to support a broad
|
|
range of GCC extensions. Please see the <a
|
|
href="http://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html">GCC manual</a> for
|
|
more information on these extensions.</p>
|
|
|
|
<!-- ======================================================================= -->
|
|
<h2 id="feature_check">Feature Checking Macros</h2>
|
|
<!-- ======================================================================= -->
|
|
|
|
<p>Language extensions can be very useful, but only if you know you can depend
|
|
on them. In order to allow fine-grain features checks, we support three builtin
|
|
function-like macros. This allows you to directly test for a feature in your
|
|
code without having to resort to something like autoconf or fragile "compiler
|
|
version checks".</p>
|
|
|
|
<!-- ======================================================================= -->
|
|
<h3><a name="__has_builtin">__has_builtin</a></h3>
|
|
<!-- ======================================================================= -->
|
|
|
|
<p>This function-like macro takes a single identifier argument that is the name
|
|
of a builtin function. It evaluates to 1 if the builtin is supported or 0 if
|
|
not. It can be used like this:</p>
|
|
|
|
<blockquote>
|
|
<pre>
|
|
#ifndef __has_builtin // Optional of course.
|
|
#define __has_builtin(x) 0 // Compatibility with non-clang compilers.
|
|
#endif
|
|
|
|
...
|
|
#if __has_builtin(__builtin_trap)
|
|
__builtin_trap();
|
|
#else
|
|
abort();
|
|
#endif
|
|
...
|
|
</pre>
|
|
</blockquote>
|
|
|
|
|
|
<!-- ======================================================================= -->
|
|
<h3><a name="__has_feature_extension"> __has_feature and __has_extension</a></h3>
|
|
<!-- ======================================================================= -->
|
|
|
|
<p>These function-like macros take a single identifier argument that is the
|
|
name of a feature. <code>__has_feature</code> evaluates to 1 if the feature
|
|
is both supported by Clang and standardized in the current language standard
|
|
or 0 if not (but see <a href="#has_feature_back_compat">below</a>), while
|
|
<code>__has_extension</code> evaluates to 1 if the feature is supported by
|
|
Clang in the current language (either as a language extension or a standard
|
|
language feature) or 0 if not. They can be used like this:</p>
|
|
|
|
<blockquote>
|
|
<pre>
|
|
#ifndef __has_feature // Optional of course.
|
|
#define __has_feature(x) 0 // Compatibility with non-clang compilers.
|
|
#endif
|
|
#ifndef __has_extension
|
|
#define __has_extension __has_feature // Compatibility with pre-3.0 compilers.
|
|
#endif
|
|
|
|
...
|
|
#if __has_feature(cxx_rvalue_references)
|
|
// This code will only be compiled with the -std=c++0x and -std=gnu++0x
|
|
// options, because rvalue references are only standardized in C++0x.
|
|
#endif
|
|
|
|
#if __has_extension(cxx_rvalue_references)
|
|
// This code will be compiled with the -std=c++0x, -std=gnu++0x, -std=c++98
|
|
// and -std=gnu++98 options, because rvalue references are supported as a
|
|
// language extension in C++98.
|
|
#endif
|
|
</pre>
|
|
</blockquote>
|
|
|
|
<p id="has_feature_back_compat">For backwards compatibility reasons,
|
|
<code>__has_feature</code> can also be used to test for support for
|
|
non-standardized features, i.e. features not prefixed <code>c_</code>,
|
|
<code>cxx_</code> or <code>objc_</code>.</p>
|
|
|
|
<p>If the <code>-pedantic-errors</code> option is given,
|
|
<code>__has_extension</code> is equivalent to <code>__has_feature</code>.</p>
|
|
|
|
<p>The feature tag is described along with the language feature below.</p>
|
|
|
|
<!-- ======================================================================= -->
|
|
<h3><a name="__has_attribute">__has_attribute</a></h3>
|
|
<!-- ======================================================================= -->
|
|
|
|
<p>This function-like macro takes a single identifier argument that is the name
|
|
of an attribute. It evaluates to 1 if the attribute is supported or 0 if not. It
|
|
can be used like this:</p>
|
|
|
|
<blockquote>
|
|
<pre>
|
|
#ifndef __has_attribute // Optional of course.
|
|
#define __has_attribute(x) 0 // Compatibility with non-clang compilers.
|
|
#endif
|
|
|
|
...
|
|
#if __has_attribute(always_inline)
|
|
#define ALWAYS_INLINE __attribute__((always_inline))
|
|
#else
|
|
#define ALWAYS_INLINE
|
|
#endif
|
|
...
|
|
</pre>
|
|
</blockquote>
|
|
|
|
<!-- ======================================================================= -->
|
|
<h2 id="has_include">Include File Checking Macros</h2>
|
|
<!-- ======================================================================= -->
|
|
|
|
<p>Not all developments systems have the same include files.
|
|
The <a href="#__has_include">__has_include</a> and
|
|
<a href="#__has_include_next">__has_include_next</a> macros allow you to
|
|
check for the existence of an include file before doing
|
|
a possibly failing #include directive.</p>
|
|
|
|
<!-- ======================================================================= -->
|
|
<h3><a name="__has_include">__has_include</a></h3>
|
|
<!-- ======================================================================= -->
|
|
|
|
<p>This function-like macro takes a single file name string argument that
|
|
is the name of an include file. It evaluates to 1 if the file can
|
|
be found using the include paths, or 0 otherwise:</p>
|
|
|
|
<blockquote>
|
|
<pre>
|
|
// Note the two possible file name string formats.
|
|
#if __has_include("myinclude.h") && __has_include(<stdint.h>)
|
|
# include "myinclude.h"
|
|
#endif
|
|
|
|
// To avoid problem with non-clang compilers not having this macro.
|
|
#if defined(__has_include) && __has_include("myinclude.h")
|
|
# include "myinclude.h"
|
|
#endif
|
|
</pre>
|
|
</blockquote>
|
|
|
|
<p>To test for this feature, use #if defined(__has_include).</p>
|
|
|
|
<!-- ======================================================================= -->
|
|
<h3><a name="__has_include_next">__has_include_next</a></h3>
|
|
<!-- ======================================================================= -->
|
|
|
|
<p>This function-like macro takes a single file name string argument that
|
|
is the name of an include file. It is like __has_include except that it
|
|
looks for the second instance of the given file found in the include
|
|
paths. It evaluates to 1 if the second instance of the file can
|
|
be found using the include paths, or 0 otherwise:</p>
|
|
|
|
<blockquote>
|
|
<pre>
|
|
// Note the two possible file name string formats.
|
|
#if __has_include_next("myinclude.h") && __has_include_next(<stdint.h>)
|
|
# include_next "myinclude.h"
|
|
#endif
|
|
|
|
// To avoid problem with non-clang compilers not having this macro.
|
|
#if defined(__has_include_next) && __has_include_next("myinclude.h")
|
|
# include_next "myinclude.h"
|
|
#endif
|
|
</pre>
|
|
</blockquote>
|
|
|
|
<p>Note that __has_include_next, like the GNU extension
|
|
#include_next directive, is intended for use in headers only,
|
|
and will issue a warning if used in the top-level compilation
|
|
file. A warning will also be issued if an absolute path
|
|
is used in the file argument.</p>
|
|
|
|
<!-- ======================================================================= -->
|
|
<h2 id="builtinmacros">Builtin Macros</h2>
|
|
<!-- ======================================================================= -->
|
|
|
|
<dl>
|
|
<dt><code>__BASE_FILE__</code></dt>
|
|
<dd>Defined to a string that contains the name of the main input
|
|
file passed to Clang.</dd>
|
|
|
|
<dt><code>__COUNTER__</code></dt>
|
|
<dd>Defined to an integer value that starts at zero and is
|
|
incremented each time the <code>__COUNTER__</code> macro is
|
|
expanded.</dd>
|
|
|
|
<dt><code>__INCLUDE_LEVEL__</code></dt>
|
|
<dd>Defined to an integral value that is the include depth of the
|
|
file currently being translated. For the main file, this value is
|
|
zero.</dd>
|
|
|
|
<dt><code>__TIMESTAMP__</code></dt>
|
|
<dd>Defined to the date and time of the last modification of the
|
|
current source file.</dd>
|
|
|
|
<dt><code>__clang__</code></dt>
|
|
<dd>Defined when compiling with Clang</dd>
|
|
|
|
<dt><code>__clang_major__</code></dt>
|
|
<dd>Defined to the major version number of Clang (e.g., the 2 in
|
|
2.0.1).</dd>
|
|
|
|
<dt><code>__clang_minor__</code></dt>
|
|
<dd>Defined to the minor version number of Clang (e.g., the 0 in
|
|
2.0.1).</dd>
|
|
|
|
<dt><code>__clang_patchlevel__</code></dt>
|
|
<dd>Defined to the patch level of Clang (e.g., the 1 in 2.0.1).</dd>
|
|
|
|
<dt><code>__clang_version__</code></dt>
|
|
<dd>Defined to a string that captures the Clang version, including
|
|
the Subversion tag or revision number, e.g., "1.5 (trunk
|
|
102332)".</dd>
|
|
</dl>
|
|
|
|
<!-- ======================================================================= -->
|
|
<h2 id="vectors">Vectors and Extended Vectors</h2>
|
|
<!-- ======================================================================= -->
|
|
|
|
<p>Supports the GCC vector extensions, plus some stuff like V[1].</p>
|
|
|
|
<p>Also supports <tt>ext_vector</tt>, which additionally support for V.xyzw
|
|
syntax and other tidbits as seen in OpenCL. An example is:</p>
|
|
|
|
<blockquote>
|
|
<pre>
|
|
typedef float float4 <b>__attribute__((ext_vector_type(4)))</b>;
|
|
typedef float float2 <b>__attribute__((ext_vector_type(2)))</b>;
|
|
|
|
float4 foo(float2 a, float2 b) {
|
|
float4 c;
|
|
c.xz = a;
|
|
c.yw = b;
|
|
return c;
|
|
}
|
|
</pre>
|
|
</blockquote>
|
|
|
|
<p>Query for this feature with __has_extension(attribute_ext_vector_type).</p>
|
|
|
|
<p>See also <a href="#__builtin_shufflevector">__builtin_shufflevector</a>.</p>
|
|
|
|
<!-- ======================================================================= -->
|
|
<h2 id="deprecated">Messages on <tt>deprecated</tt> and <tt>unavailable</tt> Attributes</h2>
|
|
<!-- ======================================================================= -->
|
|
|
|
<p>An optional string message can be added to the <tt>deprecated</tt>
|
|
and <tt>unavailable</tt> attributes. For example:</p>
|
|
|
|
<blockquote>
|
|
<pre>void explode(void) __attribute__((deprecated("extremely unsafe, use 'combust' instead!!!")));</pre>
|
|
</blockquote>
|
|
|
|
<p>If the deprecated or unavailable declaration is used, the message
|
|
will be incorporated into the appropriate diagnostic:</p>
|
|
|
|
<blockquote>
|
|
<pre>harmless.c:4:3: warning: 'explode' is deprecated: extremely unsafe, use 'combust' instead!!! [-Wdeprecated-declarations]
|
|
explode();
|
|
^</pre>
|
|
</blockquote>
|
|
|
|
<p>Query for this feature
|
|
with <tt>__has_extension(attribute_deprecated_with_message)</tt>
|
|
and <tt>__has_extension(attribute_unavailable_with_message)</tt>.</p>
|
|
|
|
<!-- ======================================================================= -->
|
|
<h2 id="attributes-on-enumerators">Attributes on Enumerators</h2>
|
|
<!-- ======================================================================= -->
|
|
|
|
<p>Clang allows attributes to be written on individual enumerators.
|
|
This allows enumerators to be deprecated, made unavailable, etc. The
|
|
attribute must appear after the enumerator name and before any
|
|
initializer, like so:</p>
|
|
|
|
<blockquote>
|
|
<pre>enum OperationMode {
|
|
OM_Invalid,
|
|
OM_Normal,
|
|
OM_Terrified __attribute__((deprecated)),
|
|
OM_AbortOnError __attribute__((deprecated)) = 4
|
|
};</pre>
|
|
</blockquote>
|
|
|
|
<p>Attributes on the <tt>enum</tt> declaration do not apply to
|
|
individual enumerators.</p>
|
|
|
|
<p>Query for this feature with <tt>__has_extension(enumerator_attributes)</tt>.</p>
|
|
|
|
<!-- ======================================================================= -->
|
|
<h2 id="checking_language_features">Checks for Standard Language Features</h2>
|
|
<!-- ======================================================================= -->
|
|
|
|
<p>The <tt>__has_feature</tt> macro can be used to query if certain standard language features are
|
|
enabled. Those features are listed here.</p>
|
|
|
|
<h3 id="cxx_exceptions">C++ exceptions</h3>
|
|
|
|
<p>Use <tt>__has_feature(cxx_exceptions)</tt> to determine if C++ exceptions have been enabled. For
|
|
example, compiling code with <tt>-fexceptions</tt> enables C++ exceptions.</p>
|
|
|
|
<h3 id="cxx_rtti">C++ RTTI</h3>
|
|
|
|
<p>Use <tt>__has_feature(cxx_rtti)</tt> to determine if C++ RTTI has been enabled. For example,
|
|
compiling code with <tt>-fno-rtti</tt> disables the use of RTTI.</p>
|
|
|
|
<!-- ======================================================================= -->
|
|
<h2 id="checking_upcoming_features">Checks for Upcoming Standard Language Features</h2>
|
|
<!-- ======================================================================= -->
|
|
|
|
<p>The <tt>__has_feature</tt> or <tt>__has_extension</tt> macros can be used
|
|
to query if certain upcoming standard language features are enabled. Those
|
|
features are listed here. Features that are not yet implemented will be
|
|
noted.</p>
|
|
|
|
<h3 id="cxx0x">C++0x</h3>
|
|
|
|
<p>The features listed below are slated for inclusion in the upcoming
|
|
C++0x standard. As a result, all these features are enabled
|
|
with the <tt>-std=c++0x</tt> option when compiling C++ code.</p>
|
|
|
|
<h4 id="cxx_decltype">C++0x <tt>decltype()</tt></h4>
|
|
|
|
<p>Use <tt>__has_feature(cxx_decltype)</tt> or
|
|
<tt>__has_extension(cxx_decltype)</tt> to determine if support for the
|
|
<tt>decltype()</tt> specifier is enabled.</p>
|
|
|
|
<h4 id="cxx_access_control_sfinae">C++0x SFINAE includes access control</h4>
|
|
|
|
<p>Use <tt>__has_feature(cxx_access_control_sfinae)</tt> or <tt>__has_extension(cxx_access_control_sfinae)</tt> to determine whether access-control errors (e.g., calling a private constructor) are considered to be template argument deduction errors (aka SFINAE errors), per <a href="http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1170">C++ DR1170</a>.</p>
|
|
|
|
<h4 id="cxx_alias_templates">C++0x alias templates</h4>
|
|
|
|
<p>Use <tt>__has_feature(cxx_alias_templates)</tt> or
|
|
<tt>__has_extension(cxx_alias_templates)</tt> to determine if support for
|
|
C++0x's alias declarations and alias templates is enabled.</p>
|
|
|
|
<h4 id="cxx_attributes">C++0x attributes</h4>
|
|
|
|
<p>Use <tt>__has_feature(cxx_attributes)</tt> or
|
|
<tt>__has_extension(cxx_attributes)</tt> to determine if support for attribute
|
|
parsing with C++0x's square bracket notation is enabled.</p>
|
|
|
|
<h4 id="cxx_default_function_template_args">C++0x default template arguments in function templates</h4>
|
|
|
|
<p>Use <tt>__has_feature(cxx_default_function_template_args)</tt> or
|
|
<tt>__has_extension(cxx_default_function_template_args)</tt> to determine
|
|
if support for default template arguments in function templates is enabled.</p>
|
|
|
|
<h4 id="cxx_delegating_constructors">C++0x delegating constructors</h4>
|
|
|
|
<p>Use <tt>__has_feature(cxx_delegating_constructors)</tt> to determine if
|
|
support for delegating constructors is enabled.</p>
|
|
|
|
<h4 id="cxx_deleted_functions">C++0x <tt>delete</tt>d functions</h4>
|
|
|
|
<p>Use <tt>__has_feature(cxx_deleted_functions)</tt> or
|
|
<tt>__has_extension(cxx_deleted_functions)</tt> to determine if support for
|
|
deleted function definitions (with <tt>= delete</tt>) is enabled.</p>
|
|
|
|
<h4 id="cxx_lambdas">C++0x lambdas</h4>
|
|
|
|
<p>Use <tt>__has_feature(cxx_lambdas)</tt> or
|
|
<tt>__has_extension(cxx_lambdas)</tt> to determine if support for lambdas
|
|
is enabled. clang does not currently implement this feature.</p>
|
|
|
|
<h4 id="cxx_nullptr">C++0x <tt>nullptr</tt></h4>
|
|
|
|
<p>Use <tt>__has_feature(cxx_nullptr)</tt> or
|
|
<tt>__has_extension(cxx_nullptr)</tt> to determine if support for
|
|
<tt>nullptr</tt> is enabled.</p>
|
|
|
|
<h4 id="cxx_override_control">C++0x <tt>override control</tt></h4>
|
|
|
|
<p>Use <tt>__has_feature(cxx_override_control)</tt> or
|
|
<tt>__has_extension(cxx_override_control)</tt> to determine if support for
|
|
the override control keywords is enabled.</p>
|
|
|
|
<h4 id="cxx_reference_qualified_functions">C++0x reference-qualified functions</h4>
|
|
<p>Use <tt>__has_feature(cxx_reference_qualified_functions)</tt> or
|
|
<tt>__has_extension(cxx_reference_qualified_functions)</tt> to determine
|
|
if support for reference-qualified functions (e.g., member functions with
|
|
<code>&</code> or <code>&&</code> applied to <code>*this</code>)
|
|
is enabled.</p>
|
|
|
|
<h4 id="cxx_range_for">C++0x range-based <tt>for</tt> loop</h4>
|
|
|
|
<p>Use <tt>__has_feature(cxx_range_for)</tt> or
|
|
<tt>__has_extension(cxx_range_for)</tt> to determine if support for the
|
|
range-based for loop is enabled. </p>
|
|
|
|
<h4 id="cxx_rvalue_references">C++0x rvalue references</h4>
|
|
|
|
<p>Use <tt>__has_feature(cxx_rvalue_references)</tt> or
|
|
<tt>__has_extension(cxx_rvalue_references)</tt> to determine if support for
|
|
rvalue references is enabled. </p>
|
|
|
|
<h4 id="cxx_static_assert">C++0x <tt>static_assert()</tt></h4>
|
|
|
|
<p>Use <tt>__has_feature(cxx_static_assert)</tt> or
|
|
<tt>__has_extension(cxx_static_assert)</tt> to determine if support for
|
|
compile-time assertions using <tt>static_assert</tt> is enabled.</p>
|
|
|
|
<h4 id="cxx_auto_type">C++0x type inference</h4>
|
|
|
|
<p>Use <tt>__has_feature(cxx_auto_type)</tt> or
|
|
<tt>__has_extension(cxx_auto_type)</tt> to determine C++0x type inference is
|
|
supported using the <tt>auto</tt> specifier. If this is disabled, <tt>auto</tt>
|
|
will instead be a storage class specifier, as in C or C++98.</p>
|
|
|
|
<h4 id="cxx_variadic_templates">C++0x variadic templates</h4>
|
|
|
|
<p>Use <tt>__has_feature(cxx_variadic_templates)</tt> or
|
|
<tt>__has_extension(cxx_variadic_templates)</tt> to determine if support
|
|
for variadic templates is enabled.</p>
|
|
|
|
<h4 id="cxx_inline_namespaces">C++0x inline namespaces</h4>
|
|
|
|
<p>Use <tt>__has_feature(cxx_inline_namespaces)</tt> or
|
|
<tt>__has_extension(cxx_inline_namespaces)</tt> to determine if support for
|
|
inline namespaces is enabled.</p>
|
|
|
|
<h4 id="cxx_trailing_return">C++0x trailing return type</h4>
|
|
|
|
<p>Use <tt>__has_feature(cxx_trailing_return)</tt> or
|
|
<tt>__has_extension(cxx_trailing_return)</tt> to determine if support for the
|
|
alternate function declaration syntax with trailing return type is enabled.</p>
|
|
|
|
<h4 id="cxx_noexcept">C++0x noexcept</h4>
|
|
|
|
<p>Use <tt>__has_feature(cxx_noexcept)</tt> or
|
|
<tt>__has_extension(cxx_noexcept)</tt> to determine if support for noexcept
|
|
exception specifications is enabled.</p>
|
|
|
|
<h4 id="cxx_strong_enums">C++0x strongly typed enumerations</h4>
|
|
|
|
<p>Use <tt>__has_feature(cxx_strong_enums)</tt> or
|
|
<tt>__has_extension(cxx_strong_enums)</tt> to determine if support for
|
|
strongly typed, scoped enumerations is enabled.</p>
|
|
|
|
<h3 id="c1x">C1X</h3>
|
|
|
|
<p>The features listed below are slated for inclusion in the upcoming
|
|
C1X standard. As a result, all these features are enabled
|
|
with the <tt>-std=c1x</tt> option when compiling C code.</p>
|
|
|
|
<h4 id="c_generic_selections">C1X generic selections</h4>
|
|
|
|
<p>Use <tt>__has_feature(c_generic_selections)</tt> or
|
|
<tt>__has_extension(c_generic_selections)</tt> to determine if support for
|
|
generic selections is enabled.</p>
|
|
|
|
<p>As an extension, the C1X generic selection expression is available in all
|
|
languages supported by Clang. The syntax is the same as that given in the
|
|
C1X draft standard.</p>
|
|
|
|
<p>In C, type compatibility is decided according to the rules given in the
|
|
appropriate standard, but in C++, which lacks the type compatibility rules
|
|
used in C, types are considered compatible only if they are equivalent.</p>
|
|
|
|
<h4 id="c_static_assert">C1X <tt>_Static_assert()</tt></h4>
|
|
|
|
<p>Use <tt>__has_feature(c_static_assert)</tt> or
|
|
<tt>__has_extension(c_static_assert)</tt> to determine if support for
|
|
compile-time assertions using <tt>_Static_assert</tt> is enabled.</p>
|
|
|
|
<!-- ======================================================================= -->
|
|
<h2 id="checking_type_traits">Checks for Type Traits</h2>
|
|
<!-- ======================================================================= -->
|
|
|
|
<p>Clang supports the <a href="http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html">GNU C++ type traits</a> and a subset of the <a href="http://msdn.microsoft.com/en-us/library/ms177194(v=VS.100).aspx">Microsoft Visual C++ Type traits</a>. For each supported type trait <code>__X</code>, <code>__has_extension(X)</code> indicates the presence of the type trait. For example:
|
|
<blockquote>
|
|
<pre>
|
|
#if __has_extension(is_convertible_to)
|
|
template<typename From, typename To>
|
|
struct is_convertible_to {
|
|
static const bool value = __is_convertible_to(From, To);
|
|
};
|
|
#else
|
|
// Emulate type trait
|
|
#endif
|
|
</pre>
|
|
</blockquote>
|
|
|
|
<p>The following type traits are supported by Clang:</p>
|
|
<ul>
|
|
<li><code>__has_nothrow_assign</code> (GNU, Microsoft)</li>
|
|
<li><code>__has_nothrow_copy</code> (GNU, Microsoft)</li>
|
|
<li><code>__has_nothrow_constructor</code> (GNU, Microsoft)</li>
|
|
<li><code>__has_trivial_assign</code> (GNU, Microsoft)</li>
|
|
<li><code>__has_trivial_copy</code> (GNU, Microsoft)</li>
|
|
<li><code>__has_trivial_constructor</code> (GNU, Microsoft)</li>
|
|
<li><code>__has_trivial_destructor</code> (GNU, Microsoft)</li>
|
|
<li><code>__has_virtual_destructor</code> (GNU, Microsoft)</li>
|
|
<li><code>__is_abstract</code> (GNU, Microsoft)</li>
|
|
<li><code>__is_base_of</code> (GNU, Microsoft)</li>
|
|
<li><code>__is_class</code> (GNU, Microsoft)</li>
|
|
<li><code>__is_convertible_to</code> (Microsoft)</li>
|
|
<li><code>__is_empty</code> (GNU, Microsoft)</li>
|
|
<li><code>__is_enum</code> (GNU, Microsoft)</li>
|
|
<li><code>__is_pod</code> (GNU, Microsoft)</li>
|
|
<li><code>__is_polymorphic</code> (GNU, Microsoft)</li>
|
|
<li><code>__is_union</code> (GNU, Microsoft)</li>
|
|
<li><code>__is_literal(type)</code>: Determines whether the given type is a literal type</li>
|
|
</ul>
|
|
|
|
<!-- ======================================================================= -->
|
|
<h2 id="blocks">Blocks</h2>
|
|
<!-- ======================================================================= -->
|
|
|
|
<p>The syntax and high level language feature description is in <a
|
|
href="BlockLanguageSpec.txt">BlockLanguageSpec.txt</a>. Implementation and ABI
|
|
details for the clang implementation are in <a
|
|
href="Block-ABI-Apple.txt">Block-ABI-Apple.txt</a>.</p>
|
|
|
|
|
|
<p>Query for this feature with __has_extension(blocks).</p>
|
|
|
|
<!-- ======================================================================= -->
|
|
<h2 id="objc_features">Objective-C Features</h2>
|
|
<!-- ======================================================================= -->
|
|
|
|
<h3 id="objc_instancetype">Related result types</h3>
|
|
|
|
<p>According to Cocoa conventions, Objective-C methods with certain names ("init", "alloc", etc.) always return objects that are an instance of the receiving class's type. Such methods are said to have a "related result type", meaning that a message send to one of these methods will have the same static type as an instance of the receiver class. For example, given the following classes:</p>
|
|
|
|
<blockquote>
|
|
<pre>
|
|
@interface NSObject
|
|
+ (id)alloc;
|
|
- (id)init;
|
|
@end
|
|
|
|
@interface NSArray : NSObject
|
|
@end
|
|
</pre>
|
|
</blockquote>
|
|
|
|
<p>and this common initialization pattern</p>
|
|
|
|
<blockquote>
|
|
<pre>
|
|
NSArray *array = [[NSArray alloc] init];
|
|
</pre>
|
|
</blockquote>
|
|
|
|
<p>the type of the expression <code>[NSArray alloc]</code> is
|
|
<code>NSArray*</code> because <code>alloc</code> implicitly has a
|
|
related result type. Similarly, the type of the expression
|
|
<code>[[NSArray alloc] init]</code> is <code>NSArray*</code>, since
|
|
<code>init</code> has a related result type and its receiver is known
|
|
to have the type <code>NSArray *</code>. If neither <code>alloc</code> nor <code>init</code> had a related result type, the expressions would have had type <code>id</code>, as declared in the method signature.</p>
|
|
|
|
<p>To determine whether a method has a related result type, the first
|
|
word in the camel-case selector (e.g., "init" in "initWithObjects") is
|
|
considered, and the method will a related result type if its return
|
|
type is compatible with the type of its class and if</p>
|
|
|
|
<ul>
|
|
|
|
<li>the first word is "alloc" or "new", and the method is a class
|
|
method, or</li>
|
|
|
|
<li>the first word is "autorelease", "init", "retain", or "self",
|
|
and the method is an instance method.</li>
|
|
|
|
</ul>
|
|
|
|
<p>If a method with a related result type is overridden by a subclass
|
|
method, the subclass method must also return a type that is compatible
|
|
with the subclass type. For example:</p>
|
|
|
|
<blockquote>
|
|
<pre>
|
|
@interface NSString : NSObject
|
|
- (NSUnrelated *)init; // incorrect usage: NSUnrelated is not NSString or a superclass of NSString
|
|
@end
|
|
</pre>
|
|
</blockquote>
|
|
|
|
<p>Related result types only affect the type of a message send or
|
|
property access via the given method. In all other respects, a method
|
|
with a related result type is treated the same way as method without a
|
|
related result type.</p>
|
|
|
|
<!-- ======================================================================= -->
|
|
<h2 id="objc_arc">Automatic reference counting </h2>
|
|
<!-- ======================================================================= -->
|
|
|
|
<p>Clang provides support for <a href="AutomaticReferenceCounting.html">automated reference counting</a> in Objective-C, which eliminates the need for manual retain/release/autorelease message sends. There are two feature macros associated with automatic reference counting: <code>__has_feature(objc_arc)</code> indicates the availability of automated reference counting in general, while <code>__has_feature(objc_arc_weak)</code> indicates that automated reference counting also includes support for <code>__weak</code> pointers to Objective-C objects.</p>
|
|
|
|
<!-- ======================================================================= -->
|
|
<h2 id="overloading-in-c">Function Overloading in C</h2>
|
|
<!-- ======================================================================= -->
|
|
|
|
<p>Clang provides support for C++ function overloading in C. Function
|
|
overloading in C is introduced using the <tt>overloadable</tt> attribute. For
|
|
example, one might provide several overloaded versions of a <tt>tgsin</tt>
|
|
function that invokes the appropriate standard function computing the sine of a
|
|
value with <tt>float</tt>, <tt>double</tt>, or <tt>long double</tt>
|
|
precision:</p>
|
|
|
|
<blockquote>
|
|
<pre>
|
|
#include <math.h>
|
|
float <b>__attribute__((overloadable))</b> tgsin(float x) { return sinf(x); }
|
|
double <b>__attribute__((overloadable))</b> tgsin(double x) { return sin(x); }
|
|
long double <b>__attribute__((overloadable))</b> tgsin(long double x) { return sinl(x); }
|
|
</pre>
|
|
</blockquote>
|
|
|
|
<p>Given these declarations, one can call <tt>tgsin</tt> with a
|
|
<tt>float</tt> value to receive a <tt>float</tt> result, with a
|
|
<tt>double</tt> to receive a <tt>double</tt> result, etc. Function
|
|
overloading in C follows the rules of C++ function overloading to pick
|
|
the best overload given the call arguments, with a few C-specific
|
|
semantics:</p>
|
|
<ul>
|
|
<li>Conversion from <tt>float</tt> or <tt>double</tt> to <tt>long
|
|
double</tt> is ranked as a floating-point promotion (per C99) rather
|
|
than as a floating-point conversion (as in C++).</li>
|
|
|
|
<li>A conversion from a pointer of type <tt>T*</tt> to a pointer of type
|
|
<tt>U*</tt> is considered a pointer conversion (with conversion
|
|
rank) if <tt>T</tt> and <tt>U</tt> are compatible types.</li>
|
|
|
|
<li>A conversion from type <tt>T</tt> to a value of type <tt>U</tt>
|
|
is permitted if <tt>T</tt> and <tt>U</tt> are compatible types. This
|
|
conversion is given "conversion" rank.</li>
|
|
</ul>
|
|
|
|
<p>The declaration of <tt>overloadable</tt> functions is restricted to
|
|
function declarations and definitions. Most importantly, if any
|
|
function with a given name is given the <tt>overloadable</tt>
|
|
attribute, then all function declarations and definitions with that
|
|
name (and in that scope) must have the <tt>overloadable</tt>
|
|
attribute. This rule even applies to redeclarations of functions whose original
|
|
declaration had the <tt>overloadable</tt> attribute, e.g.,</p>
|
|
|
|
<blockquote>
|
|
<pre>
|
|
int f(int) __attribute__((overloadable));
|
|
float f(float); <i>// error: declaration of "f" must have the "overloadable" attribute</i>
|
|
|
|
int g(int) __attribute__((overloadable));
|
|
int g(int) { } <i>// error: redeclaration of "g" must also have the "overloadable" attribute</i>
|
|
</pre>
|
|
</blockquote>
|
|
|
|
<p>Functions marked <tt>overloadable</tt> must have
|
|
prototypes. Therefore, the following code is ill-formed:</p>
|
|
|
|
<blockquote>
|
|
<pre>
|
|
int h() __attribute__((overloadable)); <i>// error: h does not have a prototype</i>
|
|
</pre>
|
|
</blockquote>
|
|
|
|
<p>However, <tt>overloadable</tt> functions are allowed to use a
|
|
ellipsis even if there are no named parameters (as is permitted in C++). This feature is particularly useful when combined with the <tt>unavailable</tt> attribute:</p>
|
|
|
|
<blockquote>
|
|
<pre>
|
|
void honeypot(...) __attribute__((overloadable, unavailable)); <i>// calling me is an error</i>
|
|
</pre>
|
|
</blockquote>
|
|
|
|
<p>Functions declared with the <tt>overloadable</tt> attribute have
|
|
their names mangled according to the same rules as C++ function
|
|
names. For example, the three <tt>tgsin</tt> functions in our
|
|
motivating example get the mangled names <tt>_Z5tgsinf</tt>,
|
|
<tt>_Z5tgsind</tt>, and <tt>_Z5tgsine</tt>, respectively. There are two
|
|
caveats to this use of name mangling:</p>
|
|
|
|
<ul>
|
|
|
|
<li>Future versions of Clang may change the name mangling of
|
|
functions overloaded in C, so you should not depend on an specific
|
|
mangling. To be completely safe, we strongly urge the use of
|
|
<tt>static inline</tt> with <tt>overloadable</tt> functions.</li>
|
|
|
|
<li>The <tt>overloadable</tt> attribute has almost no meaning when
|
|
used in C++, because names will already be mangled and functions are
|
|
already overloadable. However, when an <tt>overloadable</tt>
|
|
function occurs within an <tt>extern "C"</tt> linkage specification,
|
|
it's name <i>will</i> be mangled in the same way as it would in
|
|
C.</li>
|
|
</ul>
|
|
|
|
<p>Query for this feature with __has_extension(attribute_overloadable).</p>
|
|
|
|
|
|
<!-- ======================================================================= -->
|
|
<h2 id="builtins">Builtin Functions</h2>
|
|
<!-- ======================================================================= -->
|
|
|
|
<p>Clang supports a number of builtin library functions with the same syntax as
|
|
GCC, including things like <tt>__builtin_nan</tt>,
|
|
<tt>__builtin_constant_p</tt>, <tt>__builtin_choose_expr</tt>,
|
|
<tt>__builtin_types_compatible_p</tt>, <tt>__sync_fetch_and_add</tt>, etc. In
|
|
addition to the GCC builtins, Clang supports a number of builtins that GCC does
|
|
not, which are listed here.</p>
|
|
|
|
<p>Please note that Clang does not and will not support all of the GCC builtins
|
|
for vector operations. Instead of using builtins, you should use the functions
|
|
defined in target-specific header files like <tt><xmmintrin.h></tt>, which
|
|
define portable wrappers for these. Many of the Clang versions of these
|
|
functions are implemented directly in terms of <a href="#vectors">extended
|
|
vector support</a> instead of builtins, in order to reduce the number of
|
|
builtins that we need to implement.</p>
|
|
|
|
<!-- ======================================================================= -->
|
|
<h3><a name="__builtin_shufflevector">__builtin_shufflevector</a></h3>
|
|
<!-- ======================================================================= -->
|
|
|
|
<p><tt>__builtin_shufflevector</tt> is used to express generic vector
|
|
permutation/shuffle/swizzle operations. This builtin is also very important for
|
|
the implementation of various target-specific header files like
|
|
<tt><xmmintrin.h></tt>.
|
|
</p>
|
|
|
|
<p><b>Syntax:</b></p>
|
|
|
|
<pre>
|
|
__builtin_shufflevector(vec1, vec2, index1, index2, ...)
|
|
</pre>
|
|
|
|
<p><b>Examples:</b></p>
|
|
|
|
<pre>
|
|
// Identity operation - return 4-element vector V1.
|
|
__builtin_shufflevector(V1, V1, 0, 1, 2, 3)
|
|
|
|
// "Splat" element 0 of V1 into a 4-element result.
|
|
__builtin_shufflevector(V1, V1, 0, 0, 0, 0)
|
|
|
|
// Reverse 4-element vector V1.
|
|
__builtin_shufflevector(V1, V1, 3, 2, 1, 0)
|
|
|
|
// Concatenate every other element of 4-element vectors V1 and V2.
|
|
__builtin_shufflevector(V1, V2, 0, 2, 4, 6)
|
|
|
|
// Concatenate every other element of 8-element vectors V1 and V2.
|
|
__builtin_shufflevector(V1, V2, 0, 2, 4, 6, 8, 10, 12, 14)
|
|
</pre>
|
|
|
|
<p><b>Description:</b></p>
|
|
|
|
<p>The first two arguments to __builtin_shufflevector are vectors that have the
|
|
same element type. The remaining arguments are a list of integers that specify
|
|
the elements indices of the first two vectors that should be extracted and
|
|
returned in a new vector. These element indices are numbered sequentially
|
|
starting with the first vector, continuing into the second vector. Thus, if
|
|
vec1 is a 4-element vector, index 5 would refer to the second element of vec2.
|
|
</p>
|
|
|
|
<p>The result of __builtin_shufflevector is a vector
|
|
with the same element type as vec1/vec2 but that has an element count equal to
|
|
the number of indices specified.
|
|
</p>
|
|
|
|
<p>Query for this feature with __has_builtin(__builtin_shufflevector).</p>
|
|
|
|
<!-- ======================================================================= -->
|
|
<h3><a name="__builtin_unreachable">__builtin_unreachable</a></h3>
|
|
<!-- ======================================================================= -->
|
|
|
|
<p><tt>__builtin_unreachable</tt> is used to indicate that a specific point in
|
|
the program cannot be reached, even if the compiler might otherwise think it
|
|
can. This is useful to improve optimization and eliminates certain warnings.
|
|
For example, without the <tt>__builtin_unreachable</tt> in the example below,
|
|
the compiler assumes that the inline asm can fall through and prints a "function
|
|
declared 'noreturn' should not return" warning.
|
|
</p>
|
|
|
|
<p><b>Syntax:</b></p>
|
|
|
|
<pre>
|
|
__builtin_unreachable()
|
|
</pre>
|
|
|
|
<p><b>Example of Use:</b></p>
|
|
|
|
<pre>
|
|
void myabort(void) __attribute__((noreturn));
|
|
void myabort(void) {
|
|
asm("int3");
|
|
__builtin_unreachable();
|
|
}
|
|
</pre>
|
|
|
|
<p><b>Description:</b></p>
|
|
|
|
<p>The __builtin_unreachable() builtin has completely undefined behavior. Since
|
|
it has undefined behavior, it is a statement that it is never reached and the
|
|
optimizer can take advantage of this to produce better code. This builtin takes
|
|
no arguments and produces a void result.
|
|
</p>
|
|
|
|
<p>Query for this feature with __has_builtin(__builtin_unreachable).</p>
|
|
|
|
<!-- ======================================================================= -->
|
|
<h3><a name="__sync_swap">__sync_swap</a></h3>
|
|
<!-- ======================================================================= -->
|
|
|
|
<p><tt>__sync_swap</tt> is used to atomically swap integers or pointers in
|
|
memory.
|
|
</p>
|
|
|
|
<p><b>Syntax:</b></p>
|
|
|
|
<pre>
|
|
<i>type</i> __sync_swap(<i>type</i> *ptr, <i>type</i> value, ...)
|
|
</pre>
|
|
|
|
<p><b>Example of Use:</b></p>
|
|
|
|
<pre>
|
|
int old_value = __sync_swap(&value, new_value);
|
|
</pre>
|
|
|
|
<p><b>Description:</b></p>
|
|
|
|
<p>The __sync_swap() builtin extends the existing __sync_*() family of atomic
|
|
intrinsics to allow code to atomically swap the current value with the new
|
|
value. More importantly, it helps developers write more efficient and correct
|
|
code by avoiding expensive loops around __sync_bool_compare_and_swap() or
|
|
relying on the platform specific implementation details of
|
|
__sync_lock_test_and_set(). The __sync_swap() builtin is a full barrier.
|
|
</p>
|
|
|
|
|
|
<!-- ======================================================================= -->
|
|
<h2 id="targetspecific">Target-Specific Extensions</h2>
|
|
<!-- ======================================================================= -->
|
|
|
|
<p>Clang supports some language features conditionally on some targets.</p>
|
|
|
|
<!-- ======================================================================= -->
|
|
<h3 id="x86-specific">X86/X86-64 Language Extensions</h3>
|
|
<!-- ======================================================================= -->
|
|
|
|
<p>The X86 backend has these language extensions:</p>
|
|
|
|
<!-- ======================================================================= -->
|
|
<h4 id="x86-gs-segment">Memory references off the GS segment</h4>
|
|
<!-- ======================================================================= -->
|
|
|
|
<p>Annotating a pointer with address space #256 causes it to be code generated
|
|
relative to the X86 GS segment register, and address space #257 causes it to be
|
|
relative to the X86 FS segment. Note that this is a very very low-level
|
|
feature that should only be used if you know what you're doing (for example in
|
|
an OS kernel).</p>
|
|
|
|
<p>Here is an example:</p>
|
|
|
|
<pre>
|
|
#define GS_RELATIVE __attribute__((address_space(256)))
|
|
int foo(int GS_RELATIVE *P) {
|
|
return *P;
|
|
}
|
|
</pre>
|
|
|
|
<p>Which compiles to (on X86-32):</p>
|
|
|
|
<pre>
|
|
_foo:
|
|
movl 4(%esp), %eax
|
|
movl %gs:(%eax), %eax
|
|
ret
|
|
</pre>
|
|
|
|
<!-- ======================================================================= -->
|
|
<h2 id="analyzerspecific">Static Analysis-Specific Extensions</h2>
|
|
<!-- ======================================================================= -->
|
|
|
|
<p>Clang supports additional attributes that are useful for documenting program
|
|
invariants and rules for static analysis tools. The extensions documented here
|
|
are used by the <a
|
|
href="http://clang.llvm.org/StaticAnalysis.html">path-sensitive static analyzer
|
|
engine</a> that is part of Clang's Analysis library.</p>
|
|
|
|
<h3 id="attr_analyzer_noreturn">The <tt>analyzer_noreturn</tt> attribute</h3>
|
|
|
|
<p>Clang's static analysis engine understands the standard <tt>noreturn</tt>
|
|
attribute. This attribute, which is typically affixed to a function prototype,
|
|
indicates that a call to a given function never returns. Function prototypes for
|
|
common functions like <tt>exit</tt> are typically annotated with this attribute,
|
|
as well as a variety of common assertion handlers. Users can educate the static
|
|
analyzer about their own custom assertion handles (thus cutting down on false
|
|
positives due to false paths) by marking their own "panic" functions
|
|
with this attribute.</p>
|
|
|
|
<p>While useful, <tt>noreturn</tt> is not applicable in all cases. Sometimes
|
|
there are special functions that for all intents and purposes should be
|
|
considered panic functions (i.e., they are only called when an internal program
|
|
error occurs) but may actually return so that the program can fail gracefully.
|
|
The <tt>analyzer_noreturn</tt> attribute allows one to annotate such functions
|
|
as being interpreted as "no return" functions by the analyzer (thus
|
|
pruning bogus paths) but will not affect compilation (as in the case of
|
|
<tt>noreturn</tt>).</p>
|
|
|
|
<p><b>Usage</b>: The <tt>analyzer_noreturn</tt> attribute can be placed in the
|
|
same places where the <tt>noreturn</tt> attribute can be placed. It is commonly
|
|
placed at the end of function prototypes:</p>
|
|
|
|
<pre>
|
|
void foo() <b>__attribute__((analyzer_noreturn))</b>;
|
|
</pre>
|
|
|
|
<p>Query for this feature with
|
|
<tt>__has_attribute(analyzer_noreturn)</tt>.</p>
|
|
|
|
<h3 id="attr_method_family">The <tt>objc_method_family</tt> attribute</h3>
|
|
|
|
<p>Many methods in Objective-C have conventional meanings determined
|
|
by their selectors. For the purposes of static analysis, it is
|
|
sometimes useful to be able to mark a method as having a particular
|
|
conventional meaning despite not having the right selector, or as not
|
|
having the conventional meaning that its selector would suggest.
|
|
For these use cases, we provide an attribute to specifically describe
|
|
the <q>method family</q> that a method belongs to.</p>
|
|
|
|
<p><b>Usage</b>: <tt>__attribute__((objc_method_family(X)))</tt>,
|
|
where <tt>X</tt> is one of <tt>none</tt>, <tt>alloc</tt>, <tt>copy</tt>,
|
|
<tt>init</tt>, <tt>mutableCopy</tt>, or <tt>new</tt>. This attribute
|
|
can only be placed at the end of a method declaration:</p>
|
|
|
|
<pre>
|
|
- (NSString*) initMyStringValue <b>__attribute__((objc_method_family(none)))</b>;
|
|
</pre>
|
|
|
|
<p>Users who do not wish to change the conventional meaning of a
|
|
method, and who merely want to document its non-standard retain and
|
|
release semantics, should use the
|
|
<a href="#attr_retain_release">retaining behavior attributes</a>
|
|
described below.</p>
|
|
|
|
<p>Query for this feature with
|
|
<tt>__has_attribute(objc_method_family)</tt>.</p>
|
|
|
|
<h3 id="attr_retain_release">Objective-C retaining behavior attributes</h3>
|
|
|
|
<p>In Objective-C, functions and methods are generally assumed to take
|
|
and return objects with +0 retain counts, with some exceptions for
|
|
special methods like <tt>+alloc</tt> and <tt>init</tt>. However,
|
|
there are exceptions, and so Clang provides attributes to allow these
|
|
exceptions to be documented, which helps the analyzer find leaks (and
|
|
ignore non-leaks). Some exceptions may be better described using
|
|
the <a href="#attr_method_family"><tt>objc_method_family</tt></a>
|
|
attribute instead.</p>
|
|
|
|
<p><b>Usage</b>: The <tt>ns_returns_retained</tt>, <tt>ns_returns_not_retained</tt>,
|
|
<tt>ns_returns_autoreleased</tt>, <tt>cf_returns_retained</tt>,
|
|
and <tt>cf_returns_not_retained</tt> attributes can be placed on
|
|
methods and functions that return Objective-C or CoreFoundation
|
|
objects. They are commonly placed at the end of a function prototype
|
|
or method declaration:</p>
|
|
|
|
<pre>
|
|
id foo() <b>__attribute__((ns_returns_retained))</b>;
|
|
|
|
- (NSString*) bar: (int) x <b>__attribute__((ns_returns_retained))</b>;
|
|
</pre>
|
|
|
|
<p>The <tt>*_returns_retained</tt> attributes specify that the
|
|
returned object has a +1 retain count.
|
|
The <tt>*_returns_not_retained</tt> attributes specify that the return
|
|
object has a +0 retain count, even if the normal convention for its
|
|
selector would be +1. <tt>ns_returns_autoreleased</tt> specifies that the
|
|
returned object is +0, but is guaranteed to live at least as long as the
|
|
next flush of an autorelease pool.</p>
|
|
|
|
<p><b>Usage</b>: The <tt>ns_consumed</tt> and <tt>cf_consumed</tt>
|
|
attributes can be placed on an parameter declaration; they specify
|
|
that the argument is expected to have a +1 retain count, which will be
|
|
balanced in some way by the function or method.
|
|
The <tt>ns_consumes_self</tt> attribute can only be placed on an
|
|
Objective-C method; it specifies that the method expects
|
|
its <tt>self</tt> parameter to have a +1 retain count, which it will
|
|
balance in some way.</p>
|
|
|
|
<pre>
|
|
void <b>foo(__attribute__((ns_consumed))</b> NSString *string);
|
|
|
|
- (void) bar <b>__attribute__((ns_consumes_self))</b>;
|
|
- (void) baz: (id) <b>__attribute__((ns_consumed))</b> x;
|
|
</pre>
|
|
|
|
<p>Query for these features with <tt>__has_attribute(ns_consumed)</tt>,
|
|
<tt>__has_attribute(ns_returns_retained)</tt>, etc.</p>
|
|
|
|
</div>
|
|
</body>
|
|
</html>
|